
01/09/2022

1

DESIGN OF A CONNECTED TOY FOR BABIES

Author: Sanz Giner, Alfonso

Supervisor: Álvaro Pérez Bello

Collaborating Entity: ICAI – Universidad Pontificia Comillas & Altair Engineering Inc.

ABSTRACT

This project comprises the development of a prototype of a new toy not only for entertainment purposes,

but also for the cognitive development of infants. All of that while proving possible the design of a

connected device capable of tracking all the events of the players for future study and allowing the

progressive increase in difficulty in proportion to the player results.

The connected capabilities allow the monitoring of the device inputs, outputs and state (received via

MQTT) in Altair’s SmartWorks IoT platform; and – thanks to the platform programming capabilities

– the computing of the games’ “state machine” can be performed cloud-based, with HTTP requests to

the platform API to access the variable values and compute the next instructions to send to the device.

This allows the easy implementation of new games by adding game modes programmed in Python

instead of modifying the integrated programming of the device.

INDEX TERMS

Game, programming, circuit, code, Internet of Things (IoT), MQTT, HTTP, components,

electronics, Arduino, project, construction, prototype.

I. INTRODUCTION

Nowadays there are countless electronic toys for

babies, but all of them count with the same

limitations in terms of playability, variety, and

duration of gameplay. These toys intend to be

flashy, with sounds and lights, but very simple so

that it is easy to get bored of them and move on to

the next one. To solve this dilemma, the prototype

designed in this project should allow limitless

scalability in terms of new games and greater

difficulty thanks to its IoT capabilities.

The device is a 12x12x12 cm cube-shaped wooden

box with a transversal cut and empty interior for

the electronic components, which include the

microcontroller, PCB, port expander, various

sensors – such as an accelerometer/gyroscope and

buttons – and outputs to guide the player through

the game, which are 6 coloured LEDs (one in each

side) and a speaker.

Multiple technologies – including the programs,

electronics and communication protocols that are

mentioned in this document – are used to ensure

the simultaneous functionality of the playability,

monitorization and IoT communication.

The development of the project is divided into 5

main tasks:

- Planification, investigation and preparation.

- Physical construction of the prototype.

- Programming of components.

- IoT development.

- Documentation.

The methodology implemented will require

simultaneous progress in all tasks at the same time,

as discovering/testing components and utilities

will require continuous adaptation of the

approach.

 2

II. DESCRIPTION OF TECHNOLOGIES

As for the electronics components included in

the final design, the list is the following:

- Microcontroler (NodeMCU ESP8266)

- LED buttons (Arcade Illuminated Buttons)

- I2C Port Expander (MCP23017)

- Accelerometer/gyroscope (MPU6050)

- Speaker/buzzer (Mini Metal Speaker 8Ω)

- Wooden box (Artemio VIBB19)

- Printed Circuit Board (PCB), pins and wiring

The microcontroller selected is similar to an

Arduino Nano, but with a Wi-Fi module that

makes it very common in IoT projects. It can be

programmed in various frameworks (NonOS,

RTOS…), but Arduino’s SDK is the one used due

to previous experience and its popularity, with

therefore superior access to documentation.

The 6 LED buttons are positioned on each face of

the cube and are of a different colour (blue,

yellow, green, red and 2 white for the top and

bottom face). Since each LED and button require

2 connections – inputs and outputs – to the

microcontroller a port expander is used to increase

the amount of IO pins of the microcontroller.

The port expander works through I2C – like the

accelerometer – which allows for the use of only 2

pins for controlling and communicating with the

components (SCL and SDA). And it includes

PULLUP resistors that remove the need for

additional resistors for the buttons’ voltage.

The accelerometer can be used as an inclinometer

by using the values of the acceleration in each

direction (X, Y and Z) and calculating the angle

with basic trigonometry, or simply detecting the

direction with higher acceleration as the

downward face, as it is detecting the gravity. This

works providing it is not being moved with an

acceleration higher than the value of gravity. More

complex calculations can be used by calibrating

the device when facing the correct direction and

using the values of the gyroscope to detect the new

position based on the velocity and time elapsed

(public libraries are already capable of this), but it

is not necessary for the prototype as it works

perfectly for its purpose as it is.

Finally, the speaker is capable of a wide range of

frequencies (~600-10KHz) which implies it can be

used to reproduce basic melodies for

victory/timeout.

Other tools or minor components have been used

for the construction: Tin and soldering iron for the

PCB, a protoboard for testing, driller and drill bits

for the wooden box, gun and hot glue, cable cover

and insulating tape.

The programs/software used for the project are:

- Visual Studio Code (instead of Arduino IDE

due to its compatibility and features)

- Platform IO (VSCode tool for programming of

integrated systems)

- GitHub (version control)

- Altair SmartWorks IoT (IoT platform)

- EasyEDA (PCD design)

III. CONSTRUCTION OF THE PROTOTYPE

A. PHYSICAL CONSTRUCTION

The physical construction of the project requires 3

subtasks:

- Drilling the wooden box

- Soldering of the PCB

- Wiring of all the components

The wooden box must be drilled on each side with

28 mm holes to insert the LED buttons with an

additional 3 mm hole in the opening for the

power/debugging cord.

The soldering is the most time-consuming task as

header pins will be used to allow for the easy

connection and disconnection of components. The

design of the PCB was made with EasyEDA as

shown in the next illustration:

Figure 1: Components

 3

Figure 2: PCB design

The PCB is soldered on both sides, one includes

the connection for the microcontroller and the

other the port expander and all the LEDs/buttons:

Figure 3: PCB soldered on both sides

Most components also require some soldering for

the cable and pins that are going to be connected

to the header pins of the PCB. But this document

– as a summary – will not detail these aspects; the

same goes for the wiring, which is duly explained

in the main document. However, the next table

shows the different pins of the microcontroller

(blue) or port expander (yellow) to which are

connected the LED, buttons, and accelerometer:

The following image shows the result of

connecting all buttons, PCB, speaker and

accelerometer inside the box (the last one is glued

to the upper face):

Figure 4: Full wiring

As a first prototype, the device should prove the

viability of the idea and it is not a commercial

MVP design, as the box is significantly larger than

appropriate for small infants’ hands and includes

a cable for power and programming/debugging

instead of a battery. Nevertheless, the construction

is solid and reliable, as the components can resist

a fall without disconnecting or breaking.

B. PROGRAMMING

The programming of the NodeMCU requires

testing the components' functionality, developing

a library/class for its simple control and finally

designing the main program with the state

machine, the full communication with the IoT

platform and the basic game mode to test.

Once again, the full programming explanation is

available in the main document, but the next

section briefly explains the game modes and

libraries used and programmed.

Wiring Connector White Blue Green Yellow Red White MPU6050

red COM (down) GND GND GND GND GND GND VCC

white LED (red) GND GND GND GND GND GND GND

yellow NO (front) MCP8 MCP11 MCP12 MCP13 MCP14 MCP15 SDA (D1)

green LED (rear) D0 D4 D5 D6 D7 D8 SCL (D2)
 regular reverse reverse regular regular reverse

Figure 5: Table of pin connections

 4

As previously mentioned, the programming is

done in VSCode with PlatformIO using Arduino

SDK, meaning the language employed is C++.

The next list briefly explains the libraries used and

programmed for the project:

Integrated libraries:

- Arduino.h (Arduino functions for PlatformIO)

- Serial.h (well known for communication with

the PC via UART protocol)

- Wire.h (I2C communication for the control of

the MCP23017 and the MPU6050)

Public libraries:

- Adafruit_MCP23X17.h (control of the port

expander)

- ESP8266WiFi.h (definition of the Wifi client)

- PubSubClient.h (by knolleary, definition of

the MQTT client functions)

- ArduinoJson.h (by bblanchon, for parsing the

messages received and sent in JSON format)

Private libraries (programmed):

- pitches.h (list as constants the frequencies for

the speaker)

- spkControl.h (class for reproducing melodies,

controls the timing and list of melodies)

- Adafruit MPU6050 (readings of the

accelerometer and integrated logic)

- credentials.h (holds the credentials and topics

necessary for the MQTT connection)

- wifi-mqtt.h (contains the whole

communication with the platform and allows

to update the properties of the IoT database via

MQTT and receive instructions as messages)

- PINS.h (lists of pins connections)

- game.h (main programming of the state

machine)

The main program is very simple and thanks to the

object-oriented programing only requires

initializing the wifi-mqtt and game classes, and –

in the main loop – it checks for new

messages/instructions and depending on the game

mode selected executes the corresponding

function.

There are 3 main game modes:

The testing mode allows checking the correct

behaviour of all the devices and the connection

with the IoT platform. Essentially, every time a

button is pressed it turns on and a message is sent,

updating the corresponding property in Altair

SmartWorks, the same happens when changing its

orientation.

The main mode is a simple game with progressive

difficulty capabilities. A number of buttons (from

1 to 5) – depending on the difficulty selected in the

IoT platform – turn on randomly and the player

must find them and press them at the same time.

There is a time limit that can also be set on the

platform. As before, all the events are detected and

updated via MQTT messages.

The slave mode is the most important, as it allows

the device to follow the instructions sent by the

platform. This means the computing and state

machine is completely done cloud-based as the

device will only be in a state of waiting for

instructions or executing them. This allows for all

the programming of games and scalable

implementation of new games to be done via the

IoT platform without having to modify further the

internal code executed in the device.

These modes serve, not only as a proof of concept

of the main objectives of this project (which are to

make a toy with monitoring and progressive

difficulty), but also introduce – with the slave

mode – the possibility of developing an

entertaining and education platform full of easily

programable games and capable of cognitive

development studies based on the events tracked

and the progress of the player. These possibilities

will be defined in more detail in the last section

(IV. ANALISIS, CONCLUSIONS AND

FUTURE DEVELOPMENT).

 5

C. IoT DEVELOPMENT

The device is connected with Altair SmartWorks,

Altair’s IoT platform, and its main utility is

AnythingDB, the platform’s database, which is

organized with the following structure:

Spaces

tfm-juguete other-project

Collections

 …

ESP8266

…

Things

NodeMCU

Properties

led_white

orientation

state

…

Device 2 …

Figure 6: AnythingDB's structure

Each property has its own topic and sends MQTT

messages automatically (in JSON format) when

updated. Therefore, the device must subscribe to

these topics such as: “spaces/tfm-toy/collections/

ESP8266/things/thingID/properties/difficulty”.

On top of that, the device is sending messages to

that same topic to modify the properties each time a

button/sensor changes value. And there is also a

“…/data” topic that stores the historic registry of

events for future analysis.

The following picture shows most of the properties

as seen in the IoT platform in real-time:

There is a property for each

button/led and sensor, and there

is also an outputs array to send

instructions when the device

works on slave mode. The rest

of the properties are variables to

set the game mode, state of the

device, difficulty, time limit…

The “Raw History” section

with the timestamps can be

viewed in the next figure.

Once created the “thing” with its properties, it is

possible to read/write in its possible to access the

values via HTTP/MQTT on the credentials page:

Figure 8: Credentials and Raw History

There are also other tools in the platform, such as

an MQTT Inspector, API Inspector and log

console to test the communication or a schema to

modify/edit/clone the thing with its properties and

configuration. But the main functionality of the

platform comes from the Functions. Functions are

divided into 2 parts: triggers and workers.

Triggers can be made with cron (timed) or

activated via MQTT. For the project, the last one

will be used, and each time the device indicates a

change in the topic/property “state” the trigger

will activate and call the worker.

Workers contain the main programming, with the

code being in Python (although it can also be in

Go). The worker programmed for the project is

tasked with making an HTTP GET request to the

platform API and accessing the “thing” properties.

Once received the JSON and stored the values in

variables, the worker proceeds to execute the state

machine depending on the devices' state (Waiting

for instructions, Running or Timeout when the

game time reaches its limit). The worker contains

the logic of the games to check the inputs (buttons

and orientation) to be equal to the objectives of the

game, either way, if correct or incorrect, the

worker sends an HTTP POST message indicating

the new state (Victory, Keep Trying or Timeout)

and the next outputs’ instructions for the device. Figure 7: Properties

 6

This allows for computing and programming in

the platform instead of the device which brings a

world of infinite scalability with a possible

network of connected devices, instead of limiting

the platform to a single device.

The other main capability of the platform is the

Real Time Monitorization features. It allows the

implementation of a dashboard to gather the

information obtained from all devices and allow

its study. For the project, a simple dashboard has

been made to see the inputs, outputs and variables:

Figure 9: Dashboard

To implement the dashboard an app is required,

which defines the credentials and access control.

The apps can have different scopes depending on

whether accessing the properties (thing) or raw

history (data), as shown in the next image:

Figure 10: Apps and scopes

Then a workbook is made to connect the app and

define the DataTable which is created

automatically but requires to be modified with the

format of each column for time/variable formats.

Finally, multiple dashboards can be designed for

one or multiple devices and tables/graphs showing

the data gathered through the time played.

The data can also be exported to study or seen on

the platform, but its main use is as an intake for

possible workers in the future to adjust the

difficulty according to the completion time and

mistakes made in the game.

IV. ANALISIS, CONCLUSIONS AND

FUTURE DEVELOPMENT

Firstly, regarding the physical construction, and

as previously mentioned, the design is a prototype,

and therefore it has room for improvement to

make a scalable product. But it is a solid

construction, perfect to test the combination of

components and viability of the idea. As a result,

it has been proven that basic components can

make a very versatile toy with wide gameplay

possibilities.

For future designs ergonomics must be improved

as the size is too large and that requires selecting

smaller buttons. Also, a more professional

solution should be found for the PCB, headers and

wiring soldering, as it requires too much time for

each toy. And although it allows disconnecting

easily the components, it would be better to use a

custom PCB once planned the final design. And

obviously, a rechargeable battery should also be

included since the debugging capable will no

longer be needed as states the next paragraph.

Secondly, although programming with the

NodeMCU in PlatformIO has had its drawbacks

and learning curve, once completed, it is important

to mention that no further progress in the

programming is needed, as the slave mode allows

to follow the platform instructions and should

require no further programming.

It could require a modification in case of a change

of components or an interest in simplification of

instructions (for example blinking the LEDs could

be performed via a simple instruction instead of

requiring the platform to turn them on and off

periodically), but the functionality of the device

can not be increased any further.

Also, the microcontroller’s performance is a non-

factor as most of the computing is done by the

platform and the limitation are speed are due to lag

and connection issues.

 7

This means the rest of the programming will be

done in the IoT platform. And it is, thirdly, the IoT

development the part with the most room for

future expansion.

Since the objective of the project was to test the

device and communication with the platform, it

has left the huge possibility of developing the

entertaining platform:

- New games should be implemented. In the

code annexed in the main document, it can be

seen how easy it is to program the game state

from the platform in Python, once all the

communication and states have been set (10

lines of code instead of 100). And also, some

ideas with also progressive difficulty are

mentioned in the main document, but if

introducing different components such as

RGB LEDs, more puzzles can be created.

- The algorithm to change the difficulty and

time limit based on the tracked progression

can be made with a worker. Although it would

be better implemented in combination with the

next topic.

- Analysis and behavioural studies can be done

once more devices have been made and a

network of connected toys has been

established, with Machine Learning regression

studies of the cognitive development of the

child for a better understanding of the logic

they apply to solve a puzzle through the

different stages of growth.

Last of all, the fourth point to mention to end the

analysis of the project is also the documentation

done in the main document, which explains the

whole process making very simple the process of

replicating it to add new toys to the network (both

the construction of devices with the improvements

mentioned and the easy cloning of the “thing” on

the IoT platform) or simply to understand the

different processes required to make a similar

project (physical, programming or IoT).

During the development of the project difficulties

appear and were either solved or avoided while

maintaining the objectives in mind thanks to

refocusing the problem. When it comes to wiring

more preparation, investigation and planning of

the connections would have avoided some time

loss (for example the port expander was added

after noticing the limit in the number of pins

instead of preparing for it, or – as previously

mentioned – the time spent on soldering instead of

finding a better solution), but overall the

construction ended with added functionality as it

is possible to disconnect all components for

testing or disassembling them to make a new one.

Similarly debugging mistakes proved tedious and

time lost was increased due to the device having

to load the corrected code and connect to both

Wifi and the IoT platform each time a change was

made, which takes more than a minute. But thanks

to the switch from integrated programming to

cloud-based, there was less need of changing the

code. Another code has been made to simulate the

workers-triggers in Visual Studio to avoid loading

even the workers which also takes time.

This whole approach brought the idea of

programming new games and processing the state

machine online which not only simplifies it, but

also facilitates the possibilities of scalability

already mentioned.

Finally, in addition to the original objectives

already met (prototype construction, validation,

monitorization and IoT connexion), there have

also been taking into consideration 3 SDGs:

- Education, a network of a hundred monitored

devices could allow a deep analysis of the

growth of infants’ minds.

- Innovation, with the concept of having an

entertaining and educative platform capable of

programming and computing the toys online.

- Economic growth, a new market of connected

toys with huge scalability and possibilities has

been proven to be possible.

