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Abstract: It has been more than one year since Chinese authorities identified a deadly new strain
of coronavirus, SARS-CoV-2. Since then, the scientific work regarding the transmission risk factors
of COVID-19 has been intense. The relationship between COVID-19 and environmental conditions
is becoming an increasingly popular research topic. Based on the findings of the early research,
we focused on the community of Madrid, Spain, which is one of the world’s most significant pandemic
hotspots. We employed different multivariate statistical analyses, including principal component
analysis, analysis of variance, clustering, and linear regression models. Principal component analysis
was employed in order to reduce the number of risk factors down to three new components that
explained 71% of the original variance. Cluster analysis was used to delimit the territory of Madrid
according to these new risk components. An ANOVA test revealed different incidence rates between
the territories delimited by the previously identified components. Finally, a set of linear models
was applied to demonstrate how environmental factors present a greater influence on COVID-19
infections than socioeconomic dimensions. This type of local research provides valuable information
that could help societies become more resilient in the face of future pandemics.

Keywords: COVID-19; the community of Madrid; environmental and socioeconomic risk factors;
principal component analysis; cluster analysis; general linear model

1. Introduction

The first cases of coronavirus were identified in late 2019 in Wuhan Province, China.
On 7 January 2020, the virus was isolated for the first time, verifying the existence of
a new strain of coronavirus which became known as SARS-CoV-2 [1]. In a short time,
the pandemic spread to six continents, achieving global significance. However, the impact
of the pandemic has been uneven between countries. While some nations have hardly
been affected, others, such as Spain and Italy, have suffered disproportionately heavy
impacts. This difference is partly explained by the different non-pharmaceutical inter-
vention strategies implemented by different nations [2]. However, there are still many
unknowns in explaining these significant differences between countries. These gaps in
our understanding have propelled increased scientific research seeking to answer a key
question: what risk factors make societies vulnerable to the COVID-19 pandemic?

A prolific line of research has been related to the evaluation of environmental factors
(such as weather conditions or pollution levels) as mediators of contagion [3,4]. Despite
the large amount of research on this subject, it is far from being fully understood. As noted
by the metatheoretical studies of Shakil et al. [3] and Briz-Redón and Serrano-Aroca [4],
this body of work lacks uniformity in its results. This lack of consistency stems from several
different factors, such as the differences in how variables are measured, the analytical
strategies employed, the factors under consideration, and the spatiotemporal frame studied.
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Both studies also point to another common methodological limitation: the overuse of
bivariate analyses (i.e., Pearson and Spearman correlations) and descriptive techniques to
explain the results. Given the difficulty of reaching consistent and universal conclusions
and recognizing the urgency of understanding the environmental factors involved in
COVID-19 propagation, this study aims to overcome the limitations of the existing literature.
The study achieves this through three core methodological considerations: (1) a complex
causal process, (2) a limited space-time frame, and (3) a multivariate methodology.

The complex causal approach comes from taking a broad perspective on environmen-
tal factors. It considers socioeconomic conditions, climatological environmental factors,
and the level of atmospheric pollution to be parts of the human-environmental ecosystem.
This perspective, coupled with the application of multivariate techniques, allows for more
refined analytical tools to better understand the pandemic’s behavior. Finally, there is
the question of territorial delimitation, addressed through data harmonization and the
relevance of specific locations. The resulting work is a case study of the community of
Madrid during the first wave of the pandemic.

This type of micro-level, holistic approach allows us to gain valuable knowledge about
local ecological vulnerabilities. Rather than the universalist goal of identifying a general
recipe, we opt for an approach that allow us to extract solid and practical information that
can be used to make societies more resilient in the face of future disasters.

2. Materials and Methods
2.1. Methods and Procedures

The main research objective is to empirically ascertain the influence of environmental
factors in the case of the Madrid community. Based on this premise, a multivariate ap-
proach was chosen. The study methodology consists of different phases. The first phase
comprised the identification and selection of risk factors through a literature review. Once
the risk factors were identified, a maximum likelihood principal component analysis (PCA)
with varimax rotation was applied—which explained 71% of the variance in the original
variables—to reduce the set of variables to a smaller number of risk dimensions. The num-
ber of components that were retained was determined by performing a parallel analysis,
which was a more sophisticated method than most of the classic analysis options [5]. With
these new dimensions, a k-means cluster analysis was performed in order to classify the
territory according to the new risk variables. To select the most appropriate number of
clusters, the elbow method was used in a scree plot of the within-cluster sum of the square
of each number of clusters [6] (see Figure A1 in Appendix A). Subsequently, an analysis of
variance (ANOVA) was performed and the post hoc Scheffé’s method was used to char-
acterize each cluster according to the original variables. The efficiency of the constructed
vulnerability map was verified by another ANOVA, and Scheffé´s multiple comparisons
test, according to the number of infections in each territory. The analysis ended with a set
of linear regression models used to determine the influence of each component on the total
cumulative cases for the whole territory and for each cluster. For some linear models—
given the problems of autocorrelation and heteroscedasticity that geographical information
usually presents—their regression coefficients were estimated using a covariance matrix
consisting of heteroscedasticity (HC) (specifically, the HC3 matrix, which performs better
with smaller samples (<250)) [7]. The heteroscedasticity was checked by the White test [8].

2.2. Data

The total number of municipalities in the community of Madrid were used as the
statistical units for the study, with the exception of the municipality of Madrid itself,
which was replaced by the 21 districts that comprise it. This choice was driven by the
understanding that the districts of the municipality are more readily comparable with the
rest of the municipalities than the entire municipality would be. A total of 199 districts
and municipalities were studied. The data were obtained from generally accessible public
databases. Furthermore, the study can be replicated and extended in the event of future
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pandemic outbreaks, since more data on the progress of the pandemic are becoming
available as Europe struggles with a third wave of lockdowns. The analysis was restricted
to first-wave data from 14 March 2020 (when a lockdown was imposed in Spain) to 13 May
2020 (when lockdown restrictions were eased).

Firstly, the data on the target variable, the total accumulated infections as of May 13 in
the Madrid community, were retrieved from the open data set “COVID 19 -TIA” by the
Municipalities and Districts of Madrid [9]. We opted to use the absolute values instead
of the ratios per 100,000 because of the large population differences between territories.
These differences cause the relative measures to bias the incidence indicator by inflating
the influence of smaller regions with hardly any cases, which may be due to small, random
outbreaks. This issue is highlighted by the fact that three of the six regions with the highest
rates have fewer than seven cases to date (Valdaracete with six cases, and Berzosa del
Lozoya and Braojos with less than five cases). In the regression model, population size is
used as a control variable for the population size bias related to the absolute measure.

This variable was transformed prior to the analysis. The first transformation was
conducted due to the high incidence of missing data (~21%). In this case, the missing data
were due to confidentiality issues, because the information for municipalities with less than
six cases was suppressed. The imputation procedure selected is imputation by a constant
(=5) according to a parsimony criterion. The second treatment was a Box–Cox logarithmic
transformation, used to achieve a higher degree of normality in the distribution.

The set of independent variables are summarized in Table 1. In addition, since the
dependent variable is the total number of cases, the population of each territory has been
included as a control variable for the linear models.

Table 1. Summary of independent variables.

Variable Measure Data Source

Social Dimension

Density Population density [10,11]

Age Percentage of the population over 65 years old [10,11]

Income Per capita income by municipality from Estimate of
the Municipal Gross Domestic Product [12,13]

Workers Percentage of workers supported by social security [14,15]

Pollution dimension

CO Carbon monoxide, micrograms per cubic meter [16,17]

NO Nitrogen monoxide, micrograms per cubic meter [16,17]

NO2 Nitrogen dioxide, micrograms per cubic meter [16,17]

SO2 Sulphur dioxide, micrograms per cubic meter [16,17]

Ozone Ozone, micrograms per cubic meter [16,17]

PM2.5 Particulate matter < PM2.5 [16,17]

Res.Sys.death Respiratory system related death rate [18]

Climatological dimension

Temperature Temperature April average level [19]

Humidity Humidity April average level [19]

Control variable

Population Number of people [11,20]

2.3. Software

The statistical analyses were carried out using the R V4.0.1 language [21] (R Founda-
tion for Statistical Computing, Vienna, Austria) and several libraries, such as “sf” [22], “tidy-
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verse” [23], “psych” [24], “extrafont” [25], “cluster” [26], “sandwich” [27], “lmtest” [28],
“reshape2” [29], “factoextra” [30], “agricolae” [31], “ggspatial” [32], and nortest [33].
The open source code and data required to replicate all analyses in this article are available
at Pérez-Segura et al. [34].

3. Theory Framework

In mid-February, Italy overtook China to become the country with the most COVID-19
cases per million, but was soon overtaken by Spain (25 March 2020), which ranked first in
the world until 10 April 2020 [35]. The Spanish capital, Madrid, was the epicenter of the
outbreak during the first wave, accounting for most of the infections in the country. Follow-
ing Tobias’ findings [36], strict confinement measures were the key to reducing the infection
rate in Spain to its minimum at the end of April. However, with the arrival of the summer
months and the relaxation of mobility restrictions, the downward infection trend reversed.
This increase in the number of cases was accentuated by strong outbreaks in Spanish
communities that were barely affected previously. This resulted in a second wave that was
disproportionately larger than the first, although the mortality rate dropped significantly.
Subsequently, the second wave gave way to the third wave, which once again surpassed
the previous waves in terms of the number of cases [35], demonstrating the difficulty of
controlling the contagion without resorting to intense mobility restriction measures.

The interest in studying the Madrid community stems from three factors: (1) Madrid
is one of the world’s main COVID-19 hotspots, (2) the lack of previous studies focused
on the territory, and (3) a geographic space with harmonized information for the whole
territory. Moreover, focusing on the first wave provides two other advantages: (1) it was
a critical moment during the pandemic, since the degree of initial propagation has an
impact on subsequent waves; and (2) it allows easier control of exogenous factors such as
partial lockdowns and non-pharmaceutical measures, which were employed in Madrid
during the following waves.

During the first year of the pandemic, much scientific literature was published ex-
ploring the influence of environmental factors on levels of infection. The relationship
between these variables was previously confirmed with other infectious diseases, such as
influenza [37]. Despite the extensive work carried out, the different studies did not produce
consistent findings on how certain variables relate to COVID-19. There are many factors
that contribute to the lack of coherence between the results, and they can be classified into
three categories: the variables considered, divergences in measurement methods, and the
applied methodologies.

There are differences in the measurement methods employed for certain factors rele-
vant to the study, which can complicate efforts to make statistical comparisons between
them. These factors can be diverse and include areas, such as differences in COVID-19
testing strategies between countries (e.g., the type of test and its administration strategy),
the location of the meteorological stations, and the time period studied. In light of this,
limiting our study to a specific geographical area is an appropriate strategy through which
to avoid this possible source of error.

The number of risk factors considered and the precision with which they are measured
is another key element that greatly impacts the study results. The totality of factors influ-
encing the propagation of COVID-19 is still unknown. For example, it was only recently
discovered that the virus has a predilection for certain blood types [38]. Similarly, Allcott
et al. [39] recently discovered how individual political orientations mediate attitudes to-
wards the use of prevention measures. Davies et al. [40] recently demonstrated how the
British COVID-19 variant has increased transmissibility. These studies are examples of the
large number of possible latent variables influencing the pandemic, whose impact may
be responsible for the lack of consistent results between different studies. Therefore, it is
informative to make approximations that cover a wide spectrum of variables, even with the
knowledge that there will be many other variables with significant influences that cannot
be included. This issue is linked to Briz-Redon and Aroca [4] and Shakil’s [3] considerations
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about the lack of diversity among methodologies, where bivariate approaches abound,
as opposed to multivariate techniques. This idea led to the development of multivariate
analytical approaches that allow for the examination of the phenomenon from a broader
perspective than monocausal approaches do. Sarkoide and Owusu [41] have recently
published research comparing countries on a global scale and employing a multidimen-
sional approach. This work is complementary to ours, as they have a different spatial and
temporal framework, as well as a different analytical design. A strength of our present
work is that its greater granularity makes it possible to appreciate the heterogeneity within
territories. This allows us to extract more reliable knowledge of the concrete reality of each
area, in addition to solving the heterogeneity problems.

According to the World Health Organization [42], a risk factor is defined as a charac-
teristic, condition, or behavior that increases the likelihood of suffering a disease or injury.
Even though these factors are most often presented individually, they often relate to each
other. According to the literature review, risk factors are classified into three dimensions:
socioeconomic, pollution, and climatological.

3.1. Socioeconomic Dimension

The socioeconomic dimension includes four variables, two related to demographic
factors and two related to economic indicators. The demographic factors considered are
the age composition of the population (percentage of people over 65 years of age) and the
population density. Kang and Jung [43] have pointed out the relationship between the
COVID-19 pandemic and certain social groups characterized by age, such as high mortality
among the elderly.

The way in which COVID-19 is transmitted, through close contact between individuals,
makes it essential to consider the population density of a territory as a factor influencing
the rate of transmission. Therefore, the higher the population density, the easier it is to
transmit the disease. This relationship is empirically confirmed in Carozzi’s research [44].
During the first wave, Madrid spent most of the time in a general lockdown. The study by
Sun et al. [45] found that, under lockdown conditions, population density does not seem to
have a significant effect on infection. However, population density was included in this
study because the lockdown was initiated only after infections began to skyrocket.

The economic situation of individuals is another element that has been related to the
spread of previous pandemics, such as the Spanish flu and AIDS [46,47]. A certain degree
of correlation has also been found with this pandemic. Hawkins et al. [48] noted statistical
associations between geographic incidence and the socioeconomic status of communities
in the United States when using the Distressed Communities Index as an indicator of
economic status (DCI score is composed of items such as the number of adults without
a high school degree, the unemployment rate, the poverty rate, etc.).

A lack of economic resources translates into the reduced availability of hygienic/sanitary
resources. Additionally, it is also related to poorer living conditions, such as the rate of
overcrowding in housing, which is a key factor in maintaining social distancing measures
to avoid infection during lockdowns. People struggling with unemployment or limited
employment opportunities may be under greater pressure to perform risky actions to
keep their jobs or seek economic resources. Ahmed et al. [49] suggests in his theorical
work that impoverished populations may have a poorer health status associated with poor
living conditions, which increases their vulnerability to COVID-19. The economic factors
included in this study are the per capita income of the territory and the percentage of
workers supported by social security. The percentage of workers has been included since
the average income variable per municipality may be insufficient to reflect the quality
of the labor market in a territory. The average does not reflect the possible economic
inequality within the territory. Additionally, there may be well-paid, low-skilled jobs that
are performed under worse working conditions, implying a lower labor status. Thus,
the combination of the two variables makes the socioeconomic characterization of the area
more robust.
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3.2. Pollution Dimension

Different studies agree on the association between air pollution levels and COVID-19,
both in relation to infection and mortality [50,51]. Although none of these studies account
for the causal mechanism that produces the effect, the concurrence of the results gives us
confidence that such a relationship exists.

The pollution dimension is formed by two variables, each of which is based on
different ways of evaluating pollution in the different territories. The first is composed
of all of the pollutant measurements available in the Madrid community (CO, SO2, NO,
NO2, Ozone, and PM2.5). The second is the variable percentage of deaths associated with
respiratory problems, which serves as an indirect measurement of the chronic pollution in
the territory. The findings of Zheng et al. [52] verify how long-term exposure to pollutants
is related to the number of COVID-19 cases.

3.3. Climatological Dimension

Temperature and humidity are fundamental environmental elements that have consid-
erable influence on infectious respiratory diseases, such as influenza. There is no unanimity
on the type of influence they have on COVID-19. Bashir et al. [53] found a positive corre-
lation between temperature and transmission, yet, on the contrary, Ma et al. [54] found
a negative correlation between the two. There are even studies, such as that of Mol-
lalo et al. [55], in which there is no association between the variables. Taking into account
the results of the bibliographic review of the work of Briz-Redon and Serrano-Aroca [4],
the studies that identify a negative correlation (33 papers) outnumber those that find
a positive correlation (6 papers) and the publications that find no relationship (7 papers).

The same inconsistent results are found in relation to humidity, but, considering the
work of Briz-Redon and Serrano-Aroca [4], it seems that most of the research where this
variable is included tends to present a negative relationship, as opposed to a positive
relationship or a lack of any association between the factors (thirteen, three, and six papers,
respectively).

4. Results and Discussion

Before carrying out the PCA, tests were performed on the data matrix in order to check
its suitability for the technique. Bartlett’s test of sphericity showed a p-value of 1, so the
null hypothesis of the independence of variance was accepted. The Kaiser–Meyer–Olkin
measure was also examined, and the adequacy of the data was verified (an overall measure
of sampling adequacy of 0.73).

The principal components technique with varimax rotation was applied and three
components emerged from the 13 initial variables, which explain 71% of the original
variance. Each component was interpreted in terms of factor loadings (Table 2). It should
be noted that the empirical dimensions resulting from the analysis do not correspond to
the theoretical dimensions projected. This is explained by the fact that previously validated
scales were not used. However, the resulting dimensions are still useful insofar as they
summarize information from the 13 risk factors considered.

Table 2. Component loadings.

Pollution and Density Particulate Matter and Temperature Socioeconomic

SO2 0.87

CO 0.86

NO 0.74

Density 0.73 0.42

PM2.5 0.92

Ozone −0.43 −0.83
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Table 2. Cont.

Pollution and Density Particulate Matter and Temperature Socioeconomic

Temperature 0.76

NO2 0.53 0.68

Income 0.87

Workers 0.76

Humidity −0.56 −0.50

Age −0.57 0.40

Resp.Sist.Deaths 0.54

Note: Loads less than 0.4 have been suppressed. The most representative factor loadings are indicated in bold type.

One aspect of the new variables is that the population density variable is loaded onto
a mainly climatic factor. This finding makes sense in light of the fact that pollution is an
ecological footprint of human populations.

Once the new variables or dimensions were chosen, a k-mean cluster was carried
out in order to identify the different ecosystems that comprise the community of Madrid,
according to the risk factors (Figure 1). The “Madrid-City” cluster is made up of the
21 districts of the city, and has notably higher scores on measures of pollution, population
density, and socioeconomic conditions than the other two (Figure 2). However, in regard to
the particulate matter and temperature factors, Madrid has a negative score close to that
of the “North-East” cluster. The “Madrid-Surroundings” cluster is composed of a total
of 96 municipalities, among which are several heavily populated municipalities, such as
Fuenlabrada and Leganes (~200,000 inhabitants) as well as Alcorcón, Parla, and Torrejón
de Ardoz (~130,000 inhabitants). In this cluster, the particulate matter and temperature
factors stand out. The pollution and population density variables are considerably lower
than in the “Madrid-City” cluster, but slightly higher than in the “North-East” cluster. This
is also the region with the worst socioeconomic status of the three. Finally, the “North-
East” cluster is composed of 82 municipalities, all of which are municipalities with less
than 5000 inhabitants. This corresponds to lower pollution levels as well as a lower
socioeconomic status.
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Figure 2. Components by clusters.

Table 3 provides more detail on the characteristics of each cluster according to the
mean scores of each of the original variables. The ANOVA p-values (Table 3) show that
there are statistically significant differences between means in at least one cluster for all
variables. Consequently, the post hoc test was employed to determine which clusters the
differences existed between. The Madrid-City cluster was the most polluted region of the
territory, followed by the Madrid-Surroundings cluster, while the North-East cluster stood
out for its low pollution levels. The socioeconomic component demonstrates a similar trend,
with Madrid-City scoring the highest. Measures of particulate matter and temperature,
on the other hand, displayed a completely different trend, with the North-East cluster
being the most humid and the Madrid-Surroundings cluster being the hottest. For both
variables, Madrid-City had the lowest scores.

Table 3. Comparison of the mean values of the original variables by cluster.

Variable
Cluster

ANOVA (p-Value)
Madrid-City Madrid-Surroundings North-East

Pollution Dimension
PM2.5 4.05 6.66 3.45 <0.01

SD 0.22 0.69 1.07
SO2 4.33 1.29 1 <0.01
SD 1.56 0.50 0.00
CO 50.40 0.87 0.45 <0.01
SD 12.33 0.69 0.19
NO 4.15 1.82 1.00 <0.01
SD 4.57 0.90 0.01

NO2 17.01 14.04 1.68 <0.01
SD 5.65 7.25 0.63

Ozone 53.08 53.90 80.62 <0.01
SD 4.61 3.84 4.24
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Table 3. Cont.

Variable
Cluster

ANOVA (p-Value)
Madrid-City Madrid-Surroundings North-East

Social Dimension
Density 14.25 0.85 0.05 <0.01

SD 9.82 1.32 0.05
Income 40,590.98 21,877.74 24,445.71 <0.01

SD 17,966.81 11,808.98 14,818.63
%Workers 0.60 0.31 0.22 <0.01

SD 0.39 0.20 0.11

Climate Dimension
Humidity 65.96 71.16 75.98 <0.01

SD 0.00 3.56 0.54
Temperature 9.69 12.83 10.89 <0.01

SD 0.00 0.92 1.60

Dark gray, light gray and white are used to indicate that there are statistical differences between means. The darkest shade refers to the
highest mean value, the light gray to the mean value and the white to the lowest mean value. When there are only statistically significant
differences between two groups, only dark gray and light gray are used to distinguish the groups. Differences in means were tested by
Scheffé´s methods at a significance level of 0.05.

After defining the different ecosystems according to the risk factors, we evaluated
whether they corresponded to different incidence rates of infection. Figure 3 shows the
level of disease penetration per cluster. This graph shows that the municipality of “Madrid-
City” suffered the highest incidence of infection. The “Madrid-Surroundings” cluster had
a large number of outliers (Figure 3). These outliers correspond to the highly populated
cities mentioned above (Leganes, 2963 cases; Alcala de Henares, 2331 cases; Mostoles,
2079 cases, etc.). The ANOVA test and the Scheffé´s method post hoc test showed significant
differences between the average levels of contagion in the three territories. These results
showed how the use of risk factors could delineate differentially affected areas. However,
it did not shed light on the influence of each factor. Instead, a series of regression models
were carried out to determine the specific influence of each factor.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 3. Boxplot of COVID-19 cases by cluster. The diagram represents the median value (line 
inside the box), the Q1 (lower boundary of the box), the Q3 (upper boundary of the box), the maxi-
mum and minimum (vertical line) and the outliers (the dots). 

Table 4 shows the results of the regression models for the entire territory and for each 
cluster. The community of Madrid model (“C.Madrid”) reveals some interesting findings, 
as all components are not only significant, but also positively correlated. This means that 
higher scores on the three variables, including socioeconomic status, increase the risk of 
contracting COVID-19. This finding contradicts the existing theory on socioeconomic sta-
tus and COVID-19 transmission [46]. However, it is important to mention that we are an-
alyzing variables at the municipal level (district, in the case of the Madrid municipality), 
so intra-municipal variability is not taken into account. Therefore, our results indicate that 
municipalities with greater socioeconomic status (i.e., a greater proportion of workers and 
a higher average income) are likely to have more cases of COVID-19, which does not ex-
clude the possibility that, within these municipalities, there may be some economic segre-
gation in the risk of infection. Another important finding lies in the comparison of effect 
sizes. By working with standardized factors, it is possible to make comparisons between 
the regression parameters. Particulate matter and temperature scores had the greatest im-
pact on the number of cases compared to the other two variables, with socioeconomic 
status having the least influence. 

Table 4. Regression models with components. 
 C.Madrid North-East Madrid-Surroundings Madrid-City 

 Coef.  
(SD) 

t p-Value 
Coef.  
(SD) 

t p-Value 
Coef.  
(SD) 

t p-Value 
Coef.  
(SD) 

t p-Value 

(Intercept) 3.17 *** 
(0.08) 

37.81 <0.01 1.17 ** 
(0.04) 

3.13 <0.01 3.69 *** 
(0.42) 

8.83 <0.01 6.11 *** 
(0.21) 

28.79 <0.01 

Pollution and Density 
0.48 *** 
(0.08) 5.98 <0.01 

-0.62 
(0.49) −1.26 0.21 

0.77 * 
(0.32) 2.40 0.02 

0.00 
(0.14) 0.14 0.89 

Particulate Matter and Temperature 
0.75 *** 
(0.06) 

12.35 <0.01 
-0.10 
(0.12) 

-0.87 0.38 
0.07 * 
(0.44) 

0.15 0.87 
−0.13 
(0.27) 

−0.48 0.63 

Socioeconomic 
0.16 * 
(0.07) 

2.31 0.02 
0.15 

(0.12) 
−1.22 0.22 

0.25 
(0.21) 

1.16 0.25 
0,03 

(0.76) 
0.75 0.45 

Population 
0.00 *** 
(1.68) 

11.66 <0.01 
0.00 

(0.00) 
17.06 <0.01 

0.00 *** 
(0.00) 

7.78 <0.01 
0.00 *** 
(7.58) 

7.58 <0.01 

Adjusted R-squared  0.82   0.82   0.66   0.81  

p-value  <0.01   <0.01   <0.01   <0.01  

White test (p-values)  <0.01     0.03     0.05     0.34   
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Figure 3. Boxplot of COVID-19 cases by cluster. The diagram represents the median value (line inside
the box), the Q1 (lower boundary of the box), the Q3 (upper boundary of the box), the maximum and
minimum (vertical line) and the outliers (the dots).

Table 4 shows the results of the regression models for the entire territory and for each
cluster. The community of Madrid model (“C.Madrid”) reveals some interesting findings,
as all components are not only significant, but also positively correlated. This means that
higher scores on the three variables, including socioeconomic status, increase the risk of
contracting COVID-19. This finding contradicts the existing theory on socioeconomic
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status and COVID-19 transmission [46]. However, it is important to mention that we are
analyzing variables at the municipal level (district, in the case of the Madrid municipality),
so intra-municipal variability is not taken into account. Therefore, our results indicate
that municipalities with greater socioeconomic status (i.e., a greater proportion of workers
and a higher average income) are likely to have more cases of COVID-19, which does not
exclude the possibility that, within these municipalities, there may be some economic seg-
regation in the risk of infection. Another important finding lies in the comparison of effect
sizes. By working with standardized factors, it is possible to make comparisons between
the regression parameters. Particulate matter and temperature scores had the greatest
impact on the number of cases compared to the other two variables, with socioeconomic
status having the least influence.

Table 4. Regression models with components.

C.Madrid North-East Madrid-Surroundings Madrid-City

Coef.
(SD) t p-Value Coef.

(SD) t p-Value Coef.
(SD) t p-Value Coef.

(SD) t p-Value

(Intercept) 3.17 ***
(0.08) 37.81 <0.01 1.17 **

(0.04) 3.13 <0.01 3.69 ***
(0.42) 8.83 <0.01 6.11 ***

(0.21) 28.79 <0.01

Pollution and Density 0.48 ***
(0.08) 5.98 <0.01 −0.62

(0.49) −1.26 0.21 0.77 *
(0.32) 2.40 0.02 0.00

(0.14) 0.14 0.89

Particulate Matter and
Temperature

0.75 ***
(0.06) 12.35 <0.01 −0.10

(0.12) −0.87 0.38 0.07
(0.44) 0.15 0.87 −0.13

(0.27) −0.48 0.63

Socioeconomic 0.16 *
(0.07) 2.31 0.02 0.15

(0.12) −1.22 0.22 0.25
(0.21) 1.16 0.25 0.03

(0.76) 0.75 0.45

Population 0.00 ***
(1.68) 11.66 <0.01 0.00

(0.00) 17.06 <0.01 0.00 ***
(0.00) 7.78 <0.01 0.00 ***

(7.58) 7.58 <0.01

Adjusted R-squared 0.82 0.82 0.66 0.81
p-value <0.01 <0.01 <0.01 <0.01

White test (p-values) <0.01 0.03 0.05 0.34

Model Additional
Information

AIC 504.51 48.64 268.77 −2.93
BIC 524.27 63.08 284.16 3.33

Loglik −246.25 −18.32 −128.38 7.46

*** p < 0, ** p < 0.01, * p < 0.05.

The partial models do not provide much information, given the parameters’ lack
of statistical significance. The pollution and population density variables in the Madrid-
Surroundings model and the control variable are the only significant coefficients. However,
the results are not reliable, as the residuals are not normally distributed. This lack of
significance can be attributed to two causes. First, there are only a small number of obser-
vations in each cluster. Second, the behavior of the target variable among the observations
of each cluster is quite homogeneous. This last finding is consistent with Figure 3 and
Scheffé’s test, which showed statistically significant differences in the number of cases
among each cluster.

The population control variable has the expected effect. It was included in the analyses
to control for the effect of using an absolute rather than a relative measure. The regression
models confirm that the more individuals in the territory, the more cases.

5. Conclusions

The worldwide COVID-19 pandemic has led the scientific community to turn its
attention to studying this phenomenon in the hopes of discovering which risk factors
increase the population’s vulnerability. Environmental factors have been widely studied in
this line of research. Despite the large number of studies conducted to date, the subject is
far from fully explored, and still requires further examination. The present study aimed to
create an exhaustive case study of the risk factors involved in the spread of COVID-19 in
the community of Madrid during the first wave of the pandemic.
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The study began with a principal component analysis to reduce a pool of thirteen
identified risk factors down to three new components that explained 71% of the original
variance. The new variables were conceptualized as pollutants and population density,
particulate matter and temperature, and socioeconomic status. The newly derived variables
were used to map the different ecosystems of the territory based on these risk dimensions.
An ANOVA and a Scheffé´s multiple comparisons test confirmed the existence of significant
differences in COVID-19 infection between the three clusters found.

The analyses concluded with four regression models being used to determine the
influence of each risk factor (one regression model for the whole territory, and one for
each cluster). In the territory-wide model, all parameters were significant and showed
a positive association with the number of infections. One of the most notable findings was
that the pollution and climate components had a greater influence than the socioeconomic
component on the overall model. In contrast to the above, the cluster models did not
provide much information due to the non-significance of the parameters and the residuals
lacking a normal distribution. Nevertheless, the models have a good fit according to the
adjusted r-squared, AIC, BIC, and log likelihood. Therefore, the lack of significance may be
due to the low sampling power of the models.

In considering the results, we draw two conclusions. First, pollutants and climate
factors play an important role in increasing vulnerability to COVID-19 infection. Second,
micro-level research is an important avenue of study. The first conclusion highlights the
importance of caring for the environment, as it appears to be a more significant factor in
COVID-19 transmission than even the socioeconomic status of a municipality. The second
conclusion arises from the lack of explanatory power of partial models. Thus, researchers
need to produce harmonized statistics at a higher level of granularity. This local knowledge
is the key to designing strategies adapted to each territory and is consistent with the reality
of their situations. At the same time, we must continue with pandemic surveillance to
determine the consistency of the results over time, and thus improve our understanding of
risk factors that impact the pandemic. To this end, we intend to replicate the present study
in subsequent waves of the pandemic.
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