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���������	This paper proposes a methodology to analyse the semantic behaviour of a fuzzy rule model, that is, a
pair of fuzzy implication and modus ponens generating function used for inference. The proposed methodology
is applied to Yager models which are obtained from Yager implication function. It is shown that, for example,
Yager implicative implication is midway between the usual residual and strong implications generated from the
product t-norm, and that in fact Yager implication belongs to a more general family of implications that can
also be generated from the t-norms.
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This section describes the basic concepts used along
the paper.

A fuzzy implication can be defined as a function
�(���):[0,1]×[0,1]→[0,1] verifying the following
properties [1], [2]:
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Given a rule �→� (“if � is � then � is ��) where �
and � are fuzzy sets defined over � and �
respectively, (we will also denote them by �(�) and
�(�)), the fuzzy conditionals � that can be used to
model the rule are usually generated from a fuzzy
implication function as  �(���)��(�(�)��(�)). Given
an observation �����, inference is performed using
the compositional rule of inference (CRI) [1], [2]:

(2)  	��(�)�supX	 (��(�)��(���))

where a modus ponens generating function (MPGF
for short)   must be used to combine the conditional
and the observation [2]. The MPGF is a conjunctive
operator verifying:

 (!�")� ("�!)� (!�!)�!					and			    ("�")�"
 (��y) non decreasing with � and with �.

If in addition it is:

 (���(���))	≤	�	(#����	$�%�%�	&%�'��(&��)
 ("��)��   and   �("��)��.

then the CRI verifies the generalised modus ponens
(if ���� then ����). A pair ( ��) verifying all the
above properties has been called a rule model for
�→�	 (( ��)	 if the conditional � is replaced by the
implication function �).

Two main types of implications, [3],  [4], can be
distinguished: n-implications �Q�����, verifying
�Q�!����" and non increasing with �	 (classical
material conditional generalisation), and
p-implications �S�����, verifying �Q�!����! and non
decreasing with � (classical cartesian product
generalisation). The models obtained from
n-implications have been called n-models, and those
obtained from p-implications p-models. Some
typical n-models are for example ( 5

7��5
7), ( 6

7��6
7),

and p-models ( 5

7� 5

7) and ( 6

7� 6

7), where the
following operators have been defined:
 (3)
�5

7(���)�sup{�∈ [0,1])	*(���) ≤	�} (residual implication)
�6
7(���)�+(1���)�1*(��1�) (strong implication)
 5

7(���)�*(���) (t-norm)
 6

7(���)�inf{�∈ [0,1]	)+(1���)≥�} (pseudo-conjunction)

where	 * and + are a t-norm and its dual t-conorm.
Some properties of these models have already been
studied in precedent papers [3], [4]. However, there



are some particular implications that are not
included in the above families. A typical example is
the Yager n-implication, given by:

(4)   


 ≠

=
��!

!��
���

[

<

 if 0

 if 
),(

and its conjunctive counterpart (Yager
p-implication), its maximum MPGF  <(���) �
inf{�∈ [0,1]	)�<����� ≥�}, [2], given by:

(5)   
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As far as we know, no way of generating both
implications has been reported yet. The models
( <��<� and ( <� <� will be called Yager n and
p-models respectively.

This paper proposes a procedure to analyse the
behaviour of fuzzy rule models. An example of
Yager models analysis is also provided.

In the sequel the core and the support of a fuzzy set
� will be denoted respectively by ,�- and -�,. Only
normalised fuzzy sets will be considered.
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The following steps are proposed.

���� �����	 ��
����	 �������	 ���
����	 ���
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Given a rule ����→����, a n-model � ��Q� and an
observation �.���,  the conclusion �Q/���	is given by:

�Q/������$X� ��/�����Q�����������

Since �Q�����	 is non decreasing with � and ��"������
then	 �Q�����	≥	 	� and	 the conclusion of the model
verifies �Q/���	 �	 ��$X� ��/�����Q�����������		 ≥ 
��$X� ��/���������. Since  �����	 is non decreasing
with � then ��$X� ��/���������	�	 ���$X��/���������
�	����	and thus it is:

(6)			�/Q���	≥	����

Similarly �S�����	 is non decreasing with �	 and
�S�"�����	which means that �S�����	≤	�, that is �S/���
�	 ��$X� ��/�����S�����������	≤ ��$X� ��/���������	=
�����	and thus it is:

(7)   �/S���	≤	����

This means that n-models always generate a
conclusion greater or equal than the consequent,
while p-models generate conclusions lesser or equal
than the consequent. In the same sense see [5] where

similar concepts (expansion/reduction type
implication) were introduced.

���� ���������	 ����������	 ��� 	 ����
���
�����

The conclusion obtained from the model, assuming a
precise observation �/����0��1, is given by
��������α������, where �	 is the implication of the
model and α������ [3].

At this stage it is possible to compare how
different implications behave by comparing their
conclusion for same α������. Similar approaches
have already been performed for example in [6].
Typical examples of n-models are shown in Fig. 1.
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Fig. 1 Consequent modification with singleton input
for some typical n-models

Three different behaviours are identified [7], [9]:

•  residual implications, that generate outputs
vaguer than the consequent, by means of an
enlarged core (gradual models)

•  strong implications, that generate more uncertain
outputs, with same core but a non null level of
indetermination (certainty models)

•  Lukasiewicz implication, that shows both
behaviours simultaneously

Similar results can be observed for p-models, where
uncertainty level should be read as height, and core
enlargement as support reduction.

��!� "���#�
����	�$�%�&

The previous analysis can be generalised by
determining when the equivalence between the
compositional rule of inference -CRI- and the



compatibility modification inference –CM [8]-
holds. In these cases the conclusion is again given by
directly applying the implication function to the
consequent, but using a more complex compatibility
index α�2�#$������. This index is highly
informative since it reflects which features of the
hypothesis and input are really being compared and
used by the rule model to modify the consequent.

The equation to be solved is ��������α������,
where �����	 is supposed to be calculated applying
the CRI. This equation can be formulated in terms of
fuzzy truth values, that is τ44¶������α���, and has
been solved for some of the most common rule
models in [3]. The main results are summarised in
Table 1:

0RGHO &RQGLWLRQV &RPS�3¶�3�

�05
7��,5

7�� µ^α`�≤�τ�[��≤�,57��α�[�
⇒ ���@3¶>⊂ @3>

α = =inf ( )/ ’( )X 3 X
� �1

�05
7��,5

7�� µ^α`�≤�τ�[��≤�,57��α�[�
⇒ ��>3¶@⊂ @3>

α = =inf ( )/ ’( )X 3 X
� �1

��06
7��,6

7�� µ^α`�≤�τ�[��≤�,57��α�[�
⇒ ��>3¶@⊂ @3>

α = =inf ( )/ ’( )X 3 X
� �1

�06
7��,6

7�� µ^α`�≤�τ�[��≤�,57��α�[�
⇒ ��@3¶>⊂ @3>

α = =inf ( )/ ’( )X 3 X
� �1

�05
7��05

7�� τ�[��≤�,57��[�α���⇔
@3¶>∩@3>≠�

α VXSX�05
7��3¶�X��3�X��

�05
7��05

7�� τ�[��≤�,57��[�α����⇔
I�3¶�X���I�3�X�����I���

α VXSX�05
7��3¶�X��3�X��

�06
7��06

7�� τ�[��≤�,57��[�α����⇔
I�3¶�X���I�3�X�����I���

α VXSX�05
7��3¶�X��3�X��

�06
7��06

7�� τ�[��≤�,57��[�α���⇔
@3¶>∩@3>≠�

α VXSX�05
7��3¶�X��3�X��

Table 1: Equivalence between CRI and CM for some
rule models

τ��� is the truth value of the observation ��	3iven the
hypothesis �, τ33¶���, and 4		is the additive generator
of the arquimedean t-norm that generates the model.
The definition of τ33¶��� combined with its resulting
upper and/or lower bounds allows to obtain some
additional information in terms of support and core
inclusions or intersections, reflected in the above
table. It should be noted that the compatibility index
of the n-models is a measure of the inclusion of the
core of the observation �� into the hypothesis � of
the rule (a pessimistic measure). On the other hand,
for the p-models it is a measure of the intersection of
the observation and the hypothesis (the optimistic
version).

��'� (�����	�������	�	��
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The third step proposed consists in determining the
condition the hypothesis and the input of the rule
must verify to infer a non trivial conclusion. In [4] it

was proved that the trivial conclusion obtained from
a n-model when the input �� is sufficiently different
from the hypothesis � is ��(�)�1, and that its firing
condition is given by:

(7)   ∀ �∈ �, supX  (��(�),�(�(�),0))<1

where supX  (��(�),�(�(�),0)) is the level of
indetermination or uncertainty of its conclusion.
Similarly, the trivial conclusion of a p-model is
��(�)�0 and its firing condition is given by:

(8)   ∃ �∈ �, supX  (��(�), (�(�),1))>0

where supX  (��(�), (�(�),1)) is the height or
possibilistic uncertainty of its conclusion (see 2.5).

By solving the precedent expressions the level of
uncertainty of the conclusions of n-models, or the
height of the conclusions of p-models are obtained.
Table 2 shows some results obtained in [4].
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(05
7��,5

7�) [3¶]�⊂ �]3[ 4¶(Y)�≥���1(]3[�3¶)
�05

7��,5
7�� [3¶]�⊂ �]3[ 4¶(Y)≥�I[�1](I(0)�I(1(3�[3¶])))

and 4¶(Y)�≥�1�1(]3[�3¶)
�06

7��,6
7�� [3¶]�⊂ �]3[ 4¶(Y)�≥�1�1(3�[3¶])

and 4¶(Y)�≥�1�1(]3[�3¶)
(06

7��,6
7�) ]3¶[�⊂ �]3[ 4¶(Y)�≥�1�1(3�[3¶])

(05
7��05

7�) ]3¶[�∩�]3[�≠�0 4¶(Y)�≤�Π5
7(3�3¶)

�05
7��05

7�� I(3¶(X))�I(3(X)) <�I(0) 4¶(Y)�≤�Π5
7(3�3¶)

�06
7��06

7�� I(3¶(X))�I(3(X)) <�I(0) 4¶(Y)≤�1�I[�1](I(0)�Π5
7(3�3¶))

(06
7��06

7�) ]3¶[�∩�]3[�≠�0 4¶(Y)=1, or 0 if ]3¶[�∩�]3[=0

Table 2: Firing condition of rule models
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The three precedent steps can be used to interpret
the meaning of the conclusions obtained from both
types of models [4], and thus the models themselves:
n-models (necessity models) produce
certain/necessary conclusions since:

� Their conclusion is always less restrictive
(greater) than the consequent

� Their trivial conclusion is the whole universe of
discourse: no value is excluded

� Their firing condition is based on a measure of
the inclusion of the observation into the
hypothesis.

Their conclusions, called in [4] necessary possibility
distributions, are possibility distributions that
exclude only impossible values, given the available
information.



Similarly p-models (possibility models) produce
possible (non contradictory) conclusions since:

� Their conclusion is always more restrictive
(lesser) than the consequent

� Their trivial conclusion is the empty set: no
value is included

� Their firing condition is based on a measure of
the intersection of the observation and the
hypothesis.

Their conclusions, called possible possibility
distributions in [4], are possibility distributions that
include only possible values, or equivalently, values
that are not in total contradiction with the available
information.

��*� ���	�	������	�	� �	���
����

As a forth step it is suggested the exact or
approximate computation of the core of necessary
possibility distributions and the support of possible
possibility distributions. This information combined
with the information obtained from the precedent
points allows a more precise characterisation of the
model under study. In [8] several cases are analysed.

!� +��
����	�	�����	���
�������

!��� ���������	����������

For singleton input ������0��1, the conclusions
obtained from the n-model � <��<� and the p-model
� <� <� are:

��Q�����Q�α�������������α
��S�����S�α���������������α

Their approximate shapes are shown in Fig. 2.
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Fig. 2: Consequent modification with Yager
implications

As it was expected ��Q is always greater or equal

than ���� while �S���� is always lesser or equal than
����. In addition, the trivial conclusion of the
n-model (when ������!) is �������, and that of the
p-model is ������!. However, for both implications,
and in contrast with the behaviour of other usual
implications (see [4]), no modification of the core
and support are performed. This means that the
uncertainty of the conclusion (level of uncertainty
for necessary possibility distributions, or height for
possible possibility distributions) does not increase,
unless the trivial conclusion is reached (in a non
continuos way).
     The imprecision or vagueness of the resulting
possibility distributions increases in a different way
than the above typical models, and something
between. See for example the case of the
n-implications, Fig. 1 and Fig. 2 case a).

!��� "���#�
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The equation to be solved is �������<�α������ which
is equivalent to:

��$[� <�τ�����<������	≤	�<�α���

Solving the modus ponens inequality for τ��� it is:

�<�����
��τ�[�

�≤	��α���	⇒ 	�[�τ�[�≤	�α�
�⇒ 	τ���	≤		�)α

It can be checked that if µ^α`�≤	τ���	≤	�)α, being µ^α`

the membership function of the singleton 0α1, the
supreme is reached for ��α and the CRI reduces to
the CM with compatibility index given by
α = =&%4 � �� 
� �[ 3 X � ��

. The condition for the equivalence

is then µ^α`�≤	τ���	≤	�)α. The compatibility index and
the condition for equivalence are identical to those
obtained for the n-model generated from the product
t-norm *��������.

For the p-model the equation to be solved is
������ <�α������, which is equivalent to:

��$[� <�τ���� <������	≤	 <�α���

Solving the modus ponens inequality for τ��� it is:

 <�����
��τ�[��≤	 <�α���	⇒ 	����[�τ�[���≤	���α⇒τ ���	≤	α)�

If in addition ��$[��5τ����α, that is ��$[*���τ����	≥	α
then the supreme is reached and the equivalence
holds. Thus if τ���	≤	�57���α�, being * the product
t-norm, the equivalence CRI-CM holds with
compatibility index α���$[*�τ������=��$[��5τ���.
Again the same results obtained for the p-model



generated from *�������5� are recovered [3]. This
suggest some mathematical relationship between
Yager implications and the product t-norm that will
be pursued in section 3.4. Fig. 3 shows the
conditions for the equivalence CRI-CM for both
types of models.
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Fig. 3: Condition for CRI-CM equivalence of Yager
models
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As done in [4] it is possible to determine the
condition � and �� must verify to infer non trivial
conclusions with both types of models. When using
the n-model the following equation must be solved:

∀ �∈ �, supX  <(��(�),�<(�(�),0))<1

Since supX  <(��(�),1))="��3¶�X��and "[�"	unless x=∞,
the model fires if when �����!	 (that is �<(0,0)=1)
then ������!	(that is "��3¶�X�≠1):

-��,⊂ -�,

This condition is the same obtained for n-models
generated from a positive t-norm, and it is the most
restrictive one of those obtained for the n-models.
     When inferring with the p-model the firing
condition is obtained solving:

∃ �∈ �, supX  <(��(�), <(�(�),1))>0

Since  <���!��! and  �!����! the model fires if
����≠! and  �������"�≠!, that is ����≠! and
�����≠!, which is equivalent to:

-��,∩-�,≠!

This condition is the condition obtained for
p-models generated from a positive t-norm.

As it was expected the Yager n-model is a
necessity model since it fires when there is some
kind of non null inclusion of the input into the

hypothesis, and thus its conclusions can be
interpreted as necessary possibility distributions. In
the same way the p-model fires when there is a non
null intersection between the input and the
hypothesis, and thus it is a possibility model and its
conclusions can be interpreted as possible possibility
distributions.

!�'� ,���������	 �����	 ���
������	 ���	 � �
������	�%���

There is an interesting relationship between Yager
implications and the usual implications generated
from the product t-norm. On the same way the
additive generator of the product t-norm seems also
to be related with Yager implication, since
4����(%��� with pseudo-inverse 4>��@������[, and it can
be checked that the following holds:

�6�				 <������4
>��@�4���)��

					�<������4
>��@��54����

This seems to point out a new way of generating
implications from a t-norm, or more specifically
from the additive generator of a t-norm, being Yager
implications a particular case.

'� ,���������	 ���	 ���
�������	 ���
�%����
Let’s define the operator:

(10) 
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with 4	 	 being the additive generator of an
arquimedean t-norm, and 4>��@	  its pseudo-inverse.
Then the operator 7����� is a conjunctive operator,
associative but non commutative:

7�"�"��4>��@�4�"�)"��4>��@�!��"
7�!����!

7���!��4>��@�4�!�)���!	(since 4�!�)�84�!�)
7����� is non decreasing with � and �

7����� is non decreasing with both arguments since:
4���)� decreases when � increases, 4>��@�is a decreasing
function and thus 7����� increases with �; in the
same way if � increases then 4��� decreases and thus
�54��� decreases which means that 7����� is
increasing with �. It can also be proved that 7�����	is
associative:



7���7���9���4>��@�	4�7���9��	)	�	��4>��@�	�4���)9�	)	�	�
�	4>��@�	�4���)��	)	9��7�7������9�

In addition 7	 is a valid MPGF since 7�"�����
(7�"����4>��@�"54������). This means that it is possible
to generate new pseudo-conjunctions (or
p-implications) 7����� from the additive generator of
an arquimedean t-norm. Taking into account that
from each new pseudo-conjunction 7����� it is
possible to obtain its corresponding n-implications
by residuation [2], then the following n and
p-models denoted by � +

7��+
7� and � +

7� +

7� can be
obtained (being 4	 the additive generator of an
arquimedean t-norm, and 4>��@	 its pseudo-inverse):

(11)   �5
+������ sup{�∈ [0,1])	7(���) ≤	�}

(12)  
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This paper proposes a methodology for analysing the
mathematical and semantic behaviour of rule
models. This methodology has been extensively
developed in [9]. Two main types of models with
clearly defined properties have been considered:
n-models that conclude certain or necessary
conclusions (called necessary possibility
distributions), and p-models, that conclude non
contradictory or plausible/possible conclusions
(called possible possibility distributions). This
interpretation logically explains why possible
models do not produce an output when the input
does “not match” (intersects) the hypothesis. The
proposed methodology has been applied to two rule
models generated from Yager implication. Several
aspects of its behaviour have been pointed out and
this analysis has shown up the close relationship
existing between Yager operators and the product t-
norm. This relationship has been used to propose a

new method to generate implications from t-norms.
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