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RESUMEN

Introducción

El ritmo de desarrollo tecnológico e industrial, en conjunto con el impacto humano sobre

la explotación de reursos, el cambio climático o la huella de dióxido de carbono ha llevado

a nuestro medioambiente a encontrarse en una situación comprometida. Investigadores de

todas las áreas están realizando un esfuerzo colectivo para mejorar este hecho antes de

alcanzar un punto de no retorno. Uno de los ecosistemas más importantes a analizar son

las copas de los árboles, dado que son donde la energı́a solar se convierte en hidratos de

carbono para nutrir ecosistemas completos, y también son hogar de más del cincuenta por

ciento de la biodiversidad terrestre.

Para obtener una representación precisa de estas, los datos y medidas deben ser recogi-

dos continuamente y sobre áreas extensas y no estacionarias. Este factor presenta un desafı́o

donde la robótica puede hacer una importante contribución. En este Trabajo de Fin de Mas-

ter proponemos un robot que ayudará en la caracterización de las copas de los árboles. Esta

misión puede ser expresada como la realización de dos tareas: exploración medioambiental

y monitorización medioambiental. El factor que hace particularmente difı́ciles estas tareas

es que ambas necesitan ser ejecutadas durante periodos de tiempo que superan la capacidad

de la baterı́a del robot, necesitan ser persistificadas. El trabajo realizado previamente en la

persistificación de las tareas de robots utilizaba dinámicas de control afines. Cuando una

dependencia entre el voltage de la baterı́a y el control aplicado se incluye en el modelo, las

dinámicas del sistema dejan de ser control afines y por tanto toda la teorı́a previa debe ser

revisada.
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Objetivos

Los objetivos que se han satisfecho en este Trabajo Fin de Master son:

1. Desarrollar una nueva versión del actual robot: The SlohtBot

2. Ampliar la teorı́a existente acerca de Barreras de Control para su uso con sistemas

con dinámicas dependientes en la energı́a de control

3. Implementar nuevos algoritmos de control basados en Barreas de Control para la

persitificación de tareas robóticas

4. Estudiar e implementar el método denominado Smoothing Splines para la caracteri-

zación de funciones escalares desconocidas, como la intensidad lumı́nica

5. Establecer las bases matemáticas para la aplicación recursiva del método Smoothing

Splines y ası́ mantener las dimensiones del problema a resolver constante cuando

nuevos sets de datos son incluidos

Solución

La solución propuesta consiste en un robot para la exploración y vigilancia medioambien-

tal, ası́ como las teorı́a y derivaciones matemáticas necesarias para alcanzar estos objetvios.

El SlothBot [1], mostrado en Figure 1, es el robot diseñado para la exploración de

los ecosistemas de las copas de los árboles. Su dinámica es unidimensional, dado que

se encuentra instalado en un cable colgado entre dos árboles. La versión Figure 1 estuvo

instalada en el Jardı́n Botánico de Atlanta por más de 13 meses. Durante este tiempo,

el robot se encontraba transversando el cable mientras recogı́a medidas. Alguna de estas

medidas eran: la calidad del aire, la intensidad lumı́nica, temperatura y humedad.

Para garantizar la supervivencia del robot en un entorno exterior y desconocido, es

necesario que las variables de estado, posición y voltage de la baterı́a, permanezcan dentro
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Figure 1: SlothBot en el Jardı́n Botánico de Atlanta

de unos lı́mites seguros. Para ello, el modelo del sistema debe incluir tanto las dinámicas

del robot como el efecto del medioambiente. El modelo empleado resulta:

 ṗ

Ė

 =

 u

K( 1
1+ 1−E

E
e−λ(I(p)−Ic)

− E)− ρu2

 (1)

En Equation 1 se puede observar que al incluir una dependencia entre la baterı́a del

robot y la energı́a del control aparece un término cuadrático en la ecuación dinámica de la

baterı́a. Debido a ello, el sistema deja de ser control afı́n.

El problema de cumplir la misión del robot mientras se garantiza su supervivencia se ha

expresado como la minimización del cuadrado de la norma de la diferencia entre el control

nominal û, que es el comando para satisfacer la misión del robot, y el control seguro a

aplicar u. Este control seguro u satisface dos restricciones que garantizan que el sistema

sea invariable. Estas restricciones son las Barreras de Control.

Expresando estos objetivos en terminos matemáticos, se obtiene el problema de opti-

mización presentado en Equation 2:
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minimize
u

||u− û||2

s.t.

− Lgh1(X)u2 ≤ γ1h1(X) + Lfh1(X)

− Lgh2(X)u ≤ γ2h1(X) + Lfh2(X)

(2)

Donde:

• X = [E p] es el vector de estado

• Lfhi, Lghi son las derivadas de Lie de la barrera hi.

La función de la intensidad lumnı́nica I(p) juega un papel fundamental en la dinámica

de la baterı́a, presentada en Equation 2. Obtener un modelo preciso de esta función per-

mitirı́a al robot realizar misiones de exploración más ambicioses, ya que se conocerı́a en

adelanto que áreas le permitirı́an recargar su baterı́a y cuales agotarla.

El método de los Smoothing Splines consiste en una ténica para la identificación de

modelos, basada en la teorı́a de control clásica. Su objetivo es encontrar el control que

hace que la salida de un sistema arbitrario se aproxime a una serie de valores en unos

instantes de interpolación dados. Para obtener este control, se resuelve un problema de

minimización sobre la energı́a de control empleada. La salida obtenida al aplicar dicho

control es lo que se denomina un Smoothing Spline. Las medidas tomadas se consideran

imperfectas y por tanto el método propuesto no busca un ajuste perfecto entre la salida y

los puntos dados, sino un modelo que resuma todas las muestras de manera general. Esta

estrategia conlleva una menor carga computacional y por tanto require un menor tiempo

para resolver el problema de optimización.

La teorı́a detrás de este aplicación de los Smoothing Splines fue publicada con Egerstedt

y Clide [2], y puede encontrare en el cuerpo de esta tesis.
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Resultados

Para resolver el problema en Equation 2 puede aproximarse como un Problema Cuadrático

con Restricciones Cuadráticas (QCQP), para el cual existen algoritmos de optimización

convexa. El problema de todos estos algoritmos es su alta carga computacional y por tanto

demanda energética, lo que los hace incompatibles con el objetivo de garantizar la longe-

tividad del sistema. Para la aplicación del SlothBot, al poseer dinámicas unidimensionales,

solo hay una entrada de control disponible, por lo que el problema resulta escalar tanto en la

función de coste como en las restricciones. Esta nueva clase de problemas ha sido denom-

inada Quadratic Cost Scalar Linear and Quadratically Constrained (QCSLQC) problems.

El hecho de que se trate de un problema escalar permite encontrar una solución analı́tica al

mismo, que una vez implementada require una menor carga computacional que cualquiera

de las posibles alternativas. La existencia de esta solución prueba qu el robot no acabará

en una situación donde su baterı́a no puede volver a ser recargada, bajo condiciones de

operación nominales.

Esta solución analı́tica fue implementada en un simulador del Slothbot Figure 2. En

esta simulación, el robot comienza en una posición p = 0 y con un 20% de su baterı́a

disponible, i.e. E = 0.2, durante la ejecución el robot recorre el cable indefinidamente.

En Figure 3 se puede observar como las Barreras de Control modifican la velocidad, y por

tanto la posición, del robot para garantizar que su baterı́a no se agota o sobrecarga. Un

análisis en mayor detalle de los resultados obtenidos puede encontrarse en el cuerpo de

esta tesis.

Figure 2: Intensidad Lumı́nica I(p) (azul), Intensidad Lumı́nica umbral Ic (naranja), y
SlothBot simulado

Los resultados obtenidos cuando el método basado en Smoothing Splines se aplica a la
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Figure 3: Variables de estado en simulación. Gráfico superior: Posición p. Gráfico inferior:
Voltage de la Baterı́a E

identificación del modelo de la intensidad lumı́nica puede observarse en Figure 4, Figure 5

y Figure 6.

Figure 4: Waypoints y smoothing spline con 10 medidas

Debido a que este método require de calcular Gramianos y matrices inversas, cuando

nuevos sets de datos son incluidos el tiempo de ejecución crece exponencialmente. Este

factor muestra como una revisión del método que permita mantener las dimensiones del

problema constante es necesaria. La solución propuesta consiste en la aplicación recursiva
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Figure 5: Waypoints y smoothing spline con 20 medidas

Figure 6: Waypoints y smoothing spline con 30 medidas

de los Smoothing Splines. Este nuevo enfoque utiliza cada nuevo set de datos para mod-

ificar la solución previa en lugar de resolver un nuevo problema. La terorı́a asi como los

fundamentos matemáticos de la solución se encuentran incluidos en esta tesis.

Contribuciones

Las principales contribuciones de esta tesis son:

• Extender la teorı́a de la Barreras de Control para sistemas en forma no afı́n
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• Un nuevo robot para monitorización medioambiental, más pequeño y más fácil de

mantener y reproducir

• Aplicación de la teorı́a de Smoothing Splines para la identificación del modelo de la

Intensidad Lumı́nica

• Teorı́a y fundamentos matemáticos para la aplicación recursiva de Smoothing Splines
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SUMMARY

Introduction

The pace of technological and industrial development, in addition to Human’s impact on

resource depletion, climate change or carbon dioxide footprint have lead our environment to

a compromised situation. Researchers of all areas are making a collective effort to improve

it before a non-returning point is reached. One of the most important ecosystems to analyze

are tree canopies, as they are where solar energy becomes carbohydrates to fuel ecosystems,

and house of more than fifty percent of our terrestrial biodiversity.

For an accurate representation of the surveilled tree-tops ecosystem, data needs to be

gathered continuously and over large and non-stationary areas. This presents a challenge

where robotics can constitute a valuable contribution. With this Master Thesis we aim

to provide a robotic platform that will help in the characterization of tree canopies. This

mission can be expressed as the satisfaction of two tasks: Environmental exploration and

surveillance. These two objectives are particularly challenging because they need to be

executed over time periods that exceed the robot’s total battery capacity, i.e. they need

to be persistified. Previous work on persistification of robotic tasks used control affine

dynamics, but when a dependency between the robot’s battery voltage and the control input

is included, the dynamics are no longer control affine, and all previous theory needs to be

reviewed.

Objectives

The objectives addressed with this Master Thesis have been:

1. Develop a new version of the robotic platform: The SlothBot
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2. Derive Control Barrier Functions (CBFs) theory for systems with energy dependent

dynamics

3. Implement new control algorithms based on CBFs for robotic’s tasks persistification

4. Study and implement the application of Smoothing Splines for unknown scalar val-

ued functions characterization, such as the Light Intensity

5. Stablish the mathematical foundations of Recursive Smoothing Splines, a method

that aims to keep the problem size constant when new data sets are added

Proposed Solution

The proposed solution consists of a robotic platform for environmental exploration and

surveillance as well as the theoretical mathematical derivations and control laws needed to

achieve such objectives.

”The SlothBot” [1], shown in Figure 7, is the robot developed for tree-canopies explo-

ration. Its motion is one dimensional, as it was deployed on a wire hanged between two

trees. This version of the Slothbot was installed at the tree canopies of the Atlanta Botanical

Garden for more than 13 months. During these months the robot was traversing the wire

while taking environmental measurements. Some of these measurements are: air quality,

light intensity, temperature, and humidity.

In order to ensure the robot’s survival in an unknown and outdoors environment we need

that both the battery voltage and the robot’s position remain within safe values. Therefore,

the system model had to include both the dynamics of the robot itself and also the impact

of the environment on the robot. Doing so, the system model results:

 ṗ

Ė

 =

 u

K( 1
1+ 1−E

E
e−λ(I(p)−Ic)

− E)− ρu2

 (3)
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Figure 7: SlothBot at the Atlanta Botanical Garden

In Equation 3 it can be seen how when a dependency of the robot’s battery voltage on

the control input is included, a quadratic term appears in the battery’s dynamic equation.

Hence, the system is no longer control affine.

The problem of satisfying the robot’s mission while ensuring its survival is formulated

as minimizing the squared norm of the difference between the nominal control û, that

encodes the robots mission, and the safe control u. The safe control u satisfies the two con-

straints that guarantee the system remains forward invariant. These constraints are indeed

Control Barrier Functions.

Expressing these objectives in mathematical terms, the optimization problem shown in

Equation 3.16 is obtained:

minimize
u

||u− û||2

s.t.

− Lgh1(X)u2 ≤ γ1h1(X) + Lfh1(X)

− Lgh2(X)u ≤ γ2h1(X) + Lfh2(X)

(4)

Where:
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• X = [E p] is the state vector

• Lfhi, Lghi are the Lie Derivatives of the barrier function hi.

The light intensity function I(p) plays a fundamental role in the battery dynamics pre-

sented in Equation 3. Having an accurate representation of such function would allow

the robot to perform more ambitious exploration missions, as it will be known in advance

which areas help charging its battery, and which ones deplete it.

Smoothing Splines are a model fitting technique based on classical control theory. Its

goal is to find the control input that drives the output of an arbitrary system to a set of

waypoints at certain interpolation time instants. In order to choose the control input, a

minimization problem on the control energy is solved. The resulting output when applying

this controller is a Smoothing Spline. Measurements are not considered to be perfect and

due to this fact, the Smoothing Splines method does not aim to obtain a perfect fit, but

a model that overall summarizes all data points available. This approach leads to a less

computational expensive, and thus fastest, solution to the optimization problem.

The mathematical derivation, based on the published work by Egerstedt and Clide [2]

can be found in the thesis.

Results

Solving the problem in Equation 4 can be approached as a Quadratically Constrained

Quadratic Program (QCQP), for which complex convex optimization algorithms exist. A

drawback of all these algorithms is their high computational needs, and thus a high energy

consumption, what makes them incompatible with the longevity goal of this project. For the

SlothBot application, due to its one dimensional dynamics, there is only one control input

available, resulting in a problem with a scalar objective function and scalar nested con-

straints. We denote this new class of problems Quadratic Cost Scalar Linear and Quadrati-

cally Constrained (QCSLQC) problems. The fact that this is a scalar problem allows for an
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analytical solution, which requires less computational resources compared to all the men-

tioned alternatives. This solution proves that the robot would not end up in a situation in

which the battery can not recharge or discharge, under regular operation conditions.

This analytical solution was implemented in a simulated SlothBot Figure 8. During this

simulation, the robot starts its at position p = 0 and with a 20% of its battery, i.e. E = 0.2,

and traverses the wire forward and backwards. Figure 9 shows how the CBFs modify the

speed and thus the position of the robot to prevent its battery from depleting or overcharge.

A more in depth analysis of the presented results can be found in this thesis.

Figure 8: Light intensity function I(p) (blue), light intensity threshold Ic (orange), and
simulated SlothBot

Figure 9: State variables when traversing the wire forward and backwards. Upper plot:
Position p. Lower plot: Battery Voltage E

The results obtained when using Smoothing Splines to characterize the light intensity

model on the robot’s wire are shown in Figure 10, Figure 11, and Figure 12.

The problem is that when new data sets are added, the computation of the Gramian and
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Figure 10: Waypoints and smoothing spline with 10 samples

Figure 11: Waypoints and smoothing spline with 20 samples

the matrices inverse make the execution time grow exponentially. This fact shows the need

for a revision of the method that would help to maintain the size of the problem fixed. The

proposed solution consists of Recursive Smoothing Splines, that use each new data set to

modify the previous spline instead of solving a new problem. The theory and mathematical

derivation of this method can be found in the thesis.
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Figure 12: Waypoints and smoothing spline with 30 samples

Contributions

The main contributions of this Master Thesis are:

• Extension of Control Barrier Functions theory for systems with no control-affine

dynamics

• New, smaller, and easier to build and maintain robotic platform for environmental

exploration and surveillance

• Smoothing Splines approach for Light Intensity model identification

• Recursive Smoothing Splines state of art theory and mathematical foundations
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CHAPTER 1

INTRODUCTION AND BACKGROUND

This first chapter introduces how robotics can contribute to environmental research and

why they constitute a revolutionary tool in ecosystems characterization above ground level,

section 1.1. Also, we include a review of the state of art, section 1.2, for both environmental

applications of robotics, and also the most used tools for model identification nowadays.

Finally, section 1.3 introduces the state of art for SlothBot project itself, the use of Control

Barrier Functions, and Smoothing Splines, our proposed techniques for identifying the

unknown and scalar-valued light intensity function.

1.1 Motivation

Nowadays, researchers of all technical areas are concerned about our environment com-

promised situation, and robotics can be a valuable contribution to the collective effort of

improving this situation. Ecologists recognize that there is a lack of knowledge about all

phenomena occurring on tree canopies and that they need means of gathering data above

ground level [3] [4]. Tree canopies are profoundly important to global climate regulation

and forest microclimates. They are also where solar energy becomes carbohydrates to fuel

entire ecosystems, and they are the house of more than fifty percent of our terrestrial bio-

diversity [5].

Using robots reduces the risk for researchers, as at this moment most data gathering

methods from treetops require a human presence, using ladder structures or construction

cranes. Thanks to robotics, this situation improves drastically. Researchers would only

have to analyze the information collected by the robot, without having to expose themselves

to such risky heights.

Our contribution to the characterization of ecosystems above ground level can be ex-
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pressed as completing two tasks: environmental exploration and environmental surveil-

lance. One of the most challenging aspects of these two tasks is that both require to be

executed over a long period of time, exceeding the robot’s battery capacity. They need

to be persistified. Nowadays, longevity is one of the most compromising factors when

deploying any robotic system, specially in a natural and unknown territory.

Exploration implies a long execution time because of the size and dynamic nature of

the environment, and surveillance is subjected to the duration of the observed phenomena.

The use of mobile sensors, i.e. robots, has the advantage of improving coverage and data

gathering compared to standard static sensors. However, mobile sensors imply a higher

power consumption, which again compromises the longevity of the system outdoors.

The robotic platform that has been developed for this environmental mission can be

found in Figure 1.1. It is named the SlothBot, and it is indeed a robotic sloth. This robot

has been hanged at the Atlanta Botanical Garden for more than a year, until July 2021,

gathering air quality, light intensity and pollution measurements. As part of this Master

Thesis, a new, more compact and efficient version was designed and tested, Figure 1.2.

Originally, the first version of the SlothBot was developed by Gennaro Notomista, Yousef

Emam and Dr. Magnus Egerstedt [1] in 2019.

Figure 1.1: SlothBot at the Atlanta Botanical Garden
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More information about the SlothBot and its mission at the Atlanta Botanical Garden

can be found in Georgia Tech School of Electrical Enginering webpage:

• https://coe.gatech.edu/news/2021/07/year-alone-trees

• https://www.ece.gatech.edu/news/636291/slothbot-garden-demonstrates-hyper-efficient-

conservation-robot

• https://www.ece.gatech.edu/news/622103/slothbot-takes-leisurely-approach-environmental-

monitoring

Figure 1.2: SlothBot 2.0 new prototype at GRITS Lab

Having a smaller and easier to build robotic platform allows to build numerous Sloth-

bots and deploy them in different areas of an ecosystem, so they can complete their mission

in a collaborative way. Using multi-robot systems would solve the collecting-data problem

optimally and broadens the current applications of swarm robotics.

1.2 Start of Art

Robotics have started to play fundamental roles, both in industry and our daily lives, but

the environmental application of robotics is still unexplored, arising new problems for both
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ecologists and the controls and robotics community.

When used in outdoors environment, robotics have been mostly used to solve the data

coverage and collecting problem optimally. One approach consists on using Networked

Infomechanical Systems (NIMS) to explore the environment [6]. In combination to adap-

tive sampling techniques, the error between the real environment and the reconstructed

from the data points can be minimized. Specifically NIMS were developed and used for

spatiotemporal variation of atmospheric phenomena monitorization.

One of the advantages of using robotics is their versatility. Using the adequate hardware

they can be deployed in all kind of different ecosystems. For example, we can find robotics

applications in oceanographic and marine applications. In [7] the problem of studying

non-stationary and multiple spatial phenomena is addressed. In order to obtain an estimate

of the distribution of the data, space-time points samples can be collected, and assuming

that the observed process is stationary during the time intervals between the samples, the

actual behavior can be reconstructed from them. Alternatively, robotics can be used [8] as

a solution to the large amounts of data that needs to be gathered for marine monitoring.

This application consists on the use of swarm robotics, that can adapt to unknown and

dynamic environments thanks to the use of decentralized controllers, onboard sensing and

local communications.

In order to ensure the longevity of the SlothBot, it needs to use its solar charger and

panels to recharge its battery. Due to this fact, we need to characterize the light intensity

on the wire where it is deployed. This light intensity function consists of an unknown

scalar valued and time invariant function, which shape and parameters need to be identified.

Recently, Machine Learning and Artificial Intelligence techniques have become the most

popular approach for model identification. Specifically, in robotics some of the most used

methods are Split-and-merge, the Hough transform or the Random Sampling Consensus.

Split-and-merge [9] consists on building maps or models using line segments. The

advantage of using lines is that it is the simplest geometric construction, it is compact and
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can represent most of the indoors environments.

A possible alternative is to use the Hough transform [10], that consists in finding the

parameter set which represents the most data-points. It is based on an accumulator over the

parameter space, and it can fit not only lines, but also circles or any other curve that we ini-

tialize and parameterize. This advantage constitutes as well its major drawback, as we are

presetting a particular shape for our data beforehand. It is a very robust model identifying

technique, as it has almost no sensitivity to outliers, but it is only computationally efficient

for a very low number of parameters, as its memory requirements grows exponentially with

both data and the dimensions of the parameter space, that indeed needs to be bounded.

A more efficient algorithm to deal with higher numbers of parameters or unbounded pa-

rameters sets is the Random Sampling Consensus, or more commonly known as RANSAC

[11]. Its main limitation is that it only provides a probabilistic guarantee of the fit. RANSAC’s

objective is to estimate a model with p parameters using n data points, by using a subset of

p consisting of q data points (q << n) it estimates a closed form of the p parameter.

From a controls approach, we can use an adaptive control [12] to identify the system

parameters if we are using a data driven or black-box model, where the error between the

real system output and the simulated with the estimated model is feedback to the system

and the parameters modified until this error is equal to zero.

The main drawback of all the model identification methods introduced is that they are

too expensive in terms of computation requirements and thus energy consumption. As we

want to ensure the longevity of the system, we need to use the available energy in a con-

servative way, which is incompatible with the computation complexity needed for all these

methods. Secondly, as the data size grows, the computation time increases exponentially,

again making all these algorithms unsuitable for the SlothBot application.
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1.3 Previous work

Any of the presented papers in section 1.2 addresses the increased power consumption due

to the use of non standard static sensors, so obliquely these missions will be executed over

short time periods by the robots. The aim of this project is to design a control law that

allows our robot to succeed on its surveillance and exploration missions, and also continue

to perform them over a time period that exceeds its battery capacity.

Previous students from the Georgia Robotics and InTelligent Systems laboratory (GRITS

lab) already started studying the possibility of using Control Barrier Functions as a solu-

tion to the environmental monitorization and exploration problems [13]. In this project, we

aim to continue developing the already started theory proposition and implement it on both

simulation and the designed robotic platform.

The use of Control Barrier Functions is becoming popular in safety applications [14]

[15] [16]. The survival of a robot in an unknown and dynamic environment can be also

expressed in terms of ensuring that the state variables of the robot remain within the safe

set, i.e. they belong to a forward invariant set. Due to this fact, the application of CBFs

seems to be the perfect fit for the persistification problem.

To overcome the model fitting data-size challenge, we propose to use smoothing splines

based on Egerstedt and Martin work in [2], and we further expand its application to in-

troduce the concept of recursiveness, so that with any new set of data points the current

solution is modified without increasing the number of measurements or waypoints used to

fit the output curve.
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CHAPTER 2

HARDWARE AND SOFTWARE RESOURCES

Chapter two covers all components of the SlothBot and their functionality in the robot.

First, section 2.1 includes all the hardware components of the SlothBot: sensors, actuators

and microcontrollers, as well as a small description of each of them. Then, section 2.2

summarizes the software tools that have been used to program the robot. Finally, section 2.3

includes some captions from the original SlothBot CADs and the new version that has been

designed.

2.1 Sensors, actuators and microcontrollers

2.1.1 Sensors

The SlothBot mission is environmental exploration and surveillance, due to this it is equipped

with numerous sensors that enable him to gather all helpful data for ecologists.

Humidity, temperature and altitude: BME 680

This system provides the majority of the environmental information of interest: tem-

perature, humidity, barometric pressure and Volatile Organic Compound (VOC) gases.

Figure 2.1: Humidity, temperature and altitude sensor BME 680

Current, and Power: INA219

The INA219 plays a fundamental role for monitoring the power consumption of the

robot, as it allows us to measure the current that it is being drawn by the robot at all time.
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This is one of the most important values to track, as it will determine the expected battery

life of the robot.

Figure 2.2: Current, and Power sensor INA219

Air Quality: SGP30

In combination with the BME680 environmental sensor, the SGP30 air quality sensor

is used to obtain more precise air quality data and also carbon dioxide (CO2) readings.

Figure 2.3: Air Quality sensor SGP30

Light luminosity Lux: TSL2591

As we will see in chapter 3 , light intensity is one of the main factors that influences our

system dynamics. It determines whether the battery charges or discharges at each location

on the wire. Thanks to the TSL2591 an accurate measure that ranges from 188 µLux to

88,000 Lux can be obtained.

Figure 2.4: Light luminosity Lux sensor TSL2591

Onboard Voltage Regulators: S18V20F6
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One of the emerging problems of having such a wide variety of sensors and actuators

is that they operate with different input voltages. To solve this issue, a 6V Step-Up/Step-

Down voltage regulator is used. This voltage regulator S18V20F6 provides a constant 6V

output with any voltage input between 3V and 30V.

Figure 2.5: Onboard Voltage Regulators S18V20F6

Lidar: Stemadu TFMini Plus

Finally, the last sensor is a Lidar that allows to measure the distance from the robot to

the end of the wire, i.e. the distance to the next tree. With this measure and in combination

with the encoder count it is possible to have an accurate localization of the robot at all time.

Figure 2.6: Lidar sensor Stemadu TFMini Plus

2.1.2 Actuators

Motors: 499:1 25Dx73L mm LP 6V with 48 CPR Encoder

In the current version of the SlothBot the motors used are a pair of 6V brushed DC

motors that also include an integrated quadrature encoder. These encoders are used to

control both the speed and the position of the robot during its exploration mission.
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Figure 2.7: Motors 499:1 25Dx73L mm LP 6V with 48 CPR Encoder

Motor Drivers: TB9051FTG

In order to control the motors, we use the Toshiba’s TB9051FTG motor drivers.

Figure 2.8: Motor Drivers TB9051FTG

2.1.3 Microcontrollers

The microcontrollers used have been a Raspberry Pi Zero W, and a Teensy 3.2.

A Raspberry Pi Figure 2.9 is commonly known and used as a microcontroller but it is

indeed a computer, as it possesses a CPU, GPU, DSP, SDRAM and USB ports. Specifically

the Zero W model includes 1GHz, single-core CPU, and 512 MB RAM. Thanks to all its

features, it is used for the high level tasks, such as the control algorithms and the data

processing.

Figure 2.9: Raspberry Pi Zero W
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On the other hand, the Teensy 3.2. Figure 2.10 acts as a low level microcontroller, exe-

cuting simple tasks as writing the actuators and reading the sensor measurements, following

the commands provided by the Raspberry Pi.

Figure 2.10: Teensy 3.2.

2.2 Software tools

Due to the broad extension of the scope of this project, several software tools were needed,

being the most representative:

• Solid Edge: For hardware modeling and structure analysis

• Eagle: Needed to design the Printed Control Board (PCB), main electronic circuit of

the robot

• Matlab: For designing the Control and light intensity model fitting algorithms, in

addition to their respective tests in simulation

• Arduino IDE: With the Teensyduino Add-on to program our low level microcon-

troller

• C++: Used to initialize and program all drivers for the sensors, communications and

high level tasks for the Raspberry Pi.
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2.3 Mechanical Design

One of the most urgent goals to complete during the Spring semester for the project was to

come up with a new design for the robot. We needed a robotic platform that was smaller,

easy to reproduce and most importantly, easier to open for maintenance routines checks.

The original SlothBot had a volume of 6552364.46mm3 including the robot and the

waterproof tube, and a head to tail length of 956.54mm. This measurements were reduced

to a total of 3205735.79mm3 for the volume of the robot and the waterproof sensors cage,

and a head to tail length of 372.11mm. This is more than a 50% reduction, which clearly

shows than this objective of the project was successfully achieved.

Figure 2.11: CAD model of the original SlothBot

Figure 2.12: CAD model of the new SlothBot design
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CHAPTER 3

CONTROL FRAMEWORK

Chapter three describes the system dynamics model, introduces the background theory

of Control Barrier Functions (CBFs), and concludes with how a control strategy based on

CBFs was implemented to solve the persistification problem. The proposed model includes

both the robot dynamics and the environment, as the robot needs to be able to complete its

mission while surviving in an unknown environment. A control algorithm inspired in Con-

trol Barrier Functions was used. This technique ensures that our system state variables

remain within the boundaries of their respective forward invariant safe sets. The mini-

mization problem that results has a quadratic cost and two nested scalar constraints: one

of which is quadratic and the other is linear. We denote this new class of problems as

Quadratic Cost Scalar Linear and Quadratically Constrained (QCSLQC) problems.

Finally, in this chapter an analytical solution to the general QCSLQC problem is pro-

vided as well as a successful implementation of the solution for a SlothBot simulator.

This chapter is organized as follows: section 3.1 presents the system dynamics that

have been used to model the behavior of our robot and the effect of the environment. Then,

section 3.2 covers the control strategy used in the project, inspired by Control Barrier Func-

tions theory. This section includes an overview of the theoretical background as well as the

explicit application to the SlothBot. When building the optimization problem to solve in

section 3.3, the reader can observe that this problem does not belong to any of the known

convex optimization programs, and that is why in section 3.4 we include a in-depth anal-

ysis of the existence of solutions for the problem, and thus conclude with a closed form

solution. Finally, section 3.5 presents the simulation results of the analytical solution for

the QCSLQC problem in the SlothBot application.
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3.1 System model

As it has been expressed in chapter 1, one of the main objectives of this Master Thesis is

to find a control law that ensures the survival of the robot in a harsh and unknown outdoor

environment. We understand surviving as both the position of the robot and its battery

voltage level to remain within safe boundaries. In order to achieve this goal, we need to

include the effect of the environment in our system model.

As a first approach to solve this problem, we used the model proposed in previous work

[13]:  ṗ

Ė

 =

 u

K( 1
1+ 1−E

E
e−λ(I(p)−Ic)

− E)

 (3.1)

As it will be seen in subsection 3.2.3, using this model requires us to program a sec-

ond order relative degree Control Barrier Function, and furthermore, this second relative

degree is ill-defined, leading to an infeasible problem whenever the derivative of I(p) be-

comes equal to 0, i.e. at a maximum, minimum or if I(p) is constant. Also, it does not

include the direct dependency between the battery voltage and the control input.

In order to ensure the longevity of the system, a conservative use of the available energy

is needed. To do so, a direct relation between the robot’s battery voltage and the control

input has to be included. Doing so the new system model results to be:

 ṗ

Ė

 =

 u

K( 1
1+ 1−E

E
e−λ(I(p)−Ic)

− E)− ρu2

 (3.2)

The main elements that constitute the state equations of Equation 3.2 are:

• p ∈ [0, 10]: State variable for robot’s position on the cable.

• E ∈ [0, 1]: State variable for robot’s unitary battery voltage. This variable has been
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normalized so it is independent of the batteries used in the actual robot (6 V or 12

V).

• I : ε xR+ → I ⊂ R+[0, 1]: Unknown time invariant scalar field representing the

solar light intensity at robot’s position p.

• Ic ∈ (0, 1): Solar light intensity threshold. It expresses the value for the solar light

intensity that makes the battery charge or discharge, as it will be explained in sub-

subsection 3.1. Its value depends on the robot’s electronics power consumption.

• K,λ, ρ ∈ R+: Are model parameters to be fitted by experiments on the actual robot.

Battery Voltage Dynamics

As it is expressed on Equation 3.2, the rate of change of the robot’s unitary battery voltage

due to the environment, and without any control input, is expressed as:

Ė = K(
1

1 + 1−E
E
e−λ(I(p)−Ic)

− E) (3.3)

This equation yields to three possible scenarios:

1. I(p) > Ic → Ė > 0: If the light intensity at the robot’s current position is greater

than the threshold, the battery charges.

2. I(p) < Ic → Ė < 0: If the light intensity at the robot’s current position is less than

the threshold, the battery discharges.

3. I(p) = Ic → Ė = 0: If the light intensity at the robot’s current position is equal to

the threshold, the battery voltage remains constant.

For this analysis, the control input is assumed to be equal to 0. In order to guarantee

that the robot is able to perform its mission over a long time period, the control energy will

be used in a restrictive way. In fact, the control input will only be different to zero if the
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robot needs to move to charge its battery or if it needs to gather new data samples. Based

on these statements, setting the control input equal to 0 is not a big assumption.

3.2 Control Barrier Functions

3.2.1 Control Barrier Functions fundamentals

Control Barrier Functions have become in the recent years one of the most promising con-

trol strategies, specially for safety applications [14] [15] [16], as they guarantee that the

resulting controller will make the system remain within the specified safe region.

Mathematically speaking, if we consider a control-affine system:

ẋ = f(x) + g(x)u (3.4)

and a set: C = x : h(x) ≥ 0. Implementing the control barrier function h(x) will output

a controller u(x) that makes C positively invariant. A set C ⊂ Rn is positively or forward

invariant if for any initial condition x0 ∈ C, φ(t, x0) ∈ C for all t ≥ 0, [17]. φ(t, x0) is a

trajectory of ẋ = f(x) with x(0) = x0 as an initial condition.

As it can be seen in Figure 3.1, the vector field needs to be pointing inwards on the

boundary for C being positively invariant:

f(x) · n(x) ≤ 0 (3.5)

In order words, being positively invariant means that if the system starts within the set,

it will stay inside the set.

A function h(x) with C = {x|h(x) ≥ 0} is a control barrier function for our system

Equation 3.4, if there exists a Locally Lipschitz function:

α : R→ R, α(0) = 0 (3.6)
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Figure 3.1: Representation of a positively invariant set from [17]

Satisfying:

sup
u∈Rm

Lfh(x) + Lgh(x)u ≥ −α(h(x)) (3.7)

Lfh(x) and Lgh(x) express the Lie Derivatives of h(x). We refer the reader to Ap-

pendix A for background theory about their computation.

The set of control inputs that satisfy the above statementU(x) can be defined as follows:

U(x) = {u ∈ Rm| 5 h(x)T (f(x) + g(x)u) ≥ −α(h(x))} (3.8)

It holds that:

1. U(x) 6= 0 ∀x

2. Any Lipschitz feedback control u : Rn → Rm satisfying u(x) ∈ U(x) renders C

invariant

For a more in depth explanation of Lipschitz continuity, we refer the reader to Ap-

pendix B.

3.2.2 Higher Degree Control Barrier Functions

In this section we will present the fundamental concepts of higher order CBFs, as the first

approach to solve the persistification problem consisted in using a second order CBF. The
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derivation of this control strategy is covered in subsection 3.2.3.

If the chosen CBF h(x) results in the term Lgh(x) ≡ 0, i.e. the control input vanishes

from Equation 3.7, then h(x) cannot be a CBF for the system. There are two alternatives:

• Try to find a new CBF

• Use a higher order degree CBF

Finding valid Barrier functions is closer to an art work than a mathematical procedure,

and depending on the system it can be a very challenging task. Due to that fact, it is

normally preferred to use a higher order CBF, even though this shrinks the area for the

existence of solutions to the optimization problem. In order to build our higher order CBF,

we start defining:

Ψ1(x) = 5h(x)Tf(x) + α1(h(x)) (3.9)

For some Lipschitz α1, satisfying α(0) = 0, and let:

C1 = {x|Ψ1(x) ≥ 0} (3.10)

If u(x) is a feedback control so that C1 is invariant, then C ∩C1 is also invariant, where

C = {x : h(x) ≥ 0}. To ensure that C1 is invariant we just need to use Ψ1(x) as our

Control Barrier Function. If5Ψ1(x)Tg(x) ≡ 0, then we repeat the process, defining:

Ψ2(x) = 5Ψ1(x)Tf(x) + α2(Ψ1(x)) (3.11)

Eventually, we will obtain an Ψi(x) such that 5Ψi(x)Tg(x) 6= 0, and we will have an

i+ 1 degree barrier function.

3.2.3 First approach - Second order relative degree CBFs

Originally, for the system in Equation 3.1, the candidate CBF was:
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h1(X) = (Echg − E)(E − Emin) = −E2 + E(Echg + Emin)− EchgEmin (3.12)

Taking the derivative of h1(X) we get:

ḣ1(X) = Lfh1(X) + Lgh1(X)u ≥ −α1(h1(X))

ḣ1(X) = (Echg + Emin − 2E)Ė ≥ −α1(h1(X))⇒ ∂hT1
∂X

g(X)u ≡ 0

(3.13)

As the term Lgh1(X)u does not intervene in the equation, a second order CBF needs to

be built:

Ψ1(X) = ḣ1(X) + γ1h1(X) = (Echg + Emin − 2E)Ė + γ1h1(X) (3.14)

Note that in Equation 3.14 α1(h1(X)) has been replaced by γ1h1(X). This is because

the chosen class-K function is simply a scalar function named γ1.

Taking now the derivative of the higher order CBF Ψ1(X):

Ψ̇1(X) = L2
fh1(X) + LgLfh1(X)u+ γ1Lfh1(X) ≥ −α2(Ψ1(X)) (3.15)

Where the different terms that intervene in Equation 3.15 are:

L2
fh1(X) =

(
(Echg + Emin)K

(
e−λ(I(p)−Ic)

(E + (1− E)e−λ(I(p)−Ic))2
− 1

)
− 2K

(
E2 + 2Ee−λ(I(p)−Ic) − E2e−λ(I(p)−Ic)

(E + (1− E)e−λ(I(p)−Ic))2
− 2E

))
K

(
1

1 + 1−E
E
e−λ(I(p)−Ic)

− E
)

LgLfh1(X) = (Echg + Emin − 2E)K
E(1− E)e−λ(I(p)−Ic)λ

(E + (1− E)e−λ(I(p)−Ic))2
∂I(p)

∂p

Lfh1(X) = (Echg + Emin − 2E)K

(
1

1 + 1−E
E
e−λ(I(p)−Ic)

− E
)
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One can see that LgLfh1(X) ≡ 0 whenever the derivative of the light intensity ∂I(p)
∂p

=

0, i.e. at any singular point or if the function I(p) is constant. As the light intensity

function is unknown, it is not possible to assume that any of this situations happen, so the

only alternative is to reformulate the problem.

3.2.4 Second approach - Candidate CBFs for energy dependent dynamics

As it has been presented in chapter 1, one of our main goals in this project is to ensure the

survival of the robot. We understand surviving as both state variables, i.e. position and

battery voltage, remaining within the boundaries of their respective safe sets.

We defined the safe sets for our problem to be:

• p ∈ [0, 10]

• E ∈ [0.1, 0.9]

In order to guarantee that these two variables remain inside their safe sets, we im-

plemented two Control Barrier Functions (CBFs). The first one, noted as h1, is used to

maintain the battery voltage E within its maximum and minimum safe levels. The second

one, noted as h2, is for the position p, to ensure that the robot stays within the boundaries

of its cable.

The proposed candidate CBFs are:

CBF for the battery voltage E:

h1(X) = (Echg − E)(E − Emin) = −E2 + E(Echg + Emin)− EchgEmin

CBF for the position p:

h2(X) = (Pmax − p)(p− Pmin) = −p2 + p(Pmax + Pmin)− PmaxPmin

These two proposed barriers are indeed valid CBFs of relative degree 1, as when computing

their first Lie derivatives, neither Lghi term equals 0:
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Lfh1(X) = (Echg + Emin − 2E)K(
1

1 + 1−E
E
e−λ(I(p)−Ic)

− E)

Lgh1(X) = −(Echg + Emin − 2E)ρ

Lfh2(X) = 0

Lgh2(X) = (Pmax + Pmin − 2p)

This candidate CBFs will be the constraints of the optimization problem in section 3.3.

3.3 Optimization problem statement

The proposed robotics contribution to environmental research consists in fulfilling two

tasks: Exploration and Surveillance of the robot’s environment. These tasks are encoded

through a nominal control input noted as û in Equation 3.16. The goal is to minimally

modify this nominal control input while ensuring the survival of the robot. This is obtained

by minimizing the squared norm of the difference between the nominal control û and the

safe control u. The safe control u satisfies the two constraints that guarantee the system

remains forward invariant.

When expressing these objectives in mathematical terms, the optimization problem

shown in Equation 3.16 is obtained:

minimize
u

||u− û||2

s.t.

− Lgh1(X)u2 ≤ γ1h1(X) + Lfh1(X)

− Lgh2(X)u ≤ γ2h2(X) + Lfh2(X)

(3.16)

Where:

• X = [E p] is the state vector

• Lfhi, Lghi are the Lie Derivatives of the barrier function hi.
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The problem in Equation 3.16 is not an standard minimization problem, as it has a

quadratic cost and two nested constraints, one of which is linear and the other quadratic.

One could try to solve this problem as a Quadratically Constrained Quadratic Program

(QCQP).

QCQP belong to the class of problems denoted as NP hard problems, which do not have

an analytical solution and due to that fact, they can’t be implemented in a microcontroller.

The general formulation of an QCQP [18] can be found in Equation 3.17. Where A0 �

0, i.e. positive definite, and Am can be negative semidefinite or indefinite matrices.

minimize
x∈Cn

xHA0x

s.t.

xHAmx ≤ um, ∀m ∈ M

(3.17)

In the SlothBot application, due to the fact that the kinematics are one dimensional,

there is only one control input available, making both the cost function and the constraints

scalar. This leads to a new class of functions that has been denoted as Quadratic Cost

Scalar Linear and Quadratically Constrained (QCSLQC) problems. In order to use the

available energy in a conservative way, convex optimization algorithms such as Second

Order Cone Programming (SOCP) [19], or relaxations as Semidefinite Programming [20],

or Reformulation-Linearization techniques [21] are not an optimal approach. Instead, we

will proof in section 3.4 that an analytic solution to the general QCSLQC can be found and

successfully implemented in simulation.

3.4 Analytical solution to the general Quadratic Cost Scalar Linear and Quadrati-

cally Constrained (QCSLQC) problem
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3.4.1 Parameterized minimization problem

In order to proof the existence of solutions to the described problem in section 3.3, a gen-

eralization in terms of parameters a, b, α, and β, and a free variable x is formulated as

follows:

minimize
x

||x− x̂||2

s.t.

ax2 ≤ b

αx ≤ β

(3.18)

The quadratic constraint defines two bounds of an interval in R, whereas the linear

constraint only defines one bound in R. These nested constraints will lead to two possible

scenarios:

Feasible Problem

Where the region in R defined by the constraints is non-empty, and thus an optimal solution

can exist:

1. A closed feasible region is defined by the two bounds of the quadratic constraint

c2 c1lb 0 c1ub
x

2. A closed feasible region is defined by the bound of the linear constraint and one of

the bounds of the quadratic constraint

c1lb c2 0 c1ub
x

3. An open feasible region is defined by one of the constraints’ bounds

c1lb 0 c1ub c2 x

c1lb 0 c1ub c2 x
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Infeasible Problem

Where the region in R defined by the constraints is empty, for example when the lower

bound is greater than the upper one, and thus an optimal solution cannot exist:

c1lb 0 c1ub c2 x

3.4.2 Analysis of parameterized nested quadratic and linear constraints

Once the two possible scenarios have been identified, the next step is to analyze all possible

combinations of a, b, α, and β and verify which of them lead to an infeasible problem.

First constraint: ax2 ≤ b

1. a < 0, b > 0

Second constraint: αx ≤ β

(a) α < 0, β > 0⇒ x ≥ β
α

0β
α

x

(b) α < 0, β = 0⇒ x ≥ 0

0 x

(c) α < 0, β < 0⇒ x ≥ β
α

0 β
α

x

(d) α = 0 : x would have no effect.

(e) α > 0, β > 0⇒ x ≤ β
α

0 β
α

x

(f) α > 0, β = 0⇒ x ≤ 0

0 x
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(g) α > 0, β < 0⇒ x ≤ β
α

β
α

0 x

2. a < 0, b = 0. The feasible values for x after considering the second constraint are

the same as in the previous case.

3. a < 0, b < 0

Second constraint: αx ≤ β

(a) α < 0, β > 0

i. x ≥ +
√

b
a

0
√

b
a

x

ii. β
α
≤ x ≤ −

√
b
a

If β
α
> −

√
b
a
⇒ infeasible

β
α −

√
b
a

0 x

−
√

b
a

β
α

0 x

(b) α < 0, β = 0⇒ x ≥ +
√

b
a

0
√

b
a

x

(c) α < 0, β < 0⇒ x ≥ max(+
√

b
a
, β
α

)

0 β
α

√
b
a

x

0
√

b
a

β
α

x

(d) α = 0 : x would have no effect.
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(e) α > 0, β > 0

i. x ≤ −
√

b
a

−
√

b
a

0 x

ii.
√

b
a
≤ x ≤ β

α
If β

α
<
√

b
a
⇒ infeasible

0
√

b
a

β
α

x

0 β
α

√
b
a

x

(f) α > 0, β = 0⇒ x ≤ −
√

b
a

−
√

b
a

0 x

(g) α > 0, β < 0⇒ x ≤ min(−
√

b
a
, β
α

)

β
α−

√
b
a

0 x

−
√

b
a

β
α

0 x

4. a > 0, b < 0⇒ Infeasible

5. a > 0, b = 0⇒ x = 0

0 x

6. a > 0, b > 0

Second constraint: αx ≤ β

(a) α < 0, β > 0⇒ max(−
√

b
a
, β
α

) ≤ x ≤ +
√

b
a
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β
α −

√
b
a

0
√

b
a

x

−
√

b
a

β
α

0
√

b
a

x

(b) α < 0, β = 0⇒ 0 ≤ x ≤ +
√

b
a

0
√

b
a

x

(c) α < 0, β < 0⇒ β
α
< x ≤ +

√
b
a

If β
α
<
√

b
a
⇒ infeasible

0
√

b
a

β
α

x

0 β
α

√
b
a

x

(d) α = 0 : x would have no effect.

(e) α > 0, β > 0⇒ −
√

b
a
≤ x ≤ min(

√
b
a
, β
α

)

−
√

b
a

0
√

b
a

β
α

x

−
√

b
a

0 β
α

√
b
a

x

(f) α > 0, β = 0⇒ −
√

b
a
≤ x ≤ 0

−
√

b
a

0 x

(g) α > 0, β < 0⇒ −
√

b
a
≤ x ≤ β

α
If β

α
< −

√
b
a
⇒ infeasible

−
√

b
a

β
α

0 x
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β
α −

√
b
a

0 x

Based on the analysis above, it is possible to conclude that no feasible region exists,

and thus no optimal solution, if any of the following parameters combinations occurs:

• a < 0, b < 0, α < 0, β > 0 :

x∗ ∈ [
√

b
a
,∞) ∪ [β

α
,−
√

b
a
] Infeasible if β

α
> −

√
b
a

• a < 0, b < 0, α > 0, β > 0 :

x∗ ∈ (−∞,−
√

b
a
] ∪ [

√
b
a
, β
α

] Infeasible if β
α
<
√

b
a

• a > 0, b < 0

• a > 0, b > 0, α > 0, β < 0 :

x∗ ∈ [−
√

b
a
, β
α

] Infeasible if β
α
< −

√
b
a

3.4.3 Constraints values for the SlothBot dynamics

To conclude the use of an analytic solution for the QCSLQC for robotic’s tasks persisti-

fication, we verified if any of the identified infeasible cases could occur in the SlothBot

application.

Recalling the dynamical equations for the environment and the SlothBot model, Equa-

tion 3.2, the general parameters a, b, α, β are equal to:

• a = −Lgh1(X) = Echg + Emin − 2E

• b = α1(h1)+Lfh1(X) = γ1(−E2 +E(Echg+Emin)−EchgEmin)+(Echg+Emin−

2E)K( 1
1+ 1−E

E
e−λ(I(p)−Ic)

− E)

• α = −Lgh2(X) = Pmax + Pmin − 2p

• β = α2(h2) + Lfh2(X) = γ2(−p2 + p(Pmax + Pmin)− PmaxPmin) + 0
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Note that the used class-K functions were scalar: α1(s) = γ1s and α2(s) = γ2s.

The strategy followed for this study consisted of plotting all four parameters, a, b, α, β,

as functions of the state variables within their safe sets. The possibility for these state

variables of taking values outside their safety boundaries is not considered, because of the

action of the proposed barriers.

From Equation 3.2 it is known that the unitary battery voltage E dynamic equation is

a function of both the position p and the voltage E. As the light intensity function I(p)

belongs to a scalar field bounded between [0, 1] it is possible to fix the difference between

the light intensity at the current position, and the light intensity threshold to its maximum,

minimum and zero value. By doing so, any other value of such difference will lead to a

curve bounded between the ones here represented. These graphs can be found in figures

Figure 3.2 and Figure 3.3.

Figure 3.2: Terms a (Blue) and b (Orange, Yellow, Purple) of the quadratic constraint when
γ1 = 1

From the identified infeasible cases noted in subsection 3.4.2, three out of four corre-

spond to negative values of b. In Figure 3.2 one can see that b is greater than zero for the
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Figure 3.3: Terms α (Blue) and β (Orange) of the linear constraint

majority of the battery voltage E safe set:

For γ1 = 1, the problem is infeasible if:

• I(p) − Ic is minimum, and E < 0.16: This describes a situation when the SlothBot

has its battery almost at its minimum value and thus the light intensity is zero.

• I(p) − Ic is maximum, and E > 0.86: This is the opposite situation, when the

Slothbot battery is almost fully charged at its maximum, and the light intensity is

maximal.

From CBF’s theory, it is possible to choose the class-K functions arbitrarily large or

small, as it will result in a more aggressive or conservative control effort, when approaching

the barrier boundary.

When increasing the value of γ1 the regions where b is negative decreases, as shown in

Figure 3.4, and Figure 3.5.

Taking a closer look of the values of E where b changes its sign:

For γ1 = 10, the problem is infeasible if:
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Figure 3.4: Terms a (Blue) and b (Orange, Yellow, Purple) of the quadratic constraint when
γ1 = 10

• I(p)− Ic is minimum, and E < 0.104

• I(p)− Ic is maximum, and E > 0.8607

For γ1 = 100, the problem is infeasible if:

• I(p)− Ic is minimum, and E < 0.1004

• I(p)− Ic is maximum, and E > 0.8997

The results proved by Figure 3.2, Figure 3.4, and Figure 3.5 are summarized in Remark

1:

Remark 1:

Feasibility of the quadratic constraint can be ensured by choosing sufficiently large

values of γ1, as in standard Control Barrier Functions theory. As γ1 becomes larger, the

intervals where the quadratic constraint is infeasible approach the boundaries of the safe

set for the battery voltage E.
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Figure 3.5: Terms a (Blue) and b (Orange, Yellow, Purple) of the quadratic constraint when
γ1 = 100

Now that it has been proven that three of the possible infeasible situations can be pre-

vented, we need to evaluate the last one, that corresponds to values of the parameters

a, b, α > 0 and β < 0.

Analyzing Figure 3.3 the reader can see that β is always greater than zero, indepen-

dently of the value of our class-K function γ2, leading to a result presented in Remark

2:

Remark 2:

The linear constraint is always feasible in the SlothBot application, independently of

the value of γ2. Furthermore, it does not interfere with the existence of solutions for the

Quadratically Constrained Quadratic Program.
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3.5 Simulation results of the analytic solution for QCSLQC problem in the SlothBot

application

After studying the analytic solution to the general QCSLQC problem in subsection 3.4.2,

and the particular infeasible scenarios that can occur in the SlothBot application, the final

step to conclude this study is to test the solution in simulation.

In order to test the solution to the QCSLQC, the light intensity model was assumed to

be known. The simulation environment, shown in Figure 3.6, consists of an arbitrary light

intensity function I(p) (represented in blue), the light intensity threshold Ic (displayed

as a orange straight line), and an schematic representation of the SlothBot on its wire.

Depending on the value of the difference I(p) − Ic at each particular location, the robot’s

battery will charge or discharge as it moves along the simulated wire.

Figure 3.6: Light intensity function I(p) (blue), light intensity threshold Ic (orange), and
simulated SlothBot

During the simulation, the robot starts at position p = 0 and with a 20% of its battery,

i.e. E = 0.2. During its mission it starts moving towards the end of the wire, and returns

backwards to the starting position. The simulation results can be seen in Figure 3.7, where

the orange horizontal line represents the upper bound of the safe sets. The graph at the

top of Figure 3.7 shows how the position (blue curve), and thus the speed, of the robot are

modified by the CBFs to ensure that the system state variables remain within their safe sets.

The orange horizontal line represents the upper bound of the safe set of p. The graph at

the bottom of Figure 3.7 displays the variations of the battery voltage (blue curve) due to

the effect of both the light intensity and the control input applied. The orange horizontal

line represents the upper bound of the safe set of E. It can be seen how, when the robot is

moving forward and the difference I(p)− Ic is not sufficiently large, its battery discharges,
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and also how it stops to recharge its battery when the voltage level is not enough to continue

with its mission.

Figure 3.7: State variables when traversing the wire forward and backwards. Upper plot:
Position p. Lower plot: Battery Voltage E

These simulation results, in addition to the analysis conducted in subsection 3.4.2, prove

that under regular operation conditions the robot won’t get stuck in a position where it is

not possible to recharge its battery and continue its mission. The only scenarios in which

a solution does not exist correspond to situations that in a real implementation, there is no

action that the robot can take to charge its battery. These cases correspond to the robot

having its battery almost depleted and being under minimum light intensity conditions, or

vice versa, having its battery fully charged with maximum irradiance.
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CHAPTER 4

SMOOTHING SPLINES FOR LIGHT INTENSITY MODEL ESTIMATION

Chapter 4 addresses the problem of finding a model for the solar light intensity, an unknown

scalar valued function, while the robot is completing its mission. The idea is that, thanks to

the light intensity sensor equipped on the robot, a set of N measurements will be gathered

at different locations and times on the wire. Then, using these data and smoothing splines,

a light intensity model will be built and periodically modified. Knowing this model will

allow the robot to perform longer exploration missions, as the regions where its battery is

drained or recharged will be fully characterized.

This chapter is organized as follows: section 4.1 presents the theory of Smoothing

Splines, a technique based on a control systems approach to optimal trajectory planning.

This section includes the theoretical derivation, a couple generic examples and concludes

with an implementation for the light intensity. At the end of the section, the problem of

large data sets arises, and to solve it we develop a recursive algorithm in section 4.2 to help

keep the dimensions of the problem fixed. This theoretical derivation has been done for

both continuous and discrete systems.

4.1 Smoothing Splines

As in any model fitting problem, the goal is to drive a variable close to certain waypoints at

particular time instants. To do so, we propose a solution in terms of control theory, so the

problem can be formulated as finding the control input that drives the output of an arbitrary

system to a set of waypoints at certain interpolation time instants.

In order to choose the control input, we will solve a minimization problem on the con-

trol energy. The resulting output when using this controllers is named Smoothing Spline.

The proposed method in this section is a direct application of the published work by Dr.
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Magnus B. Egerstedt and Dr. Clyde F. Martin in [2].

4.1.1 Theoretical derivation

Starting with a linear, single input multiple output (SIMO) time invariant system:

ẋ = Ax+ bu

y = CTx

(4.1)

Where x ∈ Rn, y ∈ Rp, u ∈ R.

The assumption that system (A, b, C) is both controllable and observable is made.

Without loss of generality it can also be assumed that the initial state corresponds to the

zero state, i.e. x(0) = 0.

Given a set of light intensity measurements at different time instants (ξi, ti), the goal is

to drive y(ti) close to ξi but without aiming for a perfect fit, but an overall output that repre-

sents the whole set of measurements. The justification to this approach is that measures are

not perfect, as they have noise, so it is not worth to do the computational time investment

to obtain a model based on imperfect samples of reality.

The cost functional that will be minimized while driving the output close to the given

points and time instants is:

1

2

∫ T

0

ρu2(t)dt (4.2)

With u ∈ L2[0, T ], i.e. u is a continuously differentiable function.

Summarizing these two objectives into a single cost function, the minimization problem

in Equation 4.3 is obtained:

minimize
u∈L2[0,T ]

1

2

∫ T

0

ρu2(t)dt+
1

2

m∑
i=1

(y(ti)− ξi)T τi(y(ti)− ξi) (4.3)

Where ρ controls the amount of smoothing in the output, and τi = diag(τi1, ..., τip) �
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0 ∈ Rpxp expresses the importance for the jth output to interpolate close to ξi’s jth compo-

nent at time ti.

One can easily note that Equation 4.3 depends both on u, and y. Using the fact that the

system is linear, and thus has an analytical solution, it is possible to define a set of linearly

independent basis functions:

gi(t)


CT eA(ti−t)b ti − t ≥ 0

0 otherwise

(4.4)

Substituting Equation 4.4 in Equation 4.3, a cost function only in terms of the free

variable u is obtained:

J(u) =
1

2

∫ T

0

ρu2(t)dt+
1

2

m∑
i=1

(

∫ T

0

gi(t)u(t)dt− ξi)T τi(
∫ T

0

gi(t)u(t)dt− ξi)

=
1

2

∫ T

0

ρu2(t)dt+
1

2
(

∫ T

0

g(t)u(t)dt− ξ)T τ(

∫ T

0

g(t)u(t)dt− ξ)
(4.5)

J(u) is closed and quadratic in u, and as all parameters are positive or positive semidef-

inite if they are matrices, it is thus convex, and from existence and uniqueness of solutions

an optimum exists [22].

To find the optimum, Egerstedt and Clide [2] proposed using the Fréchet differential,

as it will we make the cost function vanish for all increments of h ∈ L2[0, T ] when using

the unique minimizer u0.

Fréchet differential

The Fréchet derivative or directional derivativeDuf defines the rate a which a function,

for example f(x, y), changes at each point x = a in the direction of u. u is an unit vector

that specifies the points in the direction in which the slope wants to be computed.

The directional derivative of f(x, y) in the direction of u at the point a is computed as:
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Duf(a) = lim
h→0

f(a+ hu)− f(a)

h
(4.6)

It is important to note that Duf(a) is not a matrix, it is a number.

Applying the definition in Equation 4.6 to the cost function J(u) from Equation 4.5:

DεJ(u) = lim
ε→0

J(u+ εh)− J(u)

ε
=

∫ T

0

(
ρu(t) + g(t)T τ

(∫ T

0

g(s)u(s)ds− ξ
))

h(t)dt

(4.7)

And for the differential to vanish for all h ∈ L2[0, T ]:

ρu(t) + g(t)T τ

(∫ T

0

g(s)u(s)ds− ξ
)

= 0 (4.8)

Using a finite dimensional parameterization of the problem u(t) = ηTg(t), we obtain

an optimal η and minimizer u0:

η = (ρI + τG)−1τε

u0(t) = g(t)T (ρI + τG)−1τε

(4.9)

Where G ∈ Rmpxnp is the Gramian of our basis functions g:

G =

∫ T

0

g(s)g(s)Tds (4.10)

4.1.2 Implementation of the algorithm

We now evaluate the performance of the proposed smoothing splines in subsection 4.1.1 in

two different systems:

System 1

We will first consider the third order control system given in canonical form:
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ẋ =


0 1 0

0 0 1

0 0 0

x+


0

0

1

u (4.11)

y =

(
0 0 1

)
x

It is important to note that we named this formulation as canonical but it is indeed a

combination of both controllable and observable canonical forms. These system dynamics

lead to a third order spline output, Figure 4.1 shows the different outputs obtained when the

value of the smoothing parameter ρ is modified. A smaller value of ρ will make the output

get closer to the given waypoints.

Figure 4.1: Waypoints and smoothing spline with different smoothing parameter ρ:
1/1000000 (Blue), 1/100000 (Yellow), and 2/100000 (Purple)

System 2

For our second system we decided to introduce poles different from zero and compare

the performance with the previous canonical system:
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ẋ =


0 1 0

0 0 1

−10 −5 −1

x+


0

0

1

u (4.12)

y =

(
0 0 1

)
x

Figure 4.2 shows the obtained outputs for this new system and the same values of the

smoothing parameter ρ.

Figure 4.2: Waypoints and smoothing spline with different smoothing parameter ρ:
1/1000000 (Blue), 1/100000 (Yellow), and 2/100000 (Purple)

Even tough these results may look very similar to the ones obtained for the first system,

Figure 4.1, if we compare the two outputs for the same value of ρ, we can see that they

indeed have minor differences, Figure 4.3.

After taking a closer look to the performance of these two systems we can conclude this

section with Remark 3.

Remark 3

The poles of the linear SIMO system used for the computation of the smoothing splines
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Figure 4.3: Waypoints and smoothing spline with ρ = 1/1000000 for system 1 (Blue), and
system 2 (Yellow)

do not have an impact on the performance of this technique.

4.1.3 Application to Light Intensity Model Fitting

When using the technique presented in subsection 4.1.1 for finding the light intensity

model, we would like to introduce new measurements. i.e. waypoints, when the robot

moves to a new location, so a model for the light intensity over the whole wire can be ob-

tained. Figure 4.4, Figure 4.5, and Figure 4.6 show how, as new data samples are included,

the resulting smoothing spline modifies its shape to fit the whole set of waypoints.

The problem that arises with this approach is that Equation 4.9 requires to calculate a

Gramian and a matrix inverse. These two operations’ computation times grow exponen-

tially with the size of the problem, so after including a few measurement sets, it becomes

inefficient.

The solution proposed to this problem consists of the use of recursive splines, sec-

tion 4.2.
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Figure 4.4: Waypoints and smoothing spline with 10 samples

Figure 4.5: Waypoints and smoothing spline with 20 samples

4.1.4 Simulation results for the SlothBot application

In order to test the splines algorithm with the robot itself, we built a simulated experiment

where the SlothBot starts at p = 0, with a 60% of its battery, i.e. E = 0.6 and doesn’t know

the light intensity model.

The light intensity model is randomly generated using the spline function from Matlab,

and a set of 10 random samples between 0 and 1.

To generate the samples we basically used the average values, in lux, of the iluminance
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Figure 4.6: Waypoints and smoothing spline with 30 samples

for outdoors environments, Table 4.1, for a full daylight to sunlight condition and nor-

malized it. These data has been obtained from The Engineering ToolBox: (https://www.

engineeringtoolbox.com.)

Condition Foot candles Lux
Sunlight 10000 107527
Full daylight 1000 10752
Overcast day 100 1075
Very Dark day 10 107
Twilight 1 10.8
Deep twilight 0.1 1.08
Full moon 0.01 0.108
Quarter moon 0.001 0.0108
Starlight 0.0001 0.0011
Overcast night 0.00001 0.0001

Table 4.1: Illuminance values for different outdoor conditions

The simulation works as follows:

1. After executing the program, an Slothbot object is created and initialized with p = 0

and E = 0.6 initial conditions.

2. Then, the arbitrary light intensity model is generated.

3. The Slothbot starts traversing the wire, up to p = 1, with the CBFs ensuring that he
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is not running out of battery.

4. Once it reaches this position, it gathers 10 samples and fits its own light intensity

model.

5. Finally, using the information of the model, we can implement a feedback action

to modify the mission in case the current objective would lead the SlothBot to an

unsolvable situation, such as running out of battery and going to an area without the

sufficient light intensity.

Some captions of both the simulator and the accuracy of the model obtained can be

seen in Figure 4.7 and Figure 4.8.

Figure 4.7: SlothBot simulator interface. The blue curve represents the real light intensity
and the red line the value for Ic

Figure 4.8: Real light intensity model (Yellow), samples gathered by the SlothBot (Orange
circles), and model obtained with smoothing splines (Blue)
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4.2 Recursive Splines

As it has been mentioned numerous times in this thesis, one of the robot’s objective is

environmental exploration. Identifying the light intensity model would allow the robot to

go for longer displacements on the wire during its missions, as it would know which areas

of the wire have sunlight and help him to get its battery recharged, and which ones are in

the shadow and it should avoid for long time periods.

Thanks to its light intensity sensors, the robot will take N measurements at different

locations, and time schemes. Our goal now is to use each of these new sets to modify the

previous model, i.e. spline output, so the dimensions of the problem remain fixed.

4.2.1 Problem Statement

We define the sequence of data sets of equal size as:

Dn = {αin : i = 1, ..., N} (4.13)

Each data point αin is of the form:

αin = f(tin) + εin (4.14)

Note that we use the index i = 1, ..., N to denote each measurement of a data set, and

n = 1, 2, ... for the working set of samples.

f(tin) is assumed to be at least piecewise smooth, and εin are values of a random vari-

able symmetrically distributed about 0.

The set {tin : i = 1, ..., N, n = 1, 2, ...} is dense in [0, T ]. This set denotes the different

time instants for which we have a sample in the current working data set n.

For each working set n, the cost function is defined as:
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Jn(u) =

∫ T

0

u(t)2 dt+ λn

∫ T

0

(y(t)− yn−1(t))2 dt+
N∑
i=1

(y(tin)− αin)2 (4.15)

The different elements that can be identified in Equation 4.15 are:

•
∫ T
0
u(t)2 dt→ Control energy

• λn
∫ T
0

(y(t)−yn−1(t))2 dt→ Predictor: Ensures that our new solution does not differ

too much from the previous one

•
N∑
i=1

(y(tin)−αin)2 → Corrector: Minimizes the difference between the current output

and the given set of data points

The solution un(t) and yn(t) are the optimal control and output when minimizing the

cost function, equation Equation 4.15, for the sample set n.

λn expresses a sequence of coefficients that approach to infinity. We will choose it in

such a way that our sequence of smoothing splines {yn(t)}∞n=1 converges.

Instead of using classical optimal control techniques, building the Hamiltonian and

evaluating the necessary conditions for optimallity, we propose to find optimum as a pro-

jection in a Hilbert Space Hn = {(u; g;α)| (u; g;α) ∈ L2[0, T ] xL2[0, T ] xRN}.

A brief revision of the procedure to compute projections with any subspace or variety

can be found in subsection 4.2.2.

4.2.2 Projections

Given the minimization problem:

minimize
x

||x− p||2

s.t. Ax = b⇒ x ∈ {z|Az = b} = Vb

(4.16)
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Where Vb is an affine hyperplane. We know that the optimum x∗ is the projection of p

on Vb, as it is shown in figure Figure 4.9.

Figure 4.9: Projection: Geometric construction

In order to find the projection of p on the hyperplane Vb we will follow the steps pictured

in figure Figure 4.9 and described below:

1. Find the subspace V0, which is parallel to Vb and goes through the origin

2. Find its orthogonal compliment subspace V ⊥0

3. Shift V ⊥0 so it contains our point of interest p, this is done by simply adding a constant

vector

4. x∗ is the intersection: Vb ∩ (V ⊥0 + p)

Following the derivation above, we see that we can compute projections as long as we

can talk about orthogonality. This property also holds in Hilbert spaces, at it is indeed what

we will use to solve our minimization problem.
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4.2.3 Two-point boundary problem

In order to illustrate how to compute projections in Hilbert Spaces, let us start with a well-

known optimal control example and minimize the control energy for a linear system with

fixed initial and terminal states:

minimize
u

∫ T

0

||u||2 dt

s.t.

x(0) = x0 x(T ) = xT

ẋ = Ax+Bu

(4.17)

Our solution will consist on finding a projection in the Hilbert space H = {u|u ∈

L2[0, T ]}.

We will start noting that we can use the following alternative notation for the objective

function: ∫ T

0

||u||2 dt = ||u||2L2
= ||u− 0||2L2

(4.18)

Where p = 0.

As the system is linear, it has solution:

x(T ) = eA
T

x0 +

∫ T

0

eA(T−t)Bu(t) dt (4.19)

The integral term is indeed a linear operator. It takes u(t), a function in L2, as an input

and outputs a number in Rn. We can thus define the operator L as:

∫ T

0

eA(T−t)Bu(t) dt = Lu, L : L2 → Rn (4.20)
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We now define ξ = xT − eA
T
x0, and the variety:

Vξ = {u|Lu = ξ} (4.21)

Furthermore, the subspace of interest can be defined as:

V0 = {u|Lu = 0} (4.22)

And its orthogonal complement:

V ⊥0 = {w| < w, u >L2= 0 ∀u ∈ V0} (4.23)

The graphical representation of the above varieties can be found in figure Figure 4.10.

Figure 4.10: Vξ, V0, and V ⊥0 representation

As u ∈ V0 → Lu = 0 by definition. We have defined Lu ∈ Rn, so we can transform
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an inner product in L2 to one in Rn as follows:

< w, u >L2= 0 =< η,Lu
0
>Rn (4.24)

Before we can continue with our derivation, we need to recall the definition of adjoint

operators.

Adjoint operator:

Given an operator M , with Domain DL such that DL is dense in H , the adjoint M∗ of

M is defined as:

< z,My >DL=< M∗z, y >D∗
L
∀y ∈ D∗L (4.25)

It is important to note that the domain D∗L of M∗ is not necessarily the same as DL.

If M ∈ Rmxm, and z, y ∈ Rn. Then the adjoint of < z,My >Rm can be performed by

simply using transposition:

< z,My >Rm= zTMy = (MT z)Ty =< MT z, y >Rn (4.26)

The transpose term that appears when shifting M to the left hand side term shows that

the transpose is an adjoin operator.

Continuing with the proposed method, we now want to find w, elements of the orthog-

onal complement V ⊥0 . Applying the same reasoning as in Equation 4.25:

< η,Lu >Rn=< L∗η, u >L2→ w = L∗η (4.27)

Substituting in the definition of V ⊥0 :

V ⊥0 = {w|w = L∗η, η ∈ Rn} (4.28)
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If we now substitute in the inner product expression of Equation 4.27 the definition of

L from Equation 4.20:

< η,Lu >Rn= ηT
∫ T

0

eA(T−t)Bu(t) dt =

∫ T

0

(BT eA
T (T−t)η)Tu(t) dt

=< BT eA
T (T−t)η, u(t) >L2=< L∗η, u(t) >L2

(4.29)

Recalling the definition of Vξ:

Vξ = {u|Lu = ξ} (4.30)

And expressing V ⊥0 in terms of u:

V ⊥0 = {u|u = L∗η, η ∈ Rn} (4.31)

Substituting the definition of u from Equation 4.31 in Equation 4.30:

LL∗η = ξ =

∫ T

0

eA(T−t)BBT eA
T (T−t)ηη dt→ Γη = ξ (4.32)

Where Γ denotes the Controllability Gramian. Assuming that the system is controllable,

so we can compute Γ−1:

η = Γ−1ξ (4.33)

Then the optimal control, solution of the minimization problem stated in Equation 4.17

results:

u = L∗η = BT eA
T (T−t)Γ−1ξ = BT eA

T (T−t)Γ−1(xT e
AT − x0) (4.34)

4.2.4 Application to a dynamical system

We will now extend the idea introduced in subsection 4.2.3 to solve the recursive splines

minimization problem. This is again a minimum norm problem in the following Hilbert

51



Space:

H = {(u; g;α)| (u; g;α) ∈ L2[0, T ] xL2[0, T ] xRN} (4.35)

Where, as we will see later in this section, u corresponds to the control input, g the

output of the system, and α a sampled value of the output. This Hilbert Space has norm:

||(u; g;α)||2Hn =

∫ T

0

u(t)2 dt+ λn

∫ T

0

g(t)2 dt+ αTα (4.36)

As we are using a linear system, as we did with the smoothing splines in section 4.1,

we define a set of basis functions:

lin(s)


ceA(tin−s)b tin − s ≥ 0

0 otherwise

(4.37)

And our linear variety:

Vx0 = {(u; g;α)| y(t) = ceAtx0 +

∫ T

0

ceA(t−s)bu(s) ds,

zi = ceAtinx0 +

∫ T

0

linu(s) ds}
(4.38)

Where y(t) expresses the output as an L2[0, T ] function and zi is a particular value of

the output at time instant i, so it is a scalar in Rk.

We define our data point of interest in H as:

pn = (0, yn−1(t), α
n), where αn = (α1n, ..., αNn) (4.39)

Note that pn is defined with the information of the previous spline yn−1 and the new set

of measurements that we want to include in our interpolation αn.

The solution to our minimization problem will be the unique point in the variety Vx0

that is closest to pn. Solving this problem for continuous data is of high complexity, so we
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will approximate it to one with only discrete data. To do so, we approximate the second

integral term of the cost function defined in Equation 4.15 by an finite sum.

It is possible to use the Riemman sum approximation, but we will use a quadrature

scheme instead:

Tj = (rj1, ..., rjj, 0, 0, ...) (4.40)

Sj = (βj1, ..., βjj, 0, 0, ...) (4.41)

Our quadrature scheme:

Ej(f) =

∣∣∣∣ ∫ T

0

f(t)dt−
j∑
q=1

(βqjf(qj))

∣∣∣∣ (4.42)

Converges if for any continuous function f ∈ C[0, T ]:

lim
j→∞

Ej(f) = 0 (4.43)

Finally, our cost function is redefined as:

J jn(u) =

∫ T

0

u(t)2 dt+ λn

j∑
q=1

βqj(y(rqj)− yn−1(rqj))2 +
N∑
i=1

(y(tin)− αin)2 (4.44)

Note that the subscripts refer to:

• n→ working set of measurements and output spline

• i→ particular data point of the set

• q → element index in the quadrature scheme

• j → total elements in the approximation of the integral as a sum (j → ∞ ⇒

perfect approximation)
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The optimal solution consists on finding the unique point of Vx0 that is closest to the

given point pn.

To solve this problem, we have two possible approaches, one continuous and another

one discrete. These two approaches are covered in subsection 4.2.5 and subsection 4.2.6

respectively.

4.2.5 Recursive Splines - Continuous Case

Let our variety be:

V n
x0

= {(u; y; y(tin))| y(t) = ceAtx0 +

∫ t

0

ceA(t−s)bu(s) ds,

y(tin) = ceAtix0 +

∫ T

0

linu(s) ds}
(4.45)

Where n expresses the working data set.

Then the subspace that goes through the origin is defined as:

V n
0 = {(u; y; y(tin))| y(t) =

∫ t

0

ceA(t−s)bu(s) ds,

y(tin) =

∫ T

0

linu(s) ds}
(4.46)

And its orthogonal compliment:

V ⊥0 = {(w; z; β)| < w;u >L2 + < z; y >L2 + < β;α >Rn= 0}

= {(w; z; β)|
∫ T

0

w(s)u(s) ds+ λn

∫ T

0

z(t)y(t) dt+
N∑
i=1

y(tin)βi = 0}
(4.47)

Substituting the expressions for y(t) and y(tin):

∫ T

0

w(s)u(s) ds+ λn

∫ T

0

z(t)

∫ t

0

ceA(t−s)bu(s) ds dt+
N∑
i=1

∫ T

0

linu(s) dsβi = 0

(4.48)

We will now manipulate the above expression to get an equation with only integrals
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between 0 and T of functions times u(s) and equal to zero.

As z(t) is not a function of s, we can introduce it into the inner integral, and also by

linearity we can take the integral of the third term outside the summation:

∫ T

0

w(s)u(s) ds+ λn

∫ T

0

∫ t

0

z(t)ceA(t−s)bu(s) ds dt+

∫ T

0

N∑
i=1

linu(s) dsβi = 0

(4.49)

Finally, we make a change in the order of integration in the double integral of the second

term of our expression, so we get:

∫ T

0

w(s)u(s) ds+ λn

∫ T

0

∫ T

s

z(t)ceA(t−s)bu(s) ds dt+

∫ T

0

N∑
i=1

linu(s) dsβi = 0

(4.50)

And as u(·) 6= 0 we can conclude:

V ⊥0 = {(w; z; β)|w(s) + λn

∫ T

s

z(t)ceA(t−s)b dt+
N∑
i=1

lin(s)βi = 0} (4.51)

We want to find the projection of the point p on our variety Vx0 . We denote this pro-

jection as pp. In order to obtain pp, we first need to shift V ⊥0 so it contains p as follows:

pp ∈ Vx0 = {(u; y; y(tin))}

(u; y; y(tin)) ∈ V ⊥0 + p ; (u; y; y(tin))− p ∈ V ⊥0

(u; y; y(tin))− (0, yn−1(t), α
n) ∈ V ⊥0

(4.52)

Giving the final expression:

(u; y; y(tin))− (0, yn−1(t), α
n) ∈ V ⊥0 ⇒ u(s) + λn

∫ T

s

(y(t)− yn−1(t))ceA(t−s)b dt+

N∑
i=1

lin(s)(y(tin)− αin) = 0

(4.53)

In order to obtain the intersection of Vx0 and V ⊥ + p, i.e. pp, the closest point to p, we
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must solve the system of equations:

u(s) = −λn
∫ T

s

(y(t)− yn−1(t))ceA(t−s)b dt−
N∑
i=1

lin(s)(y(tin)− αin) = 0 (4.54)

y(t) = ceAtx0 +

∫ t

0

ceA(t−s)bu(s) ds (4.55)

y(tjn) = ceAtix0 +

∫ T

0

ljn(s)u(s) ds (4.56)

Substituting u(s) into y(t) and y(tin) expressions, we have:

y(t) = ceAtx0+∫ t

0

[
ceA(t−s)b

(
− λn

∫ T

s

(y(τ)− yn−1(τ))ceA(τ−s)b dτ −
N∑
i=1

lin(s)(y(tin)− αin)

)]
ds =

= ceAtx0 − λn
∫ t

0

ceA(t−s)b

∫ T

s

(y(τ)− yn−1(τ))ceA(τ−s)b dτ ds−∫ t

0

ceA(t−s)b
N∑
i=1

lin(s)(y(tin)− αin) ds =

= ceAtx0 − λn
∫ t

0

∫ T

s

y(t)ceA(t−s)bceA(τ−s)b dτ ds+ λn

∫ t

0

∫ T

s

yn−1(t)ce
A(t−s)bceA(τ−s)b dτ ds

−
N∑
i=1

∫ t

0

ceA(t−s)blin(s) ds y(tin) +
N∑
i=1

∫ t

0

ceA(t−s)blin(s) ds αin

(4.57)

y(tjn) = ceAtinx0 +

∫ T

0

ljn(s)(−λn
∫ T

s

(y(τ)− yn−1(τ))ceA(τ−s)b dτ −
N∑
i=1

lin(s)(y(tin)− αin)) ds =

= ceAtinx0 − λn
∫ T

0

ljn(s)

∫ T

s

y(τ)ceA(τ−s)b dτds+ λn

∫ T

0

ljn(s)

∫ T

s

yn−1(τ)ceA(τ−s)b dτds

−
N∑
i=1

∫ T

0

ljn(s)lin(s) ds y(tjn) +
N∑
i=1

∫ T

0

ljn(s)lin(s) ds αin

(4.58)
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Let the operator L(t)(f) be defined as:

L(t)(f) =

∫ t

0

∫ T

s

f(t)ceA(t−s)bceA(τ−s)b dτ ds (4.59)

And the Grammian of the linearly independent base functions li(s):

Gn =

[ ∫ t

0

lin(s)ljn(s) ds

]N
i,j=1

(4.60)

In order to simplify notation, we can define a vector Hn:

Hn =

(∫ t

0

ceA(t−s)bl1n, ...,

∫ t

0

ceA(t−s)blNn

)
(4.61)

And moreover:

ŷ = (y1n, ..., yNn)T (4.62)

Cn = [ceAt1nx0, ..., ce
AtNnx0]

T (4.63)

L̂n(y) = [L(t1n)(y), ..., L(tNn)(y)]T (4.64)

If we now rewrite the previous expressions with the new notation, we get:

y(t) = ceAtx0 − λnL(t)(y) + λnL(t)(yn−1)−Hnŷ +Hnα̂

(I + λnL(t))(y) +Hnŷ = ceAtx0 + λnL(t)(yn−1) +Hnα̂

(4.65)
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y(tjn) = ceAtinx0 − λn
∫ T

0

ljn(s)

∫ T

s

y(τ)ceA(τ−s)b dτds+

λn

∫ T

0

ljn(s)

∫ T

s

yn−1(τ)ceA(τ−s)b dτds−Gnŷ +Gnα̂

(I +Gn)ŷ = [ceAt1x0, ..., ce
AtNx0]

T +Gnα̂

− λn
∫ T

0

ljn(s)

∫ T

s

y(τ)ceA(τ−s)b dτds+ λn

∫ T

0

ljn(s)

∫ T

s

yn−1(τ)ceA(τ−s)b dτds

(4.66)

That leads to the following system of equations, Equation 4.67 and Equation 4.68:

(I + λnL(t))(y) +Hnŷ = λnL(t)(yn−1) +Hnα̂ + ceAtx0 (4.67)

λnL̂n(y) + (I +Gn)ŷ = λnL̂n(yn−1) +Gnα̂ + [ceAt1x0, ..., ce
AtNx0]

T (4.68)

Note that as our basis functions lin in equation Equation 4.37 are zero for any tin ≥ s,

we can use the defined operator L(t)(f) from Equation 4.59 also in equation Equation 4.68.

Since Gn is positive definite, so it is I + Gn, and thus its inverse exist. We can then

solve ŷ from equation Equation 4.68:

(I +Gn)ŷ = λnL̂n(yn−1 − y) +Gnα̂ + [ceAt1x0, ..., ce
AtNx0]

T ;

ŷ = λn(I +Gn)−1L̂n(yn−1 − y) + (I +Gn)−1Gnα̂ + (I +Gn)−1CT
n

(4.69)

And now we substitute it in Equation 4.67:

(I + λnL(t))(y) +Hn(I +Gn)−1
(
λnL̂n(yn−1 − y) +Gnα̂ + Cn

)
= λnL(t)(yn−1) +Hnα̂ + ceAtx0

y + λnL(t)(y − yn−1) + λnHn(I +Gn)−1L̂n(yn−1 − y) =

−Hn(I +Gn)−1Gnα̂−Hn(I +Gn)−1Cn +Hnα̂ + ceAtx0
(4.70)
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Dividing by λn:

λ−1n y + L(t)(y − yn−1) +Hn(I +Gn)−1L̂n(yn−1 − y) =

− λ−1n
(
Hn(I +Gn)−1Gnα̂−Hn(I +Gn)−1Cn +Hnα̂ + ceAtx0

) (4.71)

The right hand side is bounded, and as λn goes to infinity, the right hand side goes to

zero. It remains to be proved that the sequence of yn is bounded.

Unfortunately, the result for yn(t) is only a convergence result and can’t be imple-

mented.

4.2.6 Recursive Splines - Discrete Case

We define our new working Hilbert Space as:

H = {(u;x)|L2[0, T ]xRN+J} (4.72)

With norm

||(u;x)||2H =

∫ T

0

u(t)2 dt+ xTQx (4.73)

Where

Q =

Q1 0

0 I


Q1 = diag(λnw1J , ..., λnwJJ)

(4.74)

Now there are two different time sequences, one in terms of tin in which n expresses

the current set of data points and thus our current spline, and i a particular element of

such set. The other one, r(jJ), refers to the sample j of the output due to the discrete

implementation.
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Therefore we define:

%jJ(s)


ceA(rjJ−s)b rjJ − s ≥ 0

0 otherwise

(4.75)

The linear variety is:

Vx0 = {(u; (ρ, γ))| ρjJ = ceArjJx0 +

∫ T

0

%jJu(s) ds,

γin = ceAtinx0 +

∫ T

0

linu(s) ds}
(4.76)

And the subspace that goes through the origin, i.e. zero initial condition of the system:

Vx0 = {(u; (ρ, γ))| ρjJ =

∫ T

0

%jJu(s) ds,

γin =

∫ T

0

linu(s) ds}
(4.77)

To simplify notation, we define:

Vector of sampled outputs, with no initial condition, from j = 1 to j = J :

ŷ = (

∫ T

0

%1j(s)u(s) ds, ...,

∫ T

0

%jJ(s)u(s) ds)

Vector of sampled states, with no initial condition, from i = 1 to i = N , at output

sample j:

x̂ = (

∫ T

0

l1j(s)u(s) ds, ...,

∫ T

0

lNj(s)u(s) ds)

Vector of basis functions for all desired outputs i = 1, ..., N :

l̂ = (l1n(s), ..., lNn(s))T
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Vector of basis functions defined on the second time sequence j = 1, ...J

%̂ = (%1J(s), ..., %jJ(s))T

Finally, the orthogonal compliment of the subspace:

V ⊥0 = {(v; (z, w))| < v;u >L2 + < (z, w); (ρ, γ) >RN+J= 0}

= {(v; (z, w))|
∫ T

0

v(s)u(s) ds+ zTQ1ρ̂+ wT γ̂ = 0}
(4.78)

Substituting the expressions for ρ and γ:

∫ T

0

v(s)u(s) ds+ zTQ1

∫ T

0

%̂(s)u(s) ds+ wT
∫ T

0

l̂(s)u(s) ds = 0 (4.79)

We repeat the same derivation that we did on the continuous case, to obtain an expres-

sion with only integrals from 0 to T of functions times u(s) and equal to zero.

As z,Q1 and w are not functions of s, we can include them in the integral:

∫ T

0

v(s)u(s) ds+

∫ T

0

zTQ1%̂(s)u(s) ds+

∫ T

0

wT l̂(s)u(s) ds = 0 (4.80)

As u(s) 6= 0:

∫ T

0

v(s) ds+

∫ T

0

zTQ1%̂(s) ds+

∫ T

0

wT l̂(s) ds = 0 (4.81)

And thus

v(s) + zTQ1%̂(s) + wT l̂(s) = 0 (4.82)

So we can define the orthogonal compliment simply as:

V ⊥0 = {(v; (z, w))|v(s) + zTQ1%̂(s) + wT l̂(s) = 0} (4.83)
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The next step, as in the continuous case, is to find the intersection of Vx0 and V ⊥0 + p,

noted as pp.

As we now have a discrete problem, our point p is defined in the working Hilbert space

as:

p = (0, (ŷn−1, α̂
n)) where α̂n = (α1n, ..., αNn)

pp ∈ Vx0 = {(u; (ρ, γ))}

(u; (ρ, γ)) ∈ V ⊥0 + p ; (u; (ρ, γ))− p ∈ V ⊥0

(u; (ρ, γ))− (0, (ŷn−1, α̂
n)) ∈ V ⊥0

(4.84)

Giving the final expression:

(u; (ρ, γ))− (0, (ŷn−1, α̂
n)) ∈ V ⊥0 ⇒ u(s) + (ρ− ŷn−1)TQ1%̂+ (γ − α̂n)T l̂ = 0

(4.85)

We need to solve the following system of equations:

u(s) = −(ρT − ŷTn−1)Q1%̂− (γT − α̂nT )l̂ (4.86)

ρjJ = ceArjJx0 +

∫ T

0

%jJu(s) ds (4.87)

γin = ceAtinx0 +

∫ T

0

linu(s) ds (4.88)

To simplify notation we can define

Cr = ceArjJx0

Ct = ceAtinx0

(4.89)
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So the system of equations becomes

u(s) = −(ρT − ŷTn−1)Q1%̂− (γT − α̂nT )l̂ (4.90)

ρ = Cr +

∫ T

0

%̂u(s) ds (4.91)

γ = ceAtinx0 +

∫ T

0

l̂u(s) ds (4.92)

Substituting u(s) in the expressions for ρ and γ:

ρ = Cr +

∫ T

0

%̂[−(ρT − ŷTn−1)Q1%̂− (γT − α̂nT )l̂] ds

= Cr −
∫ T

0

%̂%̂TQ1ρ ds+

∫ T

0

%̂%̂TQ1ŷn−1 ds−
∫ T

0

%̂l̂Tγ ds+

∫ T

0

%̂l̂T α̂nT ds

(4.93)

γ = Ct −
∫ T

0

l̂%̂TQ1ρ ds+

∫ T

0

l̂%̂TQ1ŷn−1 ds−
∫ T

0

l̂l̂Tγ ds+

∫ T

0

l̂l̂T α̂nT ds (4.94)

We can now take Q1ρ, Q1ŷ, γ, and α̂nT out of the integrals, as they are not functions of

s.

ρ = Cr −
∫ T

0

%̂%̂T dsQ1ρ+

∫ T

0

%̂%̂T dsQ1ŷn−1 −
∫ T

0

%̂l̂T dsγ +

∫ T

0

%̂l̂T dsα̂nT

(4.95)

γ = Ct −
∫ T

0

l̂%̂T dsQ1ρ+

∫ T

0

l̂%̂T dsQ1ŷn−1 −
∫ T

0

l̂l̂T dsγ +

∫ T

0

l̂l̂T dsα̂nT (4.96)
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If we multiply on the left equation Equation 4.95 times Q−11 Q1:

Q−11 Q1ρ = Cr −
∫ T

0

%̂%̂T dsQ1ρ+

∫ T

0

%̂%̂T dsQ1ŷn−1 −
∫ T

0

%̂l̂T dsγ +

∫ T

0

%̂l̂T dsα̂nT

(4.97)

We further define new operators and express the above in matrix notation:

G =

∫ T

0

%̂%̂T ds

S =

∫ T

0

l̂l̂T ds

H =

∫ T

0

%̂l̂T ds

Q−11 +G H

HT I + S


Q1ρ

γ

 =

 G H

HT S


Q1ŷn−1

α̂n

+

Cr
Ct

 (4.98)

Now we eliminate γ from the first equation by simply performing some row operations:

First, we multiply the second row on the left: (I + S)−1R2

 Q−11 +G H

(I + S)−1HT (I + S)−1(I + S)


Q1ρ

γ

 =

 G H

(I + S)−1HT (I + S)−1S


Q1ŷn−1

α̂n

+

 Cr

(I + S)−1Ct


(4.99)
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Then, we subtract HR2 from the first row: R1 −HR2:Q−11 +G−H(I + S)−1HT H −HI

(I + S)−1HT I


Q1ρ

γ

 =

G−H(I + S)−1HT H −H(I + S)−1S

(I + S)−1HT (I + S)−1S


Q1ŷn−1

α̂n

+

Cr −H(I + S)−1Ct

(I + S)−1Ct


(4.100)

Our final expression is then:

Q−11 +G−H(I + S)−1HT 0

(I + S)−1HT I


Q1ρ

γ

 =

G−H(I + S)−1HT H −H(I + S)−1S

(I + S)−1HT (I + S)−1S


Q1ŷn−1

α̂n

+

Cr −H(I + S)−1Ct

(I + S)−1Ct


(4.101)

The first row equation gives:

(I +GQ1 −H(I + S)−1HTQ1)ρ =

(GQ−1−H(I + S)−1HTQ1)ŷn−1 +H(I + S)−1α̂n + Cr −H(I + S)−1Ct

(4.102)

Going back to the original notation:

(I + λn(GQ−Hn(I + Sn)−1HT
nQ))ŷn =

λn(GQ−Hn(I + Sn)−1HT
nQ)ŷn−1 +Hn(I + Sn)−1α̂n + Cr −Hn(I + Sn)−1Ct

(4.103)

And dividing both sides by λn:

(λ−1n I + (GQ−Hn(I + Sn)−1HT
nQ))ŷn =

(GQ−Hn(I + Sn)−1HT
nQ)ŷn−1 + λ−1n (Hn(I + Sn)−1α̂n + Cr −Hn(I + Sn)−1Ct)

(4.104)

65



If we define:

An = −(GQ−Hn(I + Sn)−1HT
nQ)

Un = Hn(I + Sn)−1α̂n + Cr −Hn(I + Sn)−1Ct

We get:

(λ−1n − An)ŷn = −Anŷn−1 + λ−1n Un ;

ŷn = −(λ−1n − An)−1Anŷn−1 + (λ−1n − An)−1λ−1n Un

(4.105)

And rewriting it in a less cumbersome form:

ŷn = −(εn − An)−1Anŷn−1 + (εn − An)−1εnUn (4.106)
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CHAPTER 5

CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK

Chapter 5 concludes this Master Thesis with an overall view of the SlothBot project itself.

First, section 5.1 summarizes the main conclusions of the project as a collection of the

main results and remarks obtained. Then, section 5.2 enumerates all the contributions of

this project and highlights why are they a valuable contribution for this new application of

robotics. Finally, section 5.3 presents what are the next steps that need to be taken, and

questions to be solved to continue the project.

5.1 Conclusions and Main Results

The main conclusions of this Master Thesis are presented as a collection of the main results

obtained:

Optimization Problem to Persistify Robotic Tasks for Systems with Non Control-Affine Dynamics

Ensuring that the robot’s mission will be executed during a time period longer than its

battery capacity is obtained by solving the optimization problem:

minimize
u

||u− û||2

s.t.

− Lgh1(X)u2 ≤ γ1h1(X) + Lfh1(X)

− Lgh2(X)u ≤ γ2h1(X) + Lfh2(X)

(5.1)

Where:

• X = [E p] is the state vector

• Lfhi, Lghi are the Lie Derivatives of the barrier function hi
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Feasibility of the General Quadratic Cost Scalar Linear and Quadratically Constrained Problem

The constraint set of the general QCSLQC problem is empty, and thus no optimal solu-

tion exists, if any of the following situations occurs:

• a < 0, b < 0, α < 0, β > 0 :

x∗ ∈ [
√

b
a
,∞) ∪ [β

α
,−
√

b
a
] Infeasible if β

α
> −

√
b
a

• a < 0, b < 0, α > 0, β > 0 :

x∗ ∈ (−∞,−
√

b
a
] ∪ [

√
b
a
β
α

] Infeasible if β
α
<
√

b
a

• a > 0, b < 0

• a > 0, b > 0, α > 0, β < 0 :

x∗ ∈ [−
√

b
a
, β
α

] Infeasible if β
α
< −

√
b
a

Feasibility of the QCSLQC Problem for the SlothBot Application:

Feasibility of the quadratic constraint can be ensured by choosing sufficiently large

values of γ1, as in standard Control Barrier Functions theory. As γ1 becomes larger, the

intervals where the quadratic constraint is infeasible approach the boundaries of the safe

set for the battery voltage E.

The linear constraint is always feasible in the SlothBot application, independently of

the value of γ2. Furthermore, it does not interfere with the existence of solutions for the

Quadratically Constrained Quadratic Program.

Smoothing Splines for Light Intensity Model Estimation:

When using Smoothing Splines to estimate the Light Intensity function, the objective

function to minimize is:

J(u) =
1

2

∫ T

0

ρu2(t)dt+
1

2
(

∫ T

0

g(t)u(t)dt− ξ)T τ(

∫ T

0

g(t)u(t)dt− ξ) (5.2)

Where:
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• ξ are the different waypoints

• ρ controls the amount of smoothing in the output

• τ is a matrix in which each element expresses the importance for the jth output to

interpolate close to ξi’s jth component at time ti

• g(t) is a set of basis functions

gi(t)


CT eA(ti−t)b ti − t ≥ 0

0 otherwise

(5.3)

5.2 Contributions

The main results and contributions of this Master Thesis can be summarized as follows:

Persistification of Robotic Tasks for Non Control-affine Dynamical Systems

The term persistification expresses that the robot’s mission and tasks require to be ex-

ecuted during long time periods, which exceed its battery total capacity. Persistification

of robotic tasks has been previously studied in systems with control-affine dynamics. The

longevity approach of the SlothBot project introduced a quadratic dependency between the

robot’s battery voltage and the control input, i.e. the control energy, what required for a

revision and reformulation of the existing theory. The developed work in this thesis proves

that it is possible to persistify robotic tasks even when the system dynamics possesses non-

linear terms.

Analytic solution to Quadratic Cost Scalar Linear and Quadratically Constrained Problems

When formulating the optimization problem that minimizes the difference between the

nominal control, which commands the robot’s mission, and the safe control, that makes the

system to remain forward invariant, it results in a new class of problems. These problems

have been noted as Quadratic Cost Scalar Linear and Quadratically Constrained Problems
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(QCSLQC). Convex optimization algorithms and relaxations do not constitute an appro-

priate solution to this problem, as their computation and energy demands make them in-

compatible with the conservative energy use required to maximize the longevity of the

SlothBot.

Smoothing Splines for Light Intensity Model Estimation

Smoothing Splines were presented in the literature as a trajectory planning technique.

Using an arbitrary system and modifying the control input applied, the output of the system

can be driven close to different waypoints and specific interpolation times. In this thesis

it has been shown how this technique can also be used for model estimation, in particular,

to estimate the Light Intensity function using different measurements that are taken by the

robot periodically.

Recursive Smoothing Splines Theory and Mathematical Fundamentals

When the Smoothing Splines are used to estimate the Light Intensity Model, as new

samples are added, the computation time grows exponentially, due to the Grammian com-

putations and matrices inversions required in the method. This is also a problem that all

Machine Learning and Convex optimization algorithms have to face, limiting their effi-

ciency and application. We aimed to use Smoothing Splines in a recursive way, using each

new data set to modify the previous solution instead of solving a new problem. With this ap-

proach the size of the problem would remain constant and thus the computation complexity

of the problem would always be the same. Finding an alternative approach to model esti-

mation, able to keep the size of the problem constant when new samples are added, would

open a new horizon in model identification techniques. Unfortunately, only convergence

results have been obtained in this thesis.

Smaller and easier to assembly and maintain SlothBot robot

Finally, while all the theoretical work and research presented in this thesis was being

done, a new, smaller and more maintenance-friendly robotic platform was also being de-

veloped. This new version of the SlothBot will be the one used to test all the developed
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algorithms and continue exploring the applicability of our proposed robotic platform for

environmental research.

5.3 Future Work

After going over all the results and achievements of this project, the immediate following

up problems and future developments that stand out are:

Test the Analytic Solution to the QCSLQC Problem in the Real SlothBot

Due to time constraints and the fact that the only available SlothBot robot was hanged

at the Atlanta Botanical Garden until July 2021, it was not possible to test the proposed

solution in the actual robot. This will be one of the first tasks to be completed when the

new version of the robot is deployed at its new location.

Development of Multi-Robot Algorithms for a Collaborative Approach to Environmental Research

One of the reasons why a new, smaller, and easier to manufacture version of the robot

was needed is because in a future stage of the project it would be of great interest to explore

the application of swarm robotics to environmental research. Using robots in a collabora-

tive way has proven to solve coverage problems in a more efficient way, but its application

in an outdoors habitat for environmental exploration and surveillance needs still to be ex-

plored.

Find an Implementable Solution to the Recursive Smoothing Splines Problem

Unfortunately, as it has been previously mentioned, so far the only results that have

been obtained for the recursive smoothing splines approach are convergence results. These

results show that the problem is solvable but unfortunately they can’t be programmed and

tested in simulation or the actual robot. Finding an explicit solution is the only missing

piece to solve and close this problem.
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APPENDIX A

LIE DERIVATIVES

Lie Derivatives are widely used in Systems and Controls theory, specially in nonlinear

systems [23], for example for feedback linearization.

Particularly for dynamical systems, the Lie derivative of a map h along the vector field

f at the point x ∈ M is:

Lfh(x) =
d

dt
h(φft (x))

∣∣∣∣
t=0

(A.1)

Where φft (x) defines the flow of the vector field f at time t.

Simply applying the chain rule, we obtain the alternative notation:

Lfh(x) = h′(x)f(x) (A.2)

Where h′ is the Jacobian matrix of h. It is important to note that the Lie derivative

Lfh(x) has the same dimensions as the original map h.

As a consequence, if we repeat the process in a recursive way we obtain the general

equation for solving higher order Lie derivatives:

Lkfh(x) =
∂Lk−1f h(x)

∂x
f(x) (A.3)

With L0
fh(x) = h(x).

If we have also a vector field g with flow φgsf(x) at time s, the mixed Lie derivative is

defined as:

LgLfh(x) =
∂Lfh(x)

∂x
g(x) (A.4)
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Before concluding this section, it is important to note how our map and vector fields

are defined: h : M→ Rp, f : M→ Rn, and g : M→ Rn. With M ⊆ Rn.
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APPENDIX B

LIPSCHITZ CONTINUITY

Lipschitz continuity is commonly used in Control theory to proof that a unique solution to

our system exists. Given a system:

ẋ = f(x)

x(0) = x0

(B.1)

If f(·) is continuous (C0), a solution will exist, but C0 is not enough to guarantee

uniqueness. This can be easily proved by the reader using the system ẋ = x
1
3 .

The sufficient condition for uniqueness of solutions is Lipschitz continuity, which is

more restrictive than C0. A function f(·) is locally Lipschitz if every point x0 has a neigh-

borhood where Equation B.2 holds for all x, y in such neighborhood for some L.

|f(x)− f(y)| ≤ L|x− y| (B.2)

Furthermore, if a function f(·) is continuously differentiable (C1), then it is locally

Lipschitz. The converse is not true, an example of this is the saturation function.

Regarding the uniqueness of solutions:

• If f(·) is locally Lipschitz→ existence and uniqueness of solutions is guaranteed on

[0, tf )

• If f(·) is globally Lipschitz → existence and uniqueness of solutions is guaranteed

on [0,∞)

Finally, a function is globally Lipschitz if Equation B.2 holds ∀x, y ∈ Rn, i.e. we can

use the same L everywhere in Rn. Once again, it is important to emphasize that globally

Lipschitz does not imply either C1.
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APPENDIX C

ALIGNMENT WITH SUSTAINABLE DEVELOPMENT GOALS (SDGS)

As we presented in the introduction of this Master Thesis, the aim of the project was to

develop a robotic platform, and its control algorithms, that would help environmental re-

searchers in tree-canopies ecosystems characterization. Tree-tops are profoundly important

as they are where solar energy becomes carbohydrates to fuel entire ecosystems, they are

home for more than fifty percent of our biodiversity and they are where the most crucial

data for environmental indicators are gathered. These indicators are commonly known as

Footprints, such as the Carbon Footprint, the Ecological Footprint, and the Biodiversity

Footprint, and they constitute the only qualitative measure that is currently used to analyze

the environmental situation, and making decisions and taking actions that would help to

improve it.

The reader can see how this motivation has a straightforward connection with the Sus-

tainable Development Goals (SDGs) number 13 ”Climate action”, and number 15 ”Life on

land”.

Indirectly, there is also a relation with the SDG number 3 ”Good health and well-being”.

A significant amount of the actions that environmental researchers propose pursue the goal

of improving the quality of life of all individuals. Science supports how a cleaner and

better air quality has a positive impact on humans longevity and overall individuals health

[24] [25] [26], and that is why the SlothBot’s mission contributes to the well-being of our

society.

Finally, the alignment of the SlothBot project with the SDGs can also be extended

to the SDG number 9 ”Industry, innovation, and infrastructure”. The use of robots for

environmental research constitutes a completely new application for robotics, broadening

the extension of how robots can positively impact humans lives. It also brings up new
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and challenging problems of interest for researchers of all technical areas, from computer

scientists to control theorists. Solving new problems is the only mean to further extend

the current boundaries of knowledge and continue developing an enlightened scientific

community.
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