
GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE CARRERA

Forward Error Correction (FEC) scheme for a fishing

radio-buoy system

Autor: Jaime Masjuan Ginel

Director: Javier de Salas

Madrid
Julio 2022

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Forward Error Correction (FEC) scheme for a fishing radio-buoy system

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2021/2022 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es

plagio de otro, ni total ni parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

Fdo.: Jaime Masjuan Ginel Fecha: 07/ 07/ 2022

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Javier de Salas Lasagabáster Fecha: 07/ 07/ 2022

GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE CARRERA

Forward Error Correction (FEC) scheme for a fishing

radio-buoy system

Autor: Jaime Masjuan Ginel

Director: Javier de Salas

Madrid
Julio 2022

SISTEMA DE CORRECCIÓN DE

ERRORES (FEC) PARA UNA

RADIO-BOYA DE PESCA

Autor: Masjuan Ginel, Jaime

Director: de Salas, Javier

Entidad colaboradora: Equipos Navales Industriales SA, Enisa

Resumen

Introducción. Es innegable el

efecto que, de un tiempo a esta parte,

está teniendo la pesca masiva para

nuestros océanos. Esto se debe a que

una gran parte de todos los peces cap-

turados que inicialmente van destina-

dos al consumo humano se ve des-

perdiciada por dos principales mo-

tivos: no hay espacio suficiente para

almacenar semejantes cantidades, o

simplemente no termina por con-

sumirse. Todo ello ha llevado a que en

las últimas décadas hayan aparecido

técnicas cuyo fin es realizar la pesca

de una manera eficiente que, al mismo

tiempo, cumpla con las demandas de

la población y respete el medioam-

biente. Una de estas técnicas es

la pesca mediante palangres. Esta

técnica consiste en el uso de un sedal

kilométrico, plagado de anzuelos, que

va a la deriva por el mar. Para poder

llevar a cabo la recogida de la pesca,

es necesario tener un sistema radio-

boya que permita obtener la posición

de dicho palangre desde un barco.

El Proyecto. El objetivo prin-

cipal que persigue este Proyecto de

Fin de Grado no es otro que el de au-

mentar el rendimiento de un sistema

radio-boya, como el previamente de-

scrito, diseñado y fabricado por la

compañ́ıa Enisa. Para ello, se es-

tudiarán diferentes códigos basados

en técnicas de corrección de errores

(FEC). Al tratar de aumentar dicho

rendimiento, los resultados que se es-

peran conseguir son variados. Uno de

ellos es lograr una mejora en la re-

spuesta frente a diferentes entornos

donde la posibilidad de que se pro-

duzcan errores en la transmisión de

los datos sea diferente. Del mismo

modo, se pretende también conseguir

un aumento en la cantidad de infor-

mación enviada por transmisión y en

el alcance que esta pueda llegar a

tener.

Descripción del algoritmo.

Debido a las limitaciones que pre-

senta el microchip PIC16F18326 em-

pleado en el sistema de radio-boya,

se van a diseñar y estudiar unos

códigos de corrección de errores para

la transimisión y recepción de una

cadena similares a los códigos Ham-

ming. Como el microchip utiliza

bytes de ocho bits, los tres casos

a estudiar utilizarán todos los bits

disponibles para cada uno de los bytes

transmitidos. Hay dos tipos de bits

posibles: los que contienen el mensaje

que se pretende transmitir y aquellos

conocidos como bits de paridad [1],

cuya misión es la de ayudar a poder

recuperar la información de manera

fiable y con buen resultado. La tasa

de información enviada, R, se basa

en el número de bits que contienen el

mensaje, k, y el número de bits total

en un byte, n. Aśı:

R =
k

n
(1)

Actualmente este valor se encuen-

tra en un 20%, esto es, hay un 80%

de la transmisión destinada a la recu-

peración del mensaje exclusivamente.

Para poder aumentar estas cifras,

se ha decidido estudiar tres códigos

diferentes. El primero, caso (2, 8),

utiliza dos bits por cada byte como

mensaje (R = 25%), el segundo, caso

(3, 8), utiliza tres bits por cada byte

como mensaje (R = 37.5%) y, final-

mente, el último caso (4, 8), ha uti-

lizado cuatro bits por cada byte como

mensaje (R = 50%). Para llevar a

cabo la codificación en cada caso, se

ha seleccionado un conjunto de bytes

tales que maximicen la mı́nima dis-

tancia Hamming entre ellos. La dis-

tancia Hamming [2] es el número de

bits en los que difieren dos bytes dis-

tintos. Estos grupos de bytes serán

asignados a cada uno de los posibles

mensajes que se pueden enviar, es de-

cir, en el caso (2, 8) habrá cuatro

posibles mensajes a enviar, en el (3,

8) habrá ocho y en el (4, 8) habrá

dieciséis. En el transmisor se dividirá

cada byte de la cadena según el caso

empleado, y a cada una de las partes

resultantes se le asignará su corre-

spondiente código antes de transmi-

tir la información. Ya en el recep-

tor, el algoritmo empleado se ayu-

dará de una matriz H cuya finali-

dad es la de poder detectar y ubicar

los errores que puedan aparecer du-

rante el proceso de transmisión. Este

proceso se lleva a cabo mediante la

multiplicación de dicha matrix con el

byte. Si el resultado de dicha op-

eración es cero no se habŕıa producido

ningún error, pero si por el contrario

śı que hubiese uno o más errores, el re-

sultado identificaŕıa ineqúıvocamente

cuales son los bits erróneos hasta el

número de bits que cada algoritmo

puede corregir. Aśı, solo habŕıa que

cambiar el valor de dichos bits y la

información estaŕıa recuperada.

Simulación y resultados. Para

poder llevar a cabo una simulación y

una comparación fiable de los nuevos

algoritmos con el antiguo, se ha

creado un código en Python que sim-

ula con fidelidad la transmisión y re-

cepción de la información enviada por

la boya. El entorno consta de tres

funciones, una que simula la trans-

misión, otra la recepción y una ter-

cera que modela una inclusión de bits

de manera aleatoria en base a una

probabilidad previamente establecida

conocida como BER (Bit Error Rate).

Los resultados obtenidos mostraron

como se obteńıa una gran mejora del

rendimiento del algoritmo en com-

paración a las simulaciones del código

previo, y la implementación cumpĺıa

con las especificaciones de tiempo re-

queridas para que pudiera aplicarse

en un entorno real en los microcontro-

ladores que se utilizan en el hardware

actual.

Conclusiones. Tras todo el estu-

dio llevado a cabo, se concluye que el

algoritmo está listo para ser empleado

en pruebas maŕıtimas y comprobar

su rendimiento en una situación real.

Como trabajo futuro se abre la puerta

a la implementación y estudio de

técnicas más sofisticadas en el caso

de que se empleara otro microproce-

sador con una capacidad mayor para

operaciones complejas.

Referencias.

[1] Mary K. Wootters, Any errors

in this dissertation are probably fix-

able: topics in probability and error

correcting codes. PhD Thesis, De-

partment of Mathematics, University

of Michigan 2014.

[2] Richard W. Hamming, Er-

ror Detecting and Error Correcting

Codes. The Bell System Technical

Journal, Vol. 29, April 1950.

FORWARD ERROR CORRECTION (FEC)

SCHEME FOR A FISHING RADIO-BUOY

SYSTEM

Author: Masjuan Ginel, Jaime

Supervisor: de Salas, Javier

Collaborating Entity: Equipos Navales Industriales SA, Enisa

Abstract

Introduction. It is undeni-

able the effect that, for some time

now, massive fishing is having on our

oceans. This is due to the fact that

a big part of all the fishes captured

which are initially destined for human

consumption is wasted for two main

reasons: there is not enough space

to store these huge amounts, or just

because nobody finally consumes it.

All of this has encouraged the devel-

opment of new techniques whose pri-

mary goal is to create a more efficient

way of fishing such that it can meet

the demands of our society while be-

ing environmentally friendly. One

of these techniques is called longline

fishing. This technique consists in the

use of a long line several kilometers

in length, riddled with fishhooks and

drifting through the sea. In order to

being able to locate the longline, it

is necessary to have a radio-buoy sys-

tem that allows to obtain its position.

The Project. The main goal

pursued by this Final Degree Project

is no other than to increase the

performance of a radio-buoy system,

similar to the one previously de-

scribed, designed and manufactured

by Enisa. To this effect, a study

will be carried out about different

forward error correction (FEC) tech-

niques and codes. Whilst trying to

increase the performance, the results

expected are diverse. One of them is

to obtain an improvement in the re-

sponse against different environments

where the probability of errors dur-

ing the transmission varies. Simi-

larly, this project also aims to ob-

tain a increase in the information sent

per transmission and in the distance

which it may travel.

Description of the algorithm.

Due to the limitations of the mi-

crochip PIC16F18326 used for the

radio-buoy system, the FEC codes

which are going to be studied and de-

signed are very similar to the Ham-

ming codes. As the microchip uses

eight bit bytes, the three cases that

will be studied will use all the bits

available for each of the bytes trans-

mitted. There are two kinds of bits:

the ones that compose the message

which has to be transmitted and the

ones known as parity bits [1], which

have the purpose of helping the re-

ceiver to recover the information in

a reliable way. The code rate, R, is

based on the number of bits that has

the message, k, and the total number

of bits per byte, n. Thus:

R =
k

n
(2)

Currently, this value is 20%, this

means that 80% of the transmission

is destined exclusively to recovering

the message. In order to increase this

value, the project will be focused on

the study of three different error cor-

rection cases. First, case (2, 8), it

uses two bits per byte as the mes-

sage (R = 25%), second, case(3, 8),

uses three bits per byte as the mes-

sage (R = 37.5%), and, finally, case

(4, 8), which uses four bits per byte

as the message (R = 50%). To carry

out the encoding in every case, a set

of bytes, known as codewords, was se-

lected with the criterion of maximiz-

ing the minimum Hamming distance

between them. The Hamming dis-

tance [2] is the number of bits that

differ from one byte to another. This

sets will be assigned to each of the

possible message that can be sent,

that is to say, in case (2, 8) there will

be four possible messages to trans-

mit, in case (3, 8) there will be eight

and in case (4, 8) there will be six-

teen. In the transmitter each byte

of the string will be divided depend-

ing on the case used and each of

the resultant parts will be assigned

to its corresponding codeword before

transmitting the information. At the

receiver, the algorithm will use the

so-called parity matrix H which has

the primary mission of detecting and

finding errors that may appear during

the transmission process. This pro-

cess will happen by multiplying the

parity matrix and the codeword re-

ceived. If the result of the operation

is zero there would be no error, but

if one or more errors happened, the

resulting parity value would uniquely

identify which bits are in error up to

the number of bits that each algo-

rithm can correct. Flipping precisely

those identified bits would recover the

correct information.

Simulation and results. To en-

sure that the simulation and com-

parison between the current algo-

rithm and the ones developed in this

project is carried out with reliabil-

ity, a Python simulation environment

has been developed in order to rep-

resent with fidelity the transmission

and reception of the information sent

by the buoy. This environment has

three main functions, one that simu-

lates the transmission, one that sim-

ulates how the receiver works and an-

other one that randomly models and

includes error bits in the informa-

tion using different BERs (Bit Error

Rate). The results obtained showed

a significant improvement of the per-

formance in comparison with the sim-

ulations of the previous algorithm.

Also the implementation met with

the specifications of time needed to be

able to use this algorithm in a real-life

environment using the actual micro-

controllers used in the hardware.

Conclusions After all the study

carried out, the conclusion is that the

algorithm is ready to be used in sea

trials to ensure its performance in a

real-life situation. As future work,

there is room for the implementa-

tion and study of more sophisticated

techniques in case that another mi-

croprocessor with capacity for achiev-

ing more complex operations will be

used.

References.

[1] Mary K. Wootters, Any errors

in this dissertation are probably fix-

able: topics in probability and error

correcting codes. PhD Thesis, De-

partment of Mathematics, University

of Michigan 2014.

[2] Richard W. Hamming, Er-

ror Detecting and Error Correcting

Codes. The Bell System Technical

Journal, Vol. 29, April 1950.

Contents

List of Figures 3

List of Tables 4

1 Introduction 5

1.1 Introduction . 5

1.2 Motivation . 7

1.3 Resources Used . 7

1.3.1 Visual Studio Code . 7

1.3.2 MPLAB X IDE . 8

1.3.3 Github . 8

1.4 Project Objectives . 9

1.4.1 Bandwidth Efficiency 10

1.4.2 Longer Communication Range 10

1.5 Project Timeline . 10

2 State of the Art 12

2.1 Basic concepts of Forward Error Correction 12

2.2 Common FEC Methods . 14

2.3 Existing FEC Mechanism . 15

3 Working Methodology 17

3.1 Selection of Codeword Sets and Decoding Algorithm 17

3.2 BER Simulations . 18

3.3 Implementation in the Commercial Product 18

4 Development of the algorithm 19

4.1 FEC used for the algorithm 19

4.2 Main concepts used for the development of the algorithm . . . 21

4.2.1 Algebraic coding theory 21

4.2.2 The Hamming bound 23

4.2.3 Linear codes . 24

4.3 Selection of candidate codewords 26

1

4.3.1 Case (2, 8) . 26

4.3.2 Case (3, 8) . 28

4.3.3 Case (4, 8) . 30

5 BER simulation environment 36

6 Simulation results 37

6.1 Theoretical BER curves . 37

6.2 Comparison between algorithms 39

6.3 Theoretical vs. Simulation curves 42

7 Implementation in the Commercial Product 43

8 Final Conclusions and Future Work 45

9 References 46

10 Appendix A: Simulation Environment Source Code: Python 47

10.1 Transmission functions . 47

10.2 BER function . 48

10.3 Receiver functions . 49

11 Appendix B: Implementation code: C 52

11.1 Buoy functions . 52

11.2 Receiver functions . 53

12 Appendix C: Auxiliary Functions: Python 57

12.1 3D Hamming Plots . 57

12.2 Theoretical Curves . 58

13 Appendix D: Sustainable Development Goals (SDG) 61

14 Appendix E: PickpointTM Image Gallery 63

2

List of Figures

1 Radio buoys used by a longliner vessel 5

2 Visual Studio Code workspace 8

3 MPLab workspace . 9

4 GitHub workspace . 9

5 Setup for Error Correction Codes 13

6 Example of the Checksum system 16

7 2D representation of a finite field and its Hamming balls . . . 23

8 Hamming distances between all possible codewords 27

9 Case (2, 8): Hamming distances between the selected codewords 28

10 Case (3, 8): Hamming distances between the selected codewords 30

11 Case (4, 8): Hamming distances between the selected codewords 33

12 Theoretical BER curves for one and two errors 39

13 Simulation results . 40

14 Theoretical vs Simulation curves 42

15 MPLAB Stopwatch environment 44

16 Longline fishing system (Australian Fisheries Management Au-

thority) . 62

17 Radio Buoy with Antenna . 63

18 Float for Radio Buoy . 64

19 Modem Receiver Onboard . 64

3

List of Tables

1 Parameters of Candidate Codes 20

2 Possible LUT for the case (2, 8) 20

3 Another possible LUT for the case (2, 8) 20

4 Addition and multiplication over GF(2) 21

5 Summary of the cases studied 37

6 Algorithm times measured during the implementation 44

4

1 Introduction

1.1 Introduction

Radio buoys are a fishing aid often used to locate and track longlines, drift

nets and any other fishing gear that is set to drift in the ocean. Radio buoys

are equipped with a GNSS (Global Navigation Satellite System) receiver and

a radio transmitter that allows them to broadcast their location as well as

other sensor data such as depth or water temperature. Fishing gear is set

adrift and recovered after a few days. Hopefully, full of catch. Depending on

winds and currents, drifting fishing gear may travel long distances and hence

may be difficult to locate.

Figure 1: Radio buoys used by a longliner vessel

On board the fishing boat, there is a radio receiver with a modem that

decodes the signals coming from the buoys and presents them on the screen of

a chart plotter so that the skipper can easily find them and navigate towards

them. Figure 1 shows a drawing of a fishing vessel and a few radio buoys set

on a long line.

It is of interest for the skipper to be able to locate the buoys from far

away, that way, he or she can decide which buoys to navigate to and thus

5

save time and fuel. Distances of 20 nautical miles or more are desirable

but radio regulations limit the buoy’s transmitter power to 4 Watts [3] and

this presents an interesting trade off because the received signals onboard

the vessel are very weak. Weak signals mean bit errors occur making it

impossible to render the buoys at their location. It is for this reason that

it is desirable to come up with a Forward Error Correction (FEC) scheme

that allows the recovery of the message in spite of the bit errors. Note the

communication is unidirectional from the buoys to the modem thus making

it impossible for the receiver to let the transmitter know that a packet has

been received with errors.

6

1.2 Motivation

During the second half of 2021 I had the privilege of taking an internship

in the company Equipos Navales Industriales S.A., Enisa. I found myself

working on a thrilling project that could make an important impact in the

fishing industry. As the need of a more a sustainable way of fishing has lately

appeared, new techniques are gaining strength. One of the reasons I chose

to study an engineering degree was to be able to make a positive impact

on the environment while developing new technologies and as I have always

been a person close to the sea and its particular issues, helping to develop a

longliner fishing system project in order to reduce the problems this industry

is creating was everything I could ask for.

After six months working in Enisa and while I was approaching the end

of the internship, the posibility of helping the company the next months with

a long-term project appeared. Thus, I was presented with the opportunity of

trying to improve the current communication system while adapting complex

communication methodologies to the limited resources available in order to

increase the efficiency of the present model.

1.3 Resources Used

This project will use several tools in order to develop correctly the three

phases mentioned in the Working Metholodogy section. This tools will con-

sist in the use of four main programs: Visual Studio Code, MP Lab, Github

as a software repository and Github Issues as a bug-tracking system.

1.3.1 Visual Studio Code

Firstly, Visual Studio Code is a source-code editor developed by Micrososft

that is able to work with several programming languages such as Python,

LaTex or C/C++ among others [4]. The utilisation of VS Code will allow

the proper simulations in Python. The main Python libraries which will

be used are numpy and matplotlib. As mentioned before, these modules are

going to facilitate the use of arrays and 2D or 3D graphics. Thus, comparison

7

between different sets of codewords will be performed. Figure 2 shows the

VS Code workspace.

Figure 2: Visual Studio Code workspace

1.3.2 MPLAB X IDE

Secondly, MPLAB is an integrated development environment (IDE) devel-

oped by Microchip for the implementation and development of applications

on the PIC microcontollers [5]. The purpose of this software in this project

will be the debugging and programming of the 8-bit PIC microcontroller.

Once the best set of codewords is selected MPLAB will be used for the im-

plementation in the product with Microchip’s PicKit 4. MPLAB will be used

to develop C programs. The version utilised for this project is MPLAB X.

Figure 3 shows a picture of the MP Lab X workspace.

1.3.3 Github

The last tool which will be used is the GitHub repository. Git is a very

powerful version control software used by GitHub, the most popular code

repository in the world with more than 73 million developers. It will facili-

tate a coordinated programming and a more efficient working methodology.

8

Figure 3: MPLab workspace

GitHub Issues will be used as our bug-tracking system to increase the quality

of the developed software and to minimize the bugs. Github is going to be

used in all the three different phases described in the Working Methodology

section 3. A screenshot of the web interface for Github’s bug tracking system

(”Issues”) is shown in Figure 4.

Figure 4: GitHub workspace

1.4 Project Objectives

The main objective of this project is to study different Forward Error Cor-

rection codes that improve the performance of the existing scheme. The

key performance metric is the probability of recovering the message for a

9

given Bit Error Rate. The end goal is of course to implement this scheme

in the buoy’s and the modem’s 8-bit microcontroller. There are two specific

improvements that we want to achieve with the improved FEC method.

1.4.1 Bandwidth Efficiency

One of the metrics for the new FEC scheme is the code rate defined above.

Code rate R is the ratio of the message size over the total size including the

error correction bytes. If the code rate can be increased, it means that fewer

bytes will be sent over the channel. Fewer bytes over the same bandwidth

means each buoy will report its location and sensor information faster. The

buoys broadcast in the 27 MHz band, so called Citizen’s Band or CB. CB is

a license free band with a limited power of 4 Watts [3] so it is generally quite

crowded. The radio buoys use a TDMA (Time Division Multiple Access)

taking advantage that each buoy has a GNSS receiver and therefore good

knowledge of a common time base. The common time base is used to split

the time interval into slots that are assigned to each buoy so that they do

not interfere with each other. If the transmissions are faster, the number of

slots can be increased and thus the number of buoys per channel.

1.4.2 Longer Communication Range

The second aspect of an improved FEC scheme is the improved bit error rate

(BER). Better BER means better reception when the received signal is weak

due to path loss propagation over longer distances. Being able to see the

buoys on the chart plotter screen at a greater distance leads to time and fuel

savings. This is of course highly appreciated by the fishermen and remains

one of the most important goals.

1.5 Project Timeline

Firstly, a study about the existing method was undertaken, in order to un-

derstand how the current radio-buoy system works. Secondly, the project’s

goals were defined. Thus, the next step was to create a simulation envi-

ronment that represented a real-life situation. After creating the simulation

10

environment, the new possible methods were defined and simulated in order

to obtain results that could define which was the best candidate. The step

that followed after selecting the winner, was to implement the new software

into the radio-buoy system.

This is the Final’s Degree Project timeline:

Sep. 30st • Anexo A

Nov. 30th • Literature review

Dec. 31st • Study of existing FEC

Jan. 31st • Goals and Methodology

Jan. 31st • Milestone: Anexo B

Feb. 11th • Python migration of existing FEC

March 4th • Simulation environment

March 18th • Selection of new set of codewords sets

April 15th • Coding of new FEC

April 22nd • Run simulations of candidate FECs

April 22nd • Milestone: FEC selection

May 6th • Coding of TX

May 27th • Coding of RX

May 27th • Milestone: C implementation

June 4th • C and Python cross check

June 11th • Result compilation and conclusions

June 31st • Write TFG

June 31st • Milestone: TFG and presentation ready

11

2 State of the Art

2.1 Basic concepts of Forward Error Correction

Forward error correction (FEC) is a technique for controlling the number

of errors transmited in a message without forcing the message to be re-

transmitted. Essentially, the sender needs to transmit a message to the

receiver over a medium that is likely to introduce errors. The goal of FEC

is for the receiver to recover the same exact message transmitted in spite of

the errors that the noisy medium (or channel) introduces. This is achieved

by adding some redundancy bits. Error Correction codes is a very complex

topic with extensive research since the 1950’s. We will only touch the surface

of it, since in our application, we need to find a trade-off between the ability

to detect and correct errrors and the complexity of the algorithm. Both the

radio buoy and the modem use 8-bit microcontollers running at 4 MHz and

20 MHz respectively so the computational resources are very limited.

We will start adding here some common notation [1] that is widely used

in error correction literature and that we will use through the full paper. The

sender A needs to transmit a message x of length k to the receiver B. To

that end, A uses a codeword c = C(x) of length n where C is a function that

maps the field of binary words of length k or with a subset C of the field of

binary words of length n. More formally,

x ∈ F k

c ∈ C and C ⊂ F n

Where F k and F n are finite fields of order 2k and 2n. The number of

possible messages x and codewords is then 2k because there is a one to one

correspondence between each message and its codeword. We can represent

the basic setup [1] in Figure 5.

The number n is greater than k. This brings us to the definition of the

code rate R

R := k/n (3)

12

Figure 5: Setup for Error Correction Codes

The code rate R is a number between zero and one and measures the

amount of redundancy bits that are sent to the receiver.The greater the

value of R the better but there is an obvious trade-off with the ability to

recover errors.

Another useful definition is the Hamming distance between two code

words, which is the number of bits that differ between two codewords c

and c’.

δ(c, c′) :=
n∑

i=1

1ci ̸=c′i
(4)

The distance of a set of codewords C is then

δ(C) := min δ(c, c′) ∀c, c′ ∈ C (5)

We will use the Hamming distance to help us pick the set of Codewords

to be used.

13

2.2 Common FEC Methods

The most common error correction codes are Hamming Codes, Binary Con-

volution Codes, Reed-Solomon Codes and the Low-Density Parity Check

Codes.

The Hamming Code is a technique developed by R. W. Hamming [2] that

uses a set of parity binary bits to guarantee that the number of 1’s in the

data is odd or even. There are two types of parity bits: even parity bit or

odd parity bit. The value of the parity bit depends on the sum of the amount

of 1’s for a given set of bits. If that count is even, then the parity bit is a 1.

On the other hand, if the count of the bits happens to be odd its value will

be a 0 and it shall be called an odd parity bit. The parity bits are located in

positions that are the power of 2. In order to find the position of the wrong

bit, the sum of the wrong parity bits needs to take place, allowing the code

to find out where the mistake has been made.

The codewords for this project will have a length of 8 bits, since the

microchip used is an 8 bit microcontroller. In order to increase the code

rate, the cases studied will include messages with 2, 3, or 4 bits. For each

case the Hamming distance will be maximized with a view to minimize the

error rate.

The Binary Convolution Code is another type of Forward Error Correc-

tion introduced in 1955 by P.Elias [6]. It is based on the use of boolean

functions to data streams. The application of boolean functions allows the

FEC to create parity simbols. They are distinguished by the code rate and

the memory, which is an output based on the previous inputs that the system

has received. This codes are mainly used for radio, digital video, and satellite

communications.

Yet another FECmethod is the Reed-Solomon Code, which was developed

by Irving Reed and Gustave Solomon in 1960 [7]. It is a non-binary cycled

code that uses a polynomial function which is associated with a word. This

word will need to have a minimun of N correct symbols that will allow the

code to reconstruct the information.

The Low-Density Parity Check Code is a type of linear error correcting

14

code that was developed by Robert G. Gallager in 1962 [8]. This type of

FEC permits to take the noise threshold up to the maximum allowed. This

noise threshold sets the limit for the probablity of lost information to be as

reduced as needed. Despite being developed in 1962, this technique could

not be used until 1996 due to technology limitations.

This project will be mainly focused on the develop of a FEC similar to

the Hamming codes due to the limitations that the 8 bit microchip has,

restricting any type of polinomial division or matrix multiplication. Using

the concept of the Hamming distance, the focus will be put on the selection

of the best set of codewords given k and n, in order to maximize the distance

between one word to another. A more detailed description can be found in

section 3.

2.3 Existing FEC Mechanism

In this section the existing FEC method that is used today will be described

since this is the system that we need to improve.

The error correction system currently implemented consists of sending the

same string five consecutive times from the buoy to the modem. These strings

are further divided into five sub-strings and a checksum is calculated by the

transmitter for each of the five sub-strings.The checksum is simply one byte

with the binary XOR of all the bytes in the sub-string. The transmitted

checksums form a 5x5 matrix that is used to guarantee that the each of

the received substring is error free. Naturally, there could also be an error

in the transmitted checksums so the modem compares the rows of the 5x5

matrix and decides whether a checksum is correct if the same checksum

value is repeated, say three times. If valid checksums are found for the five

substrings, the modem calculates the checksums of the received substrings

(SS1 to SS5 in Figure 6) and compares those with the checksums that the

transmitter calculated. If a match is obtained, the substring is considered

correct. When the five substrings obtain a match the complete message can

be reconstructed. Note different sub-strings can come from different rows.

Figure 6 depicts the existing system using color coding to identify which

15

checksum corresponds to which sub-string.

Figure 6: Example of the Checksum system

16

3 Working Methodology

There will be three distinct phases in this project. Each phase has its own

methodology that we describe below.

3.1 Selection of Codeword Sets and Decoding Algo-

rithm

During this phase, we will work on the selection of the sets of codewords.

A set of Codewords is comprised by a finite set of elements in the field of

binary words of length n. The word width of the embedded microcontroller

used in the radio buoys is eight bits so it makes sense that we select n = 8.

Multi-byte operations are very costly in terms of code size and performance.

For the message size k, we will use several candidates that will provide us

with a trade-off between the code rate R and the achievable Bit Error Rate.

The code rate of the current FEC scheme is R = 0.2 and because we aim

to improve this scheme in terms of both R and BER, it makes sense to use

values of k such that

k ∈ {2, 3, 4}

, which will provide with R = [0.25, 0.375, 0.5].

The decoding algoritms for FEC codes can be sophisticated. Often times

involving matrix multiplications and inversions. Matrix operations are, nat-

urally, not supported natively by our 8-bit PIC microcontroller so we would

have to implement or port a matrix library. This seems out of the question

given how computationally expensive these operations can be. The alter-

native is to use a Look Up Table (LUT) that relates the 2k message words

with each of the codewords. Each potential 8-bit received codeword that is

potentially corrupted would be checked agaisnt all 2k possibilities and the

shortest Hamming distance would be selected. For a worse case of k = 4 a

maximum of 16 posibilities would be checked so the task seems attainable

even for our 8-bit microcontroller.

17

3.2 BER Simulations

Once the codewords sets have been identified, we will need to somehow quan-

tify their performance compared to the existing FEC scheme and decide

which one is best for our purposes. We will do this by writing proper sim-

ulations in the Python language. There are two very convenient modules in

Python that we will rely upon for our work. The first one is numpy, which is

widely used for matrix and vector operations. The second one is matplotlib

that offers a very rich set of features for generating 2-D and 3-D plots. For

the development of the Python scripts we will use Micrososft’s VS Code as

the editior of choice. More details about this tool in section 1.3.

The basic idea of the simulation is to generate a set of bits that will be

perturbed with certain random bit errors according to a given Bit Error Rate.

The receiver will implement in Python the decoding algorithms that aim to

recover the initial message free of bit errors. Each plot will show the BER

on the x axis and the probability of recovering the error free message on the

y axis. Naturally, many attempts would be simulated for every BER such

that meaningful statistical significance can be extracted.

3.3 Implementation in the Commercial Product

Once the winning FEC codeword set is selected, we will proceed to the im-

plementation in the commercial radio buoy. It will be done in C language

using the MP Lab X toolchain provided by Microchip Techonology, the man-

ufacturer of our microcontroller. MP Lab X includes a fully featured editor,

compiler, linker and step-by-step debugger. During development, flash pro-

gramming is done using Microchip’s PicKit 4. Again, more details about

these resources can be found in section 1.3.

The actual implementation in C and release to the market involves exten-

sive sea trials with a fishing vessel having to sail tens of miles away from the

coast in order to validate the additional range that the new FEC algorithms

can achieve. Sea trials are out of the scope of this work and hence be reserved

for future work. Enisa will have to fund the trials and validate the results

also in an empirical fashion.

18

4 Development of the algorithm

In this section, a detailed description of the software developed for this

project will be accomplished.

It is important to define the message that will be sent by A toB in order to

have a better understanding of how the system works. The information will

be the similar to the one that is presented in section 2.3, with the difference

that for the next different cases, the string will not be sent five times.

4.1 FEC used for the algorithm

Given the hardware and software limitations that the microchip has, it cannot

be adapted a very sophisticated FEC mechanism. Usual tools used in FEC

algorithms such as matrix multiplication or polynomial division on Galoise

Fields are not possible in our microcontroller. Neither there is any dedicated

hardware, so all the encoding and decoding needs to be done by software.

Since the PIC16F18326 is an 8 bit microcontroller, it seems natural that

our codewords are 8 bits wide. Any multi-byte operation incurs in significant

overhead that may deem the solution difficult to implement. The decision

that needs to be made is how many bits does the message take and how

many parity bits. For example, if we were to use a simple message of 2

bits, we would have 6 bits for the parity. Actually, rather than decide up

front, a simulation will be developed in order to find the performance and

implementation difficulty. Thus, the best options will be decided.

The current FEC scheme uses a rate of 1/5 = 0.2, as shown in 2.3, that

is, it is used a five times redundancy. The code rate can also be defined

as the ratio of the number of message bits divided by the number of code

bits. The goal for this project is to improve the performance in the presence

of bit errors (caused by a noisy channel) as well as reducing the number of

redundant bits (increase code rate).

Table 1 shows the key parameters of each of the candidate code schemes.

The selected code sets will be such that they maximize the minimum

Hamming distance between each two code words.

19

Message Bits Alphabet Size Codeword Bits Code Rate
k 2k n R
2 4 8 0.25
3 8 8 0.375
4 16 8 0.5

Table 1: Parameters of Candidate Codes

For example, in the (2, 8) case, the alphabet is just four words (00, 01, 11, 10)

so the need is to pick just four 8-bit codewords, the other 252 possible words

will not be used. Similarly, for the (3, 8) case, the alphabet is 8 words so the

pick will be eigth 8-bit codewords at the same time that the other 248 are

discarded. It is easy to extend the scheme for other cases.

Coming back to the simplest case (2, 8). When there is a byte to transmit,

two bits will be picked at a time (by shifting and bitwise &) and selected one

of the four entries of our LUT. For example, one LUT for this case could be

Table 2.

Message Bits Codeword
00 00000000
01 00000001
11 00000011
10 00000010

Table 2: Possible LUT for the case (2, 8)

Another possible example could be the one depicted in Table 3

Message Bits Codeword
00 01010101
01 11001100
11 00011100
10 11110000

Table 3: Another possible LUT for the case (2, 8)

Neither LUT is necessarily an optimal set of codewords, they are just

20

examples. So if some bits were flipped due to the noisy channel, it seems

the second table would be more ”robust” because the codewords are more

”different”.

The codewords are sent over the air to the receiver so, for example, for the

case (2, 8) four bytes will be needed to transmit every byte of the message

(rate 0.25). For the cases (3, 8) and (4, 8), three and two bytes respectively

would be needed (rates 0.375 and 0.5). Now the question is how to pick the

best set of codewords that maximize the minimum Hamming distance from

one codeword to another.

4.2 Main concepts used for the development of the

algorithm

The selection of candidate codewords has had the following way of achieving

the goal of having a set of codewords which maximized the minimum Ham-

ming distance between them. The idea of maximizing this parameter has to

do with the concept of B having the capacity of detecting and correcting a

determined quantity of errors per byte sent.

4.2.1 Algebraic coding theory

Before explaining how the codewords were selected, it is important to define

some aspects of the Algebraic Coding Theory. In coding theory, finite fields

are used extensively and, in particular, Galois Fields of two elements or

GF(2) in short [9]. GF(2) defines addition and multiplication as in the truth

tables below: product is like a normal product and addition is just modulo

2 addition.

+ 0 1
0 0 1
1 1 0

x 0 1
0 0 0
1 0 1

Table 4: Addition and multiplication over GF(2)

As explained before in section 2.1, the main purpose of the FEC is to

21

correct the bits that may get corrupted in a message sent from A to B. For

that to take place, the system will need to add some redundancy information

that can be used to recover the message if an error appears. In order to see

how the system may work, here is an example:

Considering the encoding map ENC : [0, 1]3 to [0, 1]4 that is given by

ENC(x1, x2, x3) = (x1, x2, x3, x1 + x2 + x3) (6)

For example, if the message is (0, 1, 0), the codeword would be: C =

ENC(0, 1, 0) = (0, 1, 0, 1)

This example can correct up to one erasure. An erasure takes place

when one bit got erased and its value cannot be read. If this happens,

the algorithm should be able to recover the bit based on the value of the

other three bits that form the message. Continuing with the same example,

if the information recieved was: Cr = (0, 1, x, 1), the value of the third

position would be obtained thanks to an system of equations obtained with

the conditions imposed by the algorithm developed at A.

x1 = 0

x2 = 1

x3 = x

x1 + x2 + x3 = 1

(7)

At the same time, this same example is also able to detect one error, but

it does not have the capacity of correcting it. Going back to the example,

if the information received was: Cr = (0, 0, 0, 1), the receiver will note that

there is something bad in the information because the fourth equation cannot

be solved.

This idea can be generalized for any encoding map considering the concept

of the Hamming distance defined previously in section 2.1. Thus, being d

the minimum Hamming distance between two words in an encoding map, it

is defined that a code can:

� Correct up to d− 1 Erasures

22

� Detect up to d− 1 Errors

� Correct up to d−1
2

Errors

The radio receiver in the buoy does not generate erased bits and even

if we detect that an error has been detected, we cannot do much with that

information. It is really the correction of errors that we are interested in for

this application.

4.2.2 The Hamming bound

The Hamming bound is the answer to the question that tries to find the

best relation between the code rate and the distance from one codeword to

another. In order to understand this concept, we first define some terms that

will contribute to an easier understanding of what the Hamming bound is.

Firstly, if the finite field, defined in section 2.1, F n is thought of as a space

that contains all the codewords inside, the Hamming Ball can be understood

as the sphere of radius d−1
2

that surrounds the different codewords that com-

pose the encoding map of a code, a more, this idea can be represented as

shown in Figure 7.

Figure 7: 2D representation of a finite field and its Hamming balls

23

More formally, the definition of a Hamming ball is:

Given e = d−1
2
, the Hamming ball B is defined as:

BFn(x, e) = [y ∈ F n : ∆(x, y) ≤ e] (8)

Now, the volume of the Hamming ball is going to be the next term defined

in order to understand the idea of the Hamming bound. Thus, the Volume

can be defined as:

V ol|F |(e, n) = |BFn(0, e)| (9)

Going back to the idea of F n as a space region, the total volume of this

region has to be greater or equal than the volume of the Hamming ball

times the number of codewords that compose a code with a distance d and

a message length k. More formally, if |F n| is defined as q,

|C| · V olq(
d− 1

2
, n) ≤ qn (10)

After applying logarithms and simplifying this equation, the Hamming

bound is finally defined as,

HB =
logq|C|

n
≤ 1−

logq(V olq(
d−1
2
, n))

n
(11)

4.2.3 Linear codes

The algorithm used with the idea of improving the current communication

between the buoy and the radio is based on linear codes. In order to un-

derstand how it works, first an introduction to the subject will be carried

out.

A linear code is a k-dimensional subspace C determined by a basis [c1, c2, ..., ck]

that is composed by any codeword which can be expressed as a combination

of these vectors. More formally, a linear code of dimension k and length n

over a finite field F n is a k-dimensional subspace of F n. The vectors of the

matrix can be written as a matrix called the generator matrix G which is

used to obtain any codeword from C. Using the definitions of both the linear

24

code and the generator matrix we can define C:

C = [G · x : x ∈ F k] (12)

Note that in the same code C many generator matrices can be obtained.

Precisely, there is always a generator matrix that contains an identity matrix

of dimension k, with k being the number of rows and columns of the matrix.

Continuing with the example provided in section 4.2.1: The encoding map

ENC can be defined as a linear code:

C = [(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)] (13)

And one possible generator matrix with the identity matrix on it could be:

G =


1 0 0

0 1 0

0 0 1

1 1 1

 (14)

We have seen that the matrix G can be used at the transmitter (radio

buoy) to generate the right codewords given the message bits. Note how the

matrix G relates vectors of k components (message words) into codewords of n

components. The matrix G is thus an nxk matrix. As discussed before, given

our encoding maps consist of very few words, they will be best implemented

using a LUT rather than the matrix multiplication.

At the modem receiver, we will use the so called parity check matrix H,

and it is such that the code C is the kernel of H. Formally defined as:

C = Ker(H) = [x ∈ F n : H · x = 0] (15)

A good observation is that the distance of the code C is the number d such

that H has d linearly dependent columns.

In simple terms, the matrix H results in zero when multiplied by a cor-

rect codeword. If the codeword has been damaged during transmission, the

multiplication will not give zero. Moreover, the result of this multiplication

25

can help us determine which are the bit(s) that have been received in error

[1].

4.3 Selection of candidate codewords

Now that the main concepts of linear codes are defined, the next step is to

see their application for the algorithm developed. As defined in section 2.1

the three different codes studied are:

� Case (2, 8): a code of message length 2 and codeword length equal to

8 bits, which gives a rate of R = 0.25.

� Case (3, 8): a code of message length 3 and codeword length equal to

8 bits, which gives a rate of R = 0.375.

� Case (4, 8): a code of message length 3 and codeword length equal to

8 bits, which gives a rate of R = 0.5.

Here, in Figure 8, is a graphic that presents all the possible Hamming dis-

tances between the 256 candidates that are being evaluated.

4.3.1 Case (2, 8)

For the selection of codewords for this case, a simulation that calculated all

the Hamming distances between the possible codewords took place. The

algorithm’s objective was to determine the set of codewords that could have

the maximum minimum distance between codewords.

Thus, the set of codewords obtained was:

C =



(0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 1, 1, 1)

(1, 1, 1, 0, 0, 0, 1, 1)

(1, 1, 1, 1, 1, 1, 0, 0)

(16)

Figure 9 shows how the Hamming distances between the codewords are se-

lected.

26

Figure 8: Hamming distances between all possible codewords

In order to obtain a generator matrix and a parity check matrix that

contained the identity matrix as defined in section 4.2.3 and to have the first

two bits as the message bits, a reordering of some bits in the codewords three

and four was carried out. Thus, the similar code obtained and the one that

will be implemented is:

C =



(0, 0, 0, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 1, 1, 1, 1)

(1, 0, 1, 1, 0, 0, 1, 1)

(1, 1, 1, 1, 1, 1, 0, 0)

(17)

For this case, the code is able to correct up to two errors because the min-

imum distance between the given codewords is five. Now, with the selected

codewords, as shown in section 4.2.3, it is possible to form the generator

matrix and the parity-check matrix using the selected candidates. Thus, the

matrices are:

27

Figure 9: Case (2, 8): Hamming distances between the selected codewords

H =



1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 0 1 0 0

1 1 0 0 0 0 1 0

1 1 0 0 0 0 0 1


G =



1 0

0 1

1 0

1 0

0 1

0 1

1 1

1 1


(18)

4.3.2 Case (3, 8)

For the selection of codewords for this case, a simulation that calculated all

the Hamming distances between the possible codewords took place. The

algorithm’s objective was to determine the set of codewords that could have

28

the maximum minimum distance between codewords.

Thus, the set of codewords obtained was:

C =



(0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 1, 1, 1)

(0, 0, 1, 1, 0, 0, 1, 1)

(0, 0, 1, 1, 1, 1, 0, 0)

(0, 1, 0, 1, 0, 1, 0, 1)

(0, 1, 0, 1, 1, 0, 1, 0)

(0, 1, 1, 0, 0, 1, 1, 0)

(0, 1, 1, 0, 1, 0, 0, 1)

(19)

In order to obtain a generator matrix and a parity check matrix that

contained the identity matrix as defined in section 4.2.3 and to have the first

two bits as the message bits, a reordering of some bits in the codewords three

and four was carried out. Thus, the similar code obtained and the one that

will be implemented is:

C =



(0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 1, 0, 1, 1, 0, 1)

(0, 1, 0, 0, 1, 0, 1, 1)

(0, 1, 1, 0, 0, 1, 1, 0)

(1, 0, 0, 0, 0, 1, 1, 1)

(1, 0, 1, 0, 1, 0, 1, 0)

(1, 1, 0, 0, 1, 1, 0, 0)

(1, 1, 1, 0, 0, 0, 0, 1)

(20)

Figure 10 shows how the Hamming distances between the codewords are

selected.

For this case, the code is able to correct up to one error because the

minimum distance between the given codewords is four. The generator and

29

Figure 10: Case (3, 8): Hamming distances between the selected codewords

parity-check matrices will not be calculated for this case because, as it will

be shown in the next sections, it will not be implemented as it could correct

the same amount of errors than the (4, 8) case while sending 12.5% less

information.

4.3.3 Case (4, 8)

For the selection of codewords for this case, a simulation that calculated all

the Hamming distances between the possible codewords took place. The

algorithm’s objective was to determine the set of codewords that could have

the maximum minimum distance between codewords.

30

Thus, the set of codewords obtained was:

C =



(0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 1, 1, 1)

(0, 0, 1, 1, 0, 0, 1, 1)

(0, 0, 1, 1, 1, 1, 0, 0)

(0, 1, 0, 1, 0, 1, 0, 1)

(0, 1, 0, 1, 1, 0, 1, 0)

(0, 1, 1, 0, 0, 1, 1, 0)

(0, 1, 1, 0, 1, 0, 0, 1)

(1, 0, 0, 1, 0, 1, 1, 0)

(1, 0, 0, 1, 1, 0, 0, 1)

(1, 0, 1, 0, 0, 1, 0, 1)

(1, 0, 1, 0, 1, 0, 1, 0)

(1, 1, 0, 0, 0, 0, 1, 1)

(1, 1, 0, 0, 1, 1, 0, 0)

(1, 1, 1, 1, 0, 0, 0, 0)

(1, 1, 1, 1, 1, 1, 1, 1)

(21)

In order to obtain a generator matrix and a parity check matrix that

contained the identity matrix as defined in section 4.2.3 and to have the first

two bits as the message bits, a reordering of some bits in the codewords three

and four was carried out. Thus, the similar code obtained and the one that

will be implemented is:

31

C =



(0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 1, 0, 1, 1, 1)

(0, 0, 1, 0, 1, 0, 1, 1)

(0, 0, 1, 1, 1, 1, 0, 0)

(0, 1, 0, 0, 1, 1, 0, 1)

(0, 1, 0, 1, 1, 0, 1, 0)

(0, 1, 1, 1, 0, 0, 0, 1)

(1, 0, 0, 0, 1, 1, 1, 0)

(1, 0, 0, 1, 1, 0, 0, 1)

(1, 0, 1, 0, 0, 1, 0, 1)

(1, 0, 1, 1, 0, 0, 1, 0)

(1, 1, 0, 0, 0, 0, 1, 1)

(1, 1, 0, 1, 0, 1, 0, 0)

(1, 1, 0, 1, 0, 1, 0, 0)

(1, 1, 1, 0, 1, 0, 0, 0)

(1, 1, 1, 1, 1, 1, 1, 1)

(22)

In Figure 11 the Hamming distances between the codewords selected are

shown.

32

Figure 11: Case (4, 8): Hamming distances between the selected codewords

For this case, the code is able to correct up to one errors because the min-

imum distance between the given codewords is four. Now, with the selected

codewords, as shown in section 4.2.3, it is possible to form the generator

matrix and the parity-check matrix using the selected candidates. Thus, the

matrices are:

33

H =


1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

0 1 1 1 0 0 0 1

G =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


(23)

The next example will ilustrate how the algorithm is supposed to work

for case (4, 8) but it could be applied to the other two cases. For example,

lets imagine that we want to transmit the message x = 1, 0, 0, 1. The next

step in order to obtain our codeword is to multiply the message using the G

matrix. Thus:

C = G · x =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


×


1

0

0

1

 =



1

0

0

1

1

0

0

1


(24)

Now that we have our codeword it should be sent from the buoy to the

receiver. If the codeword is received without any errors on the eigth bits, the

parity P of the codeword C and the matrix H should be 0. Thus:

34

P = H · C =


1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

0 1 1 1 0 0 0 1

×



1

0

0

1

1

0

0

1


=


0

0

0

0

 (25)

This will happen if the transmission was achieved with no errors. If a

mistake happened during the process, a bit would be flipped. In order to find

how the algorithm can solve it, lets go back to the previous codeword defined

in equation 24, C = [1, 0, 0, 1, 1, 0, 0, 1]. For example, the bit that will change

its value is going to be the third bit, this will make C̃ = [1, 0, 1, 1, 1, 0, 0, 1].

Now that C̃ has been received at the modem, the algorithm calculates the

parity to see if the message received is correct.

P = H · C̃ =


1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

0 1 1 1 0 0 0 1

×



1

0

1

1

1

0

0

1


=


1

0

1

1

 (26)

Given the parity P = [1, 0, 1, 1] that is equal to the third column, we can

know for a fact that the bit that needs to be flipped is the third bit from

the original information received, so that the information can be perfectly

recovered.

35

5 BER simulation environment

In this section we will explain the development of the simulation environment

that must imitate real-life situations where errors can appear randomly and

with different rates depending on the propagation distance, channel quality,

interference and so on. The functions defined and explained in this section

are defined in section 10

The simulation environment needed four different steps. First, there was

a selection of the test data which mainly consisted in an example of the string

that could be sent in a real life situation. After selecting the data, it must

be run through the transmission function from either the current algorithm

or the proposed one using linear codes. Here is the code used first for the

current algorithm and second for the algorithm using linear codes.

Next, once the BERs chosen (from 10−3 to 10−2 in steps of 10−3 and from

10−2 to 10−1 in steps of 10−2), the data should be run through a function

which will introduce the errors in the string randomly. This function is called

add ber. Here is the code used for the function in Python:

Finally, the new string with the BERs applied, will be received and

checked by the receive function that simulates the algorithm that is included

in the modem receiver on board the ship. This function will decide whether

the result obtained after the decoding is good or bad. Here are the receiver

functions for both the current and the linear code algorithms.

36

6 Simulation results

In this section, a comparison between all the different algorithms will be

shown. The two main metrics are the efficiency and the probability of re-

ceiving an error-free message for a given bit error rate (BER).

6.1 Theoretical BER curves

Once the simulation environment has been developed and the sets of code-

words have been selected, the next step is to come up with a theoretical

formulation that mimics the expected performance curves and then compar-

ing them with the simulated ones.

A summary of the hamming distance of each of the sets and the maximum

number of errors that can be corrected per case is shown in table 6.1.

Message Bits Codeword Bits Hamming Distance Max Errors
k n d e
2 8 5 2
3 8 4 1
4 8 4 1

Table 5: Summary of the cases studied

With all this information, it is posible to confirm that the options (3, 8)

and (4, 8) must have a similar BER performance given that both cases can

only correct up to one error. Looking at Table 6.1, we know that our codes

will fail when there is at least one event within our entire message that shows

greater number of errors than our maximum allowed. We can think of this

as two layered binomial distributions, so given a certain BER, the first one

is the probability of a certain number of bit errors within a codeword (byte).

P (0) = (1−BER)8 (27)

P (1) = C(8, 1) ·BER1 · (1−BER)7 (28)

37

In general for a number of i errors:

P (
i

byte
) = C(8, i) ·BERi · (1−BER)8−i (29)

Where C(p, q) are the combinations of p elements taking q at a time:

P (errors >
i

byte
) = Pi = 1− (P (0) + P (1) + ...+ P (i)) (30)

The final metric of the BER performance is the probability that we have

at least one of these events (more than i errors in one byte) in the whole of

our message. This is the second binomial distribution. If our message has N

bytes, the transmission has M = ⌈N
r
⌉ bytes where r is the rate of the code

r = k
n
. Thus, the final metric will be:

Pm = (1− Pi)
M (31)

Figure 12 shows the results for the cases of maximum number of errors

one and two. From the obtained Hamming distances, the case of more than

one error would be similar to the (3,8) and (4,8) cases and the case of more

than 2 errors would be similar to the (2,8) case. The X axis has all the

different BERs labeled using the logarithm scale. The Y axis represents the

probability of success in percentage

38

Figure 12: Theoretical BER curves for one and two errors

6.2 Comparison between algorithms

Now that the theoretical curves for the Hamming algorithm have been plot-

ted, the next step is to find which will be the real performance in our simu-

lation environment described in section 5.

First, it is important to know that for the comparison with the current

algorithm, two different versions of it have been taken into account. The first

one is perfectly defined in section 2.3 and the other version has a modification

that consists in sending the string three times instead of five. This choice was

motivated by the use of a channel in Japan whose regulatory requirements

limited the transmission rate to 100 bauds (as opposed to 1200 bauds in other

markets) and forced to use less redundancy in order to respect the timing of

each transmission slot. The rate in this case is 33% of information sent with

a 66% of the message being redundancy, while in the original version it is

just a 20% rate.

Second, the expectations for both algorithms are to have a better perfor-

mance once the BER increases if the message rate is the lowest possible in

39

the same algorithm. Thus, for the original algorithm the one that has a 20%

rate will obviously have a higher probability of recovering the string correctly

than the case with a 33% rate, as explained in previous sections the bigger

the redundancy bits per byte, the easiest for the receiver to achieve its goal.

The cost of opportunity relies in the need of having to transmit more data

in order to obtain the whole message.

Knowing all this information and after running each algorithm a thousand

times per case and per BER through the simulation environment explained

in 5 in order to obtain a reliable probability of what could happen, here are

the results obtained represented in Figure 13. The X axis has all the different

BERs labeled using a logarithm scale. The Y axis represents the probability

of success in percentage.

Figure 13: Simulation results

40

From Figure 13 the most important conclusion that can be obtained is

that the Hamming algorithm improves the performance of the current algo-

rithm in all cases. If we happen to compare cases (3, 8) and (4, 8) with

case (2, 8) we can observe how for high value BERs the difference is very

significant, having a perform difference of almost 60%. Another good con-

clusion from this figure is that as commented in previous sections, both cases

(3,8) and (4, 8) can only correct up to one error per byte, so basically the

performance needed to be the same. This hyphotesis can be confirmed by

looking at how both curves are superimposed.

It is also possible to see how all the curves show a decreasing tendency as

the BER increases. From the 3 strings case in comparison with the 5 string

case (both from the current algorithm), there is a huge difference related to

the performance, i.e. when the BER value is 0.004 the difference goes up to

almost 70% from one to another. We can also see how both of them have a

very linear form as the curves decrease while also having the both cases some

peaks because of how it works when recovering the information.

41

6.3 Theoretical vs. Simulation curves

The next Figure will compare both the theoretical curves and the Hamming

cases’ curves.

Figure 14: Theoretical vs Simulation curves

In Figure 14 the comparison between what was achieved in section 6.1

and the results obtained from a simulation can help us to better understand

how the algorithm works. As we can see, the simulation is more optimistic

than what the theory indicates. Also, it is possible to see how the shape of

the curves is the same in both cases. Between having one or two errors, in

Figure 14 we can see how the case with two errors is more similar to the

theoretical curve than the Max errors 1 case.

42

7 Implementation in the Commercial Prod-

uct

In this section we will explain the implementation in the commercial product.

The actual functions used in the final implementation are shown in section

11. For the encoding in the buoy, a simple Look Up Table (encoding map) in

the form of a C array is used to prevent any matrix manipulation and thus

speed up the execution. For the decoding, there is in fact a matrix-vector

multiplication between the received codeword C̃ and the parity check matrix

H. This is of course a more expensive operation as it can be seen in the

obtained decoding times in tabble 6. In any case, a matrix multiplication

over a GF2, can be implemented by just doing the XOR of the columns where

the received codeword has ones. Doing the XOR of two eight bit numbers is

a one instruction cycle operation in most microcontollers.

For the implementation in the commercial product the algorithm needs to

complete under a certain time since the radio-buoy system is a TDMA (Time

Division Multiple Access) as explained in section 1.4.1. At the moment of

writing this project, the time per buoy needed for the transmision is ten

seconds, so that every receiver can have up to sixty different buoys that are

able to transmit in a period of ten minutes.

In order to precisely measure the time that the algorithm uses for trans-

miting and recovering the information, MP Lab provides a ”stopwatch” tool

that outputs the number of cycles that each C code instruction takes. From

Microchip documentation, we know that one instruction cycle takes 4 clock

cycles and we know the exact frequencies of the oscillators that drive the two

microprocessors in the buoy and the modem so a deterministic time can be

found for our algorithms. We will measure the cases (2, 8) and (4, 8). In

Figure 15 the MPLAB environment is shown, and the measurements of the

stopwatch can be seen in the window displayed under the code.

For the case (2, 8) the time measured for the transmission of one single

byte was 36.77ms. The string which is going to be used will have a total of

276 bytes to transmit but could possibly have up to 316 bytes, having a total

time of transmission of 2.53s and a maximum of 2.90s. The bytes are received

43

Figure 15: MPLAB Stopwatch environment

and storaged while the transmission takes place. Finally, the receiver would

take a total time of 489ms to obtain the string with the Hamming algorithm

for this case. The total time of the process is 3.02s.

For the case (4, 8) the time measured for the transmission of one byte was

18.39ms, this value concurs with the idea of transmiting half of redundant

information compared with case (2, 8). The total time of transmission will

then have a value of 1.27s for a string of 69 bytes before going through the

algorithm (total number of bytes sent is 138 bytes with a 50% redundancy).

The receiver will take 1.41ms to recover every byte from the original string,

which will mean a total time of 232ms for the recovering of the string. The

total time of the process is 1.50s.

Case Transmission/byte Transmission time Decoding Total time
ms s ms s

(2, 8) 36.77 2.53 489 3.02
(4, 8) 18.39 1.27 232 1.50

Table 6: Algorithm times measured during the implementation

44

8 Final Conclusions and Future Work

As sustainable fishing techniques are starting to become more important in

our society due to the damage that traditionals techniques such as massive

nets are causing, the aim of this project was to improve the performance of

a radio-buoy system that used for longlines by studying different FEC codes

that could be applied to the current system. The key metric in this study

is the probability of recovering the message given a BER that will produce

errors during the transmission.

By developing first a simulation environment and then measuring the

times of action explained in section 7, it was proved that the algorithms can

recover the message as expected. Also, as shown in Figure 13, a significant

improvement was made in terms of the probability of recovering the infor-

mation while increasing the code rate. From the three cases studied, two

were finally implemented. Case (3, 8) was not include because it has the

same performance as case (4, 8) although it had a difference of 12.5% with

regard to the code rate. The implementation of cases (2, 8) and (4, 8) will

help to increase the efficiency of the system in two different ways. Depending

on the trade-off wanted, if what the user seeks is to have a bigger number

of buoys linked to the receiver thanks to the TDMA, the case (4, 8) will

allow to increase this number as it needs less time for the recovering of the

message. On the other hand, case (2, 8) can be used in environments with a

higher BER given that it has a higher probability of recovering the informa-

tion when BER increases. This can also be translated into an increasement

of the distance range.

Future research related to this project may relay on the study of a more

sophisticated FEC technique such as Reed-Solomon codes, but it might in-

volve the use of a new microprocessor because of the limitation of the current

8-bit microchip. Also, the difference between the theoretical and the simu-

lation curves shown in Figure 14 could be studied more deeply. Finally, in

order to see if the algorithm works in a real-life environment, sea tests should

take place.

45

9 References

[1] Mary K. Wootters, Any errors in this dissertation are probably fixable:

topics in probability and error correcting codes. PhD Thesis, Depart-

ment of Mathematics, University of Michigan 2014

[2] Richard W. Hamming, Error Detecting and Error Correcting Codes.

The Bell System Technical Journal, Vol. 29, April 1950

[3] Resumen de la reglamentación para el uso de la banda ciudadana CB27

en España. https://www.cb27.com/legal/reglamentocb Last accessed

10/06/2022.

[4] Visual Studio Code, Microsoft. https://visualstudio.microsoft.com/

Last accessed 22/03/2022.

[5] MPLAB, Microchip. https://www.microchip.com/en-us/tools-

resources/develop/mplab-x-ide Last accessed 22/03/2022.

[6] Peter Elias, Processing and Transmission of Information. Research Lab-

oratory of Electronics (RLE) at the Massachusetts Institute of Tech-

nology (MIT), 1955

[7] Irving S. Reed & Gustave Solomon, Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics,

Vol. 8, No. 2, June, 1960

[8] Robert G. Gallager, Low-density parity-check codes. IRE Transactions

on Information Theory, Vol. 8, No: 1, January 1962

[9] GF(2), Wikipedia. https://en.wikipedia.org/wiki/GF(2) Last accessed

26/06/2022.

[10] Pickpoint Products, https://www.enisa.com. Last accessed 6/07/2022.

46

10 Appendix A: Simulation Environment Source

Code: Python

10.1 Transmission functions

1

2 def tx_enisa(test_st , n):

3 ’’’

4 This function takes a test string and calculates the 5

checksums

5 Replicates the resulting string five times as the buoy

does and returns it

6 ’’’

7

8 chksum_bounds = get_commas(test_st)

9 ck = ’’

10 for idx in range(len(chksum_bounds) -1):

11 ck += ’{:02X}’.format(chksum_chunk(test_st ,

chksum_bounds[idx], chksum_bounds[idx +1]))

12

13 test_st = ck + ’/’ + test_st

14

15 return [test_st] * n

16

1 def tx_hamming(enisa_str , bytes , codewords , n_case):

2 ’’’

3 This function takes a test string and separates it in

groups related

4 to the number of codewords selected.

5 Thus , it can introduce the codewords before sending the

new string to the modem.

6 The function emulates the buoy.

7 ’’’

8

9 enisa_str = enisa.tx_enisa(enisa_str , 1)

10 enisa_str = ’’.join(enisa_str)

11 enisa_bytes = toBinary(enisa_str)

12 new_list = []

47

13 length = len(enisa_bytes)

14

15 for i in range(0, length , n_case):

16 bits = enisa_bytes[i : (i + n_case)]

17 if len(bits) < n_case:

18 x = n_case - len(bits)

19 bits = ’0’ * x + bits

20 for j in range(len(bytes)):

21 if bits == bytes[j]:

22 new_list += [codewords[j]]

23

24 ascii_list = Ber.bin2ascii(new_list)

25

26 return ascii_list

27

28

10.2 BER function

1

2 import random

3

4 def add_ber(my_string , ber):

5 # This function flips a number of bits in a string (bit

errors)

6 # The number of flipped bits is commensurate with the

input BER

7

8 byte_list = toBinary(my_string)

9 n_bits = len(my_string) * 8

10 bad = int(n_bits * ber)

11

12 #Selects randomly the position of the wrong bit

13 pos = random.sample(range(n_bits), bad)

14

15 pos_int = [int(pos[i] / 8) for i in range(len(pos))]

16 bit = [pos[i] % 8 for i in range(len(pos))]

17

18 for i in range(len(pos_int)):

48

19 byte = byte_list[pos_int[i]]

20

21 #Changes the value of the bit

22 if byte[bit[i]] == ’1’:

23 byte = list(byte)

24 byte[bit[i]] = ’0’

25 byte = "".join(byte)

26 else:

27 byte = list(byte)

28 byte[bit[i]] = ’1’

29 byte = "".join(byte)

30

31 byte_list[pos_int[i]] = byte

32

33 #Next function changes the string from binary to

characters

34 ber_list = bin2ascii(byte_list)

35 ber_string = "".join(ber_list)

36

37 #Returns the new string

38 return ber_string

39

40

10.3 Receiver functions

1

2 def rx_enisa(test_strs , string , n):

3 ’’’

4 This fuctions emulates the reception of the modem with

the enisa string

5 Reconstructs a valid string recovering from the five

strings

6 Uses the same algorithms as the modem

7 ’’’

8

9 decoded_ok = True

10 chk_tests = [test_strs[i][0:10] for i in range(len(

test_strs))]

49

11 ckint = [hex2int(chk_tests[i][0:10]) for i in range(n)]

12 ckcorrect = obtain_ckcorrect(ckint , n)

13 strs = [test_strs[i][11:] for i in range(len(test_strs))]

14

15 if ckcorrect is None:

16 decoded_ok = False

17 else:

18 enisa_str = calculate_str(ckcorrect , strs , n, string)

19

20 if (decoded_ok and enisa_str [66] == ’A’ and enisa_str [46]

== ’,’ and enisa_str [48] == ’,’ and enisa_str [40] == ’.’

and (enisa_str [47] == ’E’ or enisa_str [47] == ’W’) and

21 enisa_str [32] == ’,’ and enisa_str [34] == ’,’ and

enisa_str [26] == ’.’ and (enisa_str [33] == ’S’ or

enisa_str [33] == ’N’) and

22 enisa_str [21] == ’,’ and enisa_str [18] == ’.’ and

enisa_str [11] == ’/’ and enisa_str [2] == ’,’):

23 return True

24 else:

25 return False

26

1 def rx_hamming(bad_list , bytes , codewords , correct_str):

2 ’’’

3 This function takes a test string and separates it in

groups related

4 to the number of codewords selected.

5 Thus , it can use the codewords storaged in the modem for

recovering

6 the string sent from the buoy.

7 The function emulates the receiver.

8 ’’’

9

10 bad_list = toBinary(bad_list)

11 good_str = ’’

12

13 for byte in bad_list:

14 dist = [hamming_distance(byte , codewords[i]) for i in

range(len(codewords))]

15 pos = dist.index(min(dist))

50

16 good_str += bytes[pos]

17

18 good_list = []

19 good_list += [good_str[i:(i+8)] for i in range(0, len(

good_str), 8)]

20 y=len(good_list)

21 x=len(good_str)

22 enisa_list = bin2ascii(good_list)

23 enisa_str = ’’.join(enisa_list)

24 checksum = calculate_chk(enisa_str [11:])

25 enisa_checksum = hex2int(enisa_str [0:10])

26

27 if enisa_checksum == checksum:

28 return True

29 else:

30 return False

31

51

11 Appendix B: Implementation code: C

11.1 Buoy functions

1

2 void transmit hamming (void) {
3 // This func t i on d i v i d e s each byte in to K codewords and then

t ransmi t s the

4 // a l l the bytes that form the Hamming s t r i n g .

5

6 uint8 l ength = s t r l e n (s t r e n i s a) ;

7 f o r (u int8 i =0; i <15; i++){
8 char2tone (’U ’) ;

9 }
10

11 uint8 mask = (1 << K) = 1 ;

12

13 char2tone (’ / ’) ;

14

15 f o r (u int8 i =0; i <10; i++){
16 char2tone (str chcksum [i]) ;

17 }
18

19 char2tone (’ / ’) ;

20 unsigned char aux s t r [MAXLENGTH] ;

21 uint8 k = 0 ;

22 uint8 l s b s ;

23

24 f o r (u int8 i = 0 ; i < l ength ; i++){
25 uint8 byte = s t r e n i s a [i] ;

26 i f (K == 2) { // Case (2 , 8)

27 f o r (u int8 j = 0 ; j < BITS/K; j++){
28 l s b s = byte ;

29 l s b s &= mask ;

30 uint8 codeword = enc map2 [l s b s] ;

31 char2tone (codeword) ;

32 byte >>= K;

33 aux s t r [k] += codeword ;

34 k++;

52

35 }
36 } e l s e i f (K == 4) { // Case (4 , 8)

37 f o r (u int8 j = 0 ; j < BITS/K; j++){
38 l s b s = byte ;

39 l s b s &= mask ;

40 uint8 codeword = enc map4 [l s b s] ;

41 char2tone (codeword) ;

42 byte >>= K;

43 aux s t r [k] += codeword ;

44 k++;

45 }
46 }
47 }
48

49 }
50

51

11.2 Receiver functions

1

2 u i n t 8 t hamming syndrome (unsigned char byte) {
3 // This func t i on c a l c u l a t e s the pa r i t y o f the codeword

r e c e i v ed

4 // and re tu rn s the message b i t s r ecovered

5

6 u i n t 8 t synd = 0 ;

7 u i n t 8 t codeword ;

8 u i n t 8 t idx = 0 ;

9 u i n t 8 t aux = 0 ;

10 codeword = byte ;

11

12 f o r (u i n t 8 t i = 0 ; i < BITS ; i++){
13 i f ((byte & 128) == 128) {
14 i f (K == 2) { // Case (2 , 8)

15 synd ˆ= H 2 [i] ;

16 } e l s e i f (K == 4) {
17 synd ˆ= H 4 [i] ;

18 }

53

19 }
20 byte <<= 1 ;

21 }
22 i f (K == 2) { // Case (2 , 8)

23 i f (synd != 0) {
24 aux = Synd matrix [synd] ;

25 codeword ˆ= (1 << aux) ;

26 }
27 f o r (u i n t 8 t j = 0 ; j < (K*K) ; j++){
28 i f (codeword == enc map2 [j]) {
29 idx = j ;

30 }
31 }
32 } e l s e i f (K == 4) { // Case (4 , 8)

33 i f (synd != 0) {
34 f o r (u i n t 8 t i = 0 ; i < BITS ; i++){
35 i f (synd == H 4 [i]) {
36 aux = i ;

37 }
38 }
39 codeword ˆ= (1 << aux) ;

40 }
41 f o r (u i n t 8 t j = 0 ; j < (K*K) ; j++){
42 i f (codeword == enc map4 [j]) {
43 idx = j ;

44 }
45 }
46 }
47 re turn idx ;

48 }
49

1 u i n t 8 t obtain str hamming (char s t r aux []) {
2 // This func t i on r e cove r s the s t r i n g

3

4 u i n t 8 t chk [1 0] ;

5 char hamming str [MAXLENGTH] ;

6 u i n t 8 t s t r v a l i d ;

7

8 read str hamming (s t r i n g) ; // Reads the s t r i n g r e c e i v ed

54

9 u i n t 8 t l en = s t r l e n (s t r i n g) ;

10 u i n t 8 t rx ;

11 u i n t 8 t message bts ;

12 u i n t 8 t k = 0 ;

13

14 f o r (u i n t 8 t i = 0 ; i < l en ; i++){
15 u i n t 8 t move = 0 ;

16 rx = 0 ;

17 f o r (u i n t 8 t j = 0 ; j < BITS/K; j++){
18 message bts = hamming syndrome (s t r aux1 [k]) ;

19 message bts <<= move ;

20 rx |= message bts ;

21 move = move + K;

22 k = k + 1 ;

23 }
24 hamming str [i] += rx ;

25 }
26

27 s e p a r a t e s t r e n i s a (hamming str , chk) ;

28

29 i f ((hamming str [4 6] == ’ , ’) && (hamming str [4 8] == ’ , ’) && (

hamming str [4 0] == ’ . ’) && ((hamming str [4 7] == ’E ’) | | (

hamming str [4 7] == ’W’))

30 && (hamming str [3 2] == ’ , ’) && (hamming str [3 4] == ’ , ’) && (

hamming str [2 6] == ’ . ’) && ((hamming str [3 3] == ’S ’) | | (

hamming str [3 3] == ’N ’))

31 && hamming str [2 1] == ’ , ’ && hamming str [1 8] == ’ . ’ &&

hamming str [1 1] == ’ / ’ && hamming str [2] == ’ , ’) {
32 s t r v a l i d = 1 ;

33 } e l s e {
34 s t r v a l i d = 0 ;

35 }
36 re turn s t r v a l i d ;

37 }
38

1 void HammingMode() {
2 // This func t i on r ep r e s en t s the mode from the menu that

i n i t i a t e s the r e cove r i ng the

3 // in fo rmat ion and p r i n t s i t in the s c r e en o f the r e c e i v e r

55

4 TRISC5 = 0 ;

5 RC5 = 1 ;

6

7 whi le (1) {
8 obtain str hamming (s t r) ; // Recovers the s t r i n g

9 LED GREEN PIN = 1 ;

10 u i n t 8 t j = 0 ;

11 LED RED PIN = 0 ;

12 whi le (e n i s a s t r [j] != ’ \0 ’) {
13 LED GREEN PIN = 1 ;

14 RC5 = 1 ;

15 UART Transmit (e n i s a s t r [j]) ;

16 j++;

17 }
18 UART Transmit (’ \ r ’) ;
19 UART Transmit (’ \n ’) ;

20 }
21 }
22

56

12 Appendix C: Auxiliary Functions: Python

12.1 3D Hamming Plots

1 import matplotlib.pyplot as plt

2 from matplotlib import cm

3 from matplotlib.ticker import LinearLocator

4 import numpy as np

5 import itertools as it

6 import argparse

7 from num_ones import counts

8

9

10 def hamming_distance(byte1 , byte2):

11 return counts[byte1^byte2]

12

13 def heat_map(arr):

14 map = []

15 for el1 in arr:

16 row = []

17 for el2 in arr:

18 row.append(hamming_distance(el1 , el2))

19 map.append(row)

20 return np.array(map)

21

22

23 if __name__ == ’__main__ ’:

24

25 parser = argparse.ArgumentParser(description="Script to

plot the hamming distances of a set of 8-bit codewords")

26 parser.add_argument(’--code -words’, help="String of

codewords separated by spaces", default="0 15 51 60 85 90

102 105")

27 myargs = parser.parse_args ()

28 print("Codewords {}".format(myargs.code_words))

29

30 code_words = [int(w) for w in myargs.code_words.split ()]

31

32 map = []

57

33 for byte1 in range (256):

34 row = []

35 for byte2 in range (256):

36 row.append(hamming_distance(byte1 , byte2))

37 map.append(row)

38 map = np.array(map)

39

40 ham_map = np.zeros ((256 ,256),dtype=np.int64)

41 for i,j in it.combinations(code_words , 2):

42 ham_map[i,j] = map[i,j]

43

44 fig , ax = plt.subplots(subplot_kw ={"projection": "3d"})

45 X, Y = np.meshgrid(range (256), range (256))

46 surf = ax.plot_surface(X, Y, map , cmap=cm.coolwarm ,

linewidth =0, antialiased=False)

47 ax.set_zlim(0, 8)

48 plt.title("Hamming Distances")

49

50 fig , ax = plt.subplots(subplot_kw ={"projection": "3d"})

51 X, Y = np.meshgrid(range (256), range (256))

52 surf = ax.plot_surface(X, Y, ham_map , cmap=cm.coolwarm ,

linewidth =2, antialiased=False)

53 ax.set_zlim(0, 8)

54 plt.title("Selected Hamming Distances")

55

56 plt.show()

57

58

12.2 Theoretical Curves

1 import matplotlib.pyplot as plt

2 from matplotlib import cm

3 from matplotlib.ticker import LinearLocator

4 import numpy as np

5 import itertools as it

6 import argparse

7 from num_ones import counts

8

58

9

10 def hamming_distance(byte1 , byte2):

11 return counts[byte1^byte2]

12

13 def heat_map(arr):

14 map = []

15 for el1 in arr:

16 row = []

17 for el2 in arr:

18 row.append(hamming_distance(el1 , el2))

19 map.append(row)

20 return np.array(map)

21

22

23 if __name__ == ’__main__ ’:

24

25 parser = argparse.ArgumentParser(description="Script to

plot the hamming distances of a set of 8-bit codewords")

26 parser.add_argument(’--code -words’, help="String of

codewords separated by spaces", default="0 15 51 60 85 90

102 105")

27 myargs = parser.parse_args ()

28 print("Codewords {}".format(myargs.code_words))

29

30 code_words = [int(w) for w in myargs.code_words.split ()]

31

32 map = []

33 for byte1 in range (256):

34 row = []

35 for byte2 in range (256):

36 row.append(hamming_distance(byte1 , byte2))

37 map.append(row)

38 map = np.array(map)

39

40 ham_map = np.zeros ((256 ,256),dtype=np.int64)

41 for i,j in it.combinations(code_words , 2):

42 ham_map[i,j] = map[i,j]

43

44 fig , ax = plt.subplots(subplot_kw ={"projection": "3d"})

59

45 X, Y = np.meshgrid(range (256), range (256))

46 surf = ax.plot_surface(X, Y, map , cmap=cm.coolwarm ,

linewidth =0, antialiased=False)

47 ax.set_zlim(0, 8)

48 plt.title("Hamming Distances")

49

50 fig , ax = plt.subplots(subplot_kw ={"projection": "3d"})

51 X, Y = np.meshgrid(range (256), range (256))

52 surf = ax.plot_surface(X, Y, ham_map , cmap=cm.coolwarm ,

linewidth =2, antialiased=False)

53 ax.set_zlim(0, 8)

54 plt.title("Selected Hamming Distances")

55

56 plt.show()

57

60

13 Appendix D: Sustainable Development Goals

(SDG)

The Sustainable Development Goals are a common ground embraced by all

the United Nations Member States in 2015 with the objective of contribut-

ing to the prosperity of the planet and its inhabitants. The 2030 Agenda for

Sustainable Development has in its hearth the 17 SDG. They recognize the

urgency of acting in order to reduce the inequality and pollution all around

the world while applying efficient techniques that help to improve the eco-

nomic growth, education and health.

The sustainable main objective of this project has to do with SDG no. 12,

which is to ensure sustainable consumption and production patterns. This

will be achieved by helping to develop longline fishing systems. Longline

fishing is a technique that uses a main line from where several branches full

of fish hooks separated in regular intervals depart. There are diverse types

of lines, mainly differenced by its depth within the water. The use of this

fishing system requires of a radio-buoy system in order for fishing companies

to be able to locate their longlines, as shown in Figure 16.

Longlines are a much more sustainable fishing gear than, for example,

trawlers that drag a massive net across the sea bed causing severe damage

to marine habitats. Trawler nets are also not selective, fishing every creature

in the sea bed. This is known as ”by-catch” and it is minimized by the use

of long lines. In addition, having to tow these big nets, trawlers use much

more fuel than longlines.

The need for developing sustainable methods of fishing appears as a way

of guaranteeing the ocean’s wildlife in the future. It is known that fishermen

catch more than 77 billion kilograms of marine species every year. In 2018,

the United Nations Food and Agriculture Organization estimated that up to

33.1% of the world’s fishing production is exposed to overfishing.

Concerning the environmental advantages of this technique, the most

important benefits are reducing polution and protecting marine fauna while

rejecting the indiscriminate capture of animals without commercial value. It

61

Figure 16: Longline fishing system (Australian Fisheries Management Au-
thority)

is also suitable with saving 90% of the actual fishing industry’s employment.

The potential savings of using and developing longline fishing could grow up

to saving 40% of the animals in every capture.

62

14 Appendix E: PickpointTM Image Gallery

This section shows some images of the radio buoy system that have been

taken from [10]

Figure 17: Radio Buoy with Antenna

63

Figure 18: Float for Radio Buoy

Figure 19: Modem Receiver Onboard

64

