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Abstract
We observe every day a world more complex, uncertain, and riskier

than the world of yesterday. Consequently, having accurate forecasts in
economics, finance, energy, health, tourism, and so on; is more critical
than ever. Moreover, there is an increasing requirement to provide other
types of forecasts beyond point ones such as interval forecasts. After
more than 50 years of research, there are two consensuses, “combining
forecasts reduces the final forecasting error” and “a simple average of several
forecasts often outperforms complicated weighting schemes”, which was
named “forecast combination puzzle (FCP)”. The introduction of interval-
valued time series (ITS) concepts and several forecasting methods has been
proposed in different papers and gives answers to some big data challenges.
Hence, one main issue is how to combine several forecasts obtained for one
ITS. This paper proposes some combination schemes with a couple or various
ITS forecasts. Some of them extend previous crisp combination schemes
incorporating as a novelty the use of Theil’s U. The FCP under the ITS
forecasts framework will be analyzed in the context of different accuracy
measures and some guidelines will be provided. An agenda for future research
in the field of combining forecasts obtained for ITS will be outlined.

Key words: Efficient market hypothesis; Equal weights; Financial markets;
Forecast combination; Optimal weight; Random walk model.

Resumen
Cada día observamos un mundo más complejo, incierto y con mayor

riesgo que el mundo de ayer. Luego, tener pronósticos precisos en economía,
finanzas, energía, salud, turismo, etc.; es más crítico que nunca. Además,
existe un requisito creciente de proporcionar otro tipo de pronósticos más
allá de los puntuales, como los pronósticos de intervalos. Después de más
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de 50 años de investigación, hay dos consensos, “combinar pronósticos
reduce el error de pronóstico final” y “un promedio simple de varios
pronósticos a menudo supera complicados esquemas de ponderación”, que
se denominó “rompecabezas de combinación de pronósticos (FCP)”. La
introducción de los conceptos de series de tiempo de intervalo (ITS)
y varios métodos de pronóstico se han propuesto y dan respuestas a
algunos desafíos de los grandes datos. Entonces, un problema es cómo
combinar varios pronósticos obtenidos para una ITS. Este documento
propone algunos esquemas combinados con un par o varios pronósticos ITS.
Algunos extienden esquemas previos para datos puntuales, incorporando
como novedad la U de Theil. El FCP en el marco de pronósticos ITS
se analizará con diferentes medidas de exactitud y se proporcionarán
algunas pautas. Se describirá una agenda para futuras investigaciones en
la combinación de pronósticos obtenidos para ITS.

Palabras clave: Combinación de pronósticos; Hipótesis de mercado
eficiente; Mercados financieros; Modelo de caminata aleatoria; Peso óptimo;
Ponderaciones iguales.

1. Introduction

There is an immense number of various forecasting methods and models. A
subsection of these uses only the past values of an observed variable to predict
future outcomes; in this case, both the input and output of a method can be
modeled by a time series, i.e. a sequence of observations of the same variable in
uniform time periods.

On the one hand, the value of using more than just point forecasts has been
shown in different contexts such as finance or tourism. For example, in exchange
rates forecasting, Wang & Wu (2012) incorporate out-of-sample interval forecasting
and Sarno & Valente (2005) use density forecasts. Recently, Li et al. (2018)
have stated that interval forecasts can provide more comprehensive information to
improve tourism forecasting accuracy. They give guidelines for producing accurate
interval forecasts that benefit policy-making for a wide array of applications in
practice.

On the other hand, the individual values of a time series do not necessarily need
to be single numbers; they could, for example, be represented by a more complex
structure, such as a function (Hyndman & Shang 2009 or Gao et al. 2019), a
density function (Tay & Wallis 2000 or lately Bassetti et al. 2020), a histogram
(Arroyo & Maté, 2009), a boxplot of some subset of the data, or an interval.

Interval-valued data is a particular case of symbolic data as it is viewed in the
field of symbolic data analysis (SDA). SDA states that symbolic variables (lists,
intervals, frequency distributions, etc.) are better suited for describing complex
real-life situations than single-valued variables; further details can be found in
Billard & Diday (2003), Billard & Diday (2006) and Noirhomme-Fraiture & Brito
(2011). Hsu & Wu (2008) propose using interval-valued data to establish a model
and to predict.
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Intervals could be used as a framework to incorporate the magnitude of the
measurement error in estimates. For example, recently, Glennon et al. (2018)
investigate the extent to which forecast combination methods can be used to
improve the property-level and find that relatively simple forecast combination
schemes have the potential to reduce the error in property value estimates, possibly
by a wide margin.

An interval time series (ITS) assigns to each time period an interval covering
the values taken by the observed variable. Each interval has four characteristic
attributes, since it can be defined in terms of lower and upper boundaries, center,
and radius. In finance, the evolution for every asset (equities, commodities, or
exchange rates) in every period of time (for example, day or month) of lows and
highs is an ITS. See, as an example, Figure 1 for the case of monthly intervals of
lows and highs prices for General Electric in the first part of the year 2017.

The analysis and forecasting of ITS is a young research area, dating back less
than 20 years, and still presents a wide array of open issues. For a recent survey of
methodologies and techniques for ITS forecasting readers are referred to different
papers such as Arroyo & Maté (2006), Han et al. (2008), Maia et al. (2008), García-
Ascanio & Maté (2010), Maia & de Carvalho (2011) and Arroyo et al. (2011a),
among others.

In a different path, forecasts combination is a mature field of research with key
papers such as Bates & Granger (1969), Clemen (1989) and Timmermann (2006).
Additional important references are Gneiting (2011) or Gneiting & Katzfuss
(2014). The connection with multivariate analysis has been highlighted in Maté
(2011), among others. In engineering, environmental sciences, energy and other
areas, this field is called ensemble forecasts (see, for example, Avci et al. (2018)).
With this name there are several applications in big data such as Ordiano et al.
(2018) or Galicia et al. (2019) in ensemble learning. The problem of model selection
(see, for example, Moral-Benito (2015) or Gibbs (2017)) is related to the forecast
combination problem and is revisited in Kourentzes et al. (2019).

After more than 50 years of research, there is a general consensus “combining
forecasts reduces the final forecasting error”. This consensus has been also
established through some forecasting competitions such as the last one, M4 (see
Makridakis et al. 2020). According to Atiya (2020), forecast combinations were
big winners in the M4 competition.

As part of this consensus, there is also a well-known fact “a simple average
of several forecasts often outperforms complicated weighting schemes”, which was
named “forecast combination puzzle (FCP)” by Stock & Watson (2004). Recently,
Thomson et al. (2019) suggest an analytical framework that can be used for
enhancing the assessment of forecast performances and guiding decisions as to
which forecasters should be pooled to obtain an effectively combined forecast. It
is shown that composite forecasts (formed using a simple average) support previous
research (e.g., Armstrong 2001, Clemen 1989 or Timmermann 2006, among many
others) and confirm the benefits of forecasts combination.

Lately, Shaub (2020) concludes that an examination of a simple ensemble
forecasting method shows that equal arithmetic averaging of base models can
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serve as a hedge for model selection risk and help to prevent some large forecasting
errors. This simple combination approach can be of particular interest to business
users and software engineers who need to forecast a large number of time series
automatically, without intervention, and without a global model that needs
retraining with the addition of new time series or data drawn from a new data
generating process.

Concerning large datasets, Song & Liu (2017) propose one framework of
tourism forecasting with big data. They identify three important steps: (1)
data exploration, which is the data processing that prepares the proper data
for the model; (2) use modeling techniques to predict user behavior based on
their previous business transactions and preferences; (3) optimize the forecast
results and decrease the forecast failure risk by model selection and combination
forecasting. ITS forecasting methods and the combination approaches developed
in this paper can help in the above steps.

Table 1: GE monthly low-high prices dataset 2017: January to July; with two
forecasting methods M1 and M2.

Month LowGE HighGE LowM1 HighM1 LowM2 HighM2
January 31.4 31.84 30.1607 30.9881 29.3952 30.2016
February 29.56 29.81 30.929 31.3575 30.144 30.5616
March 29.82 30.35 29.1166 29.3629 28.3776 28.6176
April 29.75 30 29.3727 29.8948 28.6272 29.136
May 28.93 29.17 29.2988 29.55 28.5552 28.8
June 27.5 27.88 28.4961 28.7325 27.7728 28.0032
July 27.06 27.59 27.0875 27.4579 26.4 26.76096

Given that we are able to use several forecasting methods with ITS, one main
issue in SDA with interval-valued data is how to combine several forecasts obtained
for an ITS. Figure 1 shows the problem graphically and Table 1 provides the
corresponding dataset. The ITS shown by a solid line (red), joining the interval-
valued data at every month, reports about the evolution of the monthly prices of
General Electric (GE) during the seven first months of the year 2017. The couple
of ITS shown by a dotted line (purple) and a dashed line (blue) informs about
the evolution of the monthly interval price forecasts of GE with the methods M1
(purple) and M2 (blue), respectively, during the same period. The problem is to
obtain a linear combination of these two ITS forecasting methods M1 and M2
which is the best approach to the real ITS.

This paper proposes several combination schemes with a couple or various ITS
forecasts and analyzes the forecast combination puzzle under the ITS forecasts
framework in the context of different accuracy measures. Section 2 provides an
overview of the framework of the linear combination of multiple crisp forecasts.
Sections 3, 4, and 5 introduce essential ITS concepts such as notation, distance
measures, accuracy measures, and so on; when forecasting ITS. Section 6 briefly
describes the methods of combining linearly a couple of ITS forecasts in an optimal
way. Section 7 explains the methodology showing empirical results. Section 8
discusses the problem of the combination of several ITS forecasts and suggests a
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research agenda in this field. Finally, Section 9 collects some concluding remarks
and outlines several open lines of research.

Figure 1: GE monthly ITS prices in 2017 (January to July) with two forecasting
methods M1 and M2 for this ITS.

2. Linear Combination of Multiple Crisp Time
Series Forecasts

Let Ft+h,i the forecast of one time series xt at time t+h according to the
method i, with i = 1, . . . , k; for h = 1, . . . , l. Let Ft+h,C the linear combined
forecast with time-varying weights. That is

Ft+h,C =

k∑
i=1

ωt,i ∗ Ft+h,i (1)

with t = 1, . . . , T . Usually, it is assumed that
k∑

i=1

ωt,i = 1. In addition, sometimes

the restriction ωt,i ≥ 0 is incorporated. With both restrictions, the problem is
named a convex linear combination approach.

The problem is to get an optimal linear combination forecast x̂t+h, for h =
1, . . . , l, given xt, with t = 1, . . . , T . Additional details of the above setup can be
found in Timmermann (2006).

The distinction between using a small number of methods or many predictors
has been considered in different papers such as Stock & Watson (2006), which
only consider linear forecasts, that is, forecasts that are linear in the predictors,
because this has been the focus of almost all research on economic forecasting.
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Some economic time series are often integrated (non-stationary), and this fact
has implications for the form of a linear combination of the forecasts. See, for
example, Hallman & Kamstra (1989).

2.1. The Random Walk Crisp Time Series Model, Naïve
Forecasting and Efficient Market Hypothesis (EMH)

A random walk time series is defined as a process where the current value of
a variable is composed of the past value plus an error term defined as white noise
(a variable with zero mean and variance one which usually is assumed following a
normal law). Algebraically a simple random walk is represented as follows:

Xt = Xt−1 + εt (2)

A process of this type implies that the best prediction of X for the next period is
the current value. That is,

X̂t = Xt−1 (3)

which is known as the naïve forecasting method. That is, the process does not
allow to predict the value of the change (Xt+1 −Xt) or predicts a zero expected
change. The change in X is random. It can be shown that the mean of a random
walk process is constant but its variance is not. Therefore a random walk process
is non-stationary, and its variance increases with t. In practice, the presence of
a random walk process makes the forecasting process very simple, since all the
future values of Xt+s for s > 0, are simply Xt.

Fama (1995) describes briefly and simply the theory of random walks and
some of the important issues it raises concerning the work of market analysts.
More recently, Rapach & Zhou (2013) survey the literature on stock return
forecasting and point out that forecast combination, among other strategies,
improve forecasting performance by addressing the substantial model uncertainty
and parameter instability surrounding the data-generating process for stock
returns.

Roughly speaking and following Fama & Blume (1966), the Efficient Market
Hypothesis (EMH) establishes that assets are always priced at their fair values,
fully reflecting all the information possessed. As a consequence, speculators cannot
predict future returns and systematically beat the market without leaning towards
riskier assets. Therefore, under the EMH, stock returns follow random walk models
and cannot be predicted to any extent. For an updated analysis of the EMH see,
for example, Naseer et al. (2015), among many other references.

2.2. Accuracy Measures in Crisp Time Series Forecasting

In order to compare several forecasting methods or different combination
approaches, accuracy measures of x̂t, such as MSE defined by

MSE =

∑T
t=1

(
xt − x̂t

)2
T

(4)
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or RMSE, the square root of the MSE, or other measures are used (see, for example,
Hyndman & Koehler 2006). Assuming we have information for t = 1, . . . , T of a
time series and a forecasting method M for such series, the MSE at time T for the
method M will be noted by MSE(M,T ), or MSE(M) if there is no doubt about
the period considered.

One quite interesting measure for the above issue is Theil’s U. It compares one
forecasting model or method to a naïve model by

U =

√√√√√√√√
T∑

t=2
(xt − x̂t)2

T∑
t=2

(xt − xt−1)2
(5)

The U statistic compares the model with the simple random walk.

• When the value of U is equal to 1, the performance of the currently observed
model is the same as that of the simple random walk.

• For U > 1, the model performs worse than the simple RW.

• For U < 1, the model’s performance is better than the simple RW.

The connection between EMH, random walk model, and Theil’s U deserves
future thorough research. One paper relating these three important keywords is
Riddington (1993).

2.3. Linear Combination of Two Crisp Time Series Forecasts.
The use of Theil’s U

In this case, the equation (1) is given by

Ft+h,C = ω ∗ Ft+h,1 + (1− ω) ∗ Ft+h,2 (6)

In the seminal paper Bates & Granger (1969), the optimal weight when using two
forecasting methods M1 and M2 is given by

ω =
MSE(M2)−ACE(M1,M2)

MSE(M1) +MSE(M2)− 2 ∗ACE(M1,M2)
(7)

where ACE(M1,M2) stands for the average crossed error using methods M1 and
M2 and is given by

ACE(M1,M2) =

∑T
t=1 (xt − x̂t,M1)(xt − x̂t,M2)

T
(8)

In the case of two unbiased methods M1 and M2 to forecast the time series,
the MSE of every method is the variance noted by σ2

1 and σ2
2 . Then, the weight

obtained in (7) is given by
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ω =
σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
(9)

which is the key result in Bates & Granger (1969). Several studies have been
accomplished to analyze the nature of the above weights, including the possibility
of negative weights. See, for example, Dickinson (1975).

Obviously, weights can be varying with time and to automate the process for
the case of a rolling window.

Weights can also be optimized according to the use of Theil‘s U, which is a
new approach until our knowledge goes. That is, choosing weights to optimize the
corresponding Theil‘s U of the combination of two forecasts is a new approach and
the optimal weight is given by

ω =
U2
M2 −ACEU(M1,M2)

U2
M1 + U2

M2 − 2 ∗ACEU(M1,M2)
(10)

where ACEU(M1,M2) stands for the average crossed error under Theil‘s U using
methods M1 and M2 and is given by

ACEU(M1,M2) =

T∑
t=2

(xt − x̂t,M1)(xt − x̂t,M2)

T∑
t=2

(xt − xt−1)2
(11)

One quite important advantage of computing the Theil‘s U of the optimized
combined method is that we can discard such an approach when that value is
greater or equal than 1. This lacks in the literature of forecasts combination
research.

2.4. Weighting Usual Schemes in the Combination of Several
Crisp Forecasts. A New Additional Scheme

Several weighting schemes can be found in the literature. Following Genre
et al. (2013), we will restrict to the class of linear combinations and focus on those
methods which emphasize parsimony, with the goal to minimise the estimation
error as much as possible.

• Trimming and other statistical combinations
These include the median and other trimmed mean measures that remove
extreme values from the cross-section of forecasts, assigning a zero weight to
some forecasts and equal weights to all others.

• Performance-based combinations
These approaches assign higher weights to forecasts with relatively good
forecasting track records and lower weights to forecasts with poor
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performances. One of them is the Inverse of Root Mean Squared Error
(IRMSE) averaging. Weights are obtained through the following expressions

ωt,i =
RMSE−1

t,i

k∑
i=1

RMSE−1
t,i

(12)

Another alternative, not found in the literature until our knowledge goes,
would be the inverse of Theilťs U Squared (IThUS) averaging. Weights are
obtained through the following expressions

ωt,i =
(U2)−1

t,i

k∑
i=1

(U2)−1
t,i

(13)

The better (worst) the method is, the higher (lower) the corresponding
weight for such method is.

• Sequential combination
When combining more than two forecasts, Winkler & Clemen (1992) propose
combining sequentially. Instead of combining all k forecasts at once, we could
combine them sequentially in k − 1 steps, adding one forecast at each step.

3. Basic Concepts When Analyzing ITS

In the following, some important definitions and facts about ITS will be
provided.

3.1. Definitions and Notation

Definition 1 (Interval). An interval [x] over the base set (E,≤) is an ordered pair
[x] = [xL, xU ] where xL, xU ∈ E are the lower and upper bounds of the interval,
respectively, such that xL ≤ xU .

An equivalent representation of an interval is given by the centre (midpoint)
and radius (half-range) of the interval, namely ⟨x⟩ =

〈
xC , xR

〉
, where xC =

1
2 (x

L + xU ) and xR = 1
2 (x

U − xL).
The class of nonempty compact intervals of the real line has been represented

in several ways.

[a] Kc(R) (Theory of sets notation)

[b] I(R) or IR (Interval analysis notation)

Hence, Kc(R) = {[a, b] : a, b ∈ R, a ≤ b} will denote the class of nonempty
compact intervals.
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3.2. Some Stochastic Issues With Interval Time Series

In this section, we consider the stochastic issues that arise when using interval-
valued time series (ITS). Following Arroyo et al. (2010), Tay & Wallis (2000),
Kubica & Malinowski (2006) and Sinova & Van Aelst (2015); we first define the
important concepts of interval random variable and interval stochastic process,
and consequently define the concept of ITS.

Let (Ω,F , P ) be a probability space, where Ω is the set of elementary events, F
is the σ-field of events and P : F → [0, 1] the σ-additive probability measure. We
define a partition of Ω into sets AX (x) such that AX (x) = {ω ∈ Ω|X (ω) = x},
where x ∈ [xL, xU ].

Definition 2 (Interval random variable). A mapping [X] : F → Kc(R) ⊂ R such
that for each x ∈ [xL, xU ], there exists a set AX (x) ∈ F , is called an interval
random variable (iRV).

The minimum and maximum temperatures in a place every day (or every time
frame considered), in Celsius degrees, is an example of an iRV.

Definition 3 (Interval-valued stochastic process). An interval-valued stochastic
process is a collection of interval random variables that are indexed by time, that
is {[Xt]} for t ∈ T ⊂ R with each [Xt] following the above definition.

The evolution through the time of the minimum and maximum temperatures
is an interval-valued stochastic process.

Definition 4 (Interval-valued time series). An interval-valued time series (ITS)
is a realization of an interval-valued stochastic process. It may be equivalently
denoted as {[xt]} = {[xL

t , x
U
t ]} = {

〈
xC
t , x

R
t

〉
} for t = 1, 2, . . . , T .

Definition 5 (Interval-valued random walk). An ITS [Yt] is an interval-valued
random walk (iRW) with drift if

[Yt] = [µ] + [Yt−1] + [εt] (14)

As a consequence
Y L
t = µL + Y L

t−1 + εLt (15)

Y U
t = µU + Y U

t−1 + εUt (16)

That is, under an iRW with drift, the interval-valued variable at time t is the
result of one constant interval plus the interval valued variable at time t− 1 plus
an error at time t in the way of an interval. The case of [µ] = [0] is the iRW or
iRW without drift.

The connection between stationarity, random walks, trends, unit roots, time
series regression, and so on; is out of the scope of this paper (see, for example,
Nelson & Plosser 1982, Phillips & Perron 1988 and Kwiatkowski et al. 1992).

The iRW model for an ITS provides the simplest forecast at every time for an
ITS, the so-called naive forecast.
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Definition 6 (Interval-valued naive forecast). The interval-valued naive forecast
for an ITS [Yt], for t = 2, 3, . . . , T ; is given by

[Ŷt] = [Yt−1] (17)

As a consequence
Ŷ L
t = Y L

t−1 (18)

Ŷ U
t = Y U

t−1 (19)

Sometimes, the interval-valued naive forecast will be named as the iRW
forecasting method.

3.3. Choosing a Distance Measure With Interval
Valued-Data

In order to evaluate the accuracy of a forecast, a measure of the distance
between the forecast and the actual value needs to be defined. For classic time
series, the absolute or the squared value of the difference between the observation
and the forecast is considered as the distance. What remains is to find a definition
of distance that can be applied to intervals. Several distance measures for two
intervals of the real line have been defined in the literature. (Kao et al., 2014) list
the most frequently used ones. We will restrict to the Euclidean distance

dE([x], [y]) =
1√
2

√
(xL − yL)2 + (xU − yU )2 (20)

Each distance is expressed both in terms of lower and upper bounds, and in terms of
centre and radius. Other interesting distances have been proposed in the literature.
See, for example, Irpino & Verde (2008).

3.4. Main Methods and Models to Forecast ITS

Following (Arroyo et al., 2011a), among others, ITS can be applied to any
setting where data can be registered in an almost continuous way using sensors
and given a need to track and record the range of values. That is, observing
the phenomenon in two frequencies high and low such as days and months, the
monthly ITS (of prices, temperatures and so on) arises. In some contexts such as
economic ones, the above framework has one limitation. For example, it cannot
be used for monthly inflation forecasting, but can be used for quarterly or yearly
inflation forecasting.

There are two main classes of methods and models producing interval forecasts
for an ITS. See, among others, Arroyo et al. (2011a), Han et al. (2008) or Han
et al. (2012).

Purely interval methods and models, which can use interval arithmetic to work
with interval inputs and transform them into interval-valued outputs. For example,
VAR and VECM (see Arroyo et al. 2011a and García-Ascanio & Maté 2010),
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iMLP (see Muñoz et al. 2007), kNN for ITS (ikNN, see Arroyo & Maté 2009),
iHolt ((Maia & de Carvalho, 2011)), and so on. For linear regression approaches
see, for example, Lima Neto & De Carvalho (2010) and Blanco-Fernández et al.
(2011).

Pseudo-interval methods and models, which simulate interval manipulation by
modeling two classical time series (one for the centers and one for the radii, or one
for the lower bounds and one for the upper bounds) separately, and then combine
the respective results into intervals. For example, ARIMA, ARFIMA, MLP, kNN,
Holt-Winters, and so on. For details, see, among others, Arroyo et al. (2011a).

Table 2: Several approaches to forecast ITS.
Methods based on Pseudo int. methods Purely int. methods
Smoothing Holt-Winters iHolt
Past values ARIMA VAR and VECM
Past patterns kNN ikNN
Linear regression AR CRM, M, etc.
Neural networks MLP iMLP

Table 2 collects different approaches to forecast ITS taking into account the
way in that every approach works with the past information of the ITS.

4. Essential Concepts When Analyzing Several
Forecasts for One ITS

In this section we consider a realized ITS {[xt]} and its ITS forecast {[x̂t]},
with t = 1, . . . , T .

4.1. Mean Distance Error

One way to evaluate the accuracy of one ITS forecasting method is computing
the distance at every time and then to average these distances. This gives the
Mean Distance Error (MDE) to quantify the accuracy of the forecasting method.
When using Euclidean distance and following Arroyo et al. (2011a), the square of
the MDE for the method M with information until time T , will be given by

MDE2 =
1

2

∑T
t=1

[
(xL

t − x̂L
t )

2 + (xU
t − x̂U

t )
2
]

T
, (21)

That is, this MDE is the root mean squared error (RMSE) for evaluating the
accuracy of one ITS forecasting method. Clearly, the square value, MDE2, is the
average of the MSE, given by (4), for lower and upper bounds. That is,

MDE2 =
MSEL +MSEU

2
(22)

A general definition of the MDE with other distances like Hausdorff, Ichino-
Yaguchi, or de Carvalho, is given in Arroyo & Maté (2006).
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4.2. Interval Average Relative variance(iARV)

The interval average relative variance (iARV) is expressed in our notation as
follows:

iARV =

T∑
t=1

(xL
t − x̂L

t )
2 +

T∑
t=1

(xU
t − x̂U

t )
2

T∑
t=1

(xL
t − xL)2 +

T∑
t=1

(xU
t − xU )2

, (23)

where T denotes the number of fitted intervals, [x̂t] = [x̂L
t , x̂

U
t ] is the tth fitted

interval, [x] = [xL, xU ] is the sample average interval, and xL and xU are the
average of the lower and upper bounds, respectively. The iARV statistic compares
the predictions of the model with the predictions given by the average interval of
the series. Lower values of iARV therefore mean better forecasts, converging to
zero for a perfect forecasting model.

4.3. Interval Theil U Statistcs

For the comparison of different forecasting models or methods to a naïve model,
it is customary to use statistics such as the Theil’s U statistic. For interval-valued
data has been proposed by Maia & de Carvalho (2011). It is given by

iU =

√√√√√√√√
T∑

t=2
(xL

t − x̂L
t )

2 +
T∑

t=2
(xU

t − x̂U
t )

2

T∑
t=2

(xL
t − xL

t−1)
2 +

T∑
t=2

(xU
t − xU

t−1)
2

(24)

The iU statistic compares the model with the interval random walk.

• When the value of iU is equal to 1, the performance of the currently observed
model is the same as that of the iRW.

• For iU > 1, the model performs worse than the iRW.

• For iU < 1, the model’s performance is better than the iRW.

MDE, iARV, and iUTheil statistics are measures of the size of forecast
deviations from the actual values; the lower these values, the better the forecasts.

4.4. Results of the Above Measures for the GE Example

Table 3 reports about different accuracy measures for the forecasting methods
M1, M2 and iRW; applied to the GE monthly low-high dataset 2017: January to
July.

The best method according iARV, iU, and MDE is M1. However, the second-
best depends on the accuracy measure considered. Following iU and iARV is M2
and the worst method is iRW. But taking into account MDE, the second-best is
the iRW and the worst method is M2.
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Table 3: Accuracy measures of methods M1, M2 and iRW with the GE monthly low-
high dataset 2017: January to July.

Method iARV iU MDE
M1 0.051706 0.77067 0.7389013
M2 0.061917 0.84334 1.154411
iRW 0.087056 1 1.005031

5. Coverage and Efficiency Rates When Forecast-
ing ITS

In addition to the error measures discussed above, there are some new
measures or rates for evaluating the accuracy of the predicted intervals proposed
in Rodrigues & Salish (2015). They are based on very simple concepts, but
still, give us valuable information about the accuracy of the methods. The main
idea of these two measures is in comparing the intersection of the two ranges
(actual and forecast) with each of the individual amplitudes (actual and forecast).
Recently, Ramos-Guajardo et al. (2020) apply these concepts to hypothesis tests
for analyzing the degree of overlap between the expected value of random intervals.

Coverage rate (CR): Let w ([x]t ∩ [x̂]t) be the length of the existing intersection
between the actual interval and the interval predicted with the method M , and
w ([xt]) be the amplitude of the actual interval. The coverage rate at t is then
defined as the ratio between these two lengths and is expressed as follows:

Rc,M (t) =
w ([x]t ∩ [x̂]t)

w ([x]t)
. (25)

The closer the value gets to 100%, the closer the intersection of the two intervals
is to the actual interval, which means the predicted interval covers a greater part
of the actual interval. However, this measure does not express the possibility of
the predicted interval being wider than the actual interval. For example, if [10,
12] is the interval to forecast, the interval [9,13] covers the 100% of that interval
but it is worse (less efficient) than [10.3, 12.5] to forecast this interval.

Efficiency rate (ER): Let w ([x]t ∩ [x̂]t) be the length of the existing intersection
between the actual interval and the interval predicted with the method M , and
w ([x̂]t) be the amplitude of the predicted interval. The efficiency rate at t is then
defined as the ratio between the two lengths and is expressed as follows:

Re,M (t) =
w ([x]t ∩ [x̂]t)

w ([x̂]t)
. (26)

The closer the coefficient gets to 100%, the greater portion of the predicted
interval intersects with the actual interval. Analogously to the previous case, this
measure penalizes the situations when the predicted interval is unnecessarily long
compared to the actual interval, but does not quantify situations when the actual
interval is longer than the predicted one. For example, if [9, 13] is the interval to
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forecast, the interval [9.5, 12.5] is more efficient in terms of coverage than [10,12]
to forecast that interval.

For a forecast to be reasonably accurate, it is necessary that both measures
must be as high as possible. From the equations determining the coverage and
efficiency rates, it can be seen that for the predicted interval to be as similar to the
actual interval as possible, it needs to both cover the actual interval appropriately
and not exceed it by a significant length.

Given a realized and a forecasted ITS with the method M , the Mean Coverage
Rate (CR) of the method M to quantify the accuracy of the forecast from the
point of view of the coverage of the current ITS will be given by

CRM =
1

T

T∑
t=1

Rc,M (t). (27)

Similarly, the Mean Efficiency Rate (ER) of the method M to quantify the
accuracy of the forecast from the point of view of the efficiency will be given by

ERM =
1

T

T∑
t=1

Re,M (t). (28)

We look for methods with the highest CR and ER. See, for example, Buansing
et al. (2020).

A global measure of coverage and efficiency will be the Mean Coverage-
Efficiency rate (CER) as an average of both measures. That is,

CERM =
1

2

(
CRM + ERM

)
. (29)

The validity of this measure is higher (lower) as the two measures are more
similar (different).

6. Linear Combination of Interval Forecasts for
One ITS

Let [Ft,i] the interval forecast of one ITS [xt] at time t, according to the method
i, with i = 1, . . . , k. Let [Ft,C ] the linear combined forecast with time-varying
weights. That is

[Ft,C ] =

k∑
i=1

ωt,i ∗ [Ft,i] (30)

The problem is to get a linear combination forecast {[x̂t]} for a realized ITS
{[xt]}, with t = 1, . . . , T . The first case to be analyzed, in a parallel approach
with Bates & Granger (1969), will be that of two ITS forecasting methods.
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6.1. Linear Combination of Two Interval Forecasts for One
ITS

We will show how to obtain the optimal combination weights, in the case of
constant weights, for a combined forecast with two methods M1 and M2 to forecast
one ITS. That is, the problem is to get an optimal linear combination forecast
for [xt], noted by [x̂t,C ], from two forecasting methods for such ITS, [x̂t,M1] and
[x̂t,M2]. Hence,

[x̂t,C ] = ω[x̂t,M1] + (1− ω)[x̂t,M2] (31)

The interval obtained with the combined forecasting method C will have the
following lower and upper bounds

x̂L
t,C = ωx̂L

t,M1 + (1− ω)x̂L
t,M2 (32)

x̂U
t,C = ωx̂U

t,M1 + (1− ω)x̂U
t,M2 (33)

assuming that x̂L
t,C ≤ x̂U

t,C . It can be observed that if xL
t,M1 ≤ x̂U

t,M1 and
xL
t,M2 ≤ x̂U

t,M2 and only when ω ≥ 0, that condition is satisfied.
We search the ω value giving the minimum MDE, iARV, or iU.

6.1.1. Under the Mean Distance Error

We consider the mean distance error (MDE) as the accuracy measure. That
is, a method M1 has the following MDE square

(MDEM1)
2 =

1

2

∑T
t=1

[
(xL

t − x̂L
t,M1)

2 + (xU
t − x̂U

t,M1)
2
]

T
(34)

In the same way, a method M2 has the following MDE square

(MDEM2)
2 =

1

2

∑T
t=1

[
(xL

t − x̂L
t,M2)

2 + (xU
t − x̂U

t,M2)
2
]

T
(35)

The linear combined forecast, method C, will have the following MDE square,
(MDEC)

2

1

2

∑T
t=1

[
(xLt − (ωx̂Lt,M1 + (1− ω)x̂Lt,M2))

2 + (xUt − (ωx̂Ut,M2 + (1− ω)x̂Ut,M2))
2
]

T
(36)

After some computations, using the standard procedure to minimize a function,
the optimal weight is

ω =
MDE2

M2 −ACMDEM1,M2

MDE2
M1 +MDE2

M2 − 2 ∗ACMDEM1,M2
(37)

where ACMDEM1,M2 stands for the average crossed error of the mean distance
using methods M1 and M2 and is given by

ACMDEM1,M2 =

∑T
t=1 [(xL

t − x̂L
t,M1)(x

L
t − x̂L

t,M2) + (xU
t − x̂U

t,M1)(x
U
t − x̂U

t,M2)]

2T
(38)

Analysis of the optimal weights using the MDE.
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• Both methods are perfect (MDEM1 = MDEM2 = 0). Then we have the
equal weights (EW) case (ω = 0.5 and 1− ω = 0.5).

• Both methods are similar (MDEM1 ≃ MDEM2). Then we also have the
equal weights (EW) case (ω = 0.5 and 1− ω = 0.5).

• As one method (M2) is some better (MDEM1 ≃ 2∗MDEM2) or much better
(MDEM1 ≃ 4 ∗MDEM2) than the other one (M1), the weight assigned to
the best method is greater or much greater than the other weight.

• In the case of crisp time series (both limits of the interval are the same at
every time) and two crisp forecasting methods are combined, the optimal
weights are the same than the ones given in Bates & Granger (1969), the
seminal paper about forecasts combination.

6.1.2. Under the iARV

The following relationship between iARV and MDE

iARV =
2T ∗ (MDE)2

T∑
t=1

(xL
t − xL)2 +

T∑
t=1

(xU
t − xU )2

. (39)

justifies that the above developments remain with this measure. The optimal
weight is given by (37).

6.1.3. Under the Theil’s iU

Now, we consider the Theil’s iU as the accuracy measure. In similar reasoning
to the above subsection, the optimal weight is given by

ω =
iU2

M2 −ACEiUM1,M2

iU2
M2 + iU2

M1 − 2 ∗ACEiUM1,M2

(40)

where ACEiUM1,M2 stands for the average crossed error in iU computation using
methods M1 and M2 and is given by

ACEiUM1,M2 =

T∑
t=2

[(xLt − x̂Lt,M1)(x
L
t − x̂Lt,M2) + (xUt − x̂Ut,M1)(x

U
t − x̂Ut,M2)]

T∑
t=2

[(xLt − xLt−1)
2 + (xUt − xUt−1)

2]

(41)

In the case of an ITS which is a CTS, due to at every time the upper limit is
equal to the lower limit, (40) is (10) and (41) is (11).

Analysis of the optimal weights using the iU statistic.

• Both methods are perfect (iUM1 = iUM2 = 0). Then we have the equal
weights (EW) case (ω = 0.5 and 1− ω = 0.5).
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• Both methods are similar (iUM1 ≃ iUM2). Then we also have the equal
weights (EW) case (ω = 0.5 and 1− ω = 0.5).

• As one method (M2) is some better (iUM1 ≃ 2 ∗ iUM2) or much better
(iUM1 ≃ 4 ∗ iUM2) than the other one (M1), the weight assigned to the
best method is greater or much greater than the other weight.

6.1.4. When to Combine or Not Two ITS Forecasts for One ITS

Reasons given in Hendry & Clements (2004) to pool crisp forecasts remain in
an ITS context. These are the main reasons.

• If two models or methods provide partial, but incompletely overlapping,
explanations, then some combination of the two might do better than
either alone. In particular, if two forecasts are biased (one upwards, one
downwards), it is easy to see why combining could be an improvement over
either. That is, if two methods or models forecast reasonably well one ITS;
the best decision-making is to combine. The combined method will get better
performance than every single method both using MDE or Theil’s iU criteria.
However, sometimes optimal weights obtained with the Theil’s iU criterion
will give a better method in terms of higher CR and ER values and lower iU
measurements.

• In non-stationary interval time series in centers or centers and radii, most
forecasts will fail in the same direction when forecasting over a period within
which a break unexpectedly occurs. The combination is unlikely to provide a
substantial improvement over the best individual forecasts in such a setting.
However, what will occur when forecasting after a deterministic shift depends
on the extent of model mis-specification, data correlations, the size of breaks,
and so on; so combination may help.

• If one method owns quite good accuracy measures forecasting very well one
ITS and the other method not, then the best decision-making is not to
combine.

This decision also depends on the following issues, in decreasing order of more
to less importance.

1. The two methods under consideration.

2. The dataset under study.

3. The accuracy measure for which the optimal weights will be obtained.

4. The accuracy measures considered to evaluate the performance of the optimal
combination against every single method.
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6.2. Linear Combination of Several Interval Forecasts for One
ITS

We will show how to obtain combination weights, in the case of varying weights,
for a combined forecast with k methods, M1, M2,. . . and Mk to forecast one
ITS [xt].

Let [x̂t,Mi] the interval forecast of one ITS [xt], at time t according to the
method i, with i = 1, . . . , k. Let [x̂t,Ck] the linear combined forecast with time-
varying weights. That is

[x̂t,Ck] =

k∑
i=1

ωt,i ∗ [x̂t,Mi]. (42)

The resulting interval time series as one combined forecast will have the
following lower and upper bounds

x̂L
t,Ck =

k∑
i=1

ωt,i ∗ x̂L
t,Mi (43)

and

x̂U
t,Ck =

k∑
i=1

ωt,i ∗ x̂U
t,Mi (44)

assuming that x̂L
t,Ck ≤ x̂U

t,Ck. It can be observed that this condition will be satisfied
if x̂L

t,Mi ≤ x̂U
t,Mi, for i = 1, . . . , k; and ωt,i ≥ 0.

6.2.1. Trimming and Other Statistical Combinations

• Equal weights (EW) combination.

In this case, all methods are averaged with the same weight. That is,

ωt,i =
1

k
, (45)

for i = 1, . . . , k and at every time t. This procedure does not require the
validation of the scheme considering a training period and a testing period.

• Trimmed mean weights (TrMeanW) combination. The concept of trimmed
mean is not defined for interval-valued data because there is not a complete
order in the space Kc(R) = {[a, b] : a, b ∈ R, a ≤ b}. One alternative is
ranking methods according to one accuracy measure (for example, iU) and
to discard the worst method(s).

• Median combination. The median of a set of intervals has several definitions.
See, for example, Sinova et al. (2010).
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6.2.2. Performance-Based Combinations

These approaches assign higher weights to forecasts with relatively good
forecasting track records and lower weights to forecasts with poor performances.
Following the ideas given in the crisp case, when using ITS forecasts, the following
combinations schemes can be proposed.

• Inverse of Mean Distance Error (IMDE)
Weights are obtained according to

ωt,i =
MDE−1

t,i

k∑
i=1

MDE−1
t,i

(46)

where MDEt,i is computed by (21).

• Inverse of Theilťs U Squared (IThUS) averaging
Weights are obtained through the following expressions

ωt,i =
(U2)−1

t,i

k∑
i=1

(U2)−1
t,i

. (47)

The better (worst) the method is, the higher (lower) the corresponding
weight for such method is.

6.2.3. Sequential Combination

Following Winkler & Clemen (1992), a sequential combination can be
accomplished. Instead of combining all k forecasting methods at once, we could
combine them sequentially in k−1 steps, beginning with the two worst and adding
one forecast at each step we always face a problem of combining two interval
forecasts for one ITS and to apply the results in Section 6.1. We suggest the iU
sequential algorithm where the weighting scheme is that obtained in Section 6.1.3.
See the detailed example in the next section.

7. Examples

7.1. Combining two Monthly General Electric (GE) Low-
High Price Forecasts in 2017 (Semesters 1 and 2)

Two forecasting methods M1 and M2 (iRW) are considered to forecast the ITS
of monthly low-high prices of GE. Method M1 considers as interval forecast for the
next month the moving average of the last five months diminished in two dollars.
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That is,

[x̂t,M1] =

∑5
j=1[xt−j ]

5
− 2. (48)

Obviously, the simple iRW model considers

[x̂t,iRW ] = [xt−1]. (49)

Figure 2 shows the problem graphically. The centers’ line of the ITS, displayed
by one solid line (red), reports about the evolution of the centers of the monthly
low-high prices of General Electric (GE) during the year 2017. The couple of ITS
whose centers are shown by one dot line (purple) and one dash line (blue) informs
about the evolution of the centers of the monthly interval price forecasts of GE
with the methods M1 and M2(iRW), respectively, during the same period.

In 2017-Semester 1, methods M1 and iRW will be considered to decide about
to combine them or not. The OW forecast combination under iU is obtained as

[x̂t,OWiU ] = 0.6798 ∗ [x̂t,M1] + 0.3202 ∗ [x̂t,iRW ]. (50)

The OW forecast combination under MDE is obtained as

[x̂t,OWMDE ] = 0.7002 ∗ [x̂t,M1] + 0.2998 ∗ [x̂t,iRW ]. (51)

Accuracy measures for each method and every combination are shown in Table
4. All evaluation measures are much better in both combination approaches,
clearly outperforming every single method. The iU (MDE) optimal weight
approach is (is not) the best in terms of iU, but not is (is) the best according
to iARV, MDE, CR, and ER values.

EW combination outperforms both single methods in iARV, MDE, and iU
accuracy measures; but it is worst than the best single method (iRW) both in CR
and ER values. In this case, EW is worse than the three optimal combinations
developed in this paper.

Table 4: Accuracy measures in the case of forecasting 2017-S1 for the monthly low-high
prices of GE with two forecasting methods, the iU and MDE OW combinations,
and EW combination.
Forecasting method iARV MDE iU CR ER
M1 (MA5-2) 2.3440 1.4899 1.5602 0.2898 0.3775
M2 (iRW) 0.7288 0.8308 1 0.6768 0.7121
M3 (OW-iU comb.) 0.3679 0.5902 0.7688 0.7306 0.7462
M4 (OW-MDE comb.) 0.3662 0.5889 0.7699 0.7352 0.7512
M5 (EW comb.) 0.5278 0.7070 0.8485 0.6589 0.6681

Figure 2: GE monthly ITS prices in 2017 (Semesters 1 and 2) with two forecasting
methods M1 and M2(iRW).

Concerning 2017-Semester 2, we evaluate if methods M1 and M2 (iRW) should
be combined or not. In this case, the MDE-iARV approach and the OW forecast
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combination under iU do not apply due both give negative weights. Hence, the
EW combination can be obtained as

[x̂t,EW ] = 0.5 ∗ [x̂t,M1] + 0.5 ∗ [x̂t,iRW ] (52)

Table 5: Accuracy measures in the case of forecasting 2017-S2 for the monthly low-high
prices of GE with two forecasting methods and the EW combination.

Forecasting method iARV MDE iU CR ER
M1 0.6786 1.4899 1.3204 0.2702 0.3432
M2 (iRW) 0.4310 0.8308 1 0.4423 0.3976
M3 (EW comb.) 0.5180 2.3104 1.1348 0.2722 0.3283

Accuracy measures for each method and the EW combination are shown in
Table 5. All evaluation measures are much worst in the combination approach
than in the iRW method. Therefore, the decision-making in 2017-S2 is not
combining, discarding the method M1. Figure 2 is telling us that both methods
are overforecasting the ITS but iRW dominates M1 which is the typical case where
the combination approach will give worst results than the best single method.

7.2. Combining Five ITS Forecasts for the Monthly SP500 in
2017 and 2018

This last example compares the low-high monthly evolution of the SP500
financial index of the US stocks market during 2017 and 2018, against several
weighting schemes of five forecasting methods.

One method is the iRW model and the other four methods are based on different
approaches of linear regression methods for interval-valued data such as the center
method (CM), the minMax method (mMM), the center and radius method (CRM)
and the M model. See Lima Neto & De Carvalho (2010) for CM, mMM and CRM;
and Blanco-Fernández et al. (2011) for the M model. These methods and models
are fitted using the SP500 information in the period 2004-2016 1.

7.2.1. Weighting scheme 1: averaging based on equal weights (EW)

Equal weights (EW) forecasting method combines the five methods with the
same weights, that is, 0.2 in this case. Hence

[ŜP500t] = 0.2 ∗ ([x̂t,iRW ] + [x̂t,mMM ] + [x̂t,CM ] + [x̂t,CRM ] + [x̂t,M ]) (53)

Figure 3 shows the ITS of the low-high monthly evolution of the SP500 during
2017 and the ITS of the average of the five forecasting methods, named EW
combination.

1models and dataset information can be obtained upon request
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Figure 3: SP500 monthly ITS in 2017 with simple average of five forecasting methods.

7.2.2. Weighting Scheme 2: Averaging Based on Weights Under iU

This second weighting scheme is based on the iU approach developed in Section
6.2.2 with the name IThUS. Table 6 shows weights according to this approach (and
also the MDE approach).

Table 6: Several weighting schemes in the case of forecasting 2017 and 2018 for the
monthly low-high of the SP500 with five methods.

Forecasting method Name Weight MDE Weight iU EW iU-Seq. Weig.
M1 iRW 0.1513 0.1139 0.2 0.0625
M2 mMM 0.1958 0.1914 0.2 0.062525
M3 CM 0.1974 0.1944 0.2 0.125025
M4 CRM 0.2018 0.2034 0.2 0.25005
M5 M 0.2537 0.2969 0.2 0.4999

7.2.3. Sequential Weighting Based on the iU Sequential Algorithm

In this combination we follow the approach given in Winkler & Clemen (1992).
First we take the two worst methods, iRW and mMM and we proceed to get the
optimal weight according to the iU approach. We obtain the following combination
in the Step1 of the algorithm.

[ŜP500t,Step1] = 0.5001 ∗ [x̂t,mMM ] + 0.4999 ∗ [x̂t,iRW ]. (54)

In the Step2 we combine the above method with the CM method and we obtain
the following combination.

[ŜP500t,Step2] = 0.5000 ∗ [ŜP500t,Step1] + 0.5000 ∗ [x̂t,CM ]. (55)
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That is,

[ŜP500t,Step2] = 0.24995 ∗ [x̂t,iRW ] + 0.25005 ∗ [x̂t,mM ] + 0.5000 ∗ [x̂t,CM ] (56)

In the Step3 we combine the above forecasting method of Step2 with the CRM
method and we obtain the following combination.

[ŜP500t,Step3] = 0.5000 ∗ [ŜP500t,Step2] + 0.5000 ∗ [x̂t,CRM ]. (57)

Hence,

[ŜP500t,Step3] = 0.12497 ∗ [x̂t,iRW ] + 0.12502 ∗ [x̂t,mM ]

+ 0.25 ∗ [x̂t,CM ] + 0.5 ∗ [x̂t,CRM ]
(58)

In the Step4 we combine the above forecasting method of Step3 with the M model
and we obtain the following combination.

[ŜP500t,Step4] = 0.5001 ∗ [ŜP500t,Step3] + 0.4999 ∗ [x̂t,M ] (59)

Therefore [ŜP500t,Step4] will be obtained as

0.0625 ∗ [x̂t,iRW ] + 0.06252 ∗ [x̂t,mMM ] + 0.12502 ∗ [x̂t,CM ]

+ 0.25005 ∗ [x̂t,CRM ] + 0.4999 ∗ [x̂t,M ] (60)

7.2.4. Analysis of the Three Weighting Schemes

Table 7 shows accuracy measures for single methods and the three weighting
schemes in 2017. Methods are ranked in the same order according to MDE and
iU. EW combination shows balanced MDE, iU, CR, and ER values in the middle
of the range of the corresponding values of the five methods.

Table 7: Accuracy measures in the case of forecasting 2017 for the monthly low-high of
the SP500 with several weighting schemes

Forecasting method Name MDE iU CR ER
M1 iRW 41.3025 1 0.5347 0.53955
M2 mMM 31.9091 0.7715 0.66927 0.66001
M3 CM 31.6428 0.7655 0.66595 0.66423
M4 CRM 30.9652 0.7484 0.72348 0.65409
M5 M 24.6263 0.6194 0.61426 0.82609
Simple av. M1 to M5 EW 31.002 0.7544 0.65197 0.66946
iU-Weig. av. M1 to M5 iUW 29.2438 0.7144 0.6584 0.6925
iUSeq-Weig. Av. M1 to M5 SeqCW 29.8762 0.7428 0.5054 0.7715

Table 8 informs about the accuracy measures in the year 2018. In this case,
EW combination is a bad approach due to the negative effect of the M model in
the combination. Now, EW combination does not report balanced MDE, iU, CR,
and ER values in the middle of the range of the corresponding values of the five
methods.
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Looking at the performance of the methods in 2017, there is the temptation of
eliminating the iRW method due to is the worst one. However, 2017 is a year with
an uptrend in the SP500 but 2018 is with sideways and downtrend. Analyzing
the behavior of the methods in 2018, the temptation would be eliminating the
M model due to is the worst one. In this case, forecasting equations with the
five methods have not been modified at the beginning of 2018 incorporating the
information of 2017. However, as 2017 remain with an uptrend in line with the
period 2004-2016, it would be quite difficult to catch better the real behavior of
the [SP500]. One solution to this problem is to have a rolling window with a short
period of time (say 6 months in this case) to get the equations of the methods.

Table 8: Accuracy measures in the case of forecasting 2018 for the monthly low-high of
the SP500 with several weighting schemes

Forecasting method Name MDE iU CR ER
M1 iRW 107.1681 1 0.5871 0.6271
M2 mMM 108.8802 1.03117 0.6281 0.6420
M3 CM 109.0247 1.0334 0.6263 0.6432
M4 CRM 109.7366 1.0407 0.5118 0.7018
M5 M 137.9044 1.3407 0.25 0.7029
Simple av. (M1 to M5) EW 110.4870 1.0478 0.5453 0.6806
iU-Weig. Av, M1 to M5 iUW 112.8250 1.0742 0.5120 0.6912
iUSeq-Weig. Av. M1 to M5 SeqCW 129.3678 1.2448 0.2660 0.7304

The conclusion is that when averaging several forecasting methods for one ITS,
we usually obtain like a smoothed method with accuracy measures in the middle
of the range from the worst one to the best one. But that order is with the dataset
of the past, new data can modify that ranking which is happening in the case
of the SP500 in 2018. See Figure 4 where it can be observed sideways behavior
during the first three quarters of 2018 and downtrend in the last quarter.

Figure 4: SP500 monthly ITS in 2017 and 2018 versus iRW and model M.

Figure 5 shows that the iU combination reduces the volatility problem of the
M model and maintains some of the essences of the iRW model.
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Figure 5: SP500 monthly ITS in 2017 and 2018 versus the combination with iU weights.

7.2.5. Comparing Predictive Accuracy of the Three Weighting Schemes

Diebold & Mariano (1995) propose and evaluate explicit tests of the null
hypothesis of no difference in the accuracy of two competing forecasts in the so-
called Diebold-Mariano (DM) test. In the framework of ITS has been used, for
example, in Arroyo et al. (2011b) or Buansing et al. (2020). In the context of
classic forecasts combination, there are a lot of references using the DM test. For
example, (den Butter & Jansen, 2013) compare different approaches to assess the
performance of several long-term interest rate forecast approaches, including some
combinations such as EW and OW, where the RW is the benchmark.

In this example, we find a case of competing combination schemes whose
predictive accuracy can be analyzed through the DM test. We carry out this
test with the three competing combination schemes considered in Table 7 (2017)
and Table 8 (2018), both for lows and highs.

Table 9: Comparing forecasts according to the statistic value (P-value) of the DM test
in the case of forecasting 2017 and 2018 for the monthly low-high of the SP500
with three weighting schemes

Year Competing forecasts EW vs iUW EW vs SeqCW iUW vs SeqCW
2017 (lows) 3.0676 (0.0107) -2.1355 (0.0560) -1.8839 (0.0863)
2017 (highs) 2.7605 (0.0185) 3.7564 (0.0032) 3.9067 (0.0024)
2018 (lows) -1.6849 (0.1201) 2.2523 (0.0457) 2.3632 (0.0376)
2018 (highs) 1.5865 (0.1409) -0.1235 (0.9039) 0.0662 (0.9484)

Table 9 collects results for the DM test. Positive (negative) values indicate the
first (second) combination scheme is less (more) accurate than the second (first)
one. We conclude that in 2017 the three approaches are significantly different,
at 10% for lows and 2% for highs, being, in this case, the winner approach iUW.
However, in 2008 these three combination schemes are not significantly different
at any usual percentage for highs and, at 5%, the SeqCW combination is the best
way to proceed with lows.

Revista Colombiana de Estadística - Applied Statistics 44 (2021) 123–157



Combining ITS Forecasts 149

8. Discussion and Research Agenda

The combination of several ITS forecasts is a new research field in statistical
forecasting which contains a lot of challenges. Until our knowledge goes, this is the
first paper in this field and provides several solutions and guidelines to the problem
of combining two or several ITS forecasts with constant or varying weights.

8.1. Guidelines to Combine Several ITS Forecasts

In the classic context of combining several forecasts for one time series, various
papers provide guidance such as de Menezes et al. (2000), or simple explanations of
the forecast combination puzzle such as Smith & Wallis (2009). According to the
above knowledge and the research developed in this paper, at least the following
guidelines can be proposed.

1. EW combination of several ITS forecasts is one approach to consider when
the involved methods are not quite different among them. As a result,
EW combination shows balanced MDE, iU, CR, and ER values in the
middle of the range of the corresponding values of the involved methods.
EW combination is preferred to another combination scheme when the
corresponding ITS mixes periods of uptrend, downtrend, and sideways.

2. EW combination of several ITS forecasts is one approach to avoid when the
involved methods can show important differences between them in terms of
centers, radii or both. As a result, the EW combination can show MDE, iU,
CR, and ER values far from the middle of the range of the corresponding
values of the involved methods.

3. Weighting schemes based on iU Theil values developed in this paper can
outperform EW combination when the corresponding ITS shows uptrend or
downtrend.

4. Sequential weighting scheme based on iU Theil values developed in this paper
needs to be monitored in shorter periods of time than EW or iU combination
schemes.

8.2. Research Agenda

ITS is an alternative way to crisp or classic time series to analyze the time
evolution of key meteorological variables such as temperatures, wind speed, and
so on; or key financial variables such as stock prices, exchange rates, commodity
prices, and so on.

There are several methods to forecast ITS and the combination of several
forecasts gives the impression is the best approach.

It seems the forecast combination puzzle remains in some way in this
framework. Taking into account the advances in interval-valued data analysis
methods, we can suggest the following research agenda.
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• The problem of optimal weights with k ITS forecasts.
The optimal weights procedure developed in this paper for two methods M1
and M2 needs to be extended to three or, in general, k forecasts obtained by
different methods or models M1, M2,..., Mk used with an ITS. This is not a
direct or trivial extension due to there are several equations for the covariance
matrix with interval-valued data. See, for example, Le-Rademacher & Billard
(2012) from the symbolic data analysis approach and Sinova et al. (2012)
from the random interval approach.

• The forecast combination puzzle with k ITS forecasts.
Complicated weighting schemes obtained in the above sections need to be
compared with the simple average. Additional empirical practical cases need
to be run to evaluate the effect of the ITS combined forecast in coverage and
efficiency rates and other accuracy measures.

• The linear regression way.
Linear regression methods for interval valued-data have acquired maturity
in the scientific community in the last 10 years and new developments are
coming every year. Hence, the analysis of OLS and CLS methods to combine
forecasts obtained through several ITS methods suggests a clear way, taking
as a benchmark the arithmetic average with EW proposed in this paper.

• The principal component analysis (PCA) way.
PCA methods for interval valued-data have acquired maturity in the
scientific community in the last 15 years. Hence, to combine forecasts
obtained through several ITS methods using a weighting scheme based on
PCA sounds interesting, taking again as a benchmark the arithmetic average
with EW.

• The Bayesian way.
Bayesian model averaging (BMA) for interval-valued data was firstly
introduced in Maté (2012). To develop a BMA scheme for forecasts
combination of ITS forecasts could be an interesting research proposal.
The Bayesian approach is particularly adequate when there are a lot of
models and a hierarchy can be introduced into the set of models. Hence,
a hierarchical Bayesian scheme to combine ITS seems a promising research
proposal. Zhang et al. (2015) propose to analyze interval data from a
Bayesian point of view. This paper could give some advice about additional
alternatives on how to use Bayesian methods in the problem of combining
several forecasts obtained from an ITS.

• The machine learning approach.
The use of artificial neural networks (ANN) has been proposed by Aladag
et al. (2010) to provide a new forecast combination approach. Development
of procedures to forecast ITS with ANN is being quite succesful (see, as
an example, the multi-layer perceptron for interval-valued data (iMLP)
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proposed in Muñoz et al. (2007)). Therefore, combining several ITS forecasts
through different ANN frameworks seems quite promising. For example,
Adhikari & Agrawal (2014) could be extended to interval-valued data using
the models iMLP and iRW.

• The Big Data paradigm. Chen et al. (2016) state, “the big data paradigm
needs theories to guide its development”. As part of that development,
procedures to combine information in big data systems are key. This paper
puts the first stone in that direction providing different alternatives to
combine several forecasts for one ITS and opens research avenues in large
datasets contexts, some of them connected to the above points.

9. Conclusions

Three original approaches to combine linearly two ITS forecasting methods
have been presented. The first one using the MDE with Euclidean distance, the
second one considering the iARV statistics and the third one evaluating the U
statistics for ITS (iU). Both approaches provide weights with a similar structure
and they behave as an extension of the optimal weights obtained for two crisp
forecasts in the seminal paper of Bates & Granger (1969). The iU approach is
new in the combination of several forecasts of one time series (classic and interval-
valued) and has the advantage of discarding some combination schemes or ranking
several combination approaches. The optimal weights (OW) procedures developed
in this paper for two methods M1 and M2 have been analyzed in one example with
two periods of time, one where OW outperform EW and the other where both OW
do not apply. These procedures need to be extended to 3 or, in general, k forecasts
obtained by different methods or models M1, M2,. . . , Mk used with one ITS.

Linear combination of several forecasting methods for one ITS has been
addressed through statistical, performance-based, and sequential combinations
weighting schemes. The way to proceed is shown in one example concerning
forecasting the monthly low-high price of the SP500 in different scenarios of
uptrend, downtrend, and sideways which is the case of years 2017 and 2018.
It seems the forecast combination puzzle remains in some way in the case of
forecasting ITS with several methods. As part of future developments diverse
ITS forecasting models and methods as well as ITS data sets from different fields
of knowledge such as economics, finance, energy, health, tourism, weather, and
so on; need to be considered. This paper has also traced an agenda for further
research on combining several forecasts for ITS. Some pages of that agenda are:
the problem of optimal weights with k ITS forecasts, the forecast combination
puzzle with k ITS forecasts, the linear regression avenue, the principal component
analysis way, the Bayesian framework, the machine learning route (mainly with
neural networks) and the big data paradigm.
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