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1. Introduction

Let X be an irreducible smooth complex projective curve. Let D =
∑n

i=1 xi be an 
effective divisor on X consisting on distinct points and let ξ be a line bundle on X. Let 
α be a rank r generic full flag system of weights over D. Let M(r, α, ξ) be the moduli 
space of stable parabolic vector bundles (E, E•) over (X, D) of rank r with system of 
weights α and determinant det(E) ∼= ξ.

Before describing the automorphisms of this moduli space, let us go back to the non-
parabolic case and recall the known classification of the automorphisms of the moduli 
space of vector bundles. The following two transformations generate the automorphism 
group of the moduli space M(r, ξ) of stable vector bundles over X with rank r and 
determinant ξ. Given an automorphism σ : X → X

(1) Send E → X to L ⊗ σ∗E, where L is a line bundle over X with Lr ⊗ σ∗ξ ∼= ξ

(2) Send E to L ⊗ σ∗(E∨), where L is a line bundle satisfying Lr ⊗ σ∗ξ−1 ∼= ξ

This result was initially proved by Kouvidakis and Pantev [23] using an argument on 
the fibers of the Hitchin map defined on the moduli space of Higgs bundles. Hwang and 
Ramanan [20] gave a different proof based on the study of Hecke curves on the moduli 
space. They proved that the Hitchin discriminant was isomorphic to the union of the 
images of all possible Hecke curves.

Later on a simplified proof was given in [7], in which the study of the Hecke trans-
formation and the minimal rational curves on the moduli space was substituted by the 
geometric characterization of the nilpotent cone bundle of a generic vector bundle. This 
lead to the proof that given a generic bundle E whose image under the automorphism 
E′ is itself generic, there exists an isomorphism of Lie algebra bundles

End0(E) ∼= End0(E′)
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Then, it is proven that such an automorphism exists if and only if E′ is obtained from E
by one of the previously described transformations. The argument was further generalized 
to the moduli space of symplectic bundles in [6]. In this paper, we will generalize this 
result to the parabolic scenario.

Coming back to the moduli of parabolic vector bundles, first, we develop four “basic 
transformations” that can be applied intrinsically to families of quasi-parabolic vec-
tor bundles. The first three types come from adapting the previously mentioned ones 
(pullback with respect to an automorphism of the curve, tensoring with a line bundle 
and dualization) to parabolic vector bundles, finding naturally induced filtrations at the 
parabolic points on the resulting vector bundles. Nevertheless, in the parabolic setup 
there is a fourth new type of transformation that can be defined using the additional 
information provided by the parabolic structure. We can use the steps of the filtration to 
perform a Hecke transformation on the underlying vector bundle at the parabolic points. 
What is more, the full parabolic structure at each parabolic point can be “rotated” in a 
certain way so that it induces a parabolic structure on the resulting bundle. The possible 
combinations of these four types of transformations

• Taking pullback with respect to an automorphism σ : X → X that fixes the set of 
parabolic points D (but not necessarily fixes every point in D) (E, E•) �→ σ∗(E, E•)

• Tensoring with a line bundle (E, E•) �→ (E, E•) ⊗ L

• Dualization (E, E•) �→ (E, E•)∨
• Hecke transformations (E, E•) �→ Hx(E, E•) with respect to the subspace Ex,2 ⊂ E|x

for some x ∈ D

form a group T that we call group of basic transformations.
Instead of working with a fixed moduli space M(r, α, ξ) and compute its automor-

phisms, it will come more natural to study the possible isomorphisms between two moduli 
spaces M(X, r, α, ξ) and M(X ′, r′, α′, ξ′), leading to what is usually called an Extended 
Torelli type theorem. We will prove that basic transformations are the only ones giving 
rise to isomorphisms between moduli spaces of parabolic vector bundles. More precisely, 
the main result in this article is the following Theorem (see Theorem 7.22)

Theorem 1.1. Let (X, D) and (X ′, D′) be two smooth projective curves of genus g ≥ 6
and g′ ≥ 6 respectively with set of marked points D ⊂ X and D′ ⊂ X ′. Let ξ and ξ′ be 
line bundles over X and X ′ respectively, and let α and α′ be full flag generic systems of 
weights over (X, D) and (X ′, D′) respectively. Let

Φ : M(X, r, α, ξ) ∼−→ M(X ′, r′, α′, ξ′)

be an isomorphism. Then

(1) r = r′

(2) (X, D) is isomorphic to (X ′, D′), i.e., there exists an isomorphism σ : X
∼→ X ′

sending D to D′.
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(3) There exists a basic transformation T such that for every (E, E•) ∈ M(r, α, ξ)

σ∗Φ(E,E•) ∼= T (E,E•)

Moreover, for r = 2, the dual of a parabolic vector bundle can be rewritten in terms 
of a tensor product by a certain line bundle, so every isomorphism Ψ comes from a basic 
transformation that does not involve dualization.

Apart from acting on parabolic vector bundles, the group T acts on line bundles ξ and 
systems of weights α so that for every T ∈ T , if (E, E•) has determinant ξ and is stable 
for the weights α, then T (E, E•) has determinant T (ξ) and is stable for the weights 
T (α). For T to induce an isomorphism T : M(r, α, ξ) ∼−→ M(r, α, ξ′) it is necessary and 
sufficient that

• T (ξ) ∼= ξ′

• T (α) is in the same stability chamber as α′

This will allow us to compute the automorphism group Aut(M(r, α, ξ)) in Theorem 7.25.
In order to prove the theorem, we will generalize the approaches used in [6] and [7] to 

the particular features of the moduli space of parabolic vector bundles, although a deeper 
analysis on some invariant subspaces of the Hitchin map and the Hitchin discriminant 
will be necessary. We will prove that for a generic parabolic vector bundle (E, E•) ∈
M(r, α, ξ) if σ∗Φ(E, E•) = (E′, E′

•) then there exists an isomorphism of Lie algebra 
bundles

PEnd0(E,E•) ∼= PEnd0(E′, E′
•)

Using some algebraic methods, we will prove that if such isomorphism exists then (E′, E′
•)

can be obtained from (E, E•) through the application of a basic transformation T ∈ T . 
More precisely, for any Φ and for a generic (E, E•) ∈ M(r, α, ξ) there exists some T ∈ T
such that σ∗Φ(E, E•) ∼= T (E, E•). We will then show that we can choose T so that 
it does not vary with (E, E•), i.e., for any Φ there exists some T ∈ T such that the 
formula σ∗Φ(E, E•) ∼= T (E, E•) holds for an open set of points (E, E•) ∈ M(r, α, ξ) in 
the moduli space. Finally we prove that the equality extends to the whole moduli space.

The structure of the paper is the following. In Section 2 we recall the notion of 
parabolic vector bundle, parabolic stability and some properties of the moduli space of 
stable parabolic vector bundles. The precise notions of generic and concentrated systems 
of weights are given and we prove some technical lemmas regarding the behavior of 
generic parabolic vector bundles.

Parabolic Hitchin pairs and the Hitchin map are analyzed in Section 3. In Section 4 we 
study the geometry of the fibers of the Hitchin map corresponding to singular spectral 
curves, usually called the Hitchin discriminant. We prove that the image of the Hitchin 
discriminant can be intrinsically described from the geometry of M(r, α, ξ) as an abstract 



D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070 5
variety. We use this description to prove a Torelli type theorem for the moduli space of 
parabolic vector bundles (Theorem 4.6).

Theorem 1.2. If (X, D) and (X ′, D′) are marked curves of genus at least 4 such that 
M(X, r, α, ξ) ∼= M(X ′, r′, α′, ξ′), then (X, D) ∼= (X ′, D′) and r = r′.

This theorem has already been proved by Balaji, del Baño and Biswas [4] for r = 2 and 
small parabolic weights, in the sense that parabolic stability is equivalent to stability of 
the underlying vector bundle. In contrast, our theorem only assumes that the parabolic 
weights are generic and it is valid for any rank.

Section 5 is devoted to describing the four kinds of “basic transformations” that can be 
applied intrinsically to families of quasi-parabolic vector bundles. The parabolic version 
of the Hecke transformation is described and we analyze the stability of the resulting 
bundles. A presentation for the group T of basic transformations is explicitly described 
and its abstract structure is computed in Proposition 5.8.

T ∼=
(
(Z|D| × Pic(X))/GD

)
� (Aut(X,D) × Z/2Z)

where GD < Z|D| × Pic(X) is a (normal) subgroup isomorphic to (rZ)|D|.
Then, in Section 6 we study the algebra of parabolic endomorphisms. Several classifi-

cation and structure theorems are given. The main result of this section is the description 
of all the possible parabolic vector bundles which share the same Lie algebra bundle of 
traceless parabolic endomorphisms.

Theorem 1.1 is proved through Section 7. As a corollary, in Theorem 7.25 we describe 
the group of automorphisms of the moduli space M(r, α, ξ) as a subgroup of the group 
of basic transformations T described in Section 5, which varies depending on α and ξ. 
The dependence of the group on α and ξ arises from some basic concerns coming from 
fixing the determinant ξ (arithmetic obstructions involving the rank and degree of the 
bundles) and an analysis of the stability chamber of α.

If we examine closely the results leading to the Extended Torelli (Theorem 7.22) and 
the computation of the automorphism group (Theorem 7.25) in Section 7, we observe a 
certain common underlying behavior for all moduli spaces of parabolic vector bundles. 
Basic transformations in T induce all possible isomorphisms between moduli spaces, 
even crossing stability walls. Restricting ourselves to parabolic vector bundles with a 
fixed determinant ξ naturally imposes a condition on the possible applicable basic trans-
formations, leading to a subgroup

Tξ = {T ∈ T |T (ξ) = ξ}

of transformations which preserve the determinant. Nevertheless, in general this group 
does not coincide with the group of automorphisms of the moduli space M(r, α, ξ), as not 
all the transformations preserve α-stability. Some of them induce a wall crossing. If g ≥ 3, 
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wall crossings are 3-birational, in the sense that there are open subsets U ⊂ M(r, α, ξ)
and U ′ ⊂ M(r, α′, ξ) whose respective complements have codimension at least 3 such 
that there is an isomorphism U ∼= U ′. Up to this identification, basic transformations 
T ∈ Tξ induce a birational transformation T : M(r, α, ξ) ��� M(r, α, ξ) which is an 
automorphism of some open subset whose complement has codimension at least 3. We 
will call this kind of maps 3-birational maps.

On the other hand, Boden and Yokogawa [14] proved that if α is full flag the moduli 
space M(r, α, ξ) is rational, so the birational geometry of M(r, α, ξ) is completely in-
dependent on the geometry of (X, D) apart from the dimensional level. Then, it seems 
like the notion of 3-birational maps (and in general k-birational maps) is more natural 
for the study of the moduli space of parabolic vector bundles than the analysis of the 
isomorphisms or general birational maps. In Section 8 we give a precise definition for 
k-birational maps and prove 3-birational versions of the Torelli theorem (8.5) and the 
Extended Torelli theorem (8.10). More particularly, for genus at least 4, we obtain that

Theorem 1.3. If Φ : M(X, r, α, ξ) ��� M(X ′, r′, α′, ξ′) is a 3-birational map then r = r′

and (X, D) ∼= (X ′, D′).

Theorem 1.4. If Φ : M(X, r, α, ξ) ��� M(X ′, r′, α′, ξ′) is a 3-birational map then r = r′

and there is an isomorphism σ : (X, D) −→ (X ′, D′) and a basic transformation T ∈ T
such that

(1) T (ξ) = σ∗ξ′

(2) For every (E, E•) for which Φ is defined, σ∗Φ(E, E•) ∼= T (E, E•)

Then we conclude (Corollary 8.11) that for r > 2 the 3-birational automorphisms of 
M(r, α, ξ) are

Aut3−Bir(M(r, α, ξ)) ∼= Tξ < T

For r = 2, the correspondence between 3-birational maps and basic transformations is not 
1 on 1, as the dualization map can be described alternatively in terms of the tensorization. 
Instead, we obtain a correspondence with the subgroup T +

ξ of basic transformations that 
do not involve the dual and preserve the determinant ξ,

Aut3−Bir(M(2, α, ξ)) ∼= T +
ξ < T

Finally, we aim to describe explicitly the dependency of Aut(M(r, α, ξ)) and the 
isomorphism class of M(r, α, ξ) on the stability parameters α. In section 9 we analyze 
this problem for the concentrated chamber, in which α-stability is (roughly) equivalent 
to stability of the underlying vector bundle. We prove that in this chamber the Hecke 
transformation does never induce an automorphism of M(r, α, ξ), even when combined 
with other basic transformations. The automorphism group is then explicitly described.
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In section 10 we analyze the stability space Δ and the partition in stability chambers. 
Given two systems of weights α and β we consider the problem of determining whether 
all α-stable parabolic vector bundles are also β-stable or, conversely, there exists some 
α-stable parabolic vector bundle which is not β-stable. For the latter case to happen 
there must exist an α-stable parabolic vector bundle (E, E•) admitting a β-destabilizing 
subbundle (F, F•) ⊂ (E, E•), in the sense that for all (F ′, F ′

•) ⊂ (E, E•)

pardegα(F ′, F ′
•)

rk(F ′) <
pardegα(E,E•)

rk(E)

but

pardegβ(F, F•)
rk(F ) ≥

pardegβ(E,E•)
rk(E)

Therefore, the map

Δ R

α′ rk(F ) pardegα′(E,E•) − rk(E) pardegα′(F, F•)

is negative for α and non-negative for β. Thus, if we consider the weights αt = tα+(1 −
t)β, there must exist some t ∈ (0, 1] such that

rk(F ) pardegαt
(E,E•) − rk(E) pardegαt

(F, F•) = 0 (1.1)

This equation defines a hyperplane in Δ, depending only on the numerical data for 
(E, E•) and (F, F•), namely, the degrees deg(E), deg(F ), the ranks rk(E), rk(F ) and 
the parabolic type of (F, F•), say nF . We call a “numerical wall” any hyperplane on Δ
obtained from an equation of the form (1.1) when we range over all possible choices for the 
integers deg(F ), rk(F ) and nF (the rank and degree of E are fixed in our moduli space). 
We say that a “numerical wall” is “geometrical” if there actually exists some parabolic 
vector bundle (E, E•) and a subbundle (F, F•) ⊂ (E, E•) with the correct invariants 
deg(F ), rk(F ) and nF . Numerical and geometrical stability chambers are defined as the 
regions of Δ separated by the numerical or geometrical walls respectively. We will also 
call the geometrical chambers simply stability chambers. We just proved that any two 
different stability chambers are separated by a numerical wall, but it is not clear that 
any numerical wall can be realized into a geometrical one, so a stability chamber can 
contain several numerical chambers.

We prove that there is a finite number of different chambers in Δ and we construct an 
invariant M(r, α, d) classifying the “numerical” stability chambers in Δ. Theorem 10.6
proves that if the genus is big enough then the invariant M(r, α, d) is in correspondence 
with (geometrical) stability chambers in Δ and use it to obtain a computable version of 
the Extended Torelli Theorem 7.22.
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The last section of this paper (section 11) presents some examples, showing that the 
previous results are sharp in the following sense. As we proved that Hecke does not take 
part in any automorphism of M(r, α, ξ) when α is concentrated, it is natural to wonder 
if for any of the presented basic transformations T (pullback, tensorization, dualization 
and Hecke) there exist a (general enough) marked curve (X, D) and a generic system of 
weights such that T induces an automorphism of M(r, α, ξ). We provide an example of 
rank 2, 2 marked points and arbitrary genus for which the composition of Hecke with 
taking the pullback by some σ : X → X induce a nontrivial automorphism of the moduli. 
Moreover, dualization and tensoring induce nontrivial automorphisms, up to the usual 
constraint T (ξ) = ξ.

On the other hand, we can find a system of weights α of rank r > 2 such that the 
combination of Hecke and dualization induces a nontrivial involution of M(r, α, ξ) which 
does not come from an involution of the curve X.

Acknowledgments. This research was funded by MICINN (grants MTM2016-79400-P, 
PID2019-108936GB-C21 and “Severo Ochoa Programme for Centres of Excellence in 
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Framework Programme (Marie Curie IRSES grant 612534 project MODULI). The first 
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Ochoa project. We would like to thank Indranil Biswas for his helpful comments on this 
work and Suratno Basu for useful discussions regarding the proof of Proposition 4.5. We 
would also want to thank the anonymous reviewer for the careful reading and suggestions.

2. Moduli space of parabolic vector bundles

Let X be an irreducible smooth complex projective curve. Let D = {x1, . . . , xn} be a 
set of n ≥ 1 different points of X and let us denote U = X\D.

A parabolic vector bundle on (X, D) is a holomorphic vector bundle E of rank r
endowed with a weighted flag on the fiber E|x over each parabolic point x ∈ D called 
parabolic structure

E|x = Ex,1 � Ex,2 � · · · � Ex,lx � Ex,lx+1 = 0
0 ≤ α1(x) < α2(x) < . . . < αlx(x) < 1

We say that αi(x) is the weight associated to Ex,i. We will denote by α =
{(α1(x), . . . , αlx(x))}x∈D the system of real weights corresponding to a fixed parabolic 
structure. A system of weights is called full flag if lx = r for all parabolic points x ∈ D. We 
will use the simplified notation (E, E•) = (E, {Ex,i}) to denote a parabolic vector bundle.

Equivalently [28], we can describe the parabolic structure as a collection of decreasing 
left continuous filtrations of sheaves on X, one filtration for each parabolic point. More 
precisely, for each x ∈ D, let Ex

α ⊂ E be a subsheaf on X indexed by a real α ≥ 0 such 
that
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(1) For every α ≥ β, Ex
α ⊆ Ex

β

(2) For every α > 0, there exists ε > 0 such that Ex
α−ε = Ex

α

(3) For every α, Ex
α+1 = Ex

α(−x)
(4) Ex

0 = E

If Ex
α is a left continuous filtration, let αi(x) be the i-th weight α ≥ 0 where the filtration 

jumps, i.e., such that for every ε > 0, Ex
α �= Ex

α+ε. Then we can define the parabolic 
structure {Ex,i} at the fiber E|x as the one having parabolic weights {αi(x)} such that

E|x/Ex,i ⊗Ox = E/Ex
αi(x)

Reciprocally, if {Ex,i} is a filtration of the fiber E|x, endowed with weights αi(x), define 
the subsheaves Ex

αi(x) ⊆ E as the ones fitting in the short exact sequence

0 −→ Ex,αi(x) −→ E −→ E/Ex,i ⊗Ox −→ 0

Then take Ex
α = E for αlx(x) −1 ≤ α ≤ α1(x) and Ex

α = Ex
αi(x) for αi−1(x) < α ≤ αi(x). 

Then define Ex
α for α > αlx(x) by the property

Ex
α+1 = Ex

α(−x)

The resulting filtration Ex
α is a parabolic structure at the point x. The relations between 

these two formalisms will be explored further in Section 5. Given a parabolic vector 
bundle (E, E•), we define its parabolic degree as

pardeg(E,E•) = deg(E) +
∑
x∈D

lx∑
i=1

αi(x)(dim(Ex,i) − dim(Ex,i+1))

As we will be working with stability conditions for different systems of weights α, it will 
be useful to denote

wtα(E,E•) =
∑
x∈D

lx∑
i=1

αi(x)(dim(Ex,i) − dim(Ex,i+1))

Similarly, let

pardegα(E,E•) = deg(E) + wtα(E,E•)

We say that a parabolic vector bundle (E, E•) is of type n = (ni(x)) if

ni(x) = dim(Ex,i) − dim(Ex,i+1)

for every i = 1, . . . , lx and every x ∈ D. Then if (E, E•) is of type n, we can write
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wtα(E,E•) =
∑
x∈D

r∑
i=1

αi(x)ni(x)

Notice that the right hand side does only depend on n and α. We will denote it by 
wtα(n).

Let E′ ⊆ E be a proper subbundle of a parabolic vector bundle (E, E•). The parabolic 
structure on E induces a parabolic structure on E′ as follows. For each parabolic point 
x ∈ D, we obtain a filtration by considering the set of subspaces {E′

x,i} = {E′
x ∩ Ex,j}

for j = 1, . . . , lx. The weight α′
i(x) of E′

x,i is taken as

α′
i(x) = max

j
{αj(x) : E′|x ∩ Ex,j = E′

x,i}

Then α′ is a subset of the weights in α. While this would be the “canonical” form of 
the parabolic structure of E′, it will be useful to present it in terms of the original 
system of weights α. In particular, if E′ � E, let us take instead Ẽ′

x,i = E′
x ∩ Ex,i for 

i = 1, . . . , lx. Notice that while these spaces Ẽ′
x,i form a filtration of E′

x, they do not 
constitute a parabolic structure in the canonical sense, as there exists at least one j

such that Ẽ′
x,j = Ẽ′

x,j+1. Nevertheless, we can use this other filtration to compute the 
parabolic degree of (E′, E′

•). In particular, let us define n′ = (n′
i(x)) as follows

n′
i(x) = dim(Ẽ′

x,i) − dim(Ẽ′
x,i+1) = dim(E′

x ∩ Ex,i) − dim(E′
x ∩ Ex,i+1)

Then wtα′(E′, E′
•) = wtα(n′). If (E, E•) is full flag, then 0 ≤ n′

i(x) ≤ 1 for every 
i = 1, . . . , r and every x ∈ D. We say that a subbundle E′ � E of a parabolic vector 
bundle is of type n′ if the induced filtration Ẽ′

• is of type n′.
Given parabolic vector bundles (E, E•) and (F, F•) with systems of weights α and β

respectively, a morphism ϕ : E −→ F is called parabolic (respectively strongly parabolic) 
if it preserves the parabolic structure, i.e., if for every x ∈ D and every i = 1, . . . , lE,x

and j = 1, . . . , lF,x such that αi(x) > βj(x) (respectively αi(x) ≥ βj(x))

ϕ(Ex,i) ⊆ Fx,j+1

We denote by PHom((E, E•), (F, F•)) the sheaf of local parabolic morphisms from 
(E, E•) to (F, F•) and write SPHom((E, E•), (F, F•)) for the subsheaf of strongly 
parabolic morphisms.

In particular, if (E, E•) is a parabolic vector bundle, an endomorphism ϕ : E → E is 
parabolic if for every x ∈ D and every i = 1, . . . , lx

ϕ(Ex,i) ⊆ Ex,i

We denote by PEnd(E, E•) the sheaf of local parabolic endomorphisms of (E, E•). Sim-
ilarly, an endomorphism is strongly parabolic if for every x ∈ D and every i = 1, . . . , r
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ϕ(Ex,i) ⊆ Ex,i+1

We denote by SPEnd(E, E•) the sheaf of strongly parabolic endomorphisms of (E, E•).
The sheaves PHom and SPHom are subsheaves of the sheaf of morphisms Hom and 

they all coincide away from the parabolic points D ⊂ X. Following the notation in [3], 
let T(E,E•),(F,F•) be the torsion sheaf supported in D that fits in the following short exact 
sequence

0 −→ PHom((E,E•), (F, F•)) −→ Hom(E,F ) −→ T(E,E•),(F,F•) −→ 0

Then define t(E,E•),(F,F•) as the rational number such that

rk(E) rk(F )t(E,E•),(F,F•) = dim(T(E,E•),(F,F•))

If α = β, then tE,F only depends on the types n′ and n′′ of (E, E•) and (F, F•)
respectively. More explicitly,

r′r′′tn′′,n′ =
∑
x∈D

∑
i>j

n′′
i (x)n′

j(x)

Observe that if we take n′ = n′′, then (r′)2tn′,n′ is just the dimension of the flag variety 
of type n′. If L is a line bundle over X and (E, E•) is a parabolic vector bundle over 
(X, D), we define the parabolic vector bundle (E, E•) ⊗ L as the one having underlying 
vector bundle E ⊗ L and whose filtrations are given by

(E ⊗ L)x,i = Ex,i ⊗ L

This is a particular simple case of the general concept of tensor product of parabolic 
bundles. The general definition can be found in [9].

Definition 2.1. We say that a quasi-parabolic vector bundle is α-(semi)stable if for every 
proper subbundle E′ � E with the induced parabolic structure

pardegα(E′, E′
•)

rk(E′) <
pardegα(E,E•)

rk(E) (respectively ≤ ) (2.1)

We say that (E, E•) is α-unstable if it is not α-semistable.

Let ξ be a line bundle over X and let α be a system of weights of type n. Let 
M(X, r, α, ξ), or just M(r, α, ξ), be the moduli space of semi-stable parabolic vector 
bundles (E, E•) on (X, D) of rank r with system of weights α and det(E) ∼= ξ. It is a 
complex projective scheme of dimension

dim(M(r, α, ξ)) = (r2 − 1)(g − 1) + r2tn,n
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In particular, observe that if α is full flag, i.e., if n = (1, . . . , 1), then

dim(M(X, r, α, ξ)) = (r2 − 1)(g − 1) + n(r2 − r)
2

Similarly, let M(X, r, α, d), or just M(r, α, d) be the moduli of semistable parabolic 
vector bundles (E, E•) on (X, D) of rank r with system of weights α and deg(E) = d. It 
has dimension

dim(M(r, α, d)) = r2(g − 1) + 1 + r2tn,n

On the other hand, given a subbundle E′ � E, let us denote

s(E′, E) = rk(E′) deg(E) − rk(E) deg(E′)

Reordering the inequality (2.1), we obtain that (E, E•) is α-(semi)stable if and only if 
for every subbundle E′ � E yields

s(E′, E) = rk(E′) deg(E) − rk(E) deg(E′)

> rk(E) wtα(E′, E′
•) − rk(E′) wtα(E,E•) (resp. ≥ )

Moreover, if we give E′ � E the induced parabolic structure from (E, E•), there exists 
a unique parabolic vector bundle (E′′, E′′

• ) fitting in the short exact sequence

0 −→ (E′, E′
•) −→ (E,E•) −→ (E′′, E′′

• ) −→ 0 (2.2)

in the sense that for each α ∈ R, the corresponding α step in each sheaf filtration form 
a short exact sequence and for each α > β the following diagram commutes

0 (E′)xα Ex
α (E′′)xα 0

0 (E′)xβ Ex
β (E′′)xβ 0

In particular, we have

deg(E) = deg(E′) + deg(E′′)

rk(E) = rk(E′) + rk(E′′)

wtα(E,E•) = wtα(E′, E′
•) + wtα(E′′, E′′

• )

Therefore, (E, E•) is α-(semi)stable if and only if

s(E′, E) > rk(E′′) wtα(E′, E′
•) − rk(E′) wtα(E′′, E′′

• ) (resp. ≥ ) (2.3)
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Then if we take (E′′, E′′
• ) fitting in the short exact sequence (2.2) as before, it is of 

type n′′ = (n′′
i (x)), where n′′

i (x) = ni(x) − n′
i(x).

Rewriting the stability condition (2.3) in terms of n′ and n′′, we obtain that (E, E•)
is α-(semi)table if and only if for every n′ and for every subbundle E′ ⊆ E of type n′.

s(E′, E) > rk(E′′) wtα(n′) − rk(E′) wtα(n′′) (resp. ≥ )

Observe that, as rk(E′) =
∑r

i=1 n
′
i(x) for any x ∈ D, then the right hand side does only 

depend on α and n′. Let us denote

smin(α, n′) = r′′ wtα(n′) − r′ wtα(n′′)

where r′ =
∑r

i=1 n
′
i(x) for any x ∈ D and r′′ = r − r′ =

∑r
i=1 n

′′
i (x).

Lemma 2.2. Let l > 0 be an integer. If g ≥ 1 + l
r−1 then for any system of weights α and 

any admissible n′,

smin(α, n′) ≤ r′r′′((g − 1) + tn′,n′′) − l

In particular, if g ≥ 3 or g = 2 and r ≥ 3

smin(α, n′) ≤ r′r′′((g − 1) + tn′,n′′) − 2

Proof. By [3, Lemma 2.5.2] we have

smin(α, n′) − r′r′′tn′,n′′ = r′′ wtα(n′) − r′ wtα(n′′) − r′r′′tn′,n′′ ≤ 0

Moreover, for any 1 ≤ r′ < r

r′r′′(g − 1) − l ≥ (r − 1)(g − 1) − l ≥ 0

so

smin(α, n′) − r′r′′tn′,n′′ ≤ 0 ≤ r′r′′(g − 1) − l �
Moving on with the stability analysis, let

s(n′, E) = min
E′�E

E′ of type n′

s(E′, E)

Then (E, E•) is α-(semi)stable if and only if, for all admissible n′

s(n′, E) > smin(α, n′) (resp. ≥ )



14 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
Let us denote by

Mn′,s(r, α, d) = {(E,E•) ∈ M(r, α, d)|s(n′, E) = s}

Lemma 2.3. Let l > 0 be an integer. Let X be a curve of genus g ≥ 1 + l−1
r−1 and let 

D ⊂ X be a set of points in X. Let α and β be full flag systems of weights of rank r over 
(X, D). Then the set of parabolic vector bundles (E, E•) ∈ M(r, α, d) that are β-unstable 
has codimension at least l in M(r, α, d). In particular, for g ≥ 2, it has codimension at 
least 2 in M(r, α, d).

Proof. An α-stable quasi-parabolic vector bundle (E, E•) is β-unstable if and only if for 
some admissible n′ we have

s(n′, E) < smin(β, n′)

On the other hand, as (E, E•) is α-semistable, then

s(n′, E) ≥ smin(α, n′)

Therefore, (E, E•) is α-stable but β-unstable if and only if

(E,E•) ∈
⋃
n′

∐
smin(α,n′)≤s<smin(β,n′)

Mn′,s(r, α, d)

As this is a finite union of subschemes, it is enough to prove that the complement 
of each component has codimension at least l. By Lemma 2.2, for every n′ and every 
s < smin(β, n′) we have

s < smin(β, n′) ≤ r′r′′((g − 1) + tn′,n′′) − (l − 1) ≤ r′r′′((g − 1) + tn′,n′′)

Therefore, we can apply [3, Theorem 1.4.1] and we know that either Mn′,s(r, α, d) is 
empty or it has codimension

δn′,s = r′r′′((g − 1) + tn′,n′′) − s ≥ r′r′′((g − 1) + tn′,n′′) − smin(β, n′) + 1

Applying again Lemma 2.2 we obtain that for g ≥ 1 + l−1
r−1 we have δn′,s ≥ l. �

Corollary 2.4. Under the same hypothesis as the previous lemma, if g ≥ 1 + l−1
r−1 and ξ

is any line bundle over X then the set of parabolic vector bundles (E, E•) ∈ M(r, α, ξ)
that are β-unstable has codimension at least l in M(r, α, ξ).

Proof. Let Sd � M(r, α, d) be the subset of parabolic vector bundles (E, E•) that are 
α-stable but β-unstable. For each line bundle ξ of degree d, let
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Sξ = Sd ∩M(r, α, ξ)

Let ξ, ξ′ ∈ Picd(X). Then, there exists a line bundle L ∈ J(X) such that Lr = ξ′ ⊗ ξ−1. 
As tensoring with a line bundle preserves stability, it is clear that (E, E•) ∈ Sξ if and 
only if (E, E•) ⊗L ∈ Sξ′ . Therefore, Sξ ∼= Sξ′ for every ξ and ξ′. Similarly, for every ξ and 
ξ′, M(r, α, ξ) is isomorphic to M(r, α, ξ′). Therefore, we conclude that the codimension 
of Sξ in M(r, α, ξ) is the same as the codimension of Sd in M(r, α, d), which is at least 
l by the previous Lemma. �

In particular, applying the previous Corollary to β = 0 yields

Corollary 2.5. Let g ≥ 1 + l−1
r−1 . If ξ is any line bundle over X, then the set of parabolic 

vector bundles (E, E•) ∈ M(r, α, ξ) whose underlying vector bundle E is unstable has 
codimension at least l in M(r, α, ξ). In particular, for g ≥ 2 it has codimension at least 2.

Corollary 2.6. Let g ≥ 1 + l−1
r−1 . Let ξ be any line bundle over X and α any full flag system 

of weights. Let Mss-vb(r, α, ξ) ⊂ M(r, α, ξ) be the open nonempty subset parameterizing 
parabolic vector bundles (E, E•) whose underlying vector bundle E is semistable. Then 
the forgetful map

p : Mss-vb(r, α, ξ) −→ M(r, ξ)

is dominant.

Proof. By the previous Corollary, Mss-vb(r, α, ξ) is a open subset of M(r, α, ξ), so 
dim(Mss-vb(r, α, ξ)) = dim(M(r, α, ξ)) = dim(M(r, ξ)) + n r2−r

2 . Let S be the image 
of p. For every E ∈ S, the fiber p−1(E) is contained in the space of flags over E|x for 
every x ∈ D, so dim(p−1(E)) ≤ n r2−r

2 for every E ∈ S. Therefore

dim(M(r, ξ)) + n
r2 − r

2 = dim(Mss-vb(r, α, ξ)) = dim(p−1(S)) ≤ dim(S) + n
r2 − r

2

So dim(S) = dim(M(r, ξ)). As the latter, is irreducible, S = M(r, ξ). �
Now, we recall the notions of “generic” and “concentrated” systems of weights as 

described in [1]. Given a set S and an integer k, let Pk(S) denote the set of subsets of 
size k of S. For each 0 < r′ < r, each map I : D → Pr′({1, . . . , r}) and each integer 
−nr2 ≤ m ≤ nr2, let

AI,m =

⎧⎨⎩α : r′
∑
x∈D

r∑
i=1

αi(x) − r
∑
x∈D

∑
i∈I(x)

αi(x) = m

⎫⎬⎭
If we denote by Ir′ the set of possible maps I : D → Pr′({1, . . . , r}), let
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A =
r−1⋃
r′=1

⋃
I∈Ir′

nr2⋃
m=−nr2

AI,m

We say that a full flag system of weights α over (X, D) is generic if α /∈ A. By [1, Corollary 
2.3], then there are no strictly semistable parabolic vector bundles and M(r, α, ξ) is a 
smooth rational variety [14, Theorem 6.1].

A full flag system of weights α = {(α1(x), . . . , αr(x))}x∈D is said to be concentrated 
if αr(x) − α1(x) < 4

nr2 for all x ∈ D. By [1, Proposition 2.6], if deg(E) and rk(E) are 
coprime and α is a full flag concentrated system of weights then for every parabolic 
vector bundle (E, E•) over (X, D) the following are equivalent

(1) E is semistable as a vector bundle
(2) E is stable as a vector bundle
(3) (E, E•) is α-semistable as a parabolic vector bundle
(4) (E, E•) is α-stable as a parabolic vector bundle

We introduce some extension results that will be needed later on.

Lemma 2.7. Let k > 0. Suppose that g ≥ 2k + 2. Let (E, E•) be a generic stable 
parabolic vector bundle. Then for any effective divisor F of degree k and any sheaf 
F ↪→ End0(E)(F ) such that the quotient is supported on a finite set of points we have

H0(F) = 0

Proof. By [7, Lemma 2.2], there exists an open subset U ⊂ M(r, ξ) such that for every 
E ∈ U we have H0(End0(E)(F )) = 0. By Corollary 2.5, for g ≥ 2k + 2 > 2, parabolic 
vector bundles (E, E•) whose underlying vector bundle E is semistable form a nonempty 
open subset of the moduli space Mss-vb(r, α, ξ) ⊂ M(r, α, ξ). Consider the preimage of 
U by the forgetful morphism

p : Mss-vb(r, α, ξ) −→ M(r, ξ)

Therefore, for every (E, E•) ∈ p−1(U), H0(End0(E)(F )) = 0. Let F ⊂ End0(E)(F ) be 
any subsheaf whose quotient is supported on a finite set of points. Let s ∈ H0(F). As 
F ↪→ End0(E)(F ), taking the image, s induces a section s ∈ H0(End0(E)(F )), so we 
have s = 0. Let V = X\ supp(End0(E)(F )/F). Then s|V = 0. As End0(E)(F ) is torsion 
free, F is itself torsion free and then s = 0. Finally, by Corollary 2.6, p is dominant, so 
p−1(U) is an open nonempty set of M(r, α, ξ). �
Lemma 2.8. Let M be a smooth complex scheme and let U be an open subset whose 
complement has codimension at least 2. Let (E , E•) be a family of parabolic vector bundles 
over (X, D) parameterized by U . If (E , E•) admits an extension to M × X, then the 
extension is unique.
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Proof. Let (F1, F1
• ) and (F2, F2

• ) be families of parabolic vector bundles over (X, D)
parameterized by M extending (E , E•). Then F i are vector bundles over M×X and F i

x,j

are vector bundles over M × {x} extending E and Ex,j respectively.
If the codimension of M\U in M is at least 2, then

codim(M × {x}\U × {x},M × {x}) ≥ 2
codim(M ×X\U ×X,M ×X) ≥ 2

As M × {x} and M × X are smooth varieties, they are Serre S2 varieties, so given a 
vector bundle over U ×{x}, or U ×X, if there exists an extension as a vector bundle to 
M × {x} or M ×X respectively, then the extension is unique. Therefore, F1 = F2 and 
F1

x,j = F2
x,j for every x ∈ D and every j = 1, . . . , r, so the extension of the parabolic 

vector bundle is unique. �
Finally, we will briefly explain the notion of parabolic projective bundle. The filtration 

Ex,i of E|x describing a parabolic structure on a vector bundle E defines a filtration by 
projective subspaces P (Ex,i) of P (E|x). Given a parabolic vector bundle (E, E•), we 
define its projectivization as the projective bundle P (E) endowed with the following full 
flag of projective subspaces over each parabolic point x ∈ D

P (E)|x = P (Ex,1) � P (Ex,2) � · · · � P (Ex,r)

In general, we define a parabolic projective bundle as a projective bundle P over X
endowed with a full flag of affine spaces over each parabolic point x ∈ D

P |x = Px,1 � Px,2 � · · · � Px,r

Lemma 2.9. Let X be a smooth complex projective curve and let D be a reduced effective 
divisor over X. Then every parabolic projective bundle (P , P•) admits a reduction to a 
parabolic vector bundle (E, E•)

(P ,P•) ∼= (P (E),P (E•))

Moreover, if (E, E•) and (E′, E′
•) are any two reductions, there exists a line bundle L

over X such that

(E′, E′
•) ∼= (E,E•) ⊗ L

Proof. Let P be the parabolic subgroup of GL(r, C) consisting on upper triangular 
matrices. Let G be the group scheme over X given by the following short exact sequence.

0 → G → GL(r,C) ×X → (GL(r,C)/P ) ⊗OD → 0
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Let PG = G/C∗. A projective parabolic bundle is a PG-torsor and the reductions are 
reductions of structure sheaf to G. From the short exact sequence

1 −→ O∗
X −→ G −→ PG −→ 1

we deduce that the obstruction for the existence of G-reductions of a PG-torsor is given 
by H2(X, O∗

X) = 0. On the other hand, as O∗
X belong to the center of G, the space 

of reductions of a PG-torsor to G is a torsor for the group H1(X, O∗
X). Every element 

in H1(X, O∗
X) corresponds to a line bundle over X and it is clear that for every line 

bundle L

P ((E,E•) ⊗ L) = P (E,E•)

so we conclude that all the reductions are related by tensorization with a line bundle. �
We conclude this section with a digression about (l, m)-stability for parabolic vector 

bundles.

Definition 2.10. A parabolic vector bundle (E, E•) is (l, m)-(semi)stable if for every sub-
bundle F with the induced parabolic structure

pardeg(F, F•) + l

rk(F ) <
pardeg(E,E•) −m

rk(E) (respectively, ≤ )

Lemma 2.11. Let k > 0 be an integer. Assume that

g ≥ m + l + 1 + l + k

r − 1

Then the (l, m) stable bundles form a nonempty Zariski open subset of M(r, α, ξ) such 
that its complement has codimension at least k. In particular, for g ≥ m + 2l + 2, then 
the locus of (l, m) stable bundles is nonempty for any rank.

Proof. First of all, let us prove that under that genus condition, the (l, m) stable 
parabolic vector bundles form a nonempty Zariski open subset of M(r, α, d) whose com-
plement has codimension at least k.

The proof of this first part is completely analogous to the proof of [3, Proposition 2.7]. 
For the convenience of the reader, we outline the main computations here.

Let (E, E•) be a stable parabolic vector bundle which fails to be (l, m)-stable. Then, 
there exists a subbundle E′ of rank r′ and degree d′ with the induced parabolic structure 
and weight multiplicities 0 ≤ n′

i(x) ≤ 1 such that

d′ + wt(E′, E′
•) + l ≥ d + wt(E,E•) −m (2.4)
r′ r
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Let (E′′, E′′
• ) be the parabolic vector bundle fitting in the sequence

0 −→ (E′, E′
•) −→ (E,E•) −→ (E′′, E′′

• ) −→ 0

Then E′′ has rank r′′ = r − r′, degree d′′ = d − d′ and E′′
• is the induced parabolic 

filtration, which has weight multiplicities n′′
i (x) = 1 − n′

i(x). For simplicity in the equa-
tions, let us denote by wt, wt′ and wt′′ the parabolic weight wt(E, E•), wt(E′, E′

•) and 
wt(E′′, E′′

• ) respectively. Then wt = wt′ + wt′′. Reordering the factors in equation (2.4)
and substituting r, d and wt in terms of (E′, E′

•) and (E′′, E′′
• ) yields

(d′ + d′′)r′ − d′(r′ + r′′) ≤ (r′ + r′′) wt′ −r′(wt′ + wt′′) + mr′ + lr

which is equivalent to

d′′r′ − d′r′′ ≤ r′′ wt′ −r′ wt′′ +mr′ + lr (2.5)

Let h1 = dim PExt1((E′′, E′′
• ), (E′, E′

•)) = h1(PHom((E′′, E′′
• ), (E′, E′

•))). As (E, E•) is 
stable, then h0 = H0(PHom((E′′, E′′

• ), (E′, E′
•)) = 0, so by Riemann-Roch formula

h1 = −χ(PHom((E′′, E′′
• ), (E′, E′

•))) = r′d′′ − r′′d′ + r′r′′(g − 1 + tn′′,n′)

Applying inequality (2.5), we obtain

h1 ≤ r′′ wt′ −r′ wt′′ +mr′ + lr + r′r′′(g − 1 + tn′′,n′)

Finally, let δ be the dimension of the locus of non-(l, m)-stable bundles in M(r, α, d). 
Generically, if (E, E•) is not (l, m)-stable, then parabolic vector bundles (E′, E′

•) and 
(E′′, E′′

• ) constructed before can be found to be stable, so they are elements of the moduli 
spaces M(r′, d′, α′) and M(r′′, d′′, α′′) respectively, where α′ and α′′ are the systems of 
weights induced from α with multiplicities n′ and n′′ respectively. The possible (E, E•)
fitting in the sequence

0 −→ (E′, E′
•) −→ (E,E•) −→ (E′′, E′′

• ) −→ 0

are then bounded by the projectivization of the parabolic Ext1-space, which has dimen-
sion h1 − 1. Then

δ ≤ max
n′

{
dimM(r′, d′, α′) + dimM(r′′, d′′, α′′) + h1 − 1

}
= max

n′

{
(r′)2(g − 1) + 1 + (r′)2tn′,n′ + (r′′)2(g − 1) + 1 + (r′′)2tn′′,n′′

+r′′ wt′ −r′ wt′′ +mr′ + lr + r′r′′((g − 1) + tn′′,n′)

}
(2.6)

From [3, Lemma 2.4.1], we know that
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(r′)2tn′,n′ + (r′′)2tn′′,n′′ + r′r′′tn′′,n′ = r2tn,n − r′r′′tn′,n′′

substituting in the previous equation yields

δ ≤ max
n′

{
(r′ + r′′)2(g − 1) − r′r′′(g − 1) + 1 + r2tn,n
−r′r′′tn′,n′′ + r′′ wt′ −r′ wt′′ +mr′ + lr

}

By [3, Lemma 2.5.2], we have

−r′r′′tn′,n′′ + r′′ wt′ −r′ wt′′ ≤ 0

Therefore, taking into account that dimM(r, α, d) = r2(g − 1) + 1 + r2tn,n we obtain

δ ≤ dimM(r, α., d) − min
r′

{r′r′′(g − 1) −mr′ − lr}

Then we can guarantee that dimM(r, α, d) − δ ≥ k > 0 whenever

g ≥ 1 + max
r′

mr′ + lr + k

r′r′′

As r′ + r′′ = r and r′ ≥ 1, r′′ ≥ 1, then 1
r′r′′ attains its maximum value when r′ = 1 and 

r′′ = r− 1 or r′ = r− 1 and r′′ = 1. Simultaneously, m
r′′ attains its maximum for r′′ = 1, 

so the maximum of the above expression is attained at r′ = r− 1 and r′′ = 1, leading us 
to the desired bound for the genus

g ≥ m + rl + k

r − 1 + 1 = m + l + 1 + l + k

r − 1

Now, let Sd � M(r, α, d) be the subset parameterizing stable parabolic vector bundles 
(E, E•) ∈ M(r, α, d) which are not (l, m)-stable. Notice that if (E, E•) ∈ Sd, then for 
every degree zero line bundle L, (E, E•) ⊗L ∈ Sd. To prove it, observe that if (E′, E′

•) �
(E, E•) is a subbundle contradicting (l, m)-stability for (E, E•), then (E′, E′

•) ⊗ L �
(E, E•) ⊗L contradicts (l, m)-stability for (E, E•) ⊗L. As the latter is always stable for 
any L, then Sd is invariant by tensorization with line bundles of degree 0.

For every line bundle ξ of degree d, let Sξ = Sd∩M(r, α, ξ). If ξ′ is another line bundle 
of degree d then there exists a line bundle L such that Lr = ξ′⊗ξ−1. Therefore, tensoring 
by L gives us an isomorphism between Sξ and Sξ′ . Then, the fibers of the determinant 
map det : Sd −→ Picd(X) are all isomorphic and, therefore, equidimensional. As the 
same happens with det : M(r, α, d) −→ Picd(X), then we obtain that for every ξ ∈
Picd(X), the codimension of Sξ in M(r, α, ξ) is the same as the codimension of Sd in 
M(r, α, d) and the Lemma follows. �
Lemma 2.12. Let (E, E•) be a (1, 0)-semistable parabolic vector bundle. Let x ∈ D and 
let 1 < k ≤ r be an integer. Let E′

x,k � E|x be any subspace such that
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Ex,k−1 � E′
x,k � Ex,k+1

And let E′
• be the quasi-parabolic structure obtained substituting Ex,k by E′

x,k in E•. 
Then (E, E′

•) is a stable parabolic vector bundle.

Proof. Let F � E be a subbundle. Let F• and F ′
• be the parabolic structures induced 

by E• and E′
• on F respectively. We have

wtx(F ′
•) = wtx(F•) +

(
dim(F |x ∩ E′

x,k) − dim(F |x ∩ Ex,k)
)
(αi(x) − αi−1(x))

As Ex,k+1 ⊆ Ex,k ∩ E′
x,k and Ex,k+1 has codimension one in both Ex,k and Ex,k+1, 

clearly dim(F |x ∩ E′
x,k) ≤ dim(F |x ∩ Ex,k) + 1. Therefore,

wtx(F ′
•) ≤ wtx(F•) + (αk(x) − αk−1(x)) < wtx(F•) + 1

Finally, by (1, 0) semistability yields

pardeg(F, F ′
•)

rk(F ) =
deg(F ) +

∑
x∈D wtx(F ′

•)
rk(F ) <

deg(F ) +
∑

x∈D wtx(F•) + 1
rk(F )

≤ pardeg(E,E•)
rk(E) = pardeg(E,E′

•)
rk(E)

as this holds for every subbundle F , (E, E′
•) is stable. �

3. Parabolic Hitchin pairs

Let L be a line bundle over a complex projective curve X. An L-twisted Hitchin pair 
over X is a pair (E, ϕ) consisting on a vector bundle E over X and a traceless morphism 
ϕ ∈ H0(End0(E) ⊗ L) called the field.

If L is the canonical bundle K, then a K-twisted Hitchin pair is usually known as a 
Higgs bundle and the morphism ϕ is known as the Higgs field.

Given a Hitchin pair (E, ϕ), a subbundle F ⊆ E is said to be ϕ-invariant if

ϕ(F ) ⊆ F ⊗ L

An L-twisted Hitchin pair is called stable (respectively semistable) if and only if for 
every ϕ-invariant proper subbundle 0 �= F � E

μ(F ) < μ(E) (respectively ≤ )

We will denote by ML(r, ξ) the moduli space of semistable L-twisted Hitchin pairs 
of rank r and determinant det(E) ∼= ξ. Notice that by Serre duality, for L = K the 
cotangent space of M(r, ξ) at a stable vector bundle E is
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T ∗
EM(r, ξ) ∼= H1(End0(E))∨ = H0(End0(E) ⊗K) ,

hence, the cotangent bundle of M(r, ξ) lies as a subscheme of the moduli space of semi-
stable Higgs bundles. In fact, it is an open subscheme.

Let us recall the definition of the Hitchin map

H : ML(r, ξ) −→ HL =
r⊕

k=2

H0(X,Lk)

Let S = Tot(L) = Spec Sym•(L−1) be the total space of the vector bundle L. Let 
π : S → X be the projection and let x ∈ H0(S, π∗L) be the tautological section. Let us 
consider the characteristic polynomial of the field ϕ

det(x · Id−π∗ϕ) = xr + s̃1x
r−1 + s̃2x

r−2 + · · · + s̃r

Then there exist unique sections si ∈ H0(X, Li) such that s̃i = π∗si. Note that ϕ is 
traceless by hypothesis, so s1 = 0. The Hitchin map is then built sending each Hitchin 
pair (E, ϕ) to the coefficients of the characteristic polynomial of ϕ

(si)ri=1 ∈
r⊕

i=2
H0(X,Li)

The zeros of the characteristic polynomial det(x ·Id−π∗ϕ) define a curve Xs ⊂ Tot(L)
which is an r-to-1 cover of X. We call it the spectral curve at s ∈ HL.

A parabolic L-twisted Hitchin pair over a pointed curve (X, D) is a parabolic vector 
bundle (E, E•) over (X, D) endowed with an L-twisted strongly parabolic endomorphism 
ϕ ∈ H0(SPEnd0 ⊗L). A K(D)-twisted parabolic Hitchin pair is called a parabolic Higgs 
bundle.

A parabolic L-twisted Hitchin pair (E, E•, ϕ) is called stable (respectively semistable) 
if for every ϕ-invariant proper subbundle 0 �= F � E with the induced parabolic structure

pardeg(F, F•)
rk(F ) <

pardeg(E,E•)
rk(E) (respectively, ≤ )

We denote by ML(r, α, ξ) the moduli space of semistable L-twisted parabolic Hitchin 
pairs. From this point on, we will assume that α is full flag, although the proof of most 
of the lemmas in this section can be adapted to other parabolic types. Similarly to the 
non-parabolic case, by Serre duality if (E, E•) is a stable parabolic vector bundle

T ∗
(E,E•)M(r, α, ξ) ∼= H1(PEnd0(E,E•))∨ = H0(SPEnd0(E,E•) ⊗K(D))

Therefore, the cotangent bundle of the moduli space of stable parabolic vector bundles 
is a subset of the moduli of parabolic Higgs bundles. In fact, it is an open subvariety.
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We can define an analogue of the Hitchin map in the parabolic case by sending each 
parabolic Hitchin pair (E, E•, ϕ) to the characteristic polynomial of ϕ. Nevertheless, as 
the field is assumed to be strongly parabolic, it is nilpotent at the parabolic points, so its 
characteristic polynomial vanishes at D. Moreover, we require the field to be traceless, 
so the independent coefficient of the characteristic polynomial is always zero. Therefore, 
the image of the Hitchin map lies in

H : ML(r, α, ξ) −→ H′
L =

r⊕
i=2

H0(X,Li(−D))

We will be interested in computing the image of the Hitchin map both for the parabolic 
and non-parabolic cases. For non-parabolic Hitchin pairs, the following Lemma holds as 
a consequence of an argument from Beauville, Narasimhan and Ramanan [10]

Lemma 3.1. Let L be a line bundle over X such that r deg(L) > 2g. Then the Hitchin 
map

H : ML(r, ξ) −→
r⊕

k=2

H0(X,Lk)

is surjective.

Proof. By hypothesis deg(Lr) > 2g, so Lr is very ample. Therefore, it admits a section 
τ ∈ H0(X, Lr) with at most simple zeros. Let τ = (0, 0, . . . , τ) ∈

⊕r
k=2 H

0(X, Lk). 
Then Xτ has equation xr + τ = 0. As τ has at most simple zeroes, Xτ is smooth. The 
smoothness condition for families of curves is open, so there is an open nonempty subset 
U ⊆

⊕r
k=2 H

0(X, Lk) such that for every s ∈ U , the spectral curve Xs is smooth.
On the other hand, from [10, Proposition 3.6] there exists a bijection between torsion 

free sheaves of rank 1 over Xs (whose pushforward is automatically a stable pure dimen-
sion sheaf over Tot(L)) and stable Hitchin pairs (E, ϕ) over X such that H(E, ϕ) = s. 
As there always exist rank 1 torsion free sheaves over Xs, for every s ∈ U there exists 
at least a stable Hitchin pair whose image by the Hitchin map is s, so

U ⊆ H(Ms
L(r, ξ)) ⊆

r⊕
k=2

H0(X,Lk)

The set U is Zariski open and nonempty, so it is dense and H is dominant. By [24, 
Theorem 6.1], it is also proper, so it must be surjective. �

Let us prove the parabolic analogue for the Lemma

Lemma 3.2. Suppose that g ≥ 2 and let L be a line bundle over X such that r deg(L) > 2g. 
Then the parabolic Hitchin map
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ML(r, α, ξ) −→
r⊕

k=2

H0(X,Lk(−D))

is dominant.

Proof. Let (E , Φ) be a versal family of traceless semistable Hitchin L-twisted pairs, where 
E −→ M ×X is a vector bundle and Φ : E −→ E ⊗ p∗2L satisfies that for every t ∈ M, 
(Et, Φt) is a semistable Hitchin pair. By the previous corollary, the induced Hitchin map 
h : M −→ HL is surjective. Let

M′ = h−1

(
r⊕

k=2

H0(Lk(−D))
)

Then it is the closed subset of M corresponding to stable pairs whose field is nilpotent at 
every x ∈ D. As the Hitchin map is surjective, its restriction h : M′ −→ H′

L is surjective.
For every x ∈ D, let Fx be the total space of the flag bundle over E|M′×{x}, i.e.

Fx = Tot
(
Fl(E|M′×{x})

)
Let π : Fx � M′ be the projection. Taking the pullback of the versal family to Fx, it 
is a family of triples (E , {Ex,i}, Φ) consisting on a vector bundle, a full flag filtration at 
the point x and a field. Consider the closed subset Hx ⊆ Fx consisting on triples where 
the field preserves the filtration. It is closed by [29, Lemma 4.3] (see [2, Chapter 4] for 
more details). As the characteristic polynomial of Φt : Et → Et ⊗ L annihilates at x, it 
is nilpotent at x and therefore it admits an adapted filtration at x, {Et,x,i} such that

Φt(Et,x,i) ⊆ Et,x,i+1

Therefore, the map Fx −→ M′ is surjective. Now, let

N = Fx1 ×M′ Fx2 ×M′ · · · ×M′ Fxn
� M′

be the fiber product of all Fx over M′ for x ∈ D. Taking the pullback of the families 
defined over Fx for x ∈ D, there is a versal family over N of triples (E , E•, Φ) such 
that (E , E•) is a vector bundle over N × X with a filtration over N × D and Φ ∈
H0(SPEnd0(E, E•) ⊗ p∗2L) such that for every t ∈ N , (Et, Φt) is a stable Hitchin pair.

Let U ⊆ N be the open subset consisting on points t ∈ N such that (Et, Et,•) is a 
stable parabolic vector bundle with respect to the parabolic weights α. By Corollary 2.5, 
there exists at least a filtered vector bundle (E, E•) such that E is stable and (E, E•)
is parabolically stable. Therefore, U is nonempty and thus, dense. Therefore h(U) ⊆
H(ML(r, α, ξ)) is dense in H′

L. �
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Corollary 3.3. Suppose that g ≥ 2. Let U be any nonempty open subset of M(r, α, ξ) and 
let L be a line bundle over X such that r deg(L) > 2g. Then the linear space generated 
by the images of

H(H0(SPEnd0(E,E•) ⊗ L)) �
r⊕

i=2
H0(X,Lk(−D))

when (E, E•) runs over U is 
⊕r

i=2 H
0(X, Lk(−D)).

Proof. Let Mss−vb
L (r, α, ξ) ⊆ ML(r, α, ξ) be the subset of the moduli space of semi-stable 

parabolic Hitchin pairs consisting of pairs whose underlying parabolic vector bundle is 
semi-stable. Let

p(E,E•) : Mss−vb
L (r, α, ξ) −→ M(r, α, ξ)

be the forgetful map and let U = p−1
(E,E•)(U). Then U is an open nonempty subset 

of ML(r, α, ξ), so it is a dense subset. The previous Lemma implies that H is domi-
nant. Therefore, H(U) is dense in 

⊕r
i=2 H

0(X, Lk(−D)), so its linear span is the whole 
space. �

In the case of Higgs bundles, i.e., when L is the canonical bundle K, a classical result 
by Hitchin shows that the Hitchin map becomes a complete integrable system for the 
moduli space of Higgs bundles. In the case of parabolic bundles, we will be interested in 
the following result from Faltings

Lemma 3.4 ([15, V.(ii)]). The parabolic Hitchin map

H : MK(D)(r, α, ξ) −→ H′

is equidimensional.

Then, we can state some additional properties. For simplicity, let us write H′ =
H′

K(D) =
⊕r

k=2 H
0(X, KkDk−1). In order to simplify the notation, through this last part 

of the section let m = dim(M(r, α, ξ)). Then, as we are considering full flag parabolic 
bundles, dim(H′) = m and dim(MK(D)(r, α, ξ)) = dim(T ∗M(r, α, ξ)) = 2m.

Corollary 3.5. Let U ⊆ M(r, α, ξ) be any nonempty open subset. Then the restriction of 
the parabolic Hitchin morphism to the cotangent bundle

HU : T ∗U −→ H′

is dominant.
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Proof. First, observe that as M(r, α, ξ) is irreducible [14], then U is dense in M(r, α, ξ)
for any nonempty open subset of the moduli space, so dim(T ∗U) = dim(T ∗M(r, α, ξ)) =
2m. Suppose that HU is not dominant and let S = Im(HU ) � H′. H′ is irreducible, 
so dim(S) < dim(H′) = m. By the previous Lemma, H : MK(D)(r, α, ξ) → H′ is 
equidimensional, so

dim(H−1(S)) = dim(S) + m < 2m = dim(T ∗U)

However, this contradicts that, by construction, T ∗U ⊆ H−1(S). �
Corollary 3.6. Let U ⊆ T ∗M(r, α, ξ) be any open subset. Then the restriction of the 
parabolic Hitchin morphism to the cotangent bundle

HU : T ∗U −→ H′

is equidimensional.

Proof. Let s ∈ H′. By the Lemma dim(H−1(s)) = m. As H−1
U (s) ⊆ h−1(s), then

dim(H−1
U (s)) ≤ dim(H−1)(s) = m

On the other hand, as dim(T ∗M(r, α, ξ)) = 2m = dim(H′) +m. By the previous corollary 
HU is dominant, so by [18, 3.22], for every s ∈ H′, dim(H−1

U (s)) ≥ m. Therefore, every 
fiber has dimension m. �

In particular, observe that if s ∈ H′ corresponds to a smooth spectral curve Xs, then 
by [17, Lemma 3.2], if π : Xs → X is the covering then the fiber H−1(s) is isomorphic to

Prym(Xs/X) = {L ∈ Pic(Xs)|det(π∗L) ∼= ξ}

which is an irreducible abelian variety of dimension m. Then H−1
U (s) is dense in H−1(s).

In the following chapter, we will be interested in understanding how the geometry of 
H−1

U (s) relates to that of H−1(s) when s does not correspond to a smooth spectral curve. 
We will need the following proposition derived directly from the work of Faltings [15]

Proposition 3.7. Let g ≥ 4. Then the complement of T ∗M(r, α, ξ) in MK(D)(r, α, ξ) has 
codimension at least 3.

Proof. Combine the remark [15, V.(iii)] on Theorem [15, II.6.(iii)] with the codimension 
bound computations in [15, p. 536] and Lemma [15, II.7.(ii)]. Faltings proves that if g ≥ 3
(or g = 2 with some additional constraints) these bounds imply that the codimension 
is at least 2, but the same computations prove that if g ≥ 4 the codimension is at 
least 3. �
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4. Hitchin discriminant and Torelli theorem

Let D � H′ be the divisor of the Hitchin space consisting of characteristic polynomials 
whose corresponding spectral curve is singular. We call H−1(D) the Hitchin discriminant. 
In order to simplify the notation, from now on let us write H′ = W and let us write

H : MK(D)(r, α, ξ) → W

H0 = HT∗M(r,α,ξ) : T ∗M(r, α, ξ) −→ W

Proposition 4.1. Assume that g ≥ 2. Then the divisor D has at most n + 1 irreducible 
components, which can be described as follows.

(1) For each parabolic point x ∈ D, let Dx be the set of characteristic polynomials whose 
spectral curve is singular over x.

(2) Let DU be the set of characteristic polynomials whose spectral curve is singular, 
but it is smooth over each x ∈ D. And let DU � DU be the set of characteristic 
polynomials whose spectral curve is singular over some y /∈ D (but not necessarily 
smooth over D).

Then

D = DU ∪
⋃
x∈D

Dx

Proof. It becomes clear that for every s ∈ D, the corresponding singular curve Xs is 
either singular over some parabolic point x ∈ D or it is smooth at the parabolic points 
x ∈ D and it is singular over some point in U = X\D. Therefore, D = DU ∪

⋃
x∈D Dx

and it is enough to prove that each element in the decomposition is irreducible.
Let us denote by X0 ⊂ Tot(KD) the image of X in the total space of KD given by 

the zero section of the line bundle. If a spectral curve Xs is singular over x ∈ D, it has a 
singular point precisely at (x, 0) ∈ X0. A spectral curve Xs has a singularity over X0 at 
(y, 0) if and only if the characteristic polynomial ps(z, t) = tr +

∑r
k=1 sk(z)tr−k satisfies 

the following properties

(1) sr(z) ∈ H0(KrDr) annihilates of order at least 2 at z = y, i.e., sr ∈ H0(KrDr(−2y))
(2) sr−1(z) ∈ H0(Kr−1Dr−1) annihilates at z = y, i.e., sr−1 ∈ H0(Kr−1Dr−1(−y))

As s = (s2, . . . , sr) ∈ W , we already know that

sr−1 ∈ H0(Kr−1Dr−2) ⊆ H0(Kr−1Dr−1(−x))

and sr ∈ H0(KrDr−1), so the points in Dx are precisely those with sr ∈
H0(KrDr−1(−x)). Therefore
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Dx =
r−1⊕
k=2

H0(KkDk−1) ⊕H0(KrDr−1(−x))

is irreducible for every x ∈ D.
On the other hand, let Xs be a spectral curve with a singularity over some y /∈ D. 

Suppose that (y, t∗0) ∈ Xs ⊂ Tot(KD) is the singular point. Assume that r > 2. As 
y /∈ D and K is base point free (g ≥ 2), then by identifying H0(K) with the space 
of sections of KD which annihilate at D we can find a section t0 ∈ H0(K) such that 
t0(y) = t∗o. Then the curve defined by the polynomial pt0s (z, t) = ps(z, t − t0) is singular 
at the point (y, 0), but smooth over every point x ∈ D. Set st0 = (st0i ) as

pt0s (z, t) = (t− t0(z))r +
∑
k>0

sk(z)(t− t0(z))r−k = tn +
r∑

k=1

st0k (z)tr−k

More precisely, we have

st0k =
(
r

k

)
(−t0)⊗k +

∑
1≤j<k

(
r − j

r − k

)
sj ⊗ (−t0)⊗k−j ∈ H0(KkDk−1)

As Xst0 is singular at y /∈ D, but smooth at every x ∈ D, then applying the previous 
criterion yields

st0 ∈
r−2⊕
k=1

H0(KkDk−1) ⊕H0(Kr−1Dr−2(−y))

⊕
(
H0(KrDr−1(−2y)\

⋃
x∈D

H0(KrDr−1(−2y − x))
)

:= Ry

Observe that if g ≥ 2 and r > 2 then deg(Kr−1Dr−1) = (r − 1)(2g − 2 + |D|) > 3. 
Therefore, for any divisor N with 0 ≤ deg(N) ≤ 3 we have

deg(K1−rD1−r(N)) = − deg(Kr−1Dr−1) + deg(N) < −3 + deg(N) ≤ 0

Therefore, h0(K1−rD1−r(N)) = 0 and, using Riemann-Roch theorem

h0(KrDr−1(−N)) = deg(KrDr−1) − deg(N) + 1 − g + h0(K1−rD1−r(N))

= deg(KrDr−1) + 1 − g − deg(N)

Then h0(KrDr−1(−N)) = h0(KrDr−1) − deg(N). Therefore, the last summand in the 
expression of Ry is the complement of an hyperplane in H0(KrDr−1(−2y)) so, in par-
ticular, Ry is irreducible and nonempty.
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Observe that as the polynomials in W have s1 = 0, then st01 = −rt0. Therefore, given 
any point s′ ∈ Ry, we can obtain a point in DU taking

s = (s′)s
′
1/r

Therefore, for every y /∈ D we obtain a map from Ry to DU and for every element in 
DU there exists an element in Ry mapping to it for some y /∈ D. Then, we can build the 
following variety

R :=
∐
x/∈D

Ry � (X\D) ×W

Let us prove that R is irreducible. Let R′ be the subbundle of (X\D) ×W whose fiber 
over y /∈ D is

r−2⊕
k=1

H0(KkDk−1) ⊕H0(Kr−1Dr−2(−y)) ⊕H0(KrDr−1(−2y) � W

Moreover, for every x ∈ D, let Rx � R′ be the subbundle of R′ whose fiber over y /∈ D

is

r−2⊕
k=1

H0(KkDk−1) ⊕H0(Kr−1Dr−2(−y)) ⊕H0(KrDr−1(−2y − x) � R′
y

Then we can write

R = R′\
⋃
x∈D

Rx

As Rx are subbundles of R, then R is irreducible. Finally, the maps Ry −→ DU induce 
a well defined surjective map

R −→ DU

Therefore DU is irreducible. Moreover, from construction we obtain that R′ −→ DU is 
also surjective, so DU is also irreducible.

It remains to consider the case r = 2, but in that case we have simply W = H0(K2D). 
Then the spectral curve corresponding to a point s = s2 ∈ W has equation t2+s2(z) = 0. 
Therefore, it has a singularity over y /∈ D if and only if s2 annihilates of order at least 2 
in y, i.e., for s2 ∈ H0(K2D(−2y)). Then

D =
⋃

H0(K2D(−2y)) ∪
⋃

H0(K2D(−x))

y/∈D x∈D



30 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
As g ≥ 2, the first union is the image of the subbundle R′ ↪→ U ×W whose fiber over 
y ∈ U is H0(K2D(−2y)) under the projection map

R′ ↪→ U ×W
pW� W

so it is irreducible and corresponds to DU . �
Proposition 4.2. Suppose that g ≥ 4. Then for s ∈ W\D the fiber H−1

0 (s) is an open 
subset of an abelian variety. For a generic s in each irreducible component of D the fiber 
H−1

0 (s) contains a complete rational curve.

Proof. By [17, Lemma 3.2], if Xs is smooth and π : Xs → X is the covering then the 
fiber H−1(s) is isomorphic to

Prym(Xs/X) = {L ∈ Pic(Xs)|det(π∗L) ∼= ξ}

which is an abelian variety.
On the other hand, if s ∈ DU is generic then Xs has a unique singularity which is a 

node not lying over a parabolic point. By [8, Theorem 4] the fiber H−1(s) is an uniruled 
variety. More precisely, it is birational to a P 1-fibration over the Jacobian J(X̃s), where, 
X̃s is the normalization of Xs.

Let Z =
(
MK(D)(r, α, ξ)\T ∗M(r, α, ξ)

)
∩H−1(DU ). By Proposition 3.7, for g ≥ 4, the 

complement MK(D)(r, α, ξ)\T ∗M(r, α, ξ) has codimension at least 3. Therefore, Z has 
codimension at least 2 in H−1(DU ). Let S = H

(
MK(D)\T ∗M(r, α, ξ)

)
. Let m = dimH′

and assume that dim(S) < m − 1. Then for any s ∈ DU\S we have H−1
0 (s) = H−1(s)

and the fiber contains a complete rational curve.
Now, let us suppose that dim(S) = m −1. Then Z −→ DU is dominant and, therefore, 

the generic fiber has dimension dim(Z) −dim(DU ) ≤ m −2. In other words, for a generic 
s ∈ DU , Z ∩ H−1(s) has codimension at least 2 in H−1(s). As the latter is uniruled 
and we are only taking away a codimension 2 set, then there exists at least a complete 
rational curve in H−1

0 (s).
It is only left to prove that a generic fiber over Dx contains a complete rational curve. 

As g ≥ 4, let U � M(r, α, ξ) be the intersection of the open nonempty subsets defined by 
Lemma 2.7 and Lemma 2.11 for (l, m) = (1, 0). It parameterizes (1, 0) stable parabolic 
vector bundles (E, E•) such that H0(PEnd0(E, E•)(x0)) = 0.

Then for every (E, E•) ∈ U and every x ∈ D we have

H1(SPEnd0(E,E•) ⊗K(D − x)) = H0(SPEnd0(E,E•)(x))∨ = 0

so the evaluation morphism

ev : H0(SPEnd0(E,E•) ⊗K(D)) −→ SPEnd0(E,E•) ⊗K(D)|x

is surjective.
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For 1 < k ≤ r, let Nk(E, E•) � SPEnd0(E, E•) ⊗K(D)|x be the subspace of matrices 
with a zero in position (k − 1, k). For k = 1, let Ni(E, E•) be the subspace of matrices 
with a zero in position (r, 1). Let Ñk(E, E•) be the preimage of Ni under the evaluation 
map. For k �= 1, we can describe Ñk(E, E•) as follows. Let Ek

• be the subfiltration of E
obtained removing the element Ex,k. Then

Ñk(E,E•) = H0(SPEnd0(E,Ek
• ) ⊗K(D))

Let (E, E•, ϕ) ∈ H−1(Dx) ∩ T ∗U . Let z be a coordinate on X around the parabolic 
point x ∈ D. Then, locally, ϕ can be written as

ϕ(z) =

⎛⎜⎜⎜⎜⎝
za11 a12 · · · a1r
za21 za22 · · · a2r

...
...

. . .
...

zar1 zar2 · · · zarr

⎞⎟⎟⎟⎟⎠
Where aij are local sections of K(D) and ϕ is expressed in a basis which is adapted 
to the parabolic filtration. Then (E, E•, ϕ) ∈ H−1(Dx) if and only if z2| det(ϕ(z)). 
Nevertheless, if we express the determinant as a sum of products of elements of the 
matrix above it becomes clear that the only summand that is not a multiple of z2 is 
precisely zar1a12a23 · · · ar−1,r. Therefore, the determinant is a multiple of z2 if and only 
if at least one of the elements ar1, or ak−1,k annihilates at z = 0 for some k > 1. This 
is equivalent to ask ev(ϕ) ∈ Nk for some 1 ≤ k ≤ r. As the evaluation map is surjective 
for every parabolic vector bundle in U , we conclude that for every (E, E•) ∈ U

H−1(Dx) ∩ T ∗
(E,E•)M(r, α, ξ) =

r⋃
k=1

Ñk(E,E•)

Let Ñk =
⋃

(E,E•)∈U Ñk(E, E•). By construction dim(Ñk) = dim(2M(r, α, ξ) − 1). As-
sume that (E, E•, ϕ) ∈ Ñk for some k > 1. By Lemma 2.12, for every (E, E•) ∈ U , 
every x ∈ D, every 1 < k ≤ r and every E′

x,k such that Ex,k−1 � E′
x,k � Ex,k+1 then 

(E, E′
•) is a stable parabolic vector bundle. Moreover, as ϕ sends Ex,k−1 to Ex,k+1, then 

ϕ ∈ H0(SPEnd0(E, E′
•) ⊗ K(D)) for every choice of E′

x,k. Therefore, for every E′
x,k, 

(E, E′
•, ϕ) ∈ H−1

0 (Dx). As E and ϕ do not change, all those Higgs bundles lie over the 
same point of the Hitchin map. The space of possible compatible steps in the filtration 
is parameterized by P 1, so they form a complete rational curve in T ∗M(r, α, ξ).

Therefore, the image of the complete rational curves contains H(Ñk) ⊆ Dx for every 
k > 1. Then it is enough to prove that the image is dense for some k > 1. Assume 
that H(Ñk) is not dense. Let S = H(Ñk) and m = dim(M(r, α, ξ)). Then dim(S) <
dim(Dx) = m − 1. By equidimensionality of H0, dimH−1

0 (S) = m + dim(S) < 2m − 1 =
dim(Ñk), but Ñk ⊆ H−1

0 (S). �
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Lemma 4.3. Let R ⊂ T ∗M(r, α, ξ) be the union of the complete rational curves in 
T ∗M(r, α, ξ). Then D is the closure of H0(R) in W .

Proof. Let P 1 ↪→ T ∗M(r, α, ξ) be a complete rational curve. Composing with the Hitchin 
map, we obtain a morphism

P 1 ↪→ T ∗M(r, α, ξ) −→ W

from P 1 to an affine space, so it is constant. Therefore, each complete rational curve 
must be contained in a fiber of the Hitchin morphism.

Let s ∈ W\D. By the previous Proposition 4.2, H−1
0 (s) is an open subset of an abelian 

variety, so it does not admit any nonconstant morphism from P 1. Therefore, there is no 
complete rational curve over W\D. Then, by the second part of the Proposition 4.2, we 
know that for every irreducible component of D, a generic fiber contains a rational curve. 
Therefore, H0(R) is dense in D and, as D is closed in W , D = R. �
Proposition 4.4. The global algebraic functions Γ(T ∗M(r, α, ξ)) produce a map

h̃ : T ∗M(r, α, ξ) −→ Spec(Γ(T ∗M(r, α, ξ))) ∼= W ∼= Cm

which is the parabolic Hitchin map up to an isomorphism of Cm, where m = dimW . 
Moreover, consider the action of C∗ on T ∗M(r, α, ξ) given by dilatation on the fibers. 
Then there is a unique C∗ action on W such that h̃ is C∗-equivariant, i.e., such that

h̃(E,E•, λϕ) = λ · h̃(E,E•, ϕ)

Proof. The Hitchin map

H : MK(D)(r, α, ξ) −→ W

is projective and has connected fibers (see, for example, [1, Lemma 3.1 and Lemma 3.2]). 
Then each holomorphic function f : MK(D)(r, α, ξ) −→ C factors through W and, as 
W is affine, we obtain that

Spec(Γ(MK(D)(r, α, ξ)) ∼= Spec(Γ(W )) ∼= W

Let f : T ∗M(r, α, ξ) −→ C. By [15, V.(iii)], we know that the codimension of the com-
plement of T ∗M(r, α, ξ) in MK(D)(r, α, ξ) is at least 2. As α is generic, MK(D)(r, α, ξ)
is smooth. Therefore, by Hartog’s theorem f extends to a holomorphic function f :
MK(D)(r, α, ξ) −→ C, so we conclude that Γ(T ∗M(r, α, ξ)) = Γ(MK(D)(r, α, ξ)). There-
fore, we obtain a map

h̃ : T ∗M(r, α, ξ) −→ Spec(Γ(T ∗M(r, α, ξ))) ∼= W
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The C∗ action on the cotangent bundle then descends to a unique action on 
Spec(Γ(T ∗M(r, α, ξ))) making h̃ a C∗-equivariant map. �

The previous Lemma allow us to recover the Hitchin map canonically with the corre-
sponding C∗ action up to an automorphism of the Hitchin space. The C∗ action stratifies 
the space W in subspaces corresponding to the elements whose rate of decay is at least 
|λ|k for each k = 2, . . . , r. Observe that, at first, the C∗ action only allows us to recover 
a filtration of W , but, in particular, we can recover uniquely the subspace of maximal 
decay |λ|r, which corresponds to

Wr = H0(KrDr−1) � W

In general, for k > 1, let Wk = H0(KkDk−1). Let

hk : H0(SPEnd0(E) ⊗KX(D)) → Wk

be the composition of the Hitchin map H : H0(SPEnd0(E) ⊗ KX(D)) → W with the 
projection W � Wk.

Proposition 4.5. The intersection C := D ∩Wr � Wr has n + 1 irreducible components

C = CX ∪
⋃
x∈D

Cx

As r ≥ 2, the linear series |KrDr−1| is very ample and induces an embedding X ⊂
P (W ∗

r ). Then P (CX) ⊂ P (Wr) is the dual variety of X ⊂ P (W ∗
r ) and for each x ∈ D, 

P (Cx) ⊂ P (Wr) is the dual variety of x ↪→ X ⊂ P (W ∗
r ).

Proof. A spectral curve Xs corresponding to a point s = sr ∈ H0(KrDr−1) has equation 
tr + sr(z) = 0. Therefore, it is singular precisely at the points (z, t) = (x, 0) where x is 
a zero of order at least 2 of sr. Observe that the equation is an equation on the points 
of the total space of KD so, as in previous lemmata, here we are considering sr as a 
section of KrDr. Therefore, s ∈ C if and only if sr ∈ H0(KrDr(−2x) for some x ∈ X. 
As we already know that sr ∈ H0(KrDr−1) we have two possible cases

(1) sr ∈ H0(KrDr−1(−2x)) for some x /∈ D

(2) sr ∈ H0(KrDr−1(−x)) for some x ∈ D

Therefore, we can write

C =
⋃
x∈U

H0(KrDr−1(−2x)) ∪
⋃
x∈D

H0(KrDr−1(−x))

=
⋃
x∈X

H0(KrDr−1(−2x)) ∪
⋃
x∈D

H0(KrDr−1(−x))



34 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
Let us denote

CX =
⋃
x∈X

H0(KrDr−1(−2x))

Cx = H0(KrDr−1(−x)) x ∈ D

In the proof of Proposition 4.1 we already proved that CX and, obviously, Cx are irre-
ducible for every x ∈ D. Moreover, for g ≥ 2, the Riemann-Roch computations carried 
out in the proof of Proposition 4.1 imply that CX and Cx have both codimension 1 in 
Wr and they are distinct, so they are precisely the irreducible components of D.

For the second part of the Proposition, observe that if X ⊆ P (W ∗
r ) is the embedding 

given by the linear system |KrDr−1|, then the set of hyperplanes in P (W ∗
r ) which are tan-

gent to X at x ∈ X is precisely P (H0(KrDr−1(−2x))). Therefore, the dual variety of X is 
P (CX) ⊂ P (Wr). Furthermore, for every x ∈ D, the dual variety of x ⊂ P (W ∗

r ) identifies 
with the set of hyperplanes passing through x, which is precisely P (H0(KrDr−1(−x))). 
Therefore, we conclude that the dual of x ⊂ P (W ∗

r ) is P (Cx) ⊂ P (Wr). �
Notice that for every x ∈ D, P (Cx) is the dual variety of a point and P (CX) is the 

dual variety of a compact Riemann surface so, P (CX) � P (Cx) for all x ∈ X. For every 
x ∈ D, Cx ⊂ Wr is an hyperplane. In particular, this allows us to identify canonically 
CX inside C as the only irreducible component that is not an hyperplane in Wr.

Theorem 4.6 (Torelli theorem). Let (X, D) and (X ′, D′) be two smooth projective curves 
of genus g ≥ 4 and g′ ≥ 4 respectively with set of marked points D ⊂ X and D′ ⊂ X ′. 
Let ξ and ξ′ be line bundles over X and X ′ respectively, and let α and α′ be full flag 
generic systems of weights over (X, D) and (X ′, D′) respectively. Then if M(X, r, α, ξ)
is isomorphic to M(X ′, r′, α′, ξ′) then r = r′ and (X, D) is isomorphic to (X ′, D′), i.e., 
there exists an isomorphism X ∼= X ′ sending D to D′.

Proof. In order to simplify the notation, let M = M(X, r, α, ξ) and M′ = M(X ′, r′,
α′, ξ′). First, let us prove that r = r′. If Φ : M ∼−→ M′ is an isomorphism, then there 
is an isomorphism d(Φ−1) : T ∗M ∼−→ T ∗M′ which is C∗ equivariant for the standard 
dilation action. By Proposition 4.4, there exist unique C∗ actions · and ·′ on Γ(T ∗M)
and Γ(T ∗M′) respectively that are compatible with the dilation on the fibers. Therefore, 
there must exist an algebraic C∗-equivariant isomorphism f : Γ(T ∗M) ∼−→ Γ(T ∗M′)
such that the following diagram commutes

T ∗M
d(Φ−1)

h̃

T ∗M′

h̃

Γ(T ∗M)
f

Γ(T ∗M′)
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As f is C∗-equivariant, it must preserve the filtration by subspaces in terms of the decay 
and it must send the subspace of maximum decay |λ|r of Γ(T ∗M)) to the subspace of 
maximum decay |λ|r′ of Γ(T ∗M′). In particular, the number of steps of the filtration 
must be the same. As the filtrations of Γ(T ∗M) and Γ(T ∗M′) have r − 1 and r′ − 1
steps respectively, then r = r′.

By Proposition 4.4, there is an isomorphism W ∼= W ′, that we will denote by a slight 
abuse of notation as f : W → W ′, such that the following diagram commutes

T ∗M
d(Φ−1)

H0

T ∗M′

H′
0

W
f

W ′

and there exist unique C∗ actions on W and W ′ such that H0 and H ′
0 are C∗-equivariant. 

As d(Φ−1) is an isomorphism, it maps complete rational curves on T ∗M to complete 
rational curves on T ∗M′. By Lemma 4.3, f sends the locus of singular spectral curves 
D ⊂ W to the locus of singular spectral curves D′ ⊂ W ′. On the other hand, the 
differential map d(Φ−1) is C∗-equivariant, so f must be a C∗-equivariant map. Therefore, 
it must send the subspace of W of elements with maximum decay Wr to the subspace of 
W ′ of elements with maximum decay W ′

r. Let fr : Wr → W ′
r be the restriction of f to Wr.

By definition of Wr, we know that fr is C∗-equivariant and homogeneous of degree r, 
so it must be linear, and it maps C = D∩Wr to C′ = D′∩W ′

r. Let CX and C′
X be the only 

components of C and C′ respectively that are not hyperplanes. By Proposition 4.5, the 
dual variety of P (CX) in P (Wr) is X ⊂ P (W ∗

r ) and, similarly, the dual variety of P (C′
X)

in P (W ′
r) is X ′ ⊂ P ((W ′

r)∗), so f induces an isomorphism f∨ : P (W ∗
r ) → P ((W ′

r)∗) that 
sends X to X ′. Moreover, the dual of the rest of the components P (Cx) of P (C) corre-
spond to the divisor D ⊂ X ⊂ P (W ∗

r ) and the dual of the components P (C′
x) of P (C′)

correspond to the divisor D′ ⊂ X ′ ⊂ P ((W ′
r)∗), so f∨ must send D to D′. Therefore, 

f∨ induces an isomorphism f∨ : (X, D) ∼−→ (X ′, D′). �
5. Basic transformations for quasi-parabolic vector bundles

Let x ∈ X be a point. Given a vector bundle E over X and a subspace on the fiber 
H ⊆ E|x, the Hecke transformation of E at x with respect to the subspace H is defined 
as the subsheaf HH

x (E) ⊆ E fitting in the short exact sequence

0 −→ HH
x (E) −→ E −→ (E|x/H) ⊗Ox −→ 0

this kind of transformations were first studied in [26,20] and have been used broadly to 
study the geometry of the moduli spaces of vector bundles. Let x ∈ D be a parabolic 
point. For each parabolic vector bundle (E, E•) on (X, D), each term in the parabolic 
filtration Ex,i ⊆ E|x for 1 ≤ i ≤ lx+1 gives us a canonical choice for a linear subspace in 
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the fiber E|x, so we might define subsheaves Ei
x ⊆ E through the Hecke transformation 

as

0 −→ Ei
x −→ E −→ (E|x/Ex,i) ⊗Ox −→ 0 (5.1)

Note that for each x ∈ D and each i = 1, . . . , lx + 1, these subsheaves Ei
x coincide with 

the jumps at the continuous parabolic filtration associated to (E, E•)

Ei
x = Ex

αi(x)

In fact, the Hecke transformation gives us a one to one correspondence between parabolic 
structures {Ex,i} on E and collections of decreasing sequences of subsheaves

E = E1
x � E2

x � · · · � Elx
x � Elx+1

x = E(−x)

for every x ∈ D.
Let us restrict the short exact sequence (5.1) to the point x. If f : Ei

x|x → E|x is the 
induced map at the fiber, we get

0 E|x/Ex,i ⊗OX(−x)|x Ei
x|x

f
E|x E|x/Ex,i 0

Tor(E|x/Ex,i,Ox) Ex,i

0 0

Observe that the tail of the filtration Ex,i � Ex,i+1 ⊃ Ex,lx+1 = 0 of E|x, induce a 
filtration of Ei

x|x

Ei
x|x = f−1(Ex,i) � f−1(Ex,i+1) � · · · � f−1(Ex,lx) � f−1(0) = E|x

Ex,i
⊗OX(−x)|x

on the other hand, the head of the filtration E|x = Ex,1 � Ex,2 � · · · � Ex,i induce 
canonically a filtration on E|x

Ex,i

E|x
Ex,i

= Ex,1

Ex,i
�

Ex,2

Ex,i
� · · · � Ex.i

Ex,i
= 0

thus, Ei
x|x gets an induced filtration at x of the same length as that of E|x

Ei
x|x = f−1(Ex,i) � · · ·� f−1(Ex,lx) � E|x

Ex,i
⊗OX(−x)|x � · · ·� Ex,i−1

Ex,i
⊗OX(−x)|x � 0

On the other hand, Ei
x|y is canonically isomorphic to E|y for each y ∈ D\{x}, thus 

inheriting its filtration. Therefore, for each x ∈ D and each 1 ≤ i ≤ lx+1, we can provide 
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Ei
x a canonical quasi-parabolic structure with the same number of steps as (E, E•). In 

particular, if (E, E•) is full flag, then the induced quasi-parabolic structure on Ei
x is full 

flag. This “rotation” procedure – also called by some authors elementary transformation 
of the parabolic bundle – has been used in the literature as a fruitful way to induce 
correspondences between moduli spaces of parabolic vector bundles [14,21,22].

We call E2
x with the induced parabolic structure the Hecke transformation of (E, E•)

at x, and we will denote it by

(E2
x, (E2

x)•) = Hx(E,E•)

More generally, we will write

Hk
x(E,E•) =

k︷ ︸︸ ︷
Hx ◦ · · · ◦ Hx(E,E•)

It is straightforward to check that for each 1 ≤ k ≤ lx the quasi-parabolic bundle 
Hk

x(E, E•) coincides with the vector bundle Ek+1
x with the induced parabolic structure 

previously described. Also, by construction, for every quasi-parabolic vector bundle and 
every x ∈ D the following relation holds

Hlx
x (E,E•) = (E,E•) ⊗OX(−x)

Moreover, it is clear that two Hecke transformations at two different parabolic points 
commute with each other. Let H denote an effective divisor on X supported on D =
{x1, . . . , xn}. If we take H =

∑
x∈D hxx, then we define HH as the composition

HH = Hhx1
x1 ◦ Hhx2

x2 ◦ . . . ◦ Hhxn
xn

We can understand the Hecke transformation of a quasi-parabolic vector bundle in 
another equivalent way working directly over the filtration by subsheaves. Let (E, E•) be 
a full flag parabolic vector bundle and let x ∈ D be a parabolic point. We define the Hecke 
transformation of (E, E•) at x to be the parabolic vector bundle Hx(E, E•) = (H, H•)
obtained by taking the Hecke transformation of E with respect to Ex,2 and “rotating” 
the parabolic structure at x in the following way. We take

∀i = 1, . . . , r Hi
x = Ei+1

x

∀y ∈ D \{x}∀i = 1, . . . , r Hi
y = HEx,2

x (Ei
y)

In particular, H = E2
x = HEx,2

x (E). For example, for r = 3, D = x + y, we send the 
parabolic vector bundle

(E,E•) =
{

E = E1
x � E2

x � E3
x � E(−x)

E = E1 � E2 � E3 � E(−y)

}

y y y
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to

Hx(E,E•) =
{

E2
x � E3

x � E(−x) = E1
x(−x) � E2

x(−x)
E2

x = HEx,2
x (E1

y) � HEx,2
x (E2

y) � HEx,3
x (E3

y) � E2
x(−y)

}

Observe that if we choose weights α on a full flag quasi parabolic vector bundle (E, E•), 
then we might maintain the same system of weights α on Hx(E, E•) and, in that case

pardegα (Hx(E,E•)) = pardegα(E,E•) − 1

Nevertheless, we will see that this is not a natural choice of weights, as it does not 
preserve stability.

Lemma 5.1. Suppose that g ≥ 3. Suppose that d = deg(ξ) and r are coprime and let α be a 
generic concentrated system of weights. For every divisor H with 0 < H ≤ (r−1)D such 
that d < |H|, there exists at least a stable parabolic vector bundle (E, E•) ∈ M(r, α, ξ)
over (X, D) such that HH(E, E•) is α-unstable.

Proof. Let d = deg(ξ). By tensoring with an appropriate line bundle, we can assume that 
0 ≤ d < r. Brambila-Paz, Grzegorczyk and Newstead [11, Theorem B (Theorem 6.3)]
proved that for every genus g ≥ 2 smooth projective curve and every 0 ≤ d < r, the 
space of stable vector bundles E of rank r and degree d such that H0(E) ≥ k (called the 
Brill-Nether locus and usually denoted by B(r, d, k)) is nonempty if d > 0 and

r ≤ d + (r − k)g

with (r, d, k) �= (r, r, r). As we are assuming that d and r are coprime, then 0 < d and 
for k = 1 and g ≥ 3

d + (r − k)g − r ≥ d + 3(r − 1) − r = d + 2r − 3 ≥ 2(r − 1) > 0

Then, there exists a stable vector bundle E with rank r and degree d such that H0(E) >
0. As H0(E) > 0, OX is a subsheaf of E and, saturating, there is a line bundle L � E with 
0 ≤ deg(L) < μ(E). Tensoring with a suitable degree zero line bundle, we might assume 
that det(E) ∼= ξ. The weights α are concentrated and rank and degree are coprime, so 
the stability of any parabolic vector bundle is equivalent to the stability of its underlying 
vector bundle. Therefore, for every choice of filtrations over E|x, for x ∈ D, the parabolic 
vector bundle (E, E•) is stable. In particular, we can choose a parabolic structure (E, E•)
such that Ex,r = L|x for every x ∈ D.

Then, (E, E•) is stable and L is a subsheaf of Ek
x = HEx,k

x for every k < r. Therefore, 
L is a subsheaf of HH(E, E•). Let L be its saturation. Then

deg(L) ≥ deg(L) ≥ 0
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On the other hand, as d < |H|,

μ(Hx(E,E•)) = d− |H|
r

≤ d− d

r
= 0 ≤ deg(L)

so the underlying vector bundle of Hx(E, E•) is unstable. Therefore, as the parabolic 
weights are concentrated, Hx(E, E•) is α-unstable as a parabolic vector bundle. �
Lemma 5.2. Let X be a smooth complex projective curve of genus g. Let r, s, k, d be 
integers such that 0 < k < r. Then if

g >
r − 1 − s

k
+ 1

then there exist a stable vector bundle E of degree d and rank r and a subbundle F � E

of rank k such that

kd− r deg(F ) = s

Proof. By [12, Remark 3.3], there exists a stable vector bundle E such that

s = sk(E) = k deg(E) − rmax{deg(F ) |F � E subbundle with rk(F ) = k}

if for every 1 ≤ i < k

0 < i(r − i)(g − 1) − i

k
(k(r − k)(g − 1) − s + r − 1)

As k > 0, multiplying by k/i > 0 yields that this is equivalent to proving that

0 < k(r − i)(g − 1) − k(r − k)(g − 1) + s− r + 1 = k(k − i)(g − 1) + s− r + 1

But, as 1 ≤ i < k we obtain

g >
r − 1 − s

k
+ 1 ≥ r − 1 − s

k(k − i) + 1

for all 1 ≤ i < k and the lemma follows. �
Lemma 5.3. Suppose that g > 3. Suppose that d = deg(ξ) and r are coprime with 0 <
d < r and let α be a generic concentrated system of weights. If H is a divisor with 
|H| = 2d −r > 0, there exists at least a stable parabolic vector bundle (E, E•) ∈ M(r, α, ξ)
over (X, D) such that HH(E, E•) is α-unstable.

Proof. As 0 < |H| = 2d − r, we have d > r/2. In particular, as we assumed r > d, then 
r ≥ 3. For every vector bundle E
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μ(HH(E)) = d− |H|
r

= d− (2d− r)
r

= r − d

r
= 1 − μ(E)

Let k = r − |H| = r − (2d − r) = 2(r − d) and let

d′ =
⌈

2(r − d)2

r

⌉
It is easy to check that if r ≥ 3 and 0 < r − d < d < r then

r − d

r
<

d′

k
≤ d

r
(5.2)

Assume that there exists a stable vector bundle E of rank r and degree d with a subbundle 
F ⊆ E of rank k = r−|H| = r−(2d −r) = 2(r−d) and degree d′. As the parabolic weights 
are concentrated and rank and degree are coprime, parabolic stability is equivalent to 
stability of the underlying bundle for any choice of the filtrations E•. We have rk(F ) =
r − |H|, so we can choose a parabolic structure (E, E•) on E such that F |x = Ex,|H|
for every x ∈ D. Therefore, F is a subsheaf of HH(E, E•). By inequality (5.2), the 
saturation of F in HH(E, E•) is a destabilizing subsheaf of the underlying vector bundle 
of HH(E, E•). As the weights are concentrated, then HH(E, E•) is α-unstable as a 
parabolic vector bundle.

In order to find the desired E and F we can apply Lemma 5.2 for k = 2(r − d) and 
s = kd −rd′. To guarantee the genus hypothesis of the Lemma, it is enough to show that

g > 3 ≥ r − 1 − s

2(r − d) + 1

Using the bound �x� < x + 1 on the d′ formula yields

r − 1 − s

2(r − d) + 1 <
r

r − d
+ r − 2d + 1

Multiplying by r−d and reordering the factors, the desired inequality is then equivalent 
to

r + (r − d)(r − 2d) − 2(r − d) = r − (r − d)(2d− r + 2) ≤ 0

Let {
r = 2r

d = r + ε

Substituting in the above expression and reordering yields

r − (r − d)(2d− r + 2) = −2ε(r − ε− 1)

which is clearly less or equal to 0, as ε > 0 and r − ε = r − d ≥ 1. �
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Notice that preserving the same system of weights on the Hecke transformation is not 
a natural choice, but rather an imposition if we want to restrict ourselves to analyzing the 
stability with respect to a fixed set of parameters α. In fact, if the “rotation” operation on 
the parabolic structure is held at the continuous filtration level, the following parabolic 
weights arise as the natural ones on Hx(E, E•).

Given a system of weights α over (X, D) and a divisor H =
∑

x∈D hxx with 0 ≤ H ≤
(r − 1)D we define HH(α) to be the set of parameters satisfying

HH(α)i(x) =
{

αi+hx
(x) − α1+hx

(x) i + hx ≤ r

αi+hx−r(x) − α1+hx
(x) + 1 i + hx > r

Let us prove that if a parabolic vector bundle (E, E•) is α-stable, then its Hecke trans-
formation HH(E, E•) is HH(α)-stable. In order to do so, we will give yet another 
interpretation of the Hecke transformation in terms of the parabolic tensor product.

Let 0 < H ≤ (r − 1)D be an effective divisor, and let ε(x) ∈ [0, 1) be real numbers 
indexed by x ∈ D such that

αhx
(x) < ε(x) ≤ α1+hx

(x)

Let (OX(−D), OX,•(−D)1−ε) be the parabolic line bundle obtained by giving OX(−D)
the trivial filtration with weight 1 − ε(x) at x ∈ D. Consider the parabolic vector bundle 
(H, H•) = (E, E•) ⊗ (OX(−D), OX,•(−D)1−ε). By construction, for every x ∈ D and 
every α ∈ R

Hx
α = Ex

α+ε(x)

In particular, for α = 0, one gets

Hx
0 = Ex

ε(x) = Ex
α1+hx (x) = E1+hx

x

Therefore H is the underlying vector bundle of HH(E, E•). A similar computation shows 
that, in fact

HH(E,E•) = (E,E•) ⊗ (OX(−D),OX,•(−D)1−ε)

as quasi-parabolic vector bundles. Let us prove that for each admissible choice of ε, the 
right hand side is a stable parabolic vector bundle.

Proposition 5.4. Let (E, E•) be a (semi)-stable parabolic vector bundle with system of 
weights α, and let (L, Lε

•) be a parabolic line bundle with system of weights ε. Then 
(E, E•) ⊗ (L, Lε

•) is stable for the induced parabolic structure.
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Proof. We have that (F, F•) ⊂ (E, E•) if and only if (F, F•) ⊗(L, Lε
•) ⊂ (E, E•) ⊗(L, Lε

•), 
and it is straightforward to check that

pardeg ((F, F•) ⊗ (L,Lε
•)) = pardeg(F, F•) + rk(F ) pardeg(L,Lε

•)
pardeg ((E,E•) ⊗ (L,Lε

•)) = pardeg(E,E•) + rk(E) pardeg(L,Lε
•)

Therefore,

pardeg((E,E•) ⊗ (L,Lε
•))

rk(E) −pardeg((F, F•) ⊗ (L,Lε
•))

rk(F ) = pardeg(E,E•)
rk(E) −pardeg(F, F•)

rk(F )

so (E, E•) ⊗ (L, Lε
•) is (semi)stable if and only if (E, E•) is (semi)stable. �

Corollary 5.5. A full flag parabolic vector bundle (E, E•) is α-(semi)stable if and only if 
HH(E, E•) is HH(α)-(semi)stable.

Thus, Hecke transformations preserve stability with respect to the natural induced 
system of weights, but Lemmas 5.1 and 5.3 show that the induced system HH(α) might 
not belong to the same stability chamber as the original one α.

We can also describe an analogue of dualization in the quasi-parabolic context. Given 
a quasi-parabolic vector bundle (E, E•) described as a set of decreasing filtrations

E|x = Ex,1 � Ex,2 � · · · � Ex,lr � 0

for each x ∈ D, observe that if we take the dual of the corresponding spaces then we 
obtain

E∨|x = E∨
x,1 � E∨

x,2(−x) � · · · � (Ex,lx)∨(−x) � 0

taking the kernels of the successive quotients (i.e., taking the corresponding annihilators 
in E∨|x) we obtain

E∨|x = ann(0) � ann(Ex,lr ) � . . . � ann(Ex,2) � ann(Ex,1) = 0

which clearly provides us a quasi-parabolic structure over E∨ with the same number of 
steps. We will denote the vector bundle E∨ with this induced quasi-parabolic structure 
as (E, E•)∨ and we will call it its quasi-parabolic dual. Observe that if (E, E•) is full 
flag, then (E, E•)∨ is also full flag. Notice that this definition of dual is different to the 
usual notion of parabolic dual of a parabolic vector bundle, described, for example in 
[9]. Let us fix a system of weights α for (E, E•). Biswas defines the parabolic dual of the 
parabolic vector bundle (E, E•) in terms of the left continuous decreasing filtrations Eα

as the parabolic vector bundle (E, E•)∗ obtained by

((E,E•)∗)α = lim (E−1−t)∗

t→α+
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It is clear that the underlying vector bundle of (E, E•)∗ does not, in general, coincide 
with E∨. In fact, the underlying vector bundle ((E,E•)∗)0 depends on the choice of the 
parabolic weights α. More precisely, they depend on whether α1(x) = 0 for the points 
x ∈ D. If α1(x) > 0 for each x ∈ D, we have

((E,E•)∗)0 = (E−1)∨ = E∨(−D)

In this case, it can be checked that the induced filtration on E∨(−D) is precisely the one 
obtained by tensoring (E, E•)∨ with OX(−D). One of the main advantages of the latter 
approach in conjunction to the definition of parabolic tensor product is that it allows us 
to work with sheaves of parabolic morphism in a way similar to the one used for regular 
vector bundles, as the sheaf of parabolic morphism (morphisms preserving the parabolic 
structure) from (E, E•) to (F, F•) simply becomes

PHom((E,E•), (F, F•)) = (E,E•)∗ ⊗ (F, F•)

Suppose that α is a full flag system of weights with α1(x) > 0 for all x ∈ D. If (E, E•)
is a stable (respectively semi-stable) parabolic vector bundle, then (E, E•)∗ is stable 
(respectively semi-stable) with respect to the following system of weights α∨

α∨
i (x) = 1 − αi(x)

Under these hypothesis on α, (E, E•)∗ = (E, E•)∨ ⊗OX(−D) as quasi-parabolic vector 
bundles, so we just saw that if α1(x) > 0 for all x ∈ D, then (E, E•) is α-stable if and 
only if (E, E•)∨ is α∨-stable.

Notice that, in particular, if the system of weights α is concentrated, then α∨ is also 
concentrated, so in the concentrated chamber α-stability is equivalent to α∨-stability.

Up to this point, we have studied three types of operations that can be performed 
on quasi-parabolic vector bundles (E, E•) and the corresponding transformations on the 
systems of weights that must be done to ensure stability of the resulting parabolic vector 
bundle

• Tensor with a line bundle (E, E•) �→ (E, E•) ⊗ L

• Dualization (E, E•) �→ (E, E•)∨
• Hecke transformations (E, E•) �→ HH(E, E•)

Moreover, if (E, E•) is a parabolic α-(semi)stable vector bundle and σ : X → X is an 
automorphism of X that sends D to itself (not necessarily fixing each parabolic point), 
then the pullback σ∗(E, E•) is a σ∗α-(semi)stable parabolic vector bundle, where

σ∗αi(x) = αi(σ−1(x))
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These four transformations can be clearly extended canonically to families of α-
(semi)stable parabolic vector bundles, so we will denote the combinations of them as 
“basic” transformations of quasi-parabolic vector bundles.

Definition 5.6. Let (X, D) be a Riemann surface with a set of marked points D ⊂ X. 
A basic transformation of a quasi-parabolic vector bundle is a tuple T = (σ, s, L, H)
consisting on

• An automorphism σ : X ∼−→ X that sends D to itself (but does not necessarily fix 
any point of D)

• A sign s ∈ {1, −1}.
• A line bundle L on X.
• A divisor H on X such that 0 ≤ H ≤ (r − 1)D.

Given a quasi-parabolic vector bundle (E, E•) and a basic transformation T =
(σ, s, L, H), let

T (E,E•) =
{

σ∗ (L⊗HH(E,E•)) s = 1
σ∗ (L⊗HH(E,E•))∨ s = −1

If ξ is a line bundle, we define

T (ξ) =
{

σ∗ (Lr ⊗ ξ(−H)) s = 1
σ∗ (Lr ⊗ ξ(−H))∨ s = −1

Finally, if α is a rank r system of weights over (X, D), we define

T (α)i(x) =
{

HH(α)i(σ−1(x)) s = 1
1 −HH(α)r−i+1(σ−1(x)) s = −1

Observe that the action of T on the space of admissible systems of weights is stable 
under translations of the system in the following sense. Let ε = (ε(x))x∈D ∈ R|D| such 
that for every x ∈ D −α1(x) ≤ ε(x) < 1 − αr(x). Consider the system of weights α[ε]
defined as

α[ε]i(x) = αi(x) + ε(x)

we call α[ε] the translation of α by ε.
Then for any admissible type of a subbundle n′

smin(α[ε], n) = r′′
∑ r∑

n′
i(x)(αi(x) + ε(x)) − r′

r∑
n′′
i (x)(αi(x) + ε(x))
x∈D i=1 i=1
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= r′′
∑
x∈D

r∑
i=1

n′
i(x)αi(x) − r′

r∑
i=1

n′′
i (x)αi(x) = smin(α, n)

Therefore, α-stability is completely equivalent to α[ε]-stability. Let

Δ = {α = (αi(x)) ∈ [0, 1)r|D| : ∀x ∈ D and ∀i = 1, . . . , r − 1 , αi(x) < αi+1(x)}

be the space of systems of weights over (X, D), and let Δ+ = Δ ∩ (0, 1)r|D|. Let us 
define an equivalence relation ∼ on Δ as follows. α ∼ β if and only if there exists some 
ε = (ε(x))x∈D such that for every x ∈ D we have

−α1(x) ≤ ε(x) < 1 − αr(x)

and such that β = α[ε]. Define Δ̃ as the quotient Δ/ ∼. Clearly Δ/ ∼= Δ+/ ∼.
Let α, β ∈ Δ0 such that α ∼ β. Then for every basic transformation T we have 

T (α) ∼ T (β). Therefore, basic transformations act on Δ̃. In particular, in Δ̃ for every 
x ∈ D and every α ∈ Δ

Hr
x(α) ∼ α

By construction (E, E•) is an α-(semi)stable parabolic vector bundle with determi-
nant ξ if and only if T (E, E•) is an T (α)-(semi)stable parabolic vector bundle with 
determinant T (ξ).

Basic transformations form a group T , where the product rule is the composition. 
We can give an explicit natural presentation, which is independent on whether we are 
making T act on quasi-parabolic vector bundles, line bundles or weight systems.

Lemma 5.7. The group of basic transformations T is generated by

• Σσ = (σ, 1, OX , 0)
• D+ = (Id, 1, OX , 0) = IdT
• D− = (Id, −1, OX , 0)
• TL = (Id, 1, L, 0)
• HH = (Id, 1, OX , H)

And we have the following composition rules

(1) Σσ ◦ Στ = Σσ◦τ
(2) Ds ◦ Dt = Dst

(3) TL ◦ TM = TL⊗M

(4) If 0 ≤ Hi ≤ (r − 1)D for i = 1, 2 then

HH1 ◦ HH2 = TLH +H
◦ HH1+H2−LH +H
1 2 1 2
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where, given a divisor F =
∑

x∈D fxx, we define

LF =
∑
x∈D

⌊
fx
r

⌋
x

(5) Σσ ◦ Ds = Ds ◦ Σσ

(6) Σσ ◦ TL = Tσ∗L ◦ Σσ

(7) Σσ ◦ HH = Hσ∗H ◦ Σσ

(8) D− ◦ TL = TL−1 ◦ D−

(9) D− ◦ HH = TOX(D) ◦ HrD−H ◦ D−, for H > 0
(10) TL ◦ HH = HH ◦ TL

Proof. Straightforward computation. �
From these composition rules, it is straightforward to compute the inverses of each 

generator

• Σ−1
σ = Σσ−1

• (Ds)−1 = Ds

• T −1
L = TL−1

• H−1
H = TOX(D) ◦ HrD−H for H > 0.

Then, using the composition rules it is easy to check that the inverse of a basic trans-
formation T = (σ, s, L, H) for H > 0 is

(σ, s, L,H)−1 =
{

(σ−1, 1, σ∗L−1(D), rD − σ∗H) s = 1
(σ−1,−1, σ∗L, σ∗H) s = −1

And the inverse for H = 0 is

(σ, s, L, 0)−1 =
{

(σ−1, 1, σ∗L−1, 0) s = 1
(σ−1,−1, σ∗L, 0) s = −1

}
= (σ−1, s, σ∗L−s, 0)

With this presentation we can describe the abstract group structure of T .

Proposition 5.8. The group of basic transformations is isomorphic to the following 
semidirect product

T ∼=
(
(Z|D| × Pic(X))/GD

)
� (Aut(X,D) × Z/2Z)

where

GD = {(rH,OX(H))|H supported on D} < Z|D| × Pic(X)
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Proof. Let us consider the surjective map π : T � 〈Σσ, D−〉 which sends a basic trans-
formation (σ, s, L, H) to Σσ ◦ Ds. Let us prove that it is a group homomorphism. Let 
(σ, s, L, H) and (σ′, s′, L′, H ′) be basic transformations. Then

(σ, s, L,H) ◦ (σ′, s′, L′, H ′) = (σ, s,OX , 0) ◦ TL ◦ HH ◦ Σσ′ ◦ Ds′ ◦ (Id, 1, L′, H ′)

On the other hand, by properties (6) and (7), there exist L1 and H1 such that TL ◦HH ◦
Σσ′ = Σσ′ ◦ TL1 ◦ HH1 . Similarly, by properties (8), (9) and (10) there exist L2 and H2
such that TL1 ◦ HH1 ◦ Ds′ = Ds′ ◦ TL2 ◦ HH2 , so we obtain that

(σ, s, L,H) ◦ (σ′, s′, L′, H ′) = (σ, s,OX , 0) ◦ (σ′, s′,OX , 0) ◦ (Id, 1, L2, H2) ◦ (Id, 1, L′, H ′)

Finally, applying (1)-(5) and property (10) we have that there exist L3 and H3 such that

(σ, s,OX , 0) ◦ (σ′, s′,OX , 0) ◦ (Id, 1, L2, H2) ◦ (Id, 1, L′, H ′) = (σσ′, ss′, L3, H3)

Therefore

π((σ, s, L,H) ◦ (σ′, s′, L′, H ′)) = (σσ′, ss′,OX , 0) = π(σ, s, L,H) ◦ π(σ′, s′, L′, H ′)

The kernel of this map coincides clearly with the subgroup 〈TL, HH〉 < T generated by 
TL and HH , so it is normal and we have that

T ∼= 〈TL, TH〉� 〈Σσ,D−〉

On the other hand, by property (5) we know that Σσ and D− commute, so

〈Σσ,D−〉 ∼= Aut(X,x) × Z/2Z

Therefore, we conclude that

T ∼= 〈TL, TH〉� (Aut(X,x) × Z/2Z) (5.3)

Finally, let us consider the following group

GD = {(rH,OX(H))|H supported on D} < Z|D| × Pic(X)

As generators Hx for x ∈ D and TL commute and Hr
x = TOX(−x) then we have

〈TL,HH〉 ∼= (Z|D| × Pic(X))/GD

Combining this with equation (5.3) the Proposition follows. �
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It will be also useful to consider the subgroup T + < T consisting on basic transfor-
mations of the form T = (σ, 1, L, H), i.e., basic transformations that do not involve the 
dual. In particular, later on we will prove that every basic transformation T acting on 
moduli spaces of rank 2 is equivalent to a transformation in T + (see Lemma 7.23).

Finally, we briefly describe the analogues of these constructions for projective 
parabolic bundles. Given a parabolic projective bundle (P , P•), let (E, E•) be a reduction 
(it always exists by Lemma 2.9)

(P ,P•) ∼= (P (E),P (E•))

we define

(P ,P•)∨ = P ((E,E•)∨)

HH(P ,P•) = P (HH(E,E•))

Any two reductions are related by tensorization with a line bundle. If L is a line bundle, 
then

((E,E•) ⊗ L)∨ = (E,E•)∨ ⊗ L∨

HH ((E,E•) ⊗ L) = HH(E,E•) ⊗ L

Therefore,

P
(
((E,E•) ⊗ L)∨

)
= P ((E,E•)∨)

P (HH ((E,E•) ⊗ L)) = P (HH(E,E•))

So the definition of the dual or Hecke transformations are independent of the choice of 
the reduction.

6. The algebra of parabolic endomorphisms

Let P be the parabolic subgroup of GL(r, C) consisting on upper triangular matrices. 
Let S and G be the group schemes over X given by the following short exact sequences.

0 → S → SL(r,C) ×X → (SL(r,C)/(P ∩ SL(r,C))) ⊗OD → 0

0 → G → GL(r,C) ×X → (GL(r,C)/P ) ⊗OD → 0

Let parsl = Lie(S) and pargl = Lie(G) denote the sheaves of Lie algebras of S and 
G respectively. Let Aut(parsl) be the sheaf of groups of local algebra automorphisms of 
parsl. Let Inn(parsl) be the subsheaf of inner automorphisms, i.e., the image of the adjoint 
action Ad : S → Aut(parsl). Let GL(parsl) be the sheaf of local linear automorphisms 
of parsl as a vector bundle. Analogous notations will be used for pargl.
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As S is a group scheme over X, Aut(parsl) is a group scheme over X and Inn(parsl)
is a sub-group scheme over X.

Before engaging the main classification Lemma (Lemma 6.14), let us prove some 
necessary results about linear maps of algebras of matrices. Through this section, given 
a ring R, let Matn×m(R) be the R-module of n ×m matrices with entries in R.

Lemma 6.1. Let R be a commutative unique factorization domain (UFD). Let M =
(mij) ∈ Matn×m(R) be a matrix with entries in R. Then all the 2 × 2 minors of M have 
null determinant in R if and only if there exist matrices A = (ai) ∈ Matn×1(R) and 
B = (bi) ∈ Mat1×m(R) such that M = AB.

Proof. If M = AB, then for every pair (i, j), mij = aibj . Therefore, for every i, k ∈ [1, n]
and j, l ∈ [1, m] with i < k and j < l∣∣∣∣mij mil

mkj mkl

∣∣∣∣ = ∣∣∣∣ aibj aibl
akbj akbl

∣∣∣∣ = aibjakbl − aiblakbj = 0

On the other hand, suppose that every 2 × 2 minor in M has zero determinant. If M is 
the zero matrix, it is the product of two zero vectors. Otherwise, let mij be a nonzero 
element of M . By reordering rows and columns (i.e., permuting the elements of A and 
B), we can assume without loss of generality that m11 �= 0. Then for every i, j > 1∣∣∣∣m11 m1j

mi1 mij

∣∣∣∣ = 0

Therefore m11mij = mi1m1j . R is a GCD domain, so great common divisors exist and 
are unique up to product by units. Then m11| GCDj>1(mi1m1j) = mi1 GCDj>1(m1j)
for every i > 1. We conclude that

m11|GCDi>1 (mi1 GCDj>1(m1j)) = GCDi>1(mi1) GCDj>1(m1j)

As R is a UFD, there exists a decomposition m11 = a1b1 such that a1| GCDj>1(m1j)
and b1| GCDi>1(mi1). As a1|m1j for every j > 1, there must exist an element bj ∈ R

such that m1j = a1bj . Similarly, for every i > 1, b1|mi1, so there must exist an element 
ai ∈ R such that mi1 = aib1. Finally, for every i, j > 1, as m11mij = mi1m1j yields

a1b1mij = aib1a1bj

As a1, b1 �= 0 and R is a commutative UFD (and, in particular, it is integral), mij = aibj
for every i, j > 1. As the latter holds also for i = 1 or j = 1 by construction, then letting 
A = (ai) and B = (bj) yields M = AB as desired. �
Lemma 6.2. If R is a field and M = (mij) ∈ Matn×m(R) is a nonzero matrix such that 
all the 2 × 2 minors have zero determinant, then the decomposition M = AB stated by 
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the previous lemma is unique in the sense that if M = AB = A′B′ for some matrices 
A = (ai), A′ = (a′i) ∈ Matn×1(R) and B = (bi), B′ = (b′i) ∈ Mat1×m(R) then there exists 
a nonzero ρ ∈ R such that A′ = ρA and B′ = ρ−1B.

Proof. Let mij be a nonzero element of M . Then the i-th row of M is nonzero and we 
have

aiB = a′iB
′

with ai �= 0 and a′i �= 0. Then a′i is invertible and we get that B′ = ai

a′
i
B. Similarly, as 

the j-th column of M is nonzero we get

Abj = A′b′j

with bj �= 0 and b′j �= 0. Then b′j is invertible and we get that A′ = bj
b′j
A. Finally, let 

ρ = bj
b′j

and note that as mij = aibj = a′ib
′
j �= 0, one gets

ai
a′i

= mij/bj
mij/b′j

=
b′j
bj

= ρ−1 �
Remark 6.3. If n = m, then we can rewrite the nullity condition for the minors of M in 
a more compact way. For any matrix M ∈ Matn×n(R), all the 2 × 2 minors of M have 
null determinant in R if and only if

∧2M = 0

We will introduce some notations that will be useful in order to work with linear 
morphisms between algebras of matrices.

Let us consider a bijection σ : [1, n] × [1, m] → [1, n′] × [1, m′]. Abusing the notation, 
let

σ : Matn×m(R) −→ Matn′×m′(R)

be the isomorphism that sends a matrix M = (mij) ∈ Matn×m(R) to the n′×m′ matrix 
whose entry (i, j) is

(σ(M))ij = mσ−1(i,j)

In particular, given a bijection τ : [1, n] × [1, m] → [1, nm] × {1} = [1, nm] and a 
matrix M ∈ Matn×m(R), τ(M) ∈ Matnm×1(R) ∼= Rnm is the column vector obtained 
by placing all entries of M in a column using the bijection τ . Reciprocally, given such 
vector V ∈ Matnm×1(R) ∼= Rnm, then τ−1(V ) is the corresponding matrix.
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In order to simplify the notation, from now on, let us fix once and for all the bijection 
τ : [1, n]2 → [1, n2] that places the entries of the matrix in row order, i.e.

τ(i, j) = (i− 1)n + j

We will also fix the bijection ι : [1, n]2 → [1, n]2 sending ι(i, j) = (j, i), so that for 
every matrix M ∈ Matn×n(R)

ι(M) = M t

Lemma 6.4. Let R be a UFD. For every n > 0 there exists a bijection

σ : [1, n2]2 × [1, n2]2

such that given any matrix M ∈ GL(Matn×n(R)) 
τ∼= GLn2(R), M is the matrix associated 

to a linear transformation of the form

X �→ AXB

for some A, B ∈ Matn×n(R) if and only if

∧2 (σ(M)) = 0

In that case, we will denote M = MA,B

Proof. The matrix M ∈ GLn2(R) induced by the given linear transformation is given by

Rn2
Rn2

V τ(Aτ−1(V )B)

For the bijection τ chosen above, it is straightforward to see that

M = A⊗Bt

One just has to check that the morphisms

End(Rn) ∼= (Rn)∗ ⊗Rn −→ End(Rn) ∼= (Rn)∗ ⊗Rn

obtained by composing on the left with A ∈ End(Rn) or on the right with B ∈ End(Rn)
correspond to

Id⊗A : (Rn)∗ ⊗Rn −→ (Rn)∗ ⊗Rn
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and

Bt ⊗ Id : (Rn)∗ ⊗Rn −→ (Rn)∗ ⊗Rn

respectively, so the morphism represented by M is just Bt ⊗ A. In order to write the 
matrix for the morphism, we need to select a basis for (Rn)∗ ⊗ Rn. The choice of τ
corresponds to selecting the basis of (Rn)∗ ⊗ R in row order, so the matrix M in the 
basis induced by the isomorphism τ is A ⊗Bt.

By definition of tensor product, the entries of the matrix A ⊗Bt are all the possible 
products aijbkl of an entry aij of A and an entry bkl of B in a fixed order depending 
only on the dimension n. Therefore, there exists a fixed bijection σ : [1, n2]2 × [1, n2]2
such that

σ
(
A⊗Bt

)
= τ(A) · (τ(B))t

Therefore, the set of matrices M ∈ GLn2(R) for which there exist A, B ∈ Matn×n(R)
such that

M(V ) = τ
(
Aτ−1(V )B

)
is the set of matrices M such that there exist vectors τ(A), τ(B) ∈ Rn2 such that

σ(M) = τ(A) · (τ(B))t

By Lemma 6.1, such vectors exist if and only if

∧2(σ(M)) = 0 �
Corollary 6.5. Let R be a UFD and let σ be the bijection given by the previous lemma. 
Then M = (mα,β) ∈ GLn2(R) is the matrix of an inner transformation

X �→ AXA−1

for some A ∈ GLn(R) if and only if ∧2(σ(M)) = 0 and for every i, j ∈ [1, n]

n∑
k=1

mσ−1(τ(i,k),τ(k,j)) =
n∑

k=1

mσ−1(τ(j,k),τ(k,i)) = δij

Proof. By the lemma, if ∧2(σ(M)) = 0 then there exist matrices A, B ∈ Matn×n(R)
such that M is the map induced by

X �→ AXB
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then M is an inner transformation if and only if A and B are inverses, i.e., if and only 
if AB = BA = I, where I is the identity matrix. This holds if and only if for every 
i, j = 1, . . . , n

n∑
k=1

aikbkj =
n∑

k=1

bikakj = δij (6.1)

On the other hand, as

σ(M) = τ(A) · (τ(B))t

then for every i, j, k, l = 1, . . . , n

aijbkl = mσ−1(τ(i,j),τ(k,l))

so equality (6.1) holds if and only if

n∑
k=1

mσ−1(τ(i,k),τ(k,j)) =
n∑

k=1

mσ−1(τ(j,k),τ(k,i)) = δij

Reciprocally, if M is an inner transformation, ∧2(σ(M)) = 0 and

σ(M) = τ(A) · (τ(A−1))t

so for every i, j, k, l = 1, . . . , n

aij(A−1)kl = mσ−1(τ(i,j),τ(k,l))

Then the corollary follows from

n∑
k=1

aik(A−1)kj =
n∑

k=1

(A−1)ikakj = δij �

Note that if R is a field, Lemma 6.2 implies that if M is the matrix of an inner 
transformation, then the matrix A is uniquely determined up to product by nonzero 
elements of R.

Now let R be a local principal ideal domain which is not a field (i.e., a discrete 
valuation ring). For example, within the scope of this article, the following Lemmas will 
be applied to the local ring of a smooth complex projective curve R = OX,x. Let m be 
the maximal ideal in R and let K = Frac(R) be the field of fractions. As R is a principal 
domain, m = (z) for some z ∈ R. We will denote by

νz : K → Z



54 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
the single discrete valuation on K extending the canonical z-valuation of the elements 
in R, i.e., the only possible discrete valuation for which R = {a ∈ K : νz(a) ≥ 0}. Let 
PEndn(R) ⊂ Matn×n(R) be the R-module of n × n matrices whose elements below the 
diagonal are multiples of z, i.e., the R-module consisting of matrices of the form⎛⎜⎜⎜⎜⎝

a11 a12 · · · a1n
za21 a22 · · · a2n

...
...

. . .
...

zan1 zan2 · · · ann

⎞⎟⎟⎟⎟⎠
where aij ∈ R. It is clear that PEndn(R) forms a sub R-algebra of Matn×n(R). If we 
suppose that z �= 0 (i.e., that R is not a field), then as an R-module, PEndn(R) is 
isomorphic to Matn×n(R), but they are not isomorphic as R-algebras.

Later on we will have to work with this kind of isomorphisms with a little more 
generality, so it is convenient to fix some general notation. Let us consider a formal sum 
of indexes in [1, n] × [1, m]

Ξ =
∑

(i,j)∈[1,n]×[1,m]

Ξij · (i, j) ∈ Z ([1, n] × [1,m])

Then we denote by ZΞ : Matn×m(K) ∼= Matn×m(K) the isomorphism of K-modules 
that sends a matrix M = (mij) to the matrix ZΞ(M) whose element (i, j) is

ZΞ(M)ij = zΞijmij

From the definition, it is clear that

Z : Z ([1, n] × [1,m]) GL(Matn×m(K))

Ξ ZΞ

is a group homomorphism.
Let ΞT =

∑
1≤j<i≤n(i, j) be the sum of indexes below the diagonal. Then it is clear 

that the restriction of ZΞT
: Matn×n(K) → Matn×n(K) to Matn×n(R) is precisely the 

isomorphism

ZΞT
: Matn×n(R) ∼= PEndn(R)

Using the isomorphism τ : Matn×n(K) ∼= Kn2 we can compute the matrix ZΞ for the 
isomorphism τ ◦ ZΞ ◦ τ−1. For every V ∈ Kn2 let

VΞ = ZΞV = τ(ZΞ(τ−1(V )))

Then, by definition of ZΞ, if VΞ = (vΞ,i)i then
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vΞ,i = zΞτ−1(i)vi

Given a bijection σ : [1, n] × [1, m] → [1, n′] × [1, m′], let us denote

σ(Ξ) =
∑
i,j

Ξijσ(i, j) ∈ Z[1, n′] × [1,m′]

Then, τ ◦ ZΞ ◦ τ−1 = Zτ(Ξ) and the matrix ZΞ is the diagonal matrix

ZΞ = diag
(
zΞτ−1(i)

)
Lemma 6.6. Let R be a local principal ideal domain which is not a field. Let n > 0 and 
let σ be the bijection given in Lemma 6.4. There exists a formal sum of indexes

Ξ =
∑

Ξij(i, j) ∈ Z[1, n2]2

with −1 ≤ Ξij ≤ 1 such that given any matrix M ∈ GLn2(R) ∼= GL(PEndn(R)), M is 
the matrix associated to a linear transformation of the form

X �→ AXB

for some A, B ∈ Matn×n(K) if and only if

∧2(σ(Z−Ξ(M))) = 0

Moreover, if Z−Ξ(M) ∈ Matn2×n2(R), then A and B can be chosen in Matn×n(R).

Proof. Let M ∈ GLn2(R) be the matrix associated to a map X �→ AXB. Then it sends 
a vector V ∈ Rn2 to

MV = τ
(
Z−ΞT

(AZΞT
(τ−1(V ))B)

)
Then we can view M as the restriction to Rn2 of the composition of the following 
morphisms

Kn2 M

τ◦ZΞT
◦τ−1

Kn2

Kn2 MA,B

Kn2

τ◦Z−ΞT
◦τ−1

By the computations carried away in the previous lemmata, the matrix M is the product

M = Z−ΞT

(
A⊗Bt

)
ZΞT
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We will see that then there exists a formal sum of indexes Ξ ∈ Z[1, n2]2 such that

M = ZΞ(A⊗Bt)

For any Ξ ∈ Z[1, n]2, taking the product on the left by ZΞ = diag(zΞτ−1(i)) is equiva-
lent to multiplying the i-th row of the matrix by zΞτ−1(i) for each i = 1, . . . , n2, so if we 
set

Ξl =
n2∑

i,j=1
Ξτ−1(i)(i, j)

for every matrix N ∈ Matn2×n2(K)

ZΞN = ZΞl
(N)

Similarly, product on the right by ZΞ is equivalent to multiplying the i-th column of the 
matrix by zΞτ−1(i) for each i = 1, . . . , n2, so if we set

Ξr =
n2∑

i,j=1
Ξτ−1(j)(i, j)

for every matrix N ∈ Matn2×n2(K) yields

NZΞ = ZΞr
(N)

Therefore, setting

Ξ = −(ΞT )l + (ΞT )r

we conclude that

M = ZΞ(A⊗Bt)

Let us check that −1 ≤ Ξα,β ≤ 1. For each (α, β) = (τ(i, j), τ(k, l)) yields

−((ΞT )l)α,β = −(ΞT )i,j =
{

−1 j < i

0 j ≥ i

((ΞT )r)α,β = (ΞT )k,l =
{

1 l < k

0 l ≥ k

So it yields −1 ≤ Ξα,β ≤ 1. As an example, we show the matrix representing Ξ for n = 4
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
−1 −1 −1 −1 0 −1 −1 −1 0 0 −1 −1 0 0 0 −1
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
−1 −1 −1 −1 0 −1 −1 −1 0 0 −1 −1 0 0 0 −1
−1 −1 −1 −1 0 −1 −1 −1 0 0 −1 −1 0 0 0 −1
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0
−1 −1 −1 −1 0 −1 −1 −1 0 0 −1 −1 0 0 0 −1
−1 −1 −1 −1 0 −1 −1 −1 0 0 −1 −1 0 0 0 −1
−1 −1 −1 −1 0 −1 −1 −1 0 0 −1 −1 0 0 0 −1
0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Given a matrix M ∈ GLn2(R), in general Z−Ξ(M) ∈ Matn2×n2(K). Following the 

proof of Lemma 6.4, there exist matrices A, B ∈ Matn×n(K) such that Z−Ξ(M) = A ⊗Bt

if and only if

∧2(σ(Z−Ξ(M))) = 0

moreover, if Z−Ξ(M) ∈ Matn2×n2(R), then as R is a principal ideal domain then if

∧2(σ(Z−Ξ(M))) = 0

there exist A, B ∈ Matn×n(R) such that Z−Ξ(M) = A ⊗Bt. �
Similarly to the non-parabolic case, we will denote by

Mpar
A,B ∈ Matn2×n2(K)

the matrix associated to a map X �→ AXB for A, B ∈ Matn×n(K). More explicitly, for 
every V ∈ Kn2 , let

Mpar
A,BV = τ

(
Z−ΞT

(AZΞT
(τ−1(V ))B)

)
Note that, in general, if A, B ∈ Matn×n(K), Mpar

A,BV ∈ Kn2 even if V ∈ Rn2 . If Mpar
A,B ∈

GL2
n2(R), then this imposes some conditions on the structure of A and B.

Lemma 6.7. If M = Mpar
A,B = Mpar

A′,B′ is a nonzero matrix for some A, A′, B, B′ ∈
Matn2×n2(K), then there exists a nonzero ρ ∈ K such that A′ = ρA and B′ = ρ−1B.
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Proof. From the previous lemma, yields

σ(Z−Ξ′(M)) = τ(A) · τ(B)t = τ(A′) · τ(B)t

and now we apply Lemma 6.2. �
Lemma 6.8. Suppose that there exist matrices A, B ∈ Matn×n(K) such that M =
Mpar

A,B ∈ GLn2(R). Then there exist A′, B′ ∈ Matn×n(R) such that

M = Mpar
A,B/z = Mpar

A′,B′/z

Proof. By the Lemma 6.6, ∧2(σ(Z−Ξ(M))) = 0. Then ∧2(σ(Z−Ξ(zM))) = 0. As −1 ≤
Ξαβ ≤ 1 for all α, β = 1, . . . , n2, then Z−Ξ(zM) ∈ Matn2×n2(R). Therefore, there exist 
A′, B′ ∈ Matn×n(R) such that zM is the matrix Mpar

A′,B′ . The result yields dividing the 
matrix by z. �
Corollary 6.9. Let A ∈ GLn(K) be a matrix such that Mpar

A,A−1 ∈ GLn2(R). Then, 
there exist nonzero matrices A′, B′ ∈ Matn×n(R) such that B′/z is the inverse of A′

in GLn2(K)

Mpar
A,A−1 = Mpar

A′,B′/z

Proof. By the previous lemma, there exist nonzero A′, B′ ∈ GLn2(R) such that

Mpar
A,A−1 = Mpar

A′,B′/z

Now, we apply the Corollary 6.5, to

MA,A−1 = Z−Ξ(Mpar
A,A−1) = Z−Ξ(Mpar

A′,B′/z) = MA′,B′/z �
Lemma 6.10. Suppose that there exists a matrix A ∈ GLn(R) such that Mpar

A,A−1 ∈
GLn2(R). Then A ∈ PEndn(R) ∩ GLn(R).

Proof. As det(A) is invertible

A−1 = det(A)−1 ad(A)t

Let us denote by Aij the (i, j) adjoint of matrix A, i.e., the determinant of the comple-
ment minor to the element (i, j) taken with the corresponding sign. Let M = Mpar

A,A−1 . 
Then

M = ZΞ
(
A⊗ (A−1)t

)
= det(A)−1ZΞ (A⊗ ad(A)) ∈ GLn2(R)

Looking at the blocks of A ⊗ ad(A) below the diagonal, ZΞ(A ⊗ ad(A)) being a matrix 
in R implies that
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z|aijAkl

for j < i, k ≤ l, k < i. In particular, this implies that z|aijAkl for k ≤ i − 1 ≤ l and 
every j < i. Let us prove that this implies that z|aij for j < i, so that A ∈ PEndn(R). 
Suppose that z � aij for some j < i. Then z|Akl for all k ≤ i − 1 ≤ l. Then we will prove 
that

z|det
(
(Akl)nk,l=1

)
= det (ad(A)) = det(A)n det(A−1)

which would lead to contradiction, as A ∈ GLn(R) and z is not invertible in R. More 
precisely, we will prove by induction on i ≥ 2 that if M = (mkl)nk,l=1 ∈ Matn×n(R)
with n ≥ i satisfies that z|mkl for all k ≤ i − 1 ≤ l then z| det(M). Then we will take 
M = ad(A) to obtain the desired contradiction. If i = 2, then for all n ≥ i and all 
M = (mkl)nk,l=1 ∈ Matn×n(R) we have z|m1l for every l, so M has a row full of multiples 
of z and, therefore, its determinant is a multiple of z. Suppose that i > 2, that n ≥ i and 
that the statement is true for all i′ < i and all n′ ≥ i′. Let us develop the determinant 
of M through the first row

det
(
(mkl)nk,l=1

)
=

n∑
l=1

(−1)l+1m1l det(D1l)

where Dkl is the complement minor of M for the element (k, l). For l ≥ i − 1, z|m1l, 
so it is enough to prove that z| det(D1l) for l < i − 1. D1l is obtained by removing the 
first row and the l-th column of (mk′l′)nk′,l′=1. As l < i − 1, D1l contains all the elements 
mk′l′ for 1 < k′ ≤ i − 1 ≤ l′ in the positions k′′ = k′ − 1, l′′ = l′ − 1, so we know that 
z|(D1l)k′′l′′ = mk′′+1,l′′+1 for k′′ ≤ i − 2 ≤ l′′. Now, we apply the induction hypothesis 
to the (n − 1)-dimensional matrix D1l for i′ = i − 1. �
Lemma 6.11. Let M ∈ GLn2(R) be a matrix such that there exists A ∈ GLn(K) satisfying 
M = Mpar

A,A−1 . Then, there exists a matrix A′ ∈ PEndn(R) ∩ GLn(R) and an integer 
0 ≤ k < n such that

M = Mpar
(A′Hk),(A′Hk)−1

where H ∈ GLn(K) is the matrix

H =
(

0 In−1
z 0

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

z 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Proof. First, let us prove that Mpar
H,H−1 ∈ GLn2(R). As

det(Mpar
H,H−1) = det(ZΞT

) det(H) det(H−1) det(Z−1
ΞT

) = 1

it is enough to prove that Mpar
H,H−1 ∈ Matn2×n2(R). We can easily compute that

H ′ := (H−1)t =
(

0 In−1
z−1 0

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

z−1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Now it is enough to prove that MH,H−1 = Z−(ΞT )l+(ΞT )r(H ⊗H ′) ∈ Matn2×n2(R), but 
it is straightforward to check that

Z−(ΞT )l+(ΞT )r(H ⊗H ′) =
(

0 In−1
1 0

)
⊗
(

0 In−1
1 0

)

Observe that, as Hn = zI, yields H−k = Hn−k/z, so

Mpar
H−k,Hk = Mpar

Hn−k/z,zHk−n = Mpar
Hn−k,Hk−n =

(
Mpar

H,H−1

)n−k

∈ GLn2(R)

Corollary 6.9 allows us to find matrices A′, B′ ∈ Matn×n(R) such that M = Mpar
A′,B′/z

and A′B′/z = B′A′/z = I. First, let us prove that we can assume that zn � det(A′). As 
A′B′/z = I, we get that

det(A′) det(B′) = zn

As z is not invertible in R and det(B′) ∈ R, then det(A′)|zn. Suppose that zn| det(A′). 
Then z � det(B′), so det(B′) /∈ m and therefore, det(B′) is invertible in R. As the inverse 
of B′ is A′/z, then

1
z
A′ = (B′)−1 = 1

det(B′) ad(B′)t

where, ad(B′) is the adjoint matrix of B′. As the adjoint belongs to Matn×n(R) and 
det(B′)−1 ∈ R, then A

′

z ∈ Matn×n(R). Then, M = Mpar
A′/z,(A′/z)−1 and A′/z ∈ GLn(R).

If z � det(A′), then det(A′) is invertible and, thus, A′ ∈ GLn(R), so M = Mpar
A′,(A′)−1 . 

Now suppose that zk| det(A′) but zk+1 � det(A′) for some 0 < k < n. Then

M ′ = Mpar
′ ′ Mpar

−k k = Mpar
′ −k k ′ ∈ GLn2(R)
A ,B /z H ,H A H ,H B /z
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so there exist matrices A′′, B′′ ∈ Matn×n(R) with zn � det(A′′) and (A′′)−1 = B′′/z such 
that

Mpar
A′H−k,HkB′/z = M ′ = Mpar

A′′,B′′/z

but then, by Lemma 6.7 there exists a nonzero ρ ∈ K such that

A′′ = ρA′H−k

Taking determinants

det(A′′) = ρn
det(A′)

zk

We have z−k det(A′) /∈ m by hypothesis and zn � det(A′′) ∈ R. Taking the z-valuation 
νz at both sides yields

νz(det(A′′)) = nνz(ρ)

As 0 ≤ νz(det(A′′)) < n, yields νz(ρ) = 0, so ρ is invertible in R and we get

A′ = ρ−1A′′Hk

Moreover, νz(det(A′′)) = 0, so det(A′′) is invertible, and therefore, ρ−1A′′ ∈ GLn(R). 
From Lemma 6.10, ρ−1A′′ ∈ PEndn(R) ∩ GLn(R) and the Lemma follows. �
Lemma 6.12. Let {Uα}α∈I be a good cover of (X, D) such that for every x ∈ D there 
exists a unique αx ∈ I such that x ∈ Uαx

and if x, y ∈ D are distinct then αx �= αy. Let 
(E, E•) be a parabolic vector bundle of rank r described by a cocycle ϕαβ : Uαβ → G|Uαβ

. 
Then Hx(E, E•) is described by the following cocycle ψαβ : Uαβ → G|Uαβ

ψαβ =

⎧⎪⎨⎪⎩
ϕαβ x /∈ Uα ∪ Uβ

Hϕαβ x ∈ Uβ

ϕαβH
−1 x ∈ Uα

where H =
(

0 Ir−1
z 0

)
and z is a local coordinate in Uαx

centered in x.

Proof. First, let us prove that ψ is a cocycle. Let α, β, γ ∈ I with Uα ∩Uβ ∩Uγ �= ∅ and 
let us compute ψγαψβγψαβ . If x does not belong to any of the open sets, ψ coincides 
with ϕ and

ψγαψβγψαβ = ϕγαϕβγϕαβ = 1
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If x ∈ Uα

ψγαψβγψαβ = HϕγαϕβγϕαβH
−1 = HH−1 = 1

If x ∈ Uβ

ψγαψβγψαβ = ϕγαϕβγH
−1Hϕαβ = ϕγαϕβγϕαβ = 1

and if x ∈ Uγ

ψγαψβγψαβ = ϕγαH
−1Hϕβγϕαβ = ϕγαϕβγϕαβ = 1

Recall that E2
x ⊂ E denotes the second step of the filtration by subsheaves defining the 

parabolic structure of (E, E•) at x and it is precisely the underlying vector bundle of 
Hx(E, E•) (see section 5). The trivialization induced by ϕαβ at the stalk Ex is precisely

(E2
x)x ∼= m⊕Or−1

X,x ⊂ Or
X,x

ϕ∼= Ex

A trivialization of E2
x
∼= HEx,2

x (E) compatible with the induced parabolic structure would 
be the one obtained by “rotating” the given one through the procedure described in the 
previous chapter

(E2
x)x

ψ∼= Or
X,x

Ξr∼= Or−1
X,x ⊕m

π∼= m⊕Or−1
X,x

where π is the permutation sending π(i) = i − 1 for i > 1 and π(1) = r. Therefore, we 
get

(E2
x)x

H∼= m⊕Or−1
X,x ⊂ Or

X,x

ϕ∼= Ex

and we are done. �
Corollary 6.13. Let (E, E•) be a parabolic vector bundle. Then PEnd0(E, E•) is isomor-
phic to PEnd0 (Hx(E,E•)) as a Lie algebra bundle and at the stalk at the parabolic point 
x ∈ D the isomorphism coincides with

Mpar
H,H−1 : PEnd0(E,E•)x ∼= PEnd0 (Hx(E,E•))x

Lemma 6.14. Let (E, E•) and (E′, E′
•) be parabolic vector bundles of rank r such that 

PEnd0(E, E•) and PEnd0(E′, E′
•) are isomorphic as Lie algebra bundles. Then (E′, E′

•)
can be obtained from (E, E•) through a combination of the following transformations

(1) Tensorization with a line bundle over X, (E, E•) �→ (E ⊗ L, E• ⊗ L)



D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070 63
(2) Parabolic dualization (E, E•) �→ (E, E•)∨
(3) Hecke transformation at a parabolic point x ∈ D, (E, E•) �→ Hx(E, E•).

Proof. Giving a vector bundle PEnd0(E) with its Lie algebra structure is equivalent to 
giving an Aut(parsl)-torsor PAut(parsl) which admits a reduction to a G-torsor (which cor-
responds to the parabolic vector bundle (E, E•)). We will analyze the possible reductions 
from a given Aut(parsl)-torsor in two steps.

G � Inn(parsl) ↪→ Aut(parsl)

First, note that there is an exact sequence of sheaves of groups

1 −→ Inn(parsl) −→ Aut(parsl) −→ Out(parsl) −→ 1

Our first step is to compute the outer automorphisms of parsl. Over a non-parabolic 
point x /∈ D, taking stalks the previous short exact sequence simply reduces to

1 −→ Inn(sl) −→ Aut(sl) −→ Out(sl) −→ 1

We know that Inn(sl) = PGLr and Out(sl) = Z/2Z if r > 2 and Out(sl) = 1 if r = 2
(cf. [16, Proposition D.40]). For the sake of the exposition, let us assume that r > 2. The 
proof for r = 2 is completely analogous and it will be outlined at the end. Then

1 −→ Inn(sl) = PGLr −→ Aut(sl) −→ Out(sl) = Z/2Z −→ 1

Therefore, in order to determine Out(parsl), we only need to determine the stalk of 
Out(parsl) at a parabolic point. The single nontrivial outer automorphism of sl is the 
one induced by duality of the underlying vector space. Given a parabolic full flag vector 
bundle (E, E•), parabolic duality induces an outer isomorphism of the algebra parsl
extending the previous one over non-parabolic points. Let x ∈ D. Let o1, o2 ∈ Out(parsl)x
be two germs of sections at the parabolic point. Composing with the dualization action 
if necessary, we may assume that o1 and o2 coincide generically. Then there exist germs 
of sections o1, o2 ∈ Aut(parsl)x such that s := o1 ◦ o−1

2 ∈ Aut(parsl)x is a germ whose 
restriction to the open set correspond to an inner automorphism.

Let OX,x be the stalk of the structure sheaf at x ∈ D. Let m be the maximal ideal 
in OX,x and let K be the field of fractions, i.e., K = m−1OX,x. As X is a smooth curve, 
OX,x is a principal ideal domain, so m = (z) for some germ z ∈ OX,x. Therefore, an 
element of parslx is represented by an r × r matrix of elements of OX,x whose elements 
below the diagonal are multiples of z, i.e., it is a matrix of the form⎛⎜⎜⎜⎜⎝

a11 a12 · · · a1r
za21 a22 · · · a2r

...
...

. . .
...

za za · · · a

⎞⎟⎟⎟⎟⎠

r1 r2 rr
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where aij ∈ OX,x and 
∑r

i=1 aii = 0. The germ s is, in particular, a germ of GL(parsl). 
Trace 0 matrices form a linear codimension 1 subspace of pargl whose complement is 
generated by the identity matrix. Therefore, any element of GL(parsl) extends to an 
element of GL(pargl) sending the identity matrix to itself. Moreover, if an element of 
GL(parsl) belongs to Aut(parsl), the extension belongs to Aut(pargl), as the identity 
matrix belongs to the kernel of the Lie bracket in pargl.

Then, any germ s ∈ Aut(parsl)x can be described by an invertible r2 × r2 matrix of 
elements of OX,x by embedding Aut(parsl)x ↪→ GL(Matr×r(OX,x)) 

τ∼= GLr2(OX,x). Let 
S = (sij) ∈ GLr2(OX,x) be such matrix. As s corresponds generically to an inner auto-
morphism, there exists a matrix G ∈ GLr(K) such that S = Mpar

G,G−1 . By Lemma 6.11, 
there exists a matrix G′ ∈ PEndr(OX,x) ∩ GLr(OX,x) ∼= Gx and an integer 0 ≤ k < r

such that

S = Mpar
G′Hk,(G′Hk)−1 = Mpar

G′,(G′)−1 ◦
(
Mpar

H,H−1

)k
Moreover, as Mpar

H,H−1 is a conjugation operation in Matr×r(K), it clearly preserves 
the 0-trace and it is a Lie algebra isomorphism. Therefore Aut(parsl)x

Z/2Z×Inn(parsl)x is generated 
by the order r automorphism induced from conjugation by the matrix H. One trivially 
checks that taking the dual and conjugating by H is the same as conjugating by H−1

and then taking the dual, so the outer automorphism group is

Out(parsl)x ∼= 〈s, h〉/{s2 = 1, hr = 1, sh = h−1s} = Dr

where Dr is the dihedral group of order r. Therefore, Out(parsl)x fits in a sequence

1 −→ Z/2Z×X −→ Out(parsl) −→ Z/rZ⊗OD −→ 0

The space of reductions of structure sheaf of PAut(parsl) to Inn(parsl) correspond 
to sections of the associated Out(parsl)-torsor, PAut(parsl)(Out(parsl)). The associated 
bundle is a 2-to-1 cover of U glued to a (2r)-to-1 cover of D through the canonical 
inclusion Z/2Z < Dr. Since we know that there are reductions of the torsor, the bundle 
must be the disjoint union of a trivial 2-to-1 cover of X and a trivial 2(r−1) cover of D.

We will prove that Inn(parsl) coincides with G/C∗ := PG. Then, a reduction of 
PAut(parsl) to an Inn(parsl) is a parabolic projective bundle (P , P•) = (P (E), P (E•))
together with an isomorphism

PAut(parsl) ∼= PEnd0(P ,P•)

Let (P , P•) → X be a reduction of PAut(parsl) to Inn(parsl). Then the generator of 
the Z/2Z component of Out(parsl) corresponds to its dual parabolic projective bundle

(P ,P•)∨ = P ((E,E•)∨)
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On the other hand, by Corollary 6.13, for each x ∈ D, the generator of the Z/rZ < Dr

outer automorphism corresponds to the Hecke transformation of (P , P•) at the parabolic 
point x ∈ D. As these outer automorphisms generate Out(parsl), every reduction can be 
found as a composition of Hecke transformations and dualization of (P , P•).

Now consider the exact sequence of groups

1 −→ Z −→ G −→ Inn(parsl) −→ 1

Let us compute the group scheme Z. As before, over x ∈ U , Inn(parsl)x = PGLr and 
Gx = GLr, so Zx = C∗. Therefore, it is only necessary to compute Zx for x ∈ D. By 
definition, Z is the kernel of the adjoint representation. Let X ∈ Gx ↪→ Matr×r(OX,x)
be in the kernel of the representation. Then, for every Y ∈ parslx ↪→ Matr×r(OX,x)

XY − Y X = 0

In particular, as given any G ∈ End0(OX,x), zG ∈ parslx,

0 = X(zG) − (zG)X = z(XG−GX)

As OX,x does not have any zero divisors, XG − GX = 0 and, therefore, X belongs to 
the center of End0(OX,x), which consists on OX,x-multiples of the identity. Clearly, all 
invertible multiples of the identity belong to Gx and they are in the kernel of the adjoint, 
so

Zx = O∗
X,x

Therefore, we conclude that Z = C∗ ×X = O∗
X and, taking the quotient, Inn(parsl) =

G/C∗ := PG. As C∗ belongs to the center of G, the isomorphism classes of reductions of 
an Inn(parsl)-torsor to a G-torsor form a torsor for the group H1(X, O∗

X).
Let (E, E•) be the parabolic vector bundle corresponding to a reduction of the PG-

torsor (P , P•) → X, i.e., (P (E), P (E•)) ∼= (P , P•). Then the other reductions correspond 
to parabolic vector bundles of the form (E, E•) ⊗ L for any line bundle L. Similarly, 
(E, E•)∨⊗L and Hx(E, E•) ⊗L are all the possible reductions of (P , P•)∨ and Hx(P , P•)
respectively, so all possible reductions can be computed from (E, E•) by a repeated 
combination of dualization, tensoring with a line bundle and application of Hecke trans-
formations at parabolic points.

As we mentioned before, the proof for r = 2 is completely analogous. The only 
difference is that we do not need duality anymore, as in this case Out(sl) = 1 and 
Aut(sl) = Inn(sl) [16, Proposition D.40], so the computation gets simplified. Geometri-
cally, this reflects on the fact that the dual of every rank two bundle (respectively rank 
two parabolic bundle) is isomorphic to a tensor product of a line bundle with the original 
bundle (see Lemma 7.23 for more details). Following the same argument as before we 
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get that Aut(parsl)x
Inn(parsl)x is generated by the order r automorphism induced from conjugation 

by the matrix H, so

Out(parsl)x ∼= Z/rZ

and thus

Out(parsl) ∼= Z/rZ⊗OD

As before, the space of reductions of PAut(parsl) to Inn(parsl) = PG correspond to sections 
of PAut(parsl)(Out(parsl)). As we know that there are reductions, in rank 2 this bundle 
must be a disjoint union of X and a trivial (r − 1)-cover of D. Then if (P , P•) → X

is a reduction of PAut(parsl) to Inn(parsl) = PG the other reductions come from Hecke 
transformations of (P , P•) at the parabolic points and, therefore, if (E, E•) is a reduction 
of the PG torsor (P , P•) to G then the rest of the reductions of PAut(parsl) to G are 
obtained as a combination of tensoring with a line bundle and application of Hecke 
transformations at parabolic points to (E, E•). �
7. Isomorphisms between moduli spaces of parabolic vector bundles

Let Φ : M(X, r, α, ξ) → M(X ′, r′, α′, ξ′) be an isomorphism between the moduli space 
of parabolic vector bundles of rank r, determinant ξ and weight system α over (X, D)
and the moduli space of parabolic vector bundles of rank r′, determinant ξ′ and weight 
system α′ over (X ′, D′).

By Torelli Theorem 4.6, we know that r = r′ and that Φ induces an isomor-
phism between the marked curves σ : (X, D) ∼−→ (X ′, D′). We know that the 
map of quasi-parabolic vector bundles (E, E•) �→ σ∗(E, E•) induces an isomorphism 
Σσ : M(X ′, r, α′, ξ′) −→ M(X, r, σ∗α′, σ∗ξ′). Therefore, Σσ ◦ Φ : M(r, α, ξ) −→
M(r, σ∗α′, σ∗ξ′) is an isomorphism between moduli spaces of parabolic vector bundles 
on (X, D) such that the induced automorphism on the marked curve is the identity. As 
we can do this for every automorphism of the marked curve, we can assume without loss 
of generality that Φ induced the identity map on (X, D).

For k > 1, let Wk = H0(KkDk−1). Recall that we defined

hk : H0(SPEnd0(E) ⊗KX(D)) → Wk

as the composition of the Hitchin map h : H0(SPEnd0(E) ⊗ KX(D)) → W with the 
projection W � Wk. As we have assumed that Φ induces the identity map on (X, D), 
then the Hitchin space for both moduli spaces is the same and by Proposition 4.4, there 
exists a C∗-equivariant automorphism f : W ∼−→ W such that the following diagram 
commutes
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T ∗M(r, α, ξ)
d(Φ−1)

h

T ∗M(r, α′, ξ′)

h

W
f

W

(7.1)

Moreover we know that f preserves the block Wr ⊂ W . Our next goal will be to 
prove that, in fact, there exist linear maps fk : Wk → Wk such that the following 
diagram commutes for every k > 1 (Corollary 7.12)

T ∗M(r, α, ξ)
d(Φ−1)

hr

T ∗M(r, α′, ξ′)

hr

Wk

fk
Wk

(7.2)

in other words, we will prove that f : W → W is linear and preserves the decomposition 
W =

⊕r
k=2 Wr. In order to do so, we will analyze how the geometry of the discriminant 

D ⊂ W and the C∗-action impose restrictions on the structure of the map f : W → W .
For every k > 1, let us denote

W≤k =
k⊕

j=2
Wk

In particular W = W≤r and, in order to simplify the notation, we consider W≤1 = 0.

Lemma 7.1. Let f : W → W be a C∗-equivariant isomorphism. If r = 2 then f is linear 
isomorphism. Otherwise, if r ≥ 2, then there exist

• An algebraic isomorphism g : W≤(r−2) → W≤(r−2),
• linear isomorphisms Aj : Wj → Wj, j = r − 1, r and
• algebraic maps gj : W≤(r−2) → Wj, j = r − 1, r

such that for every s = (s, sr−1, sr) ∈ W = W≤(r−2) ⊕Wr−1 ⊕Wr

f(s2, . . . , sr) = (g(s), Ar−1(sr−1) + gr−1(s), Ar(sr) + gr(s))

Proof. Assume that r ≥ 3 and let f = (f2, . . . , fr). Let us fix coordinates xj =
(xj,1, . . . , xj,dj

) in Wj for each j = 2, . . . , r, where

dj = dim(Wj) = h0(KjDj−1) = j(2g − 2) + (j − 1)n− g + 1

In these coordinates, each component of the map fj : W → Wj is written as a weighted-
homogeneous polynomial for the weights induced by the C∗-action. This means that it 
must be the sum of monomials of the form C

∏n
i=1 x

ti
j ,k where

i i
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l∑
i=1

tiji = j ti > 0, 2 ≤ ji ≤ r

In particular, the previous equation implies that for every j and every i = 1, . . . , n, ji ≤ j

and, therefore, the map fj : W → Wj can only depend on variables coming from Wl

for l ≤ j. Moreover, if ji = j for some i, then there cannot be any other factor in the 
monomial, i.e., it is a linear monomial. Therefore, each fj : W → Wj decomposes as a 
sum

fj(s2, . . . , sr) = gj(s2, . . . , sj−1) + Aj(sj)

for some C∗-equivariant map gj :
⊕j−1

i=2 Wi → Wj and some linear map Aj : Wj → Wj . 
In the particular case j = r we observe that the monomials composing fr cannot contain 
the variables {xj−1,i}dj−1

i=1 either, because they have order r − 1 for the C∗ action and 
there does not exist any variable of order 1. Then

fr(s2, . . . , sr) = gr(s2, . . . , sr−2) + Ar(sr)

Finally, as the inverse f−1 must have an analogous decomposition, we conclude that the 
maps Aj : Wj → Wj and the maps

gj = (A2, g3 + A3, . . . , gj + Aj) :
j⊕

i=2
Wi −→

j⊕
i=2

Wi

must be all invertible. The case r = 2 is proved in a completely analogous way. �
Let sing : D ��� X For each x ∈ X, let Dx ⊂ D be closure of the subset of singular 

curves which are singular over the point x ∈ X. By definition of the map sing

Dx = sing−1(x)

Lemma 7.2. For every x ∈ X, Dx is a nonempty connected rational variety.

Proof. For x ∈ D the subset Dx was computed in Proposition 4.1

Dx =
r−1⊕
k=2

H0(KkDk−1) ⊕H0(KrDr−1(−x))

and it clearly satisfies the desired properties. Suppose that x ∈ X\D. Let us consider 
the image of Dx under the evaluation map

0 −→
r⊕

H0(KjDj−1(−2x)) −→ W −→
r⊕

KjDj−1 ⊗Ox/I2
x −→ 0
j=2 j=2
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Then s ∈ Dx is the preimage of

Y =

⎧⎪⎪⎨⎪⎪⎩(s, s′) ∈ C2(r−1)

∣∣∣∣∣∣∣∣∃t ∈ C

tr +
∑r

j=2 sjt
r−j = 0

rtr−1 +
∑r−1

j=2(r − j)sjtr−j−1 = 0∑r
j=2 s

′
jt

r−j = 0

⎫⎪⎪⎬⎪⎪⎭
Clearly, if we prove that Y is rational connected and nonempty, then Dx is rational 
connected and nonempty, as it is a vector bundle over Y. For r = 2, Y = {(0, 0)} and 
we are done, so from now on assume that r > 2. Let us consider the following diagram

Ct ×Cr−1
s ×Cr−1

s′ Ct ×Cr−1
s

Ỹ Ỹs

Cr−1
s ×Cr−1

s′ Cr−1
s

Y Ys

where

Ỹ =

⎧⎪⎪⎨⎪⎪⎩(t, s, s′) ∈ C2r−1

∣∣∣∣∣∣∣∣
tr +

∑r
j=2 sjt

r−j = 0
rtr−1 +

∑r−1
j=2(r − j)sjtr−j−1 = 0∑r
j=2 s

′
jt

r−j = 0

⎫⎪⎪⎬⎪⎪⎭
Ỹs =

{
(t, s) ∈ Cr

∣∣∣∣∣ tr +
∑r

j=2 sjt
r−j = 0

rtr−1 +
∑r−1

j=2(r − j)sjtr−j−1 = 0

}

Ys =
{
s ∈ Cr−1

∣∣∣∣∣∃t ∈ C
tr +

∑r
j=2 sjt

r−j = 0
rtr−1 +

∑r−1
j=2(r − j)sjtr−j−1 = 0

}

and, clearly, all horizontal and vertical arrows are surjective. Let us consider the open 
subset Us ⊂ Ys corresponding to polynomials of the form p(x) = (x − t1)2(x − t2) · · · (x −
tr−1) with 2t1 +

∑r−1
i=2 ti = 0, all ti different and t1 �= 0. Let U ⊂ Y, Ũ ⊂ Ỹ and Ũs ⊂ Ỹs

be the preimages of U under the corresponding projection maps. By definition of Ys, it 
is straightforward to compute that a vector (τ, σ) ∈ T(t,s)Ct × Cr−1

s lines in T(t,s)Ỹs if 
and only if
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
tr +

∑r
j=2 σjt

r−j = 0

rtr−1 +
∑r−1

j=2(r − k)σjt
r−j−1 +

+
(
r(r − 1)tr−2 +

∑r−2
j=2(r − j)(r − j − 1)sjar−j−2

)
τ = 0

Therefore, the differential of the map Ỹs � Ys fails to be injective at (t, s) if and only if

r(r − 1)tr−2 +
r−2∑
j=2

(r − j)(r − j − 1)sjar−j−2 = 0

i.e., if the polynomial ps(x) = xr +
∑r

j=2 sjx
r−j is divisible by (x − t)3. In particular, if 

s ∈ Us, the differential of the map Ũs � Us is injective. Moreover, Ỹs � Ys is clearly 
finite, so the map Ũs � Us is a finite and bijective with injective differential. By [19, 
Theorem 14.9 and Corollary 14.10], it is an isomorphism. As points (t, s) ∈ Ũs all have 
t �= 0, the fiber of the projection Ũ � Ũs is a vector space of dimension r − 2 and it 
is straightforward to check that Ũ is a vector bundle over Ũs. Similarly, U is a vector 
bundle over Us and it is isomorphic to Ũ through the isomorphism Ũs

∼= Us. This proves 
that Y is birational to a vector bundle over Ũs. The latter is isomorphic to C∗ × Cr−3

in the following way. Consider Ck as the space of traceless polynomials q(x) of degree 
k + 1. Then Ũs is the image of the map

C∗ ×Cr−3 Ũs

(t, q(x))
(
t, (x− t)2(q(x) + 2txr−3)

)
The inverse can be computed through Ruffini’s rule, thus inducing an algebraic isomor-
phism. Therefore Y is birational to a vector bundle over C∗ ×Cr−3, so it is a nonempty 
connected rational variety. �
Lemma 7.3. The map sing : D ��� X commutes with f : D → D.

Proof. We will proceed as in [6, Remark 4.2]. As sing : D ��� X has connected rational 
fibers and is surjective, there exists a unique such map up to an automorphism of X
because of the following. Suppose that γ : D ��� X is another surjective map with 
connected rational fibers. For a generic x ∈ X, the map γ restricts to a rational map 
Dx ��� X. As Dx is a connected rational variety this map must be constant. Therefore, 
the map γ : D ��� X descends to a nonconstant rational map ργ : X ��� X. As 
X is a smooth projective curve, this map extends to an automorphism of X such that 
γ = ργ ◦sing. Let ρ : X → X be the only map such that f(Dx) = Dρ(x) for all x ∈ X. The 
map f : W → W preserves Wr and D, so it preserves D∩Wr = CX ∪

⋃
x∈D Cx. Moreover, 

we know that P (CX) is not isomorphic to P (Cx) for any x ∈ D, so f must induce 
an automorphism of CX . By construction we assumed that the induced automorphism 
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�

σ : X → X on the dual variety is the identity, and it clearly coincides with ρ : X → X, 
as for each x0 ∈ X\D we have

H0(KrDr−1(−2x0)) = f(H0(KrDr−1(−2x0))) = f(Dx ∩Wr) = Dρ(x) ∩Wr

= H0(KrDr−1(−2ρ(x0)))

As a consequence, for each x ∈ X, f(Dx) = Dx. Then, in particular, their intersection 
is preserved by f . Let

N =
⋂
x∈X

Dx

be the subset of spectral curves which are singular over each x ∈ X. The only way this 
can happen is if the spectral curve is non-reduced, so N is precisely the set of non-
reduced spectral curves. Clearly, it decomposes in irreducible components depending on 
the degree of the non-reduced factor.

N =
�r/2�⋃
d=1

N d

where

N d =
{
(xd + a1x

d−1 + . . . + ad)2(xr−2d − 2a1x
r−2d−1 + b2x

r−2d−2 + . . . + br−2d)
}

for d < r/2 and, if r is even,

N r/2 =
{

(xr/2 + a2x
r/2−2 + . . . + ar/2)2

}
with aj , bj ∈ H0(KjDj−1).

Lemma 7.4. Suppose that r ≥ 3 and let f : W → W be a map such that f(N ) = N . 
Then it preserves N 1 ⊂ N .

Proof. We will show that the irreducible component N 1 ⊂ N can be identified as the 
unique irreducible component with the highest dimension. Generically the polynomials 
p(x) ∈ N d admit a single decomposition as a product p(x) = p1(x)2p2(x) as above. 
Therefore, using Riemann-Roch theorem, the dimension of N d equals

dim(N d) =
d∑

j=1
h0(KjDj−1) +

r−2d∑
j=2

h0(KjDj−1)

for d < r/2 and, if r > 2 is even, then



72 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
dim(N r/2) =
r/2∑
j=2

h0(KjDj−1)

Observe that for every d with 1 < d < r/2

dim(N d) =
d∑

j=1
h0(KjDj−1) +

r−2d∑
j=2

h0(KjDj−1) ≤

h0(K) +
r−2∑

j=r−d

h0(KjDj−1) +
r−2d∑
j=2

h0(KjDj−1) <
r−2∑
j=1

h0(KjDj−1) = dim(N 1)

and, if r > 2 is even then r/2 ≤ r − 2, so clearly

dim(N r/2) =
r/2∑
j=2

h0(KjDj−1) ≤
r−2∑
j=2

h0(KjDj−1) <
r−2∑
j=1

h0(KjDj−1) = dim(N 1)

so N 1 is the irreducible component of N of maximum dimension, and it is the only 
component with such dimension. Therefore, f(N 1) = N 1. �

For each a ∈ H0(K), let

N 1(a) =
{
(x− a)2(xr−2 + 2axr−3 + b2x

r−4 + . . . + br−2)
}

where bj ∈ H0(KjDj−1). Then, by definition

N 1 =
⋃

a∈H0(K)

N 1(a)

We can analyze the geometry of N 1 in terms of N 1(a). Let us consider the following 
intersection variety constructed as a disjoint union of the slices N 1(a)

I =
∐

a∈H0(K)

{a} × N 1(a) � H0(K) ×W

It is clearly the preimage of 0 under the map

F : H0(K) ×W H0(Kr−1Dr−2) ×H0(KrDr−1)

(a, s2, . . . , sr)
(
rar−1 +

∑r−1
k=2(r − k)skar−k−1

ar +
∑r

k=2 ska
r−k

)

Lemma 7.5. There exists a basis {wi} of H0(K) such that the sections wr
i ∈ H0(KrDr−1)

are linearly independent.



D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070 73
Proof. Assume that the lemma is false. Then let us prove that the image of H0(K) under 
the algebraic map

H0(K) (·)r−→ H0(KrDr−1)

is contained in some linear subspace V ⊂ H0(KrDr−1) of dimension at most g − 1. Let 
m < g be the maximum rank of the images of a basis {w1, . . . , wg} ⊂ H0(K). Then there 
is some basis {w1, . . . , wg} such that for each i > m, wr

i belongs to the m-dimensional 
linear space

V = Span({wr
j}j≤m) ⊂ H0(KrDr−1)

In particular, as {wr
j}j≤m generate a subspace of the maximum dimension, the images 

of the vectors of any other basis containing {wj}j≤m, must be contained in V . In par-
ticular, if we pick any w′

g ∈ U = H0(K)\ Span({wj}j<g), then {w1, . . . , wg−1, w′
g} is a 

basis of H0(K) and we get that (w′
g)r ∈ V . Therefore, the image of the open subset 

U = H0(K)\ Span({wj}j<g) ⊂ H0(K) is contained in V . As U is dense and the map 
H0(K) → H0(KrDr−1) is continuous, the whole image of the map must be contained 
in V . Then, by upper semicontinuity of the dimension of the fibers, all the fibers of the 
algebraic map H0(K) → V must have dimension at least 1. In particular, there must 
exist a nonzero w ∈ H0(K) such that wr = 0, but this is impossible. �

Let π1 : I → H0(K) and π2 : I → N 1 be the canonical projections.

Lemma 7.6. The map π2 : I � N 1 sending (a, s) �→ s is a finite map.

Proof. The fibers of the map are clearly finite, so it is only necessary to prove that C[I]
is a finite algebra over C[N 1]. We know that I ⊂ H0(K) ×W is defined by the equations 
F (a, s) = 0. Let IN 1 be the ideal defining N 1 ⊂ W and let {wi}gi=1 be a basis of H0(K)
as in the Lemma 7.5. Then it is straightforward to check that

C[I] ∼= C[W ][t1, . . . , tg]
IN 1 + I

where I ⊂ C[W ][t1, . . . , tg] is the ideal generated by each of the components of the vector

(
r

(
g∑

i=1
tiwi

)r−1

−
r−1∑
k=2

(r − k)sk

(
g∑

i=1
tiwi

)r−k−1

,

(
g∑

i=1
tiwi

)r

−
r∑

k=2

sk

(
g∑

i=1
tiwi

)r−k)

in any basis of H0(Kr−1Dr−2) ⊕H0(KrDr−1) extending {wr
i }.
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Therefore, in order to prove that C[I] is a finitely generated C[N 1] = C[W ]/IN 1 -
module, it is enough to find a relation in I between tri and lower order terms tkj with 
k < r and coefficients in C[N 1]. Observe that(

g∑
i=1

tiwi

)r

−
r∑

k=2

sk

(
g∑

i=1
tiwi

)r−k

=
g∑

i=1
triw

r
i + O({tr−1

j })

As wr
i are linearly independent, taking the wr

i coordinate of this vector we obtain an 
expression of the form tri + O({tr−1

j }) which, by construction, has coefficients in C[N 1]
and belongs to I for every i = 1, . . . , g. Therefore, C[I] is generated as a C[N 1]-module 
by {tj11 · · · tjgg |ji < r}. �
Lemma 7.7. There is an open nonempty set U sm ⊂ N 1 such that the differential of the 
map π2 : π−1

2 (U sm) → N 1 is invertible at every point.

Proof. The differential of the map π2 is invertible over the points s ∈ N 1 such that 
H0(K) is transverse to T(a,s)I ⊂ H0(K) ⊕W . Let us compute the tangent space to I. 
By construction it is the kernel of the differential of F

dF : H0(K) ⊕W −→ H0(Kr−1Dr−2) ⊕H0(KrDr−1)

It is straightforward to compute the differential at a point (a, s) from the equations of 
F . If (α, σ2, . . . , σr) ∈ T(a,s)H

0(K) ×W ∼= H0(K) ⊕W , then

dF (α, σ2, . . . , σr) =

⎛⎜⎜⎝
(rar−1 +

∑r−1
k=2(r − k)σka

r−k−1)+
+
(
r(r − 1)ar−2 +

∑r−2
k=2(r − k)(r − k − 1)skar−k−2)α

(ar +
∑r

k=2 σka
r−k) + (rar−1 +

∑r−1
k=2(r − k)skar−k−1)α

⎞⎟⎟⎠
As (a, s) ∈ I = F−1(0) the last summand in the second component is zero, so the 
equations of T(a,s)I become⎧⎪⎪⎨⎪⎪⎩

(rar−1 +
∑r−1

k=2(r − k)σka
r−k−1)+

+
(
r(r − 1)ar−2 +

∑r−2
k=2(r − k)(r − k − 1)skar−k−2)α = 0

ar +
∑r

k=2 σka
r−k = 0

Therefore, H0(K) fails to be transverse to T(a,s)I if and only if

r(r − 1)ar−2 +
r−2∑
k=2

(r − k)(r − k − 1)skar−k−2 = 0

This, together with the assumption that F (a, s) = 0, implies that the polynomial corre-
sponding to s admits a decomposition
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ps(x) = (x− a)3q(x)

for some q. Repeating the dimension counting argument in Lemma 7.4 we obtain that 
the set of point admitting such decomposition has positive codimension in N 1, so its 
complement U sm ⊂ N 1 is an open nonempty set. For r = 2, U sm = N 1, for r = 3, 
U sm = N 1\{0} and for r > 3

dim(N 1\U sm) = h0(K) +
r−3∑
j=2

h0(KjDj−1) <
r−2∑
j=1

h0(KjDj−1) = dim(N 1) �

Lemma 7.8. The projection π2 : I → N 1 is a C∗-equivariant birational map.

Proof. The space of points in N 1 admitting at least a decomposition of the form

p(x) = (x− a)2q(x)

for at least two different sections a ∈ H0 corresponds to the points in N 1 admitting a 
decomposition of the form

p(x) = (x− a)2(x− b)2q(x)

For some a, b. Again, repeating the dimension argument used in Lemma 7.4, we obtain 
that the dimension of this subset is less than the dimension of N 1. Let Ubi denote its 
complement in N 1. Then for r < 4, Ubi = N 1. For r = 4

dim(N 1\Ubi) = h0(K) < h0(K) + h0(K2D1) = dim(N 1)

and for r > 4

dim(N 1\Ubi) = 2h0(K) +
r−4∑
j=2

h0(KjDj−1)

=
r−3∑
j=1

h0(KjDj−1) − (h0(Kr−3Dr−4) − h0(K)) <
r−2∑
j=1

h0(KjDj−1) = dim(N 1)

Therefore, there exists an open nonempty subset Ubi ⊂ N 1 consisting on points s whose 
preimage π−1

2 (s) is a single point. On the other hand, by Lemma 7.7, there exists a
subset U sm such that the differential of the map π2|Usm is invertible. By Lemma 7.6, 
we know that π2 is a finite map, so restricting it to U = Ubi ∩ U sm, we obtain a finite 
bijective map with invertible differential. By [19, Theorem 14.9 and Corollary 14.10], 
π2|π−1

2 (U) : π−1
2 (U) → U is an isomorphism and, therefore, it induces a birational map 

between I and N 1. �
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Lemma 7.9. Suppose that r ≥ 3. Let f : W → W be a C∗-equivariant isomorphism such 
that f(N ) = N . Then there is a C∗-equivariant isomorphism g : W≤(r−2) → W≤(r−2)
and linear maps fj : Wj → Wj for j = r−1, r such that the following diagrams commute

W
f

π≤(r−2)

W

π≤(r−2)

W
f

πr−1

W

πr−1

W
f

πr

W

πr

W≤(r−2)
g

W≤(r−2) Wr−1
fr−1

Wr−1 Wr

fr
Wr

Proof. Taking into account the block decomposition in Lemma 7.1, it is enough to prove 
that the map (gr−1, gr) : W≤(r−2) → Wr−1 ⊕ Wr is zero. By definition, W≤(r−2) =
N 1(0) ⊂ N 1, so Lemma 7.4 implies that f(W≤(r−2)) ⊂ N 1. The dimension of W≤(r−2)
is

dim(W≤(r−2)) =
r−2∑
j=2

h0(KjDj−1)

so comparing it with the dimensions of N 1\U sm and N 1\Ubi computed in Lem-
mas 7.7 and 7.8, we obtain that dim(N 1\U sm) < dim(W≤(r−2)) and dim(N 1\Ubi) <
dim(W≤(r−2)). Therefore, U ∩ f(W≤(r−2)) = U sm ∩ Ubi ∩ f(W≤(r−2)) is an open dense 
subset of f(W≤(r−2)).

Thus, applying Lemma 7.8, we obtain a C∗-equivariant rational map f(W≤(r−2)) ���
I. On the other hand, let us consider the isomorphism g : W≤(r−2) → W≤(r−2) given 
by the decomposition in blocks of f : W → W described in Lemma 7.1. Composing the 
rational map f(W≤(r−2)) ��� I with the canonical projection, π1 : I → H0(K), and the 
map f̃ = f ◦ g−1 : W≤(r−2) → f(W≤(r−2)), we obtain a rational map t : W≤(r−2) ���
H0(K), satisfying the following property. Let (s, sr−1, sr) = (s2, . . . , sr) ∈ f(W≤(r−2))
be a generic point. Then t(s) ∈ H0(K) is the only section such that{

t(s)r +
∑r

j=2 sjt(s)r−j = 0
rt(s)r−1 +

∑r−1
j=2(r − j)sjt(s)r−j−1 = 0

In particular, solving for sr−1 and sr we obtain that{
sr−1 = −rt(s)r−1 −

∑r−2
j=2(r − j)sjt(s)r−j−1

sr = (r − 1)t(s)r +
∑r−2

j=2(r − j − 1)sjt(s)r−j

On the other hand, as (s, sr−1, sr) ∈ f(W≤(r−2)), by the block decomposition we know 
that {

sr−1 = gr−1 ◦ g−1(s) := g̃r−1(s)
s = g ◦ g−1(s) := g̃ (s)
r r r
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so {
g̃r−1(s) = −rt(s)r−1 −

∑r−2
j=2(r − j)sjt(s)r−j−1

g̃r(s) = (r − 1)t(s)r +
∑r−2

j=2(r − j − 1)sjt(s)r−j
(7.3)

As t : W≤(r−2) ��� H0(K) is a C∗-equivariant rational map between vector spaces there 
are three possibilities for its structure

(1) t = 0, in which case we would get gr−1 = 0 and gr = 0 leading to the desired result.
(2) t : W≤(r−2) → H0(K) is an homogeneous polynomial. This is impossible because 

the action of C∗ in W≤(r−2) is of order at least 2 and the action of C∗ in H0(K) has 
order 1.

(3) t(s) = α(s)
β(s) for some homogeneous polynomials α and β with no common factors.

Then it is only left to prove that (3) is also impossible. Substituting t = α/β in (7.3) we 
obtain the following equality{

β(s)r−1g̃r−1(s) = −rα(s)r−1 −
∑r−2

j=2(r − j)sjα(s)r−j−1β(s)j

β(s)r g̃r(s) = (r − 1)α(s)r +
∑r−2

j=2(r − j − 1)sjα(s)r−jβ(s)j

Nevertheless, looking at the last equation modulo β we get that αr is a multiple of β, 
thus contradicting that α and β do not share a common factor. �

In order to prove that f is linear and decomposes diagonally, we will apply the previous 
lemma inductively. For each k > 1, let Nk ⊂

⊕k
j=2 H

0(KjDj−1) be the set of non-
reduced “rank k” spectral curves, i.e., the set of spectral curves defined by degree k
polynomials of the form

xk +
k∑

j=2
sjx

k−j = 0

for sj ∈ H0(KjDj−1) which have at least a non-reduced component. With a slight abuse 
of notation let us also denote by Nk ⊂ W≤k the image of the set of rank k non-reduced 
spectral curves under the inclusion

Nk ⊆
k⊕

j=2
H0(KjDj−1) ⊆

r⊕
j=2

H0(KjDj−1)

In other words,

Nk = {xr−kq(x) | q(x) = p1(x)2p2(x) for some p1(x) and p2(x)}



78 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
Lemma 7.10. Let k ≥ 3 and let f≤k : W≤k → W≤k be a C∗-equivariant isomorphism such 
that f≤k(Nk) = Nk. Then there is a C∗-equivariant isomorphism f≤(k−2) : W≤(k−2) →
W≤(k−2) and linear maps fj : Wj → Wj for j = k−1, k such that f≤(k−2)(Nk−2) = Nk−2
and the following diagrams commute

W≤k

f≤k

π≤(k−2)

W≤k

π≤(k−2)

W≤k

f≤k

πk−1

W≤k

πk−1

W≤k

f≤k

πk

W≤k

πk

W≤(k−2)
f≤(k−2)

W≤(k−2) Wk−1
fk−1

Wr−1 Wk

fk
Wk

Proof. Applying the Lemma 7.9 to r = k, we obtain the desired diagonal decomposition 
f≤k = (f≤(k−2), fk−1, fk) : W≤(k−2) ⊕Wk−1 ⊕Wk → W≤(k−2) ⊕Wk−1 ⊕Wk. Therefore, 
it is enough to prove that f≤(k−2) preserves Nk−2. We know that Nk decomposes in 
irreducible components as

Nk =
�k/2�⋃
d=1

N d
k

where

N d
k =

{
(xd + a1x

d−1 + . . . + ad)2(xk−2d − 2a1x
k−2d−1 + b2x

k−2d−2 + . . . + bk−2d)
}

for d < k/2 and, if k is even,

N k/2
k =

{
(xk/2 + a2x

k/2−2 + . . . + ak/2)2
}

By hypothesis we known that f≤k(Nk) = Nk and, by Lemma 7.4, f≤k(N 1
k ) = N 1

k , so, 
f≤k must preserve the union of the rest of the components.

f≤k

⎛⎝�k/2�⋃
d=2

N d
k

⎞⎠ =
�k/2�⋃
d=2

N d
k

On the other hand, for each d > 1 consider the intersection W≤(k−2) ∩ N d
k ⊂ W≤k. The 

elements in W≤(k−2) correspond to polynomials p(x) ∈ W≤k which have at least a factor 
x2, i.e.

W≤(k−2) = {x2q(x) ∈ W≤k}

On the other hand, the elements in N d
k are polynomials with at least a double factor of 

order d
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N d
k = {p1(x)2p2(x) | deg(p1) = d}

Then when we get the intersection, for each polynomial of the form p(x) = p1(x)2p2(x) ∈
W≤(k−2) ∩N d

k there are two possibilities

(1) Either the x2 factor is included in p1(x), so p1(x) = xq1(x) for some q of degree d −1
and then

p(x) = x2q1(x)2p2(x) ∈ N d−1
k−2

(2) or the x2 factor is included in p2(x), so p2(x) = x2q2(x) and then

p(x) = x2p1(x)2q2(x) ∈ N d
k−2

and the latter can only happen if d ≤ (k − 2)/2. Therefore, we conclude that

W≤(k−2) ∩N d
k =

{
N d−1

k−2 ∪N d
k−2 d ≤ (k − 2)/2

N d−1
k−2 d > (k − 2)/2

In particular, taking the full union for d > 1 yields

W≤(k−2) ∩
�k/2�⋃
d=2

N d
k =

�(k−2)/2�⋃
d=1

N d
k−2 = Nk−2

As f≤k preserves both W≤(k−2) and the union of the components N d
k for d > 1, we 

obtain that f≤k(Nk−2) = Nk−2. Finally, as Nk−2 ⊂ W≤(k−2) and we already know 
that f decomposes diagonally with respect to the last two factors Wk−1 and Wk, then 
f≤(k−2)(Nk−2) = Nk−2. �

Now we can apply the previous lemma inductively and combine it with the previous 
results to recover the diagonal decomposition.

Lemma 7.11. Let f : W → W be a C∗-equivariant isomorphism such that f(D) = D. 
Then for every k > 1, there exists a linear automorphism fk : Wk → Wk such that the 
following diagram commutes

W
f

πk

W

πk

Wk

fk
Wk

(7.4)

Proof. By Lemma 7.3, the map sing : D ��� X commutes with f : D → D, so f preserves 
the closure of the fibers Dx = sing−1(x). Then, it preserves its intersection, but we know 



80 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
by construction that Nr =
⋂

x∈X Dx, so f(Nr) = Nr. Moreover, f : W → W is C∗-
equivariant by hypothesis, so we can apply Lemma 7.10 and we obtain that f = f≤r

commutes with the projections into W≤k−2, Wr−1 and Wr, decomposing diagonally as

f≤r = (f≤(r−2), fr−1, fr) : W≤(r−2) ⊕Wr−1 ⊕Wr −→ W≤(r−2) ⊕Wr−1 ⊕Wr

with fr−1 and fr linear maps. Moreover f≤(r−2)(Nr−2) = Nr−2. Now we can restrict 
ourselves to W≤(r−2). We proved that we have a C∗-equivariant isomorphism f≤(r−2) :
W≤(r−2) → W≤(r−2) such that f≤(r−2)(Nr−2) = Nr−2, so we can apply Lemma 7.10
again and find that f≤(r−2) decomposes as

f≤(r−2) = (f≤(r−4), fr−3, fr−2) : W≤(r−4) ⊕Wr−3 ⊕Wr−2 −→ W≤(r−4) ⊕Wr−3 ⊕Wr−2

and, moreover f≤(r−4)(Nr−4) = Nr−4. This together with the previous part proves that 
f : W → W decomposes as

f = (f≤(r−4), fr−3, . . . , fr) : W≤(r−4) ⊕Wr−3 ⊕· · ·⊕Wr −→ W≤(r−4) ⊕Wr−3 ⊕· · ·⊕Wr

Where fj are linear for j ≥ r−3. Repeating this argument successively, we arrive to two 
different situations depending on the parity of r.

If r is even, we arrive to a diagonal decomposition f = (f2, . . . , fr) with fj :
Wj → Wj linear, so we are done. If r is even, we obtain a diagonal decomposition 
f = (f≤2, f3, . . . , fr) with fj : Wj → Wj linear for each j > 2 and f≤2 : W2 → W2 a 
C∗-equivariant isomorphism. Then, simply apply the r = 2 case of Lemma 7.1 to f≤2 to 
prove that it is a linear isomorphism. �

In particular, combining the previous lemma with diagram 7.1, we obtain

Corollary 7.12. For every k > 1, there exists a linear automorphism fk : Wk → Wk such 
that the following diagram commutes

T ∗M(r, α, ξ)
d(Φ−1)

hk

T ∗M(r, α′, ξ′)

hk

Wk

fk
Wk

(7.5)

Once we have characterized fr : Wr → Wr, we can further state the following Lemma.

Lemma 7.13. Let fr : Wr → Wr be the linear automorphism constructed in Corol-
lary 7.12. Then for every k > 0 and every x0 ∈ X

fr
(
H0(KrDr−1(−kx0))

)
= H0(KrDr−1(−kx0))
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Proof. As d(Φ−1) is an isomorphism, it maps complete rational curves on the cotangent 
bundle to complete rational curves. By Lemma 4.3, the morphism f must preserve C =
D ∩Wr. Applying 4.5, we can decompose C = CX ∪

⋃
x∈D Cx, where P (CX) is the dual 

variety of X ⊂ P (W ∗
r ) and P (Cx) is the set of hyperplanes going through x ∈ X ⊂

P (W ∗
r ). Moreover, we know that P (CX) is not isomorphic to P (Cx) for any x, so f

must preserve CX . As we assumed that the induced automorphism of the dual variety 
σ : X → X is the identity, then for each x0 ∈ X, the projectivization of f must 
preserve all the osculating spaces at x0. The osculating k space at x0 ∈ X ⊂ P (W ∗

r )
is precisely P (H0(KrDr−1(−kx0))). As f : Wr → Wr is linear, we conclude that it 
preserves H0(KrDr−1(−kx0)). �
Lemma 7.14. Suppose that g ≥ 4. Let (E, E•) ∈ M(r, α, ξ) and (E′, E′

•) ∈ M(r, α′, ξ′)
be generic stable parabolic vector bundles such that Φ(E, E•) = (E′, E′

•). Consider the 
isomorphism of vector spaces

d(Φ−1) : H0(SPEnd0(E) ⊗KX(D)) −→ H0(SPEnd0(E′) ⊗KX(D))

Then for every x ∈ U = X\D, the image of H0(SPEnd0(E) ⊗KX(D−x)) under d(Φ−1)
is H0(SPEnd0(E′) ⊗KX(D − x)).

Proof. Let x0 ∈ U . Let (E, E•) be a generic stable parabolic vector bundle in the sense 
of Lemma 2.7. We will prove that

H0(SPEnd0(E) ⊗KX(D − x)) =

{ψ ∈ H0(SPEnd0(E) ⊗KX(D)) : ∀ϕ ∈ h−1
r (Hx0) hr(ψ + ϕ) ∈ Hx0}

where Hx0 = H0(KrDr−1(−x0)) ⊆ Wr = H0(KrDr−1). By Lemma 7.13, Hx0 is pre-
served by fr : Wr → Wr, so the Lemma follows from commutativity of diagram (7.2).

As we assumed g ≥ 4, by Lemma 2.7, for a generic (E, E•)

H1(SPEnd0(E,E•) ⊗K(D − x0)) = H0(PEnd0(E,E•)(x0))∨ = 0

Therefore, for a generic parabolic vector bundle the following sequence is exact

0 −→ H0(SPEnd0(E,E•) ⊗K(D − x0)) −→ H0(SPEnd0(E,E•) ⊗K(D))

−→ SPEnd0(E,E•) ⊗K(D)|x0 −→ 0

Therefore, the evaluation map

H0(SPEnd0(E,E•) ⊗K(D)) � SPEnd0(E,E•) ⊗K(D)|x0
∼= End(E)|x0 ⊗K(D)|x0

(7.6)
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is surjective. By definition of the Hitchin map hr(ψ) ∈ Hx0 if and only if det(ψ(x0)) = 0. 
On the other hand, ψ ∈ H0(SPEnd0(E, E•) ⊗K(D − x0)) if and only if ψ(x0) = 0.

We will use the following algebra fact, ψ(x0) ∈ End(E)|x0⊗K(D)|x0 is zero if and only 
if for every other matrix M ∈ End(E)|x0 ⊗K(D)|x0 such that det(M) = 0, det(ψ(x0) +
M) = 0. Finally, as the evaluation map (7.6) is surjective, the latter is equivalent to 
det(ψ(x0) + ϕ(x0)) = 0 for every ϕ ∈ h−1

r (Hx0). �
Lemma 7.15. Suppose that g ≥ 4. Let (E, E•) and (E′, E′

•) be generic parabolic vector 
bundles such that Φ(E, E•) = (E′, E′

•). Then Φ induces an isomorphism of vector bundles

ΦSPEnd0 : SPEnd0(E,E•) ∼= SPEnd0(E′, E′
•)

Proof. Let E be the sub-bundle of the trivial vector bundle

H0(SPEnd0(E,E•)) ⊗K(D)) ⊗C OX −→ X

whose fiber over each x ∈ X is H0(SPEnd0(E, E•)) ⊗K(D− x)). From Lemma 2.7, the 
following sequence is exact

0 → E → H0(SPEnd0(E,E•)) ⊗K(D)) ⊗C OX
π−→ SPEnd0(E,E•) ⊗K(D) → 0

where the last morphism is the evaluation map. Analogously, we define a vector bundle 
E ′ such that

0 → E ′ → H0(SPEnd0(E′, E′
•)) ⊗K(D)) ⊗C OX

π−→ SPEnd0(E′, E′
•) ⊗K(D) → 0

By Lemma 7.14, over U = X\D, the image of E|U under d(Φ−1) ⊗ IdOU
is E ′|U . As E

and E ′ are the saturations of E|U and E ′|U in H0(SPEnd0(E, E•) ⊗K(D)) ⊗C OU and 
H0(SPEnd0(E, E•) ⊗K(D)) ⊗C OU respectively, the image of E under d(Φ−1) ⊗ IdOX

must be E ′. Therefore, passing to the quotient, there must exist an isomorphism of vector 
bundles

ΦSPEnd0 : SPEnd0(E,E•) ∼= SPEnd0(E′, E′
•)

such that the following diagram commutes

0 E H0(SPEnd0(E,E•) ⊗K(D)) ⊗C OX

d(Φ−1)⊗IdOX

π
SPEnd0(E,E•) ⊗K(D)

ΦSPEnd0⊗IdK(D)

0

0 E ′ H0(SPEnd0(E′, E′
•) ⊗K(D)) ⊗C OX

π
SPEnd0(E′, E′

•) ⊗K(D) 0

�

Lemma 7.16. Suppose that g ≥ 6. Let (E, E•) and (E′, E′
•) be generic parabolic vector 

bundles such that Φ(E, E•) = (E′, E′
•). Then Φ induces an isomorphism of vector bundles
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ΦPEnd0 : PEnd0(E,E•) ∼= PEnd0(E′, E′
•)

such that the following diagram commutes

SPEnd0(E,E•)
ΦSPEnd0 SPEnd0(E′, E′

•)

PEnd0(E,E•)
ΦPEnd0

PEnd0(E′, E′
•)

Proof. Given a parabolic point x ∈ D and a parabolic vector bundle (E, E•), let 
SPEnd(x)

0 (E, E•) be the subsheaf of SPEnd0(E, E•) whose stalk over y ∈ X\{x} is 
SPEnd0(E, E•)y and whose stalk over x is (PEnd0(E,E•)(−x))x. It fits into a short 
exact sequence

0 −→ SPEnd(x)
0 (E,E•) −→ SPEnd0(E,E•) −→

r2−r⊕
k=1

Cx −→ 0

where the last morphism is the evaluation map at x of the elements of SPEnd0(E, E•)
out of the diagonal, once a basis compatible with the parabolic filtration is chosen. 
More explicitly, if (E, {Ei,y}) is the parabolic vector bundle obtained by restricting the 
parabolic filtration to y ∈ D, then we define

SPEnd(x)
0 (E,E•) =

⋂
y∈D\{x}

SPEnd0(E, {Ei,y}) ∩ PEnd0(E, {Ei,x})(−x)

From the definition, it becomes clear that

SPEnd0(E,E•)(−x) ↪→ SPEnd(x)
0 (E,E•) ↪→ SPEnd0(E,E•) (7.7)

and these sheaves are related with PEnd0(E, E•) by the following relation

SPEnd0(E,E•)(−D) ↪→ PEnd0(E,E•)(−D) =

=
⋂
x∈D

SPEnd(x)
0 (E,E•) ↪→ SPEnd0(E,E•) (7.8)

We will prove that for every x ∈ D, Φ induces a morphism

Φ(x)
SPEnd0

: SPEnd(x)
0 (E,E•) −→ SPEnd(x)

0 (E′, E′
•)

such that the following diagram commutes
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SPEnd0(E,E•)(−x)

ΦSPEnd0⊗IdOX (−x)

SPEnd(x)
0 (E,E•)

Φ(x)
SPEnd0

SPEnd0(E,E•)

ΦSPEnd0

SPEnd0(E′, E′
•)(−x) SPEnd(x)

0 (E′, E′
•) SPEnd0(E′, E′

•)

Then ΦSPEnd0 preserves the subsheaf SPEnd(x)
0 (E, E•) and Φ(x)

SPEnd0
is simply the re-

striction of the morphism. Using the relation (7.8), we conclude that ΦSPEnd0 preserves 
PEnd0(E, E•)(−D), in the sense that it induces by restriction to the intersection a mor-
phism

ΦPEnd0 : PEnd0(E,E•)(−D) −→ PEnd0(E′, E′
•)(−D)

such that the following diagram commutes

SPEnd0(E,E•)(−D)

ΦSPEnd0⊗IdOX (−D)

PEnd0(E,E•)(−D)

ΦPEnd0

SPEnd0(E,E•)

ΦSPEnd0

SPEnd0(E′, E′
•)(−D) PEnd0(E′, E′

•)(−D) SPEnd0(E′, E′
•)

finally, tensoring the previous diagram by OX(D) and taking ΦPEnd0 = ΦPEnd0⊗IdOX(D)
yields the desired vector bundle isomorphism.

Now let us build the morphism Φ(x)
SPEnd0

. Let (E, E•) be a generic parabolic vec-
tor bundle. Let us define the following subsets of H0(SPEnd0(E, E•) ⊗ K(D)) =
T ∗

(E,E•)M(r, α, ξ) recursively.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F 0
(E,E•) = H0(SPEnd0(E,E•) ⊗K(D))

∀k > 0 Gk
(E,E•) = {ψ ∈ F k−1

(E,E•) : hr(ψ) ∈ H0(KrDr−1(−kx))}
∀k > 0 F k

(E,E•) = {ψ ∈ Gk
(E,E•) : ∀ϕ ∈ Gk

(E,E•) , ϕ + ψ ∈ Gk
(E,E•)}

∀k > 0, y ∈ X\D Gk
(E,E•),y = {ψ ∈ F k

(E,E•) : hr(ψ) ∈ H0(KrDr−1(−kx− y))}
∀k > 0, y ∈ X\D F k

(E,E•),y = {ψ ∈ Gk
(E,E•),y : ∀ϕ ∈ Gk

(E,E•),y , ϕ + ψ ∈ Gk
(E,E•),y}

(7.9)
By Lemma 7.13, fr preserves H0(KrDr−1(−kx)) for every k, so, by construction, for 
every k > 0

d(Φ−1)
(
F k

(E,E•)

)
= F k

(E′,E′
•)

d(Φ−1)
(
Gk

(E,E•)

)
= Gk

(E′,E′
•)

d(Φ−1)
(
F k

(E,E•),y

)
= F k

(E′,E′
•),y

d(Φ−1)
(
Gk

(E,E•),y

)
= Gk

(E′,E′
•),y

We will prove the following equalities for x ∈ D and y ∈ X\D
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F r−1
(E,E•) = H0(SPEnd(x)

0 (E,E•) ⊗K(D))
F r

(E,E•) = H0(SPEnd0(E,E•) ⊗K(D − x))
F r−1

(E,E•),y = H0(SPEnd(x)
0 (E,E•) ⊗K(D − y))

F r
(E,E•),y = H0(SPEnd0(E,E•) ⊗K(D − x− y))

(7.10)

Assuming that (7.10) has been proven, we can build the map Φ(x)
SPEnd0

(and thus complete 
the proof of the Lemma) as follows. It is straightforward to test that

(
SPEnd(x)

0 (E,E•) ⊗OX(D)
)∨ ∼=

SPEnd0(E, {Ei,x})(x) ∩ PEnd0(E,E•)(x) ↪→ End0(E)(x)

As g ≥ 6, Lemma 2.7 implies that for every x ∈ D and every y ∈ X

H1(SPEnd(x)
0 (E,E•)⊗K(D−y)) = H0

((
SPEnd(x)

0 (E,E•) ⊗OX(D)
)∨

⊗OX(y)
)∨

= 0

H1(SPEnd0(E,E•) ⊗K(D − x− y)) = H0 (PEnd0(E,E•)(x + y))∨ = 0

Therefore, we have the following short exact sequences

0 H0(SPEnd0(E,E•)
⊗K(D − x− y)

) H0(SPEnd0(E,E•)
⊗K(D − x)

) SPEnd0(E,E•)
⊗K(D − x)|y 0

0 H0(SPEnd(x)
0 (E,E•)

⊗K(D − y)
) H0(SPEnd(x)

0 (E,E•)
⊗K(D)

) SPEnd(x)
0 (E,E•)

⊗K(D)|y
0

0 H0(SPEnd0(E,E•)
⊗K(D − y)

) H0(SPEnd0(E,E•)
⊗K(D)

) SPEnd0(E,E•)
⊗K(D)|y 0

which are reduced to the following diagram if y ∈ X\D using (7.10)

0 F r
(E,E•),y F r

(E,E•) SPEnd0(E,E•) ⊗K(D − x)|y 0

0 F r−1
(E,E•),y F r−1

(E,E•) SPEnd(x)
0 (E,E•) ⊗K(D)|y 0

0 F 0
(E,E•),y F 0

(E,E•) SPEnd0(E,E•) ⊗K(D)|y 0
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Let F and G be the sub-vector bundles

F ↪→ H0(SPEnd(x)
0 (E,E•) ⊗K(D − x)) ⊗OX

and

G ↪→ H0(SPEnd0(E,E•) ⊗K(D − x)) ⊗OX

whose fiber over y ∈ X is H0(SPEnd(x)
0 (E, E•) ⊗K(D − y)) and H0(SPEnd0(E, E•) ⊗

K(D − x − y)) respectively. We define the vector bundles F ′ and G′ analogously for 
(E′, E′

•). Then Lemma 2.7 implies that the rows of the following commutative diagram 
are exact

0 G F r
(E,E•) ⊗OX SPEnd0(E,E•) ⊗K(D − x) 0

0 F F r−1
(E,E•) ⊗OX SPEnd(x)

0 (E,E•) ⊗K(D) 0

0 E F 0
(E,E•) ⊗OX SPEnd0(E,E•) ⊗K(D) 0

(7.11)

Over U , we have proven that

(
d(Φ−1) ⊗ IdOU

)
(G|U ) = G′|U(

d(Φ−1) ⊗ IdOU

)
(F|U ) = F ′|U(

d(Φ−1) ⊗ IdOU

)
(E|U ) = E ′|U

As before, G, F and E are the saturations of G|U , F|U and E|U and the same holds for 
G′, F ′ and E ′, so

(
d(Φ−1) ⊗ IdOX

)
(G) = G′(

d(Φ−1) ⊗ IdOX

)
(F) = F ′(

d(Φ−1) ⊗ IdOX

)
(E) = E ′

By commutativity of diagram (7.11), the morphisms between G, F and E coincide with 
the restriction of the morphism 

(
d(Φ−1) ⊗ IdOX

)
: F 0

(E,E•) ⊗ OX → F 0
(E,E•) ⊗ OX to 

the corresponding subsheaves. Taking quotients, we obtain the following commutative 
diagram proving the desired result
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d0⊗IdK(D−x)

0

SPEnd0(E′, E′
•) ⊗ K(D − x) 0

nd0
⊗IdK(D)

0

SPEnd(x)
0 (E′, E′

•) ⊗ K(D) 0

d0⊗IdK(D)

0

SPEnd0(E′, E′
•) ⊗ K(D) 0
0 G F r
(E,E•) ⊗ OX

d(Φ−1)⊗IdOX

SPEnd0(E,E•) ⊗ K(D − x)

ΦSPEn

0 G′ F r
(E′,E′

•)
⊗ OX

0 F F r−1
(E,E•) ⊗ OX

d(Φ−1)⊗IdOX

SPEnd(x)
0 (E,E•) ⊗ K(D)

Φ(x)
SPE

0 F ′ F r−1
(E′,E′

•)
⊗ OX

0 E F 0
(E,E•) ⊗ OX

d(Φ−1)⊗IdOX

SPEnd0(E,E•) ⊗ K(D)

ΦSPEn

0 E′ F 0
(E,E•) ⊗ OX
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Finally, we have to prove the equalities in (7.10). Let us take the image of F k
(E,E•)

and Gk
(E,E•) by the evaluation map

π : H0(SPEnd0(E,E•) ⊗K(D)) � SPEnd0(E,E•) ⊗K(D)|x

Let us identify the right hand side fiber with the vector space of traceless r× r complex 
matrices and let us define for 0 < k ≤ r

F k
(E,E•) =

{
ψ = (ψij) ∈ SPEnd0(E,E•) ⊗K(D)|x : ∀l 0 < l ≤ k ∀(i, j) ∈ I l

ψij = 0

}

Gk
(E,E•) = F k−1

(E,E•) ∩
{
ψ = (ψij) :

∏
(i,j)∈Ik ψij = 0

}
where we take F 0

(E,E•) = SPEnd0(E, E•) ⊗K(D)|x and

Ik = {(i, j) ∈ [1, r]2 : j − i ∼= k mod r}

By definition of SPEnd(x)
0 (E, E•), it is clear that the following identities hold

π−1
(
F r−1

(E,E•)

)
= H0(SPEnd(x)

0 (E,E•) ⊗K(D))

π−1
(
F r

(E,E•)

)
= H0(SPEnd0(E,E•) ⊗K(D − x))

Let us prove by induction that for every 0 < k ≤ r

π−1
(
Gk

(E,E•)

)
= Gk

(E,E•)

π−1
(
F k

(E,E•)

)
= F k

(E,E•)

For k = 0 the statement is trivial by construction. Suppose that

π−1
(
F k−1

(E,E•)

)
= F k−1

(E,E•)

Let s ∈ H0(SPEnd0(E, E•) ⊗ K(D)) be a section in F k−1
(E,E•). Let sx be its germ at x. 

Looking at the image of the germ in (End0(E) ⊗ K(D))x, it can be identified with a 
matrix S = (Sij) ∈ Matr×r(OX,x). As OX,x is a local principal ideal domain, there exists 
an element z ∈ OX,x such that (z) ⊂ OX,x is the maximal ideal. For −r < k < r, let us 
denote by

Dk = {(i, j) ∈ [1, r]2 : j − i = k}

the set of indexes corresponding to the k-th secondary diagonal of an r× r matrix. Note 
that for 0 < k < r
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Ik = Dk ∪Dk−r

and for k = r, Ir = D0. By induction hypothesis, as s ∈ F k−1
(E,E•), then z|Sij for each 

(i, j) ∈ Dl for 0 ≤ l < k and, moreover, z2|Sij for each (i, j) ∈ Dl−r for 0 < l < k. 
We have that hr(s) ∈ H0(KrDr−1(−kx)) if and only if zk+1| det(S). Developing the 
determinant

det(S) =
∑
σ∈Σr

(−1)|σ|
r∏

i=1
Siσ(i)

the only summand with less than k + 1 factors z is the product of the elements in Ik. 
To check this, observe that the only factors not already divisible by z are those with 
j ≥ i + k. Moreover, note that for i > r − k, all the elements Sij with j < i + k − r are 
divisible by z2. Therefore, a permutation σ : [1, r] −→ [1, r] for which 

∏r
i=1 Siσ(i) is not 

already divisible by zk+1 must have

(1) σ(i) ≥ i + k for every i ≤ r − k

(2) σ(i) ≥ i + k − r for every i > r − k

Now the result follows from Lemma 7.17. Therefore, zk+1| det(S) if and only if

zk+1|
∏

(i,j)∈Ik

Sij

As the k elements below the diagonal are already multiple of z, the product is a multiple 
of zk+1 if and only if there is at least an extra z factor in some of the Sij , i.e., if and only 
if sij annihilates for some (i, j) ∈ Ik. Therefore, taking into account that π is surjective, 
we obtain that s ∈ Gk

(E,E•) if and only if π(x) ∈ Gk
(E,E•).

Now, let us prove that

F k
(E,E•) =

{
ψ ∈ Gk

(E,E•) : ∀ϕ ∈ Gk
(E,E•), ψ + ϕ ∈ Gk

(E,E•)

}
Suppose that an element ψ ∈ Gk

(E,E•) has some (i, j) ∈ Ik with ψij �= 0. Let ∅ �= I � Ik

be the subset of indexes in Ik such that ψij �= 0. Then, let us define ϕ ∈ Gk
E,E•

in the 
following way

ϕij =

⎧⎪⎨⎪⎩
0 (i, j) ∈ I
1 (i, j) ∈ Ik\I
ψij (i, j) ∈ [1, n]2\Ik

We can test that as ψ ∈ F k−1
(E,E•), ϕ ∈ F k−1

(E,E•) and as I �= ∅, then 
∏

(i,j)∈Ik ϕij = 0. On 

the other hand, for every (i, j) ∈ Ik
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(ψ + ϕ)ij �= 0

so ϕ + ψ /∈ Gk
(E,E•). Now the equality

π
(
F k

(E,E•)

)
= π

({
ψ ∈ Gk

(E,E•) : ∀ϕ ∈ Gk
(E,E•), ψ + ϕ ∈ Gk

(E,E•)

})
=
{
ψ ∈ Gk

(E,E•) : ∀ϕ ∈ Gk
(E,E•), ψ + ϕ ∈ Gk

(E,E•)

}
= F k

(E,E•)

follows from surjectivity of π : Gk
(E,E•) � Gk

(E,E•). The remaining equalities of (7.10)

F r−1
(E,E•),y = H0(SPEnd(x)

0 (E,E•) ⊗K(D − y))
F r

(E,E•),y = H0(SPEnd0(E,E•) ⊗K(D − x− y))

follow from the given ones using the same argument as the one used for Lemma 7.14, 
taking into account that, as we have already proven, the assumption g ≥ 6 implies that 
the following morphisms are surjective for every y ∈ X\D

H0(SPEnd0(E,E•) ⊗K(D − x)) � SPEnd0(E,E•) ⊗K(D − x)|y

H0(SPEnd(x)
0 (E,E•) ⊗K(D)) � SPEnd(x)

0 (E,E•) ⊗K(D)|y �
Lemma 7.17. Let σ : [1, r] −→ [1, r] be a permutation such that

(1) σ(i) ≥ i + k for every i ≤ r − k

(2) σ(i) ≥ i + k − r for every i > r − k

Then

σ(i) =
{

i + k i ≤ r − k

i + k − r i > r − k

Proof. Let us prove by induction that σ(i) ≤ i + k for i ≤ r − k. For i = r − k, we have 
that

σ(r − k) ≤ r = r − k + k

Let j < r − k and let us assume that it is true for all i with r − k ≥ i > j. Then 
σ(i) = i +k for r−k ≥ i > j. Therefore, the elements [j+k+1, r] have been selected by 
the permutation, so σ(j) /∈ [j+k+1, r], so σ(j) ≤ j+k. Once we know that σ(i) = i +k

for i ≤ r − k, let us prove by induction that σ(i) ≤ i + k − r for every i > r − k. As 
the elements [k + 1, r] have already been selected by the permutation, we know that 
σ(i) ∈ [i + k − r, k] for every i > r − k. For i = r, we have σ(r) ≤ k = r + k − r. Let 
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j > r − k and suppose that it is true for every r ≥ i > j. Then σ(i) = i + k − r for 
every i > j. Therefore, the elements [j + k − r + 1, k] have already been selected by the 
permutation and we get σ(j) ≤ j + k − r. �
Lemma 7.18. Suppose that g ≥ 4. For every x ∈ X, and every k > 1, the linear subspace

H0(KkDk−1(−kx)) ⊆ Wk

is preserved by the linear map fk : Wk −→ Wk.

Proof. Let U ⊂ M(r, α, ξ) and U ′ ⊂ M(r, α′, ξ′) be the open nonempty subsets of 
generic parabolic vector bundles in the sense of Lemma 2.7. Let V = Φ−1(U) ∩ U ′ and 
let V ′ = Φ(V) ⊆ U ′. They are also nonempty open subsets of M(r, α, ξ) and M(r, α′, ξ′)
respectively. As we assumed g ≥ 3, we have

r deg(K(D − x)) = r(2g − 3 + n) ≥ r(2g − 2) ≥ 2(2g − 2) > 2g

Therefore, we can apply Corollary 3.3 to L = K(D − x) and the open subsets U ′ and 
U ′′. Then we obtain that the linear subspace

r⊕
k=2

H0(KkDk−1(−kx)) ⊆ W

is the space generated by the images h(H0(SPEnd0(E, E•) ⊗ K(D − x))) both when 
(E, E•) runs over V and when (E, E•) runs over V ′.

By Lemma 7.15, for every (E, E•) ∈ V, if (E′, E′
•) = Φ(E, E•) ∈ V ′, then the image 

of H0(SPEnd0(E, E•) ⊗K(D − x)) by d(Φ−1) is H0(SPEnd0(E′, E′
•) ⊗K(D − x)). As 

Φ(V) = V ′, then union of the images h(H0(SPEnd0(E, E•) ⊗K(D−x))) for (E, E•) ∈ V is 
the same as the union of the images h(H0(SPEnd0(E′, E′

•) ⊗K(D−x))) for (E′, E′
•) ∈ V ′, 

so f : W → W preserves the subspace 
⊕r

k=2 H
0(X, KkDk−1(−kx)) ⊆ W .

Finally, the result follows as a consequence of Lemma 7.11, as the map f : W → W

is diagonal with respect to the decomposition W =
⊕r

k=2 Wk. �
For k > 1, the curve X is embedded in P (Wk) via the linear system |KkDk−1| and 

the osculating k-space at each point x ∈ X is given by

Osck(x) = P
(
ker
(
H0(KkDk−1)∨ → H0(KkDk−1(−kx))∨

)
\{0}

)
The previous corollary, together with Lemma 7.15 proves that the morphism

P (fk) : P
(
H0(KkDk−1)∨\{0}

)
−→ P

(
H0(KkDk−1)∨\{0}

)
preserves Osck(x) for all x ∈ X. Now, we use the following Lemma
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Lemma 7.19. Let X ↪→ PN be an irreducible smooth complex projective curve embedded 
in the projective space. If ϕ ∈ PGL(N + 1) is an isomorphism preserving Osck : X →
Gr(k + 1, N + 1) for some k, then it preserves Osck : X → Gr(k + 1, N + 1) for every k.

Proof. This is a direct consequence of the following fact proved in [6, p. 1250052-23]. 
Let X ↪→ PN be an embedding of an irreducible smooth complex projective curve X in 
a projective space and let Osck : X → Gr(k + 1, N + 1) be the map sending each x ∈ X

to the osculating k-space of X in PN . Then Osck uniquely determines the embedding 
X ↪→ PN . Therefore the following diagram commutes

PN
ϕ

PN

X X

For each k′ > 0 and each x ∈ X we can identify Osck′(x) with the intersection of all 
hyperplanes in PN which intersect with X at x with multiplicity at least k′. As the 
embedded curve X is preserved by ϕ and ϕ ∈ PGL(N + 1) is a linear isomorphism 
it is clear that ϕ preserves the set of hyperplanes with this property and, therefore, it 
preserves its intersection Osck′(x) for each k′ and each x ∈ X. �

As P (fk) preserves Osck, it preserves Osc1, so fk must preserve the hyperplanes

H0(KkDk−1(−x)) ⊂ H0(KkDk−1)

for every x ∈ X.
In particular, this implies that for every x ∈ X and generic (E, E•) the image of the 

set

NE,x = {ψ ∈ H0(SPEnd0(E,E•) ⊗K(D)) : ∀k > 1 hk(ψ) ∈ H0(KkDk−1(−x))}

by d(Φ−1) = H0(ΦSPEnd0 ⊗ Id) is

NE′,x = {ψ ∈ H0(SPEnd0(E′, E′
•) ⊗K(D)) : ∀k > 1 hk(ψ) ∈ H0(KkDk−1(−x))}

For x ∈ U , the set NE,x coincides with the preimage of the nilpotent cone under the 
surjective map

H0(SPEnd0(E,E•) ⊗K(D)) � SPEnd0(E,E•) ⊗K(D)|x

Taking the image of NE,x under the evaluation map we get a subset NE,x ⊂
SPEnd0(E, E•) ⊗K(D)|x. Varying x over U , we get a subscheme
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NE |U ↪→ SPEnd0(E,E•)|U

such that ΦSPEnd0 |U (NE |U ) = NE′ |U .
Therefore, if g ≥ 6, ΦPEnd0 |U : PEnd0(E, E•)|U → PEnd0(E′, E′

•)|U is an isomor-
phism of vector bundles that preserves the nilpotent cone. Therefore, it is an isomorphism 
of GL(parsl)|U ∼= GL(sl) ×U torsors that preserves the nilpotent cone. Let N < sl denote 
the subset of nilpotent matrices. Then, let us denote by

GN = {g ∈ GL(sl) : g(N) = N} < GL(sl)

the subgroup of invertible linear transformations of sl which preserve the nilpotent ma-
trices. As ΦPEnd0 |U preserves the nilpotent cone, it is an isomorphism of GN -torsors. 
Now, we can use the following theorem from Botta, Pierce and Watkins [13],

Theorem 7.20. The group GN is generated by

(1) Inner automorphisms X �→ S−1XS

(2) The maps X �→ aX for some a �= 0
(3) The map X �→ Xt that sends a matrix X to its transpose

Using the computation in [7, Lemma 5.4], we know that Aut(sl) is generated by inner 
automorphisms and the map X �→ −Xt. Therefore, we conclude that GN

∼= Aut(sl) ×C∗. 
Thus, up to product by a morphism U −→ C∗, ΦPEnd0 |U is an isomorphism of Aut(sl)-
torsors, i.e., it is an automorphism of Lie algebra bundles.

Lemma 7.21. Suppose that g ≥ 6. Let (E, E•) and (E′, E′
•) be generic parabolic vector 

bundles such that Φ(E, E•) = (E′, E′
•). Then there exists a constant λ ∈ C∗ such that 

the vector bundle isomorphism λ · ΦPEnd0 defined in Lemma 7.16 is an isomorphism of 
Lie algebras bundles.

Proof. As PEnd0(E, E•) and PEnd0(E′, E′
•) have the same degree, det(ΦPEnd0) ∈

H0(X, OX). X is projective and connected, so det(ΦPEnd0) is constant. The previous 
discussion shows that ΦPEnd0 |U is an isomorphism of (Aut(sl) ×C)-torsors. As its deter-
minant is constant, there exists a nonzero λ ∈ C∗ such that λ ·ΦPEnd0 |U is an isomorphism 
of Aut(sl)-torsors, i.e., it is an isomorphism of Lie algebra bundles.

A Lie algebra structure on PEnd0(E, E•) is in particular a bilinear morphism

[·, ·] : PEnd0(E,E•) ⊗ PEnd0(E,E•) −→ PEnd0(E,E•)

Therefore, the Lie algebra structure induced by endomorphism composition on (E, E•)
is represented by a section

p(E,E•) ∈ H0(PEnd0(E,E•)∨ ⊗ PEnd0(E,E•)∨ ⊗ PEnd0(E,E•))
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Similarly, the Lie algebra structure on (E′, E′
•) is represented by a section

p(E′,E′
•) ∈ H0(PEnd0(E′, E′

•)∨ ⊗ PEnd0(E′, E′
•)∨ ⊗ PEnd0(E′, E′

•))

Through the isomorphism λ · ΦPEnd0 , the section p(E′,E′
•) induces another section

(λ · ΦPEnd0)∗p(E′,E′
•) ∈ H0(PEnd0(E,E•)∨ ⊗ PEnd0(E,E•)∨ ⊗ PEnd0(E,E•))

Therefore, we obtain a section p(E,E•) − (λ · ΦPEnd0)∗p(E′,E′
•). As λ · ΦPEnd0 |U is an 

isomorphism of Lie algebra sheaves, we obtain that 
(
p(E,E•) − (λ · ΦPEnd0)∗p(E′,E′

•)
)
|U =

0, so p(E,E•) − (λ · ΦPEnd0)∗p(E′,E′
•) = 0 and λ · ΦPEnd0 must be an isomorphism of Lie 

algebras. �
Theorem 7.22. Let (X, D) and (X ′, D′) be two smooth projective curves of genus g ≥ 6
and g′ ≥ 6 respectively with set of marked points D ⊂ X and D′ ⊂ X ′. Let ξ and ξ′ be 
line bundles over X and X ′ respectively, and let α and α′ be full flag generic systems of 
weights over (X, D) and (X ′, D′) respectively. Let

Φ : M(X, r, α, ξ) ∼−→ M(X ′, r′, α′, ξ′)

be an isomorphism. Then

(1) r = r′

(2) (X, D) is isomorphic to (X ′, D′), i.e., there exists an isomorphism σ : X
∼→ X ′

sending D to D′.
(3) There exists a basic transformation T such that

• σ∗ξ′ ∼= T (ξ)
• σ∗α′ is in the same stability chamber as T (α).
• For every (E, E•) ∈ M(r, α, ξ), σ∗Φ(E, E•) ∼= T (E, E•)

Proof. Let Φ : M(X, r, α, ξ) −→ M(X ′, r′, α′, ξ′) be an isomorphism. By Torelli Theo-
rem 4.6, we obtain that r = r′ and there exists an isomorphism σ : (X, D) ∼−→ (X ′, D′). 
Pulling back by that isomorphism, we obtain an isomorphism

Φ′ : M(X, r, α, ξ) −→ M(X, r, σ∗α′, σ∗ξ)

From this point, all the moduli spaces will be constructed over the same curve (X, D), so, 
in order to simplify the notation, from now on, we will denote M(r, α, ξ) = M(X, r, α, ξ). 
Let ξ′′ = σ∗ξ′ and α′′ = σ∗α′. The differential of Φ′ induces an isomorphism of the 
cotangent bundles d(Φ′)−1 : T ∗M(r, α, ξ) −→ T ∗M(r, α′′, ξ′′). Let h : T ∗M(r, α, ξ) →
W and h′′ : T ∗M(r, α′′, ξ′′) → W denote the Hitchin morphisms corresponding to each 
choice of the system of weights and determinant. Since both moduli spaces are built 
over the same marked curve (X, D) for the same rank, the Hitchin space is the same 
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for both moduli spaces. By Proposition 4.4, there exists a C∗-equivariant automorphism 
f : W −→ W such that the following diagram commutes

T ∗M(r, α, ξ)
d(Φ′)−1

h

T ∗M(r, α′′, ξ′′)

h′′

W
f

W

As f is C∗-equivariant, it preserves the subspace of maximum decay Wr ⊂ W . Let 
hr : T ∗M(r, α, ξ) → Wr (respectively h′′

r : T ∗M(r, α′′, ξ′′) → Wr) be the composition of 
h with the projection to Wr. Let fr : Wr → Wr be the restriction of f to Wr. Then fr
is linear and, by Corollary 7.12 we have a diagram

T ∗M(r, α, ξ)
d(Φ′)−1

hr

T ∗M(r, α′′, ξ′′)

hr

Wr

fr
Wr

By Lemma 7.13 for every k > 0 and every x0 ∈ X

fr
(
H0(KrDr−1(−kx0))

)
= H0(KrDr−1(−kx0))

By Corollary 2.4 and Lemma 2.7, there exists an open nonempty subset U ⊆
M(r, α, ξ) (respectively U ′′ ⊆ M(r, α′′, ξ′′)) parameterizing α′′-stable (respectively α-
stable) parabolic vector bundles (E, E•) such that

H1(SPEnd0(E,E•) ⊗K(D − x− y)) = 0

for every x, y ∈ X. Let V = U ∩ (Φ′)−1(U ′′) and V ′′ = Φ′(V). By definition of V ′′, there 
is a natural identification between V ′′ and an open nonempty subset in M(r, α, ξ′′). 
Let (E, E•) ∈ M(r, α, ξ) and let Φ′(E, E•) = (E′′, E′′

• ) ∈ M(r, α, ξ′′) be its image. 
Therefore, we can apply Lemma 7.21 and we obtain that PEnd0(E, E•) is isomorphic to 
PEnd0(E′′, E′′

• ) as Lie algebra bundles. Then Lemma 6.14 proves that (E′, E′
•) can be 

obtained from (E, E•) as a combination of the following transformations

(1) Tensorization with a line bundle over X, (E, E•) �→ (E ⊗ L, E• ⊗ L)
(2) Dualization (E, E•) �→ (E, E•)∨
(3) Hecke transformation at a parabolic point x ∈ D, (E, E•) �→ Hx(E, E•).

This means that (E′′, E′′
• ) = T (E, E•) for some basic transformation T = (Id, s, L, H). 

In particular, we obtain that ξ′′ = T (ξ). As the set of possible values for H in the 
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choice of T is finite and the r-torsion of the Jacobian J(X) is finite, the space of basic 
transformations

Tξ,ξ′′ = {T = (Id, s, L,H) ∈ T |T (ξ) ∼= ξ′′}

is finite. For every T ∈ Tξ,ξ′′ , let us consider the composition of isomorphisms T ◦(Φ′)−1 :
M(r, α′′, ξ′′) → M(r, T (α), ξ′′). By construction of V and V ′, it sends V ′′ to T (V)

M(r, α′′, ξ′′)
(Φ′)−1

M(r, α, ξ) T M(r, T (α), ξ′′)

V ′′ V T (V)

Both V and T (V) parameterize parabolic vector bundles of rank r and determinant ξ
which are both α-semistable and α′′-semistable and are generic in the sense of Lemma 2.7, 
so they can be canonically identified. Choose once and for all an identification V ′′ ∼= T (V). 
Let ΨT : V ′′ → V ′′ be the automorphism of V ′′ induced composing T ◦ (Φ′)−1 with the 
identification V ′′ ∼= T (V).

For every (E, E•) ∈ V there exists some T ∈ Tξ,ξ′′ such that Φ′(E, E•) = T (E, E•). 
Therefore, for every (E′′, E′′

• ) ∈ V ′′ there exists some T ∈ Tξ,ξ′′ such that ΨT (E′′, E′′
• ) =

(E′′, E′′
• ) and we obtain that

V ′′ =
⋃

T∈Tξ,ξ′′

Fix(ΨT )

As the set of fixed points of an automorphism is closed and Tξ,ξ′′ is finite, V ′′ is a finite 
union of closed subsets. M(r, α′′, ξ′′) is irreducible and V ′′ is open, so V ′′ is irreducible. 
Then there exists some T ∈ Tξ,ξ′′ such that V ′′ = Fix(ΨT ). Therefore, we conclude that 
there exist T ∈ Tξ,ξ′′ and an open subset V ⊆ M(r, α, ξ) such that Φ′|V = T |V .

Let us prove that, in fact, we can find an open subset W ⊆ M(r, α, ξ) whose com-
plement has codimension at least 2 and such that Φ′|Ṽ = T |Ṽ . Let W ⊂ M(r, α, ξ)
be the space of parabolic vector bundles which are both α-stable and T−1(α′′)-stable. 
By Corollary 2.4, the complement of W has codimension at least 2. Clearly, T is well 
defined over W and it gives us a map T : W → M(r, α′′, ξ′′). Moreover, as M(r, α, ξ)
is irreducible, W ∩ V is dense in W, so every map ψ : W ∩ V → M(r, α′′, ξ′′) admits a 
unique extension to W by continuity. We know that Φ′|V∩W = T |V∩W , and Φ′|W and 
T |W are two possible extensions, so they must coincide.

As α′′ is a full flag system of weights, M(r, α′′, ξ′′) is a fine moduli space for every ξ′′. 
Therefore, Φ′ is represented by a parabolic vector bundle (E ′′, E ′′

• ) over M(r, α, ξ) ×X

whose fibers are α′′-stable as parabolic vector bundles over X. We have the following 
commutative diagram
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Φ′ (E ′′, E ′′
• )

Hom(M(r, α, ξ),M(r, α′′, ξ′′)) ∼

i�

M(r, α′′, ξ′′)(M(r, α, ξ))

i∗

Hom(W,M(r, α′′, ξ′′)) ∼ M(r, α′′, ξ′′)(W)

T T (E , E•)|W

where (E , E•) is the universal family of the moduli space M(r, α, ξ). Therefore, tensoring 
the family by a line bundle if necessary, (E ′′, E ′′

• ) is the extension of the basic transfor-
mation T (E , E•)|W from W to all the moduli space. Note that, T (E , E•) is a possible 
extension as a family of parabolic vector bundles over M(r, α, ξ). By construction, we 
know that the codimension of the complement of W in M(r, α, ξ)) is at least 2 and 
M(r, α, ξ) is a smooth complex projective scheme, so by Lemma 2.8

(E ′′, E ′′
• ) ∼= T (E , E•)

As (E ′′, E ′′
• ) is a family of α′′-stable vector bundles, we conclude that T (E , E•) is a 

family of α′′-stable vector bundles. Nevertheless, it is also a universal family of T (α)-
stable vector bundles. We know that (E ′′, E ′′

• ) is a universal family, so this implies that 
every α′′-stable vector bundle is T (α)-stable and vice versa, so α′′ belongs to the same 
stability chamber as T (α) and Φ′ = T . �

If E is a vector bundle of rank 2, then there is a canonical isomorphism E∨ = E ⊗
det(E∨), i.e., for rank 2, taking dual does not give new isomorphisms of the moduli 
space, because taking dual can be rewritten as tensoring with a line bundle. The same 
holds for parabolic bundles. More preciselly:

Lemma 7.23. Let r = 2. Then for each basic transformation T = (σ, −1, L, H) defining 
an isomorphism M(X, r, α, ξ) → M(X, r, T (α), T (ξ)) there exists a line bundle L′ such 
that the basic transformation T ′ = (σ, 1, L′, H) satisfies the following

• T (ξ) ∼= T ′(ξ)
• T (α) ∼ T ′(α)
• For each (E, E•) ∈ M(X, r, α, ξ), T (E, E•) ∼= T ′(E, E•)

Proof. Observe that, as r = 2 and we assume that 0 ≤ H ≤ (r−1)D, then H is a simple 
divisor and, applying the composition rule (9) described in the presentation of the group 
of basic transformations T (Lemma 5.7) and taking into account that for every divisor 
F , HrF = TOX(−F ) yields

D− ◦ HH = TOX(D) ◦ H2D−H ◦ D− = TOX(H) ◦ HH ◦ D−
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Therefore, due to the composition rules (8), (9) and (10) described in the presentation 
of the group of basic transformations T (Lemma 5.7), we can write T as

T = (σ,−1, L,H) = Σσ ◦ D− ◦ TL ◦ HH = Σσ ◦ TL−1 ◦ TOX(H) ◦ HH ◦ D−1

= (σ, 1, L−1(H), H) ◦ D−

As HH and TL′ commute for each H and L′, then it is enough to prove that there exists 
a line bundle L′′ such that TL′′(ξ) = ξ−1, TL′′(α) = α ∼ α∨ and for each (E, E•) ∈
M(r, α, ξ), D−(E, E•) ∼= TL′′(E, E•), i.e., that

(E,E•)∨ ∼= (E,E•) ⊗ L′′

First of all, let us prove that if r = 2 then α and α∨ = D−(α) belong to the same 
chamber. We can assume without loss of generality that α1 �= 0. Let ε = (ε(x))x∈D, 
where ε(x) = 1 − α1(x) − α2(x). Clearly, for each x ∈ D, −α1(x) < ε(x) < 1 − α2(x), 
so the shifted weights α[ε] form a suitable system of weights that belongs to the same 
stability chamber as α. Moreover

α[ε]1(x) = α1(x) + ε(x) = 1 − α2(x)

α[ε]2(x) = α2(x) + ε(x) = 1 − α1(x)

so α[ε] = α∨. On the other hand, for each E ∈ M(r, α, ξ), there is an isomorphism ∧2(E) ∼= ξ. Therefore, there exists an isomorphism

E∨ ∼= E ⊗ ξ−1

Let us prove that under this isomorphism the filtration E∨
• is sent to E•. Let us describe 

this isomorphism explicitly. Let Ui be a covering of X by open subsets such that E|Ui
is 

trivial, and let gij : Ui ∩ Uj → GL(2, C) be transition functions for E. Let

gij =
(
a b
c d

)
Then the transition functions for E∨ are given by

g∨ij = (g−1
ij )t = 1

det(gij)

(
d −c
−b a

)

Let M : C2 → C2 given by M =
(

0 1
−1 0

)
. Then

g∨ij = M−1 1
gijM
det(gij)
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As the transition functions for ξ = deg(E) are det(gij), M describes locally the desired 
isomorphism E∨ ∼= E ⊗ ξ−1. On the other hand, the dual of any quasi-parabolic vec-
tor bundle (E, E•) corresponds to the vector bundle E∨, endowed with the parabolic 
structure given by

E∨
2,x = E⊥

2,x

where, given V ⊂ E|x, V ⊥ ⊂ E∨|x denotes the annihilator of V , i.e.,

V ⊥ = {w ∈ E∨|x |w(v) = 0 ∀v ∈ V }

Observe that, in rank 2, for every v ∈ E|x

〈M(v)〉 = 〈v〉⊥

Therefore, as tensoring by ξ−1 acts trivially on the parabolic structure, we observe that 
the isomorphism M : E∨ ∼= E ⊗ ξ−1 sends E2,x to E⊥

2,x for every x ∈ D, so it is an 
isomorphism of quasi-parabolic vector bundles (E, E•)∨ ∼= (E, E•) ⊗ ξ−1. �
Lemma 7.24. Suppose that g ≥ 4. Let T ∈ T be a basic transformation such that T �=
IdT = (Id, 1, OX , 0) and such that T ∈ T + if r = 2. Then for a generic α-stable parabolic 
vector bundle (E, E•) of rank r we have T (E, E•) � (E, E•).

Proof. Assume that T �= IdT but T = (σ, s, L, H) acts as the identity on M(r, α, ξ). 
First, let us prove that H = 0. Assume that H �= 0. Let x ∈ D such that H ≥ kx, but 
H �≥ (k + 1)x. Then for every (E, E•) ∈ M(r, α, ξ)

(σ, s, L, 0) ◦ HH(E,E•) ∼= (E,E•)

By Lemma 2.11 and Lemma 2.12, for a generic (E, E•) ∈ M(r, α, ξ) if E′
• is the filtration 

obtained by changing the step Ex,k on x ∈ D to E′
x,k for some

Ex,k−1 � E′′
x,k � Ex,k+1

then (E, E′
•) is α-stable. Then there is a short exact sequence

0 −→ HH(E,E′
•) −→ HH−kx(E,E′

•) −→ E|x/E′
x,k −→ 0

Therefore, as E′
x,k changes through all possible steps in the filtration, then the underlying 

vector bundle of HH(E, E′
•) varies. Nevertheless, as

HH(E,E′
•) = (σ, s, L, 0)−1(E,E′

•) ∼= (σ−1, s, σ∗L−s, 0)(E,E′
•)
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then the underlying vector bundle of HH(E, E′
•) must be isomorphic to E for every E′

x,k, 
so we obtain a contradiction and H = 0.

Similarly, σ must fix every parabolic point. Otherwise, if σ(x) �= x for some x ∈ D, 
then taking any variation E′

x,k of the parabolic structure at x we would obtain that

(σ, s, L, 0)(E,E′
•) ∼= (E,E′

•)

Nevertheless, the left hand side of the equation has constant parabolic structure over x, 
while the parabolic structure on the right hand side varies over x.

Now, let us prove that s = 1. If s = −1, for every parabolic vector bundle (E, E•) and 

every x ∈ D the isomorphism σ∗(L ⊗E)∨
α∼= E induce a nondegenerate bilinear map

ω : E|x ⊗E|x L−1|x
(u, v) 〈α−1(u), v〉

Under the isomorphism T (E, E•) ∼= E the k-th step of the parabolic structure Ex,k ⊂ E|x
is sent to

Eω
x,k = {v ∈ E|x : ∀u ∈ Ex,k, ω(u, v) = 0}

Observe that this transformation inverts the filtration, i.e., Ex,k is sent to Ex,r−k+1. We 
know that T preserves the parabolic structure, so r = 2 and, in that case, T ∈ T + by 
hypothesis, so s = 1.

Now, let S ∈ T be any basic transformation such that S(OX) = ξ. Then S ◦T ◦S−1 �=
IdT , but S ◦ T ◦ S−1 : M(r, S−1(α), OX) −→ M(r, S−1(α), OX) is the identity on 
M(r, S−1(α), OX). Therefore, we can assume without loss of generality that ξ ∼= OX . In 
this case, taking determinants yields

OX
∼= det(E) ∼= det(σ∗L⊗ E) ∼= σ∗Lr

Therefore, Lr ∼= OX .
Then T = (σ, 1, L, 0) preserves α and ξ for any system of weights and every line bundle. 

Moreover, by Corollary 2.4 for any system of weights α′, there exists an open subset U ⊂
M(r, α′, ξ) whose complement has codimension at least 2 and such that all the parabolic 
vector bundles in U are α stable. Consider the morphism T : M(r, α′, ξ) −→ M(r, α′, ξ). 
Over U this morphism is the identity, so T = IdM(r,α′,ξ). Therefore, we can assume that 
α is any system of weights and ξ is any fixed line bundle. In particular, we can assume 
without loss of generality that α is concentrated and deg(ξ) is coprime with r.

Under this choices, for each stable vector bundle E ∈ M(r, ξ) and every parabolic 
structure E• on E we have (E, E•) ∈ M(r, α, ξ). Therefore, in order to prove the Lemma 
it is enough to show that there exists E ∈ M(r, ξ) such that σ∗(E ⊗ L) � E. This fact 
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is known (cf. [23, Remark 0.1]) but a full proof of this precise statement is not available 
in the literature, so we will proceed to provide one.

Assume the contrary. Suppose that for each E ∈ M(r, ξ) we have σ∗(E ⊗ L) ∼= E. 
Then the map Σσ ◦TL : M(r, ξ) −→ M(r, ξ) sending E �→ σ∗(E⊗L) is the identity map 
on M(r, ξ). We will prove that in this case we have σ = IdX and L = OX .

Let P → X ×M(r, ξ) be the projectivization of the universal bundle on X ×M(r, ξ), 
i.e., the bundle whose fiber over X × {E} is P (E). If Σσ ◦ TL = IdM(r,ξ), then there 
exists an isomorphism P ∼= σ∗P . Let x ∈ X be any point. Then restricting to the fiber 
over {x} ×M(r, ξ) we have an isomorphism

P |{x}×M(r,ξ) ∼= P{σ(x)}×M(r,ξ)

Then [5, Lemma 4.1] implies that σ(x) = x, so σ = IdX .
Finally, suppose that L ⊗ E ∼= E for each E ∈ M(r, ξ). Then by tensoring with the 

appropriate bundle we have L ⊗ E ∼= E for each E ∈ M(r, d), where d = deg(ξ). Let 
m be the smaller positive integer such that Lm ∼= OX . Then we can associate to L an 
m-to-1 smooth unramified cyclic cover XL ⊂ Tot(L) → X in the following way

XL =
{
t ∈ L : t⊗m = 1 ∈ OX

∼= Lm
}

Let π : XL → X denote the projection. Then, by [25, Lemma 2.6 and Proposition 3.1]
or [27, Proposition 3.46] a stable vector bundle E ∈ M(X, r, d) satisfies L ⊗ E ∼= E if 
and only if E = π∗E

′ for some stable vector bundle E′ ∈ M(XL, r/m, d). Therefore, 
the points of M(X, r, d) fixed by TL form a closed subscheme of dimension at most 
dimM(XL, r/m, d). Let us compute this dimension. π : XL → X is unramified of degree 
m so Riemann-Hurwitz implies that

g(XL) − 1 = m(g − 1)

where g(XL) is the genus of XL. Then, if m > 1 we have

dimM
(
XL,

r

m
, d
)

=
( r

m

)2
(g(XL) − 1) + 1

= r2

m
(g − 1) + 1 < r2(g − 1) + 1 = dimM(X, r, d)

so there always exist stable bundles which are not fixed by the action unless m = 1, i.e., 
unless L ∼= OX . �
Theorem 7.25. Let (X, D) be a smooth projective curve of genus g ≥ 6 and let α be a 
full flag generic system of weights over (X, D) of rank r. Let ξ be a line bundle over 
X. Then the automorphism group of M(r, α, ξ) is the subgroup of T consisting on basic 
transformations T such that
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• T (ξ) ∼= ξ

• T (α) is in the same stability chamber as α
• if r = 2, T ∈ T +.

Proof. If we take (X ′, D′) = (X, D) and α′ = α in Theorem 7.22, we obtain that if Φ :
M(r, α, ξ) → M(r, α, ξ) is an automorphism then there must exist a basic transformation 
T ∈ T such that Φ(E, E•) ∼= T (E, E•). Nevertheless, this implies that ξ′ ∼= T (ξ) and 
T (α) is in the same stability chamber as α.

Clearly, the subset of transformations T preserving ξ and the chamber of α form a 
subgroup of T . As the group structure of T coincides with the composition of morphisms 
between moduli spaces of parabolic vector bundles, then this subgroup projects to the 
group of automorphisms of M(r, α, ξ). To prove the theorem it is enough to check that if 
T, T ′ ∈ T are different elements in T which satisfy the restrictions then the induced auto-
morphisms T, T ′ ∈ Aut(M(r, α, ξ)) are different. Composing T ′◦T−1 ∈ Aut(M(r, α, ξ)), 
this is equivalent to proving that if T �= Id and, additionally, T ∈ T + if r = 2, then there 
exists at least a parabolic vector bundle (E, E•) such that T (E, E•) �= (E, E•). Now we 
simply apply the previous Lemma. �
8. Birational geometry

In this section we will analyze the birational geometry of the moduli space of parabolic 
vector bundles with fixed determinant and, in particular, in the birational automorphisms 
of the moduli space. Boden and Yokogawa [14, Theorem 6.1] proved that for g ≥ 3, if α
is a full flag system of weights and ξ is any line bundle over (X, D) then M(r, α, ξ) is a 
rational variety of dimension

dim(M(r, α, ξ)) = (r2 − 1)(g − 1) + |D|r
2 − r

2 = m

Therefore, we know that for every (X, D) of genus g and |D| parabolic points there is a 
birational map

M(X, r, α, ξ) ��� Pm

In particular

AutBir(M(X, r, α, ξ)) = AutBir(Pm)

It is then clear that two moduli spaces M(X, r, α, ξ) and M(X ′, r′, α′, ξ′) are birationally 
equivalent if and only if their dimension coincide.

In a first approach, this result closes the problem of understanding the rational geom-
etry of the moduli space and blocks the possibility of a “birational Torelli” type theorem. 
However, there is no control “a priori” of how far are the birational equivalences that 
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relate two moduli spaces M(X, r, α, ξ) and M(X ′, r′, α′, ξ′) from extending to an iso-
morphism. More precisely, we know that if these moduli spaces have the same dimension, 
then there exist open subsets U ⊂ M(X, r, α, ξ) and U ′ ⊂ M(X ′, r′, α′, ξ′) and an iso-
morphism Φ : U ∼−→ U ′. Nevertheless, U and U ′ can be “small” open subsets in the sense 
that their complement can have codimension 1 (and in fact, they are expected to do so). 
In this section, we will be interested in understanding the birational geometry of the 
moduli spaces when we restrict the allowed rational maps to those that can be extended 
to subsets whose complement has codimension at least 3.

We will start by generalizing some of the core lemmata in section 4 so they can work 
in the k-birational setting.

Definition 8.1. Let X and X ′ be two varieties. We say that X and X ′ are k-birational 
if there exist open subsets U ⊂ X and U ′ ⊂ X ′ and an isomorphism Φ : U ∼−→ U ′ such 
that

codim(X\U) ≥ k

codim(X ′\U ′) ≥ k

In particular, X and X ′ are birational if they are at least 1-birational. Given a variety 
X , we denote by Autk−Bir(X ) the space of k-birational automorphisms of X .

The study of k-birational maps instead of rational maps is useful in many contexts. 
For example, some geometric invariants like the Picard group are invariant under 2-
birational maps, but not under 1-birational ones. Hartog’s theorem proves that if X and 
X ′ are 2-birationally equivalent normal algebraic varieties then Γ(X ) ∼= Γ(X ′). In the 
context of the moduli space of vector bundles (and parabolic vector bundles), we know 
that for g ≥ 4 the moduli space of (parabolic) Higgs bundles is 3-birationally equivalent 
to the cotangent bundle of the moduli space of (parabolic) vector bundles. The fact that 
they are 3-birational and not just 2-birational was used in Section 4 in order to control 
the geometry of some special fibers of the Hitchin map.

As we cannot distinguish the moduli spaces nor the isomorphisms between them at the 
1-birational level, we will focus on the k-birational maps between moduli spaces for k > 1
and prove that if we restrict to 3-birational maps we obtain enough information to be able 
to describe a birational Torelli type theorem and obtain an analogue of Theorem 7.22
which categorizes all the 3-birational maps. Although we believe that the presented 
results will remain true for 2-birational maps as well and that the classification could 
be attempted with similar techniques as the ones presented in this work, due to some 
technical requisites, our proof is restricted to 3-birational maps.

Corollary 8.2. Suppose that g ≥ 4. Let V ⊂ M(r, α, ξ) be an open subset whose com-
plement has codimension at least 3. Then the complement of T ∗V ∩ H−1(DU ) inside 
H−1(DU ) has codimension at least 2.
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Proof. Let Z = M(r, α, ξ)\V and let m = dim(M(r, α, ξ)). As g ≥ 4, by Proposition 3.7
we know that

dim(MK(D)(r, α, ξ)\T ∗M(r, α, ξ)) ≤ 2m− 3

Therefore, if we denote E = MK(D)(r, α, ξ)\T ∗M(r, α, ξ) then

dim(E ∩H−1(DU )) ≤ 2m− 3

Let us prove that dim(T ∗Z ∩H−1(DU )) ≤ 2m − 3. In that case we would have

dim(H−1(DU )\(T ∗V ∩H−1(DU ))) = dim
(
(E ∩H−1(DU )) ∪ (T ∗Z ∩H−1(DU ))

)
≤ 2m− 3 = dim(H−1(DU ) − 2

First, assume that dim(Z) ≤ m −3. Then dim(T ∗Z) ≤ 2m −3, so dim(T ∗Z∩H−1(DU )) ≤
2m − 3. �
Lemma 8.3. Let g ≥ 4 and let V ⊂ M(r, α, ξ) be any open subset whose complement has 
codimension at least 3. Let RV ⊂ T ∗V be the union of the complete rational curves in 
T ∗V. Then D is the closure of H(RV) in W .

Proof. The proof is analogous of Lemma 4.3. Let HV : T ∗V → W be the restriction of 
the Hitchin map H to T ∗V. If P 1 ↪→ T ∗V is a complete rational curve, then it must be 
contained in a fiber of the Hitchin map. If s ∈ W\D, then H−1(s) is an abelian variety, 
so H−1

V (s) is an open subset of an abelian variety and, therefore, it does not admit any 
nonconstant morphism from P 1. Therefore, we only have to prove that for a generic s in 
every irreducible component of D the fiber H−1

V (s) contains a complete rational curve. 
In this case HV(RV) is dense in D and the lemma holds.

For the components Dx for x ∈ D, we can proceed just as in the proof of Proposi-
tion 4.2, changing the subset U ⊂ M(r, α, ξ) parameterizing (1, 0)-stable parabolic vector 
bundles (E, E•) such that H0(PEnd0(E, E•)(x)) = 0 with the following open nonempty 
subset U ′. For every (E, E•) ∈ Z = M\V and every 1 ≤ k < r, let us consider the family 
of quasi-parabolic vector bundles over P 1 obtained by changing the k−-th step of the 
filtration of E|x to all admissible subspaces E′

x,k such that

Ex,k+1 � E′
x,k � Ex,k−1

Consider the union of all the α-stable points (E, E′
•) in such families. As the codimension 

of Z in M(r, α, ξ) is at least 3 and the families are at most 1-dimensional, then union 
of all the families must have positive codimension and therefore, there exists some open 
nonempty subset W ⊂ M(r, α, ξ) whose points are not in the image of any family. Now 
take U ′ = U ∩ V ∩W and repeat the argument in 4.2.
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For a generic x ∈ DU , Xs has a unique singularity which is a node not lying 
over a parabolic point. Then H−1(s) is an uniruled variety of dimension m. Let 
Z = (MK(D)(r, α, ξ)\T ∗V) ∩ H−1(DU ). If g ≥ 4, by Corollary 8.2 the codimension 
of Z in H−1(DU ) is at least 2. Let S = H(Z). If dim(S) < m − 1 then for every 
s ∈ DU\S, H−1(s) = H−1

V (s), so the fiber of the (restricted) Hitchin map contains a 
complete rational curve.

On the other hand, if dim(S) = m − 1, then H|Z : Z �→ DU is dominant and, 
therefore, the generic fiber has dimension dim(Z) −dim(DU ) ≤ m −2. Then, for a generic 
s ∈ DU , Z ∩ H−1(s) has codimension at least 2 in H−1(s). Therefore H−1(s)\H−1

V (s)
has codimension at least 2 in H−1(s) and H−1

V (s) must contain a complete rational 
curve. �
Proposition 8.4. Let V ⊂ M(r, α, ξ) be an open subset whose complement has codimen-
sion at least 2. Then the global algebraic functions Γ(T ∗V) produce a map

h̃ : T ∗V −→ Spec(Γ(T ∗V)) ∼= W ∼= Cm

which is the restriction of the parabolic Hitchin map to T ∗V up to an isomorphism of 
Cm, where m = dimW . Moreover, consider the action of C∗ on T ∗V given by dilatation 
on the fibers. Then there is a unique C∗ action on W such that h̃ is C∗-equivariant

Proof. For V = M(r, α, ξ) this was proved in Proposition 4.4. As T ∗V ⊂ T ∗M(r, α, ξ) is 
an open subset whose complement has codimension at least 2 and T ∗M(r, α, ξ) is smooth 
then by Hartog’s theorem we know that Γ(T ∗V) = Γ(T ∗M(r, α, ξ)) and the Proposition 
follows. �
Theorem 8.5. Let (X, D) and (X ′, D′) be two smooth projective curves of genus g ≥ 4
and g′ ≥ 4 respectively with set of marked points D ⊂ X and D′ ⊂ X ′. Let ξ and ξ′ be 
line bundles over X and X ′ respectively, and let α and α′ be full flag generic systems 
of weights over (X, D) and (X ′, D′) respectively. Then if M(X, r, α, ξ) is 3-birational to 
M(X ′, r′, α′, ξ′) then r = r′ and (X, D) is isomorphic to (X ′, D′), i.e., there exists an 
isomorphism X ∼= X ′ sending the set D to D′.

Proof. The proof will be completely analogous to the one given for Theorem 4.6. Let 
V ⊂ M(X, r, α, ξ) and V ′ ⊂ M(X ′, r′, α′, ξ′) be open subsets whose complement has 
codimension 3 and let Φ : V → V ′ be the 3-birational morphism between both moduli 
spaces. By Proposition 8.4 there must exist an algebraic C∗-equivariant isomorphism 
f : W ∼= Spec(Γ(T ∗V)) ∼−→ Spec(Γ(T ∗V ′)) ∼= W ′ such that the following diagram 
commutes
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T ∗V
d(Φ−1)

h̃

T ∗V ′

h̃

W
f

W ′

As f is C∗-equivariant, it must preserve the filtration by subspaces in terms of the decay 
and it must send the subspace of maximum decay |λ|r of W to the subspace of maximum 
decay |λ|r′ of W ′. In particular, the number of steps of the filtration must be the same. 
As the filtrations of W and W ′ have r− 1 and r′ − 1 steps respectively, then r = r′ and 
f(Wr) = W ′

r

As d(Φ−1) is an isomorphism, it maps complete rational curves in T ∗V to complete 
rational curves in T ∗V ′. By Lemma 8.3, f sends the locus of singular spectral curves 
D ⊂ W to the locus of singular spectral curves D′ ⊂ W ′. Moreover, we know that 
f(Wr) = W ′

r, so if we let C = D ∩Wr and C′ = D′ ∩W ′
r we obtain that f(C) = C′.

By Proposition 4.5, the dual variety of P (CX) in P (Wr) is X ⊂ P (W ∗
r ) and, similarly, 

the dual variety of P (C′
X) in P (W ′

r) is X ′ ⊂ P ((W ′
r)∗), so f induces an isomorphism 

f∨ : P (W ∗
r ) → P ((W ′

r)∗) that sends X to X ′. Moreover, the dual of the rest of the 
components P (Cx) of P (C) correspond to the divisor D ⊂ X ⊂ P (W ∗

r ) and the dual of 
the components P (C′

x) of P (C′) correspond to the divisor D′ ⊂ X ′ ⊂ P ((W ′
r)∗), so f∨

must send D to D′. Therefore, f∨ induces an isomorphism f∨ : (X, D) ∼−→ (X ′, D′). �
In contrast with the usual Torelli theorem, where there exist several non-isomorphic 

moduli spaces of parabolic vector bundles for the same curve (X, D) depending on the 
stability and topological data of the bundles, in the case of k-birational geometry we can 
state a hard reciprocal of the Torelli theorem

Proposition 8.6. Let (X, D) be a marked smooth projective curve of genus g ≥ 1 + k−1
r−1 . 

Let ξ and ξ′ be line bundles over X and let α and α′ be full flag generic systems of 
weights of rank r over (X, D). Then there is a k-birational map

M(r, α, ξ) ��� M(r, α′, ξ′)

In particular, if g ≥ 3, M(r, α, ξ) and M(r, α′, ξ′) are 3-birational.

Proof. Let d = deg(ξ) and d′ = deg(ξ′). Let us write d′−d = rm −k′ for some 0 ≤ k′ < r. 
Let x ∈ D be any parabolic point. Then

deg(TOX(mx) ◦ Hk′x(ξ)) = deg(ξ′)

Therefore, there exists a line bundle L of degree zero such that

ξ′ = Lr ⊗
(
TOX(mx) ◦ Hk′x(ξ)

)
= TL(mx) ◦ Hk′x(ξ)
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Take T = (Id, 1, L(mx), k′x). Then T induces an isomorphism

T : M(r, α, ξ) −→ M(r, T (α), ξ′)

By Corollary 2.4 there exists an open subset U ⊂ M(r, T (α), ξ′) whose comple-
ment has codimension at least k parameterizing α′-stable parabolic vector bundles in 
M(r, T (α), ξ′). Similarly, there exists U ′ ⊂ M(r, α′, ξ′) whose complement have codi-
mension at least k parameterizing T (α)-stable parabolic vector bundles in M(r, α′, ξ′). 
Then U and U ′ can be canonically identified as the moduli space of parabolic vector 
bundles of rank r and determinant ξ which are both T (α)- stable and α′-stable. Finally, 
T−1(U) ⊂ M(r, α, ξ) is an open subset whose complement has codimension at least k
and we have an isomorphism T−1(U) ∼= U ′ so the moduli spaces are k-birational. �

Observe that we obtain analogues of this Proposition in the k-birational category by 
just increasing the genus condition, while the Torelli theorem holds in the k-birational 
category for any g ≥ 4.

Now let Φ : M(X, r, α, ξ) ��� M(X ′, r′, α′, ξ′) be a 3-birational isomorphism. By the 
3-birational version of the Torelli Theorem we have r = r′ and the 3-birational map Φ
induces an isomorphism σ : X → X ′ which sends the set D to D′. Pulling back by σ, we 
obtain a 3-birational map

Φ′ = Σσ ◦ Φ : M(X, r, α, ξ) ��� M(X, r, σ∗α′, σ∗ξ′)

Let α′′ = σ∗α′ and ξ′′ = σ∗ξ′. Let V ⊂ M(X, r, α, ξ) and V ′′ ⊂ M(X, r, α′′, ξ′′) be open 
subsets whose respective complements have codimension at least 3 such that Φ′ : V → V ′′

is an isomorphism. Then the differential induces an isomorphism d(Φ−1) : T ∗V −→
T ∗V ′′. Let h : T ∗V → W and h′′ : T ∗V ′′ → W denote the restriction of the Hitchin 
morphism to V and V ′′ respectively. Since both moduli spaces are built over the same 
marked curve (X, D) and with the same rank r, the Hitchin space is the same. By 
Proposition 8.4, there exists a C∗-equivariant automorphism f : W → W such that the 
following diagram commutes

T ∗V
d(Φ−1)

h

T ∗V ′′

h′′

W
f

W

By Lemma 8.3, f : W → W must preserve the discriminant locus, i.e., f(D) = D. We 
know that it is C∗-equivariant, so using Lemma 7.11, f preserves the decomposition 
W =

⊕
k>1 Wk and its restrictions fk : Wk → Wk are linear. For each k > 1, let 

hr : T ∗V → Wk and h′′
k : T ∗V ′′ → Wk denote the compositions of h and h′′ with the 

projection W � Wk respectively. In particular, for each k > 1 the following diagram 
commutes
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T ∗V
d(Φ−1)

hk

T ∗V ′′

h′′
k

Wk

fk
Wk

Lemma 8.7. Let g ≥ 4. Let fr : Wr → Wr be the C∗-equivariant map on the Hitchin 
space such that the following diagram commutes

T ∗V
d(Φ−1)

hr

T ∗V ′′

h′
r

Wr

fr
Wr

(8.1)

Then for every k > 0 and every x0 ∈ X

fr
(
H0(KrDr−1(−kx0))

)
= H0(KrDr−1(−kx0))

Proof. As d(Φ−1) is an isomorphism, it maps complete rational curves on T ∗V to com-
plete rational curves on T ∗V ′′. By Lemma 8.3, the morphism f must preserve C = D∩Wr. 
Therefore, the associated map of dual varieties is an automorphism of the marked curve 
(X, D). Through the previous discussion, we proved that we can assume that the induced 
automorphism of the curve X is the identity, so we can just proceed as in the proof of 
Lemma 7.13. �

Once we have proven the 3-birational version of the Torelli theorem and the previ-
ous Lemma, we automatically obtain that if (E, E•) ∈ V is a generic parabolic vector 
bundle and Φ(E, E•) = (E′′, E′′

• ) ∈ V ′′ is also generic in the sense of Lemma 2.7 then 
Lemmas 7.14, 7.15 and 7.16 hold and we obtain that there is an isomorphism

ΦSPEnd0 : PEnd0(E,E•) ∼= PEnd0(E′′, E′′
• )

Moreover, we obtain an analogue of Lemma 7.18

Lemma 8.8. Suppose that g ≥ 4. For each x ∈ X, and every k > 1, the linear subspace

H0(KkDk−1(−x)) ⊆ Wk

is preserved by the linear map fk : Wk −→ Wk.

Proof. Let Ṽ ⊂ V the open subset of parabolic vector bundles (E, E•) ∈ V such that both 
(E, E•) and Φ(E, E•) are generic in the sense of Lemma 2.7. Applying Corollary 3.3 to 
L = K(D−x) and the open subsets Ṽ and Ṽ ′′ = Φ(Ṽ) we obtain that the linear subspace
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r⊕
k=2

H0(KkDk−1(−kx)) ⊆ W

is the space generated by the images h(H0(SPEnd0(E, E•) ⊗ K(D − x))) both when 
(E, E•) runs over Ṽ and when (E, E•) runs over Ṽ ′′.

By Lemma 7.14, for every (E, E•) ∈ Ṽ, if (E′′, E′′
• ) = Φ(E, E•) ∈ Ṽ ′′, then the 

image of H0(SPEnd0(E, E•) ⊗K(D − x)) by d(Φ−1) is H0(SPEnd0(E′′, E′′
• ) ⊗K(D −

x)). Therefore f preserves 
⊕r

k=2 H
0(KkDk−1(−kx)). As it is diagonal, fk preserves 

H0(KkDk−1(−kx)).
For k > 1 the curve X is embedded in P (W ∗

k ) through the linear system |KrDr−1|. 
The spaces H0(KkDk−1(−kx)) for x ∈ X correspond to the osculating k-spaces of X
at x, Osck(x). As P (fk) preserves Osck(x), by Lemma 7.19 it preserves Osc1(x) and, 
therefore, fk must preserve the hyperplanes

H0(KkDk−1(−x)) ⊂ H0(KkDk−1)

for every x ∈ X. �
From this result we obtain the following Lemma, whose proof is exactly the same as 

Lemma 7.21

Lemma 8.9. Suppose that g ≥ 6. Let (E, E•) ∈ Ṽ ⊂ V and let (E′′, E′′
• ) = Φ(E, E•). 

Then PEnd0(E, E•) and PEnd0(E′′, E′′
• ) are isomorphic as Lie algebra bundles over X.

Now we are ready to generalize Theorem 7.22 to the 3-birational setting.

Theorem 8.10. Let (X, D) and (X ′, D′) be two smooth projective curves of genus g ≥ 6
and g′ ≥ 6 respectively with a set of marked points D ⊂ X and D′ ⊂ X ′. Let ξ and ξ′ be 
line bundles over X and X ′ respectively, and let α and α′ be full flag generic systems of 
weights over (X, D) and (X ′, D′) respectively. Let

Φ : M(X, r, α, ξ) ��� M(X ′, r′, α′, ξ′)

be a 3-birational map. Then

(1) r = r′

(2) (X, D) is isomorphic to (X ′, D′), i.e., there exists an isomorphism σ : X
∼→ X ′

sending D to D′.
(3) There exists a basic transformation T such that

• σ∗ξ′ ∼= T (ξ)
• For every (E, E•) ∈ M(r, α, ξ), σ∗Φ(E, E•) ∼= T (E, E•)
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Proof. By the 3-birational version of the Torelli Theorem (Theorem 8.5) we have r = r′

and the 3-birational map Φ induces an isomorphism σ : X → X ′ which sends the set D
to D′. Pulling back by σ, we obtain a 3-birational map

Φ′ : M(X, r, α, ξ) ��� M(X, r, σ∗α′, σ∗ξ′)

Let α′′ = σ∗α′ and ξ′′ = σ∗ξ′. Let V ⊂ M(X, r, α, ξ) and V ′′ ⊂ M(X, r, α′′, ξ′′) be open 
subsets whose respective complements have codimension at least 3 such that Φ′ : V → V ′′

is an isomorphism. Let Ṽ ⊂ V be the subset of parabolic vector bundles (E, E•) ∈ V such 
that both (E, E•) and (E′′, E′′

• ) = Φ′(E, E•) are generic in the sense of Lemma 2.7. Then 
by Lemma 8.9 for every (E, E•) ∈ Ṽ we have that PEnd0(E, E•) and PEnd0(E′′, E′′

• )
are isomorphic as Lie algebra bundles over X. Then by Lemma 6.14 there exists a basic 
transformation T = (Id, s, L, H) such that (E′′, E′′

• ) ∼= T (E, E•).
Up to this point we have proved that for every (E, E•) ∈ Ṽ there exists a basic 

transformation T such that Φ′(E, E•) = T (E, E•). Repeating the argument given in 
the proof of Theorem 7.22 we obtain that there exists some T ∈ Tξ,ξ′′ such that for 
every (E, E•) ∈ Ṽ, Φ′(E, E•) = T (E, E•). Repeating the argument in Theorem 7.22, let 
W ⊂ V be the open subset consisting on parabolic vector bundles (E, E•) which are both 
α-stable and T−1(α′′)-stable. By Corollary 2.4, the complement of W has codimension 
at least 2 in M(r, α, ξ) and, in particular, W∩Ṽ is dense in W. Therefore, for every map 
ψ : W∩Ṽ → M(r, α′′, ξ′′) there exist at most a unique extension to W. By construction of 
W, we know that T gives a well defined map T : W → M(r, α′′, ξ′′). Moreover, we know 
that Φ′|W∩Ṽ = T |W∩Ṽ and Φ′|W is another extension to W, so Φ′|W = T |W . Finally, let 
us prove that Φ′ coincides with T over V, i.e., that for every (E, E•) ∈ M(r, α, ξ) such 
that Φ′ is defined, Φ′(E, E•) = T (E, E•).

As α′′ is a full flag system of weights, M(r, α′′, ξ′′) is a fine moduli space for every ξ′′. 
Therefore, Φ′ is represented by a parabolic vector bundle (E ′′, E ′′

• ) over V×X whose fibers 
are α′′-stable as parabolic vector bundles over X. We have the following commutative 
diagram

Φ′ (E ′′, E ′′
• )

Hom(V,M(r, α′′, ξ′′)) ∼

i�

M(r, α′′, ξ′′)(V)

i∗

Hom(W,M(r, α′′, ξ′′)) ∼ M(r, α′′, ξ′′)(W)

T T (E , E•)|Ṽ

where (E , E•) is the universal family of the moduli space M(r, α, ξ). Therefore, tensoring 
the family by an appropriate line bundle, (E ′′, E ′′

• ) is an extension of T (E , E•)|W from W to 
V. Clearly T (E , E•)|V is a possible extension as a family of quasi-parabolic vector bundles 
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over V and the complement of W in V has codimension at least 2, so by Lemma 2.8 we 
have (E ′′, E ′′

• ) ∼= T (E , E•)|V . Taking this isomorphism of families fiberwise we obtain the 
desired result. �
Corollary 8.11. Let (X, D) be a smooth projective curve of genus g ≥ 6 and let α be a 
full flag generic system of weights over (X, D) of rank r. Let ξ be a line bundle over X. 
Then

Aut3−Bir(M(r, α, ξ)) = Tξ = {T ∈ T |T (ξ) ∼= ξ} < T

if r > 2 and

Aut3−Bir(M(2, α, ξ)) = T +
ξ = {T ∈ T +|T (ξ) ∼= ξ} < T +

Proof. Every basic transformation T ∈ Tξ induce an isomorphism

T : M(r, α, ξ) −→ M(r, T (α), ξ)

By Corollary 2.4, there exist open subsets U ⊂ M(r, α, ξ) and U ′ ⊂ M(r, T (α), ξ) whose 
complement has codimension at least 3 parameterizing parabolic vector bundles of rank 
r and determinant ξ which are both α-stable and T (α)-stable. Therefore, there is an 
isomorphism Ψ : U ∼−→ U ′. Composing with T , we obtain an isomorphism

Ψ−1 ◦ T : T−1(U ′) ∼−→ U

so we obtain a 3-birational map M(r, α, ξ) ��� M(r, α, ξ).
By the previous Theorem, every 3-birational automorphism is equivalent to one of the 

previous ones, so Aut3−Bir(M(r, α, ξ)) is a quotient of Tξ. From Lemma 7.24, different 
basic transformations T, T ′ ∈ Tξ induce different 3-birational automorphisms of the 
moduli space if r > 2, so we obtain the desired equality for r > 2. For r = 2, by 
Lemma 7.23, we know that for every T ∈ Tξ, we can find another transformation T ∈
T +
ξ whose image in Aut3−Bir(M(2, α, ξ) is the same and, moreover, by Lemma 7.24, 

two different transformations in T +
ξ induce different 3-birational automorphisms, so we 

obtain the remaining equality. �
9. Concentrated stability chamber

In the analysis of isomorphisms and k-birational transformations between moduli 
spaces of parabolic vector bundles held through the previous sections the systems of 
weights were allowed to belong to different stability chambers. This flexibility allowed us 
to describe transformations that transcended the limits of a stability chamber and relate 
moduli spaces for different choices of the stability and topological data of the bundles.

Nevertheless, by Theorem 7.22 the possible basic transformations T ∈ T giving rise to 
automorphisms of a moduli space M(r, α, ξ) must satisfy two compatibility conditions.



112 D. Alfaya, T.L. Gómez / Advances in Mathematics 393 (2021) 108070
• T (ξ) ∼= ξ

• T (α) belongs to the same stability chamber as α

While the first condition is easily computable and relies just on the choice of fixed 
topological invariants of the bundles, the second one depends on an analysis of the 
stability chamber where the system of weights α belongs. Therefore, it is possible that 
depending on the chamber certain basic generators of T which preserve the determinant 
fail to preserve the stability and, therefore, they do not induce an automorphism.

Observe that if T ∈ Tξ < T then by Corollary 8.11 T induces a 3-birational trans-
formation, but T induces an automorphism if and only if T (α) and α share the same 
stability chamber. Therefore, analyzing the stability chamber of T (α) for each T ∈ Tξ
is the same as studying the set of 3-birational automorphisms that extend to a regular 
automorphism of the whole moduli space.

For a general α an explicit analysis may depend greatly on the geometry of the curve, 
as the geometrical walls in the space of systems of weights may vary with X in low 
genus. We seek for classification results that do not depend on the choice of the Riemann 
surface, we will work on two directions. On one hand, we will build invariants that allow 
us to distinguish stability chambers in a precise way for high genus. This will be done 
in Section 10. On the other hand, we will focus on studying some chamber where we 
can compute the stability conditions explicitly in low genus. In particular, in this section 
we will classify the automorphisms of the moduli space for a concentrated system of 
weights α.

The chamber of concentrated weights is of particular interest, as its interior cor-
responds to generic weights for which parabolic stability is roughly equivalent to the 
stability of the underlying vector bundle in the following sense (see, for example, [1])

Lemma 9.1. Let α be a generic concentrated system of weights. Let (E, E•) be a parabolic 
vector bundle. Then

(1) If E is stable as a vector bundle then (E, E•) is α-stable as a parabolic vector bundle
(2) (E, E•) is α-stable if and only if it is α-semistable
(3) If (E, E•) is α-semistable then E is semistable as a vector bundle

If moreover the rank and degree of E are coprime then E is semistable if and only if it is 
stable, so the stability of the parabolic vector bundle (E, E•) is equivalent to the stability 
of the underlying vector bundle E.

The constant system of weights α0 ≡ 0 lies in the frontier of the concentrated chamber. 
A parabolic vector bundle is α0-stable if its underlying vector bundle is stable. If the 
rank and degree of E are coprime then the numerical wall passing through α ≡ 0 cannot 
be realized in a geometric wall and, therefore, the stability is equivalent of the stability 
of the underlying vector bundle.
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Theorem 9.2. Let X be an irreducible smooth complex projective curve of genus g ≥ 6 and 
let D be a reduced effective divisor over X. Let r ≥ 2 and let α be a generic concentrated 
full flag system of weights over D of rank r. Let ξ be a line bundle over X such that 
deg(ξ) is coprime with r. Let M(r, α, ξ) be the moduli space of stable parabolic vector 
bundles of rank r over (X, D) with system of weights α and determinant ξ. Let Φ :
M(r, α, ξ) → M(r, α, ξ) be an automorphism. Then there exists a basic transformation 
T of the form T = (σ, s, L, 0) with T (ξ) ∼= ξ such that Φ = T . In fact, if r > 2, then

Aut(M(r, α, ξ)) ∼= {T = (σ, s, L, 0) ∈ T |T (ξ) = ξ)} < T

and if r = 2

Aut(M(r, α, ξ)) ∼= {T = (σ, 1, L, 0) ∈ T +|T (ξ) = ξ)} < T +

Proof. By Theorem 7.25, for every automorphism Φ there exists a basic transformation 
T ∈ T such that Φ(E, E•) = T (E, E•) for all (E, E•) ∈ M(r, α, ξ) and such that

• T (ξ) ∼= ξ

• T (α) is in the same chamber as α

Let T = (σ, s, L, 0) ∈ T . The pullback of a concentrated system of weights is concen-
trated and the dual of a concentrated system of weights is concentrated, so T (α) lies 
in the concentrated chamber for every concentrated α. In particular, this proves that T
induces an automorphism whenever T (ξ) ∼= ξ.

Therefore, it is enough to prove that if T = (σ, s, L, H) ∈ Tξ induces an automorphism 
of the moduli space then H = 0. Let T0 = (σ, s, L, 0). Then T = T0 ◦ HH . We have

T−1
0 = (σ−1, s, σ∗L−s, 0)

By the previous discussion we know that T−1
0 (α) is concentrated, so it induces an iso-

morphism

T−1
0 : M(r, α, ξ) ∼−→ M(r, α, T−1

0 (ξ))

composing with Φ we obtain an isomorphism

T−1
0 ◦ Φ = HH : M(r, α, ξ) ∼−→ M(r, α, T−1

0 (ξ))

So for every (E, E•) ∈ M(r, α, ξ), HH(E, E•) must be α-stable. Let d = deg(ξ). Tensor-
ing with a suitable line bundle we might assume that 0 < d < r. By hypothesis T (ξ) ∼= ξ. 
Computing degrees in the determinant equality yields the following possibilities for |H|

(1) If s = 1, then |H| is a positive multiple of r and, therefore, |H| ≥ r > d
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(2) If s = −1, then −(d − |H| + kr) = d, so |H| = 2d + kr.

(a) If k ≥ 0 then |H| ≥ 2d > d.
(b) If k < 0, then as d < r yields |H| < 2r+kr = (2 +k)r. As we assumed |H| > 0, 

then we can only have k = −1 and, therefore, |H| = 2d − r > 0.

Nevertheless, applying Lemma 5.1 in cases (1) and (2a) or Lemma 5.3 in case (2b), we 
deduce that there exists some (E, E•) ∈ M(r, α, ξ) such that HH(E, E•) is α-unstable 
if H �= 0. �

Observe that for every σ : X → X preserving the set D, deg(σ∗ξ) = deg(ξ). Therefore, 
there exists a line bundle Lσ such that

Lr ⊗ ξ ∼= (σ−1)∗ξ

on the other hand, deg(σ∗ξ−1) = − deg(ξ). Therefore, there only exists a line bundle L
such that

(σ,−1, L, 0)(ξ) ∼= ξ

if r|2d. Under the hypothesis that r and d are coprime this can only be attained if 
r = 2. Moreover, by Lemma 7.23, for each T = (σ, −1, L, 0) there exists a line bundle L′

such that T and T ′ = (σ, 1, L′, 0) induce the same automorphism of the moduli space. 
Therefore, for r ≥ 2 the automorphisms of M(r, α, ξ) are the ones generated by pullbacks 
and tensoring with a line bundle. For every σ : X → X the set of possible line bundles 
L such that σ∗(Lr ⊗ ξ) ∼= ξ is in bijection with the r-torsion points of the Jacobian.

Working in an analogous way to the proof of Proposition 5.8 we obtain a short exact 
sequence of groups

1 −→ J(X)[r] −→ Aut(M(r, α, ξ)) −→ Aut(X,D) −→ 1

Therefore J(X)[r] is normal in Aut(M(r, α, ξ)) and, moreover, we have shown that the 
sequence admits a splitting, so we obtain that

Aut(M(r, α, ξ)) ∼= J(X)[r] � Aut(X,D)

This is far less than the order of Tξ, as for every σ ∈ Aut(X, D) and for every 
0 ≤ H < (r − 1)D and s ∈ {1, −1} such that

s(d− |H|) ∼= d mod r

there exists a line bundle L such that
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(σ, s, L,H)(ξ) ∼= ξ

where d = deg(ξ). If L′ is another line bundle such that (σ, s, L′, H)(ξ) ∼= ξ then there 
exists an r-torsion point of the Jacobian S ∈ J(X)[r] such that L′ = L ⊗ S. For any 
choice of σ and s, the possible divisors H with 0 ≤ H < (r − 1)D are isomorphic to the 
group (Z/rZ)|D|. Nevertheless, if we impose the additional constraint

|H| ∼= (1 − s)d mod r

Then solutions for s = 1 form the subgroup (Z/rZ)|D|−1, while any two solutions for 
s = −1 differ by a solution for s = 1. Then a direct computation using the relations 
described in Section 5 (see Lemma 5.7 and Proposition 5.8) yields

Aut3−Bir(M(r, α, ξ)) ∼= Tξ ∼=
(
J(X)[r] � (Z/rZ)|D|−1

)
� (Z/2Z× Aut(X,D))

for r > 2 and

Aut3−Bir(M(2, α, ξ)) ∼= T +
ξ

∼=
(
J(X)[r] � (Z/2Z)|D|−1

)
� Aut(X,D)

Under the coprimality condition, if |D| > 1, this group is 2|D|−1 times bigger than 
Aut(M(r, α, ξ)) for r = 2 and 2r|D|−1 times bigger for r > 2. This is an example that 
shows how the combination of the constraint on the topological invariants T (ξ) ∼= ξ and 
the stability constraint stating that T (α) and α share the same stability chamber can 
be really restrictive and reduce the automorphism group M(r, α, ξ) significantly.

In the concentrated chamber, the stability condition eliminates the Hecke transform 
HH and all its combinations from the possible automorphisms. From the point of view 
of the restrictions on the topology of the resulting vector bundles, Hecke transformation 
is the most flexible transformation, in the sense that it is the only one lacking numerical 
restrictions on the degree of the resulting line bundle. If ξ and ξ′ are any two line bundles 
there exist a line bundle L and a divisor H such that TL ◦ HH(ξ) = ξ′. On the other 
hand, dualization can only pass from degree d line bundles to degree −d and TL can only 
reach line bundles whose degree differs from the original one by a multiple of r.

Therefore, once Hecke transformations are discarded, the constraint T (ξ) ∼= ξ (or, 
more precisely, the induced numerical constraint deg(T (ξ)) = deg(ξ)) becomes a really 
strong condition. This explains the huge difference with respect to Tξ. If we allow 2-
rational maps, then Hecke transformations are no longer discarded and, therefore, they 
are available to be used in combination with dualization and tensorization. This relaxes 
the restriction T (ξ) ∼= ξ, leading to more possibilities for the basic transformations 
T ∈ Tξ.
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10. Stability chamber analysis

From Theorem 7.22 we know that every isomorphism between two moduli spaces 
of parabolic vector bundles is induced by some basic transformation. In particular, in 
Theorem 7.25 we proved that the automorphism group of M(r, α, ξ) is the subgroup of 
T consisting on basic transformations such that

• T (ξ) ∼= ξ

• If r = 2, T ∈ T +.
• T (α) belongs to the same stability chamber as α

As we mentioned in the last section, the two conditions are computable and they 
just impose certain numerical restrictions on the possible topological invariants of the 
vector bundles, but the last one is of a different kind. Determining whether two parabolic 
weights α and α′ over the same curve (X, D) belong to the same stability chamber is 
highly nontrivial and depends greatly on the geometry of the curve X. Two systems of 
weights α and α′ belong to different stability chambers if and only if there exists some 
α-stable parabolic vector bundle (E, E•) which is α′-unstable or vice versa, i.e., if there 
exists some α′-stable parabolic vector bundle which is α-unstable.

Assume that (E, E•) is α-stable but α′-unstable. Then there exists a maximal desta-
bilizing subsheaf F ⊂ E such that

pardegα′(F, F•)
rk(F ) >

pardegα′(E,E•)
rk(E)

but, from α-stability

pardegα(F, F•)
rk(F ) <

pardegα(E,E•)
rk(E)

therefore, the existence of a destabilizing subsheaf imposes some numerical conditions on 
α, α′ and the topological invariants of (E, E•) and (F, F•). If this numerical conditions 
are not satisfied by α and α′ then it is clear that they belong to the same stability 
chamber. In this case we say that α and α′ belong to the same numerical chamber.

Nevertheless, the reciprocal is not always true. Even if α and α′ satisfy the numerical 
conditions which are necessary for the existence of a destabilizing subbundle, finding a 
parabolic vector bundle (E, E•) and a subsheaf F ⊂ E with the needed invariants is not 
obvious. In fact, there might exist systems of weights α and α′ such that the numerical 
conditions allowed the existence of α-stable and α′-unstable parabolic vector bundles 
but such that geometrically there do not exist at all. Therefore, the stability chambers 
are divided in several numerical chambers whose walls are not realized geometrically by 
any parabolic vector bundle.

We will start identifying some numerical invariants that will allow us to determine 
the numerical chambers uniquely.
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Let {n1(x), . . . , nr(x)} = n be any set of nonnegative integers. We say that n is 
admissible if for any i = 1, . . . , r and any x ∈ D, ni(x) ∈ {0, 1} and there exists 0 < r′ < r

such that for all x ∈ D yields 
∑r

i=1 ni(x) = r′. Let d = deg(ξ). We define

M(r, α, d, n) =
⌊
r′d + r′

∑
x∈D

∑r
i=1 αi(x) − r

∑
x∈D

∑r
i=1 ni(x)αi(x)

r

⌋
∈ Z

Observe that for every ε ∈ R|D|,

M(r, α, d, n) = M(r, α[ε], d, n)

i.e., M(r, α, d, n) only depends on the class α ∈ Δ̃.
Recall that we say that if a subbundle F � E of a parabolic vector bundle (E, E•) is 

of type n then

wt(F, F•) =
∑
x∈D

r∑
i=1

ni(x)αi(x)

Lemma 10.1. Let (E, E•) be a parabolic vector bundle such that deg(E) = d. Then (E, E•)
is semistable if and only if for every admissible n and every subbundle F � E of type n
we have

deg(F ) ≤ M(r, α, d, n)

Proof. The parabolic bundle (E, E•) is semistable if for every subbundle F with the 
induced parabolic structure

deg(F ) +
∑

x∈D

∑r
i=1 ni(x)αi(x)

r′
≤

d +
∑

x∈D

∑r
i=1 αi(x)

r

Equivalently, solving for deg(F )

deg(F ) ≤
r′d + r′

∑
x∈D

∑r
i=1 αi(x) − r

∑
x∈D

∑r
i=1 ni(x)αi(x)

r

As deg(F ) is an integer, its value is at most the floor of the right hand side, which is 
precisely M(r, α, d, n). �
Corollary 10.2. Let α and α′ be rank r systems of weights such that for every admissible n

M(r, α, d, n) = M(r, α′, d, n)

then α and α′ belong to the same stability chamber.
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Proof. If (E, E•) is α-semistable then for every admissible n and every subbundle F � E

of type n

deg(F ) ≤ M(r, α, d, n) = M(r, α′, d, n)

so (E, E•) is α′-semistable. �
Let N be the set of admissible n. Let us denote

M(r, α, d) = (M(r, α, d, n))n∈N ∈ ZN

then we say that α and α′ belong to the same numerical stability chamber if and only if 
M(r, α, d) = M(r, α′, d).

Proposition 10.3. There is a finite number of stability chambers in Δ.

Proof. For every α ∈ Δ and every admissible n, using that 0 ≤ αi(x) < 1 and 0 ≤
ni(x) ≤ 1 we obtain the following bounds

Mmin(r, d) = d

r
− r|D| − 1 <

⌊
r′d + r′

∑
x∈D

∑r
i=1 αi(x) − r

∑
x∈D

∑r
i=1 ni(x)αi(x)

r

⌋
≤ (r − 1)d

r
+ (r − 1)|D| = Mmax(r, d)

Therefore M(r, α, d) ∈ [Mmin(r, d), Mmax(r, d)]N for every α. In particular this implies 
that there is a finite number of numerical chambers in Δ. As a numerical chamber is 
included in exactly one stability chamber we obtain that there is a finite number of 
stability chambers. �

This proposition has some further implications on the k-birational geometry of the 
moduli space M(r, α, ξ).

Corollary 10.4. Let k > 0. Let X be a genus g ≥ 1 + k−1
r−1 Riemann surface and let D ⊂ X

be a nonempty set of points. Let α be any generic system of weights over (X, D) and let 
ξ be any line bundle over X. Then there exists an open subset Mus(r, ξ) ⊂ M(r, α, ξ)
whose complement has codimension at least k and such that each parabolic vector bundle 
(E, E•) ∈ Mus(r, ξ) is α′-stable for every generic α′ ∈ Δ.

Proof. Let C denote the set of stability chambers in Δ. By the previous lemma it is a 
finite set. Let α1, . . . , α|C| be a set of generic representatives for the stability chambers 
in C. Then a parabolic vector bundle is α′-stable for all generic α′ ∈ Δ if and only if 
it is αi-stable for every i = 1, . . . , |C|. On the other hand by Corollary 2.4, for every αi
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there exists an open subset Ui ⊂ M(r, α, ξ) whose complement has codimension at least 
k such that every (E, E•) ∈ Ui is α-stable and αi-stable. Take

Mus(r, ξ) =
|C|⋂
i=1

Ui ⊂ M(r, α, ξ)

As C is a finite set, Mus(r, ξ) is an open subset whose complement has codimension at 
least k and such that every (E, E•) ∈ Mus(r, ξ) is αi-stable for every i = 1, . . . , |C|. �

One we have classified the space of numerical chambers, our objective is to develop 
a tool to determine whether some numerical wall separating two numerical chambers is 
actually realized by a destabilizing subbundle of some parabolic vector bundle, at least 
for big genus.

Lemma 10.5. Let X be a genus g smooth complex projective curve. Suppose that

g ≥ 1 + (r − 1)n−
⌊∑
x∈D

α1(x)
⌋

Then for every n there exist a stable parabolic vector bundle (E, E•) ∈ M(r, α, ξ) and a 
subbundle F � E of type n such that

deg(F ) = M(r, α, d, n)

Proof. For every admissible choice of n

∑
x∈D

r∑
i=1

ni(x)αi(x) ≥
∑
x∈D

α1(x)

Therefore, the genus condition in [3, Theorem 1.4.3A] hold for every n and we obtain 
that there exists a stable parabolic vector bundle (E, E•) of rank r and degree d = deg(ξ)
with a subbundle F � E satisfying the properties in the Lemma. Now it is enough to 
tensor it with a suitable degree zero line bundle to obtain another one whose determinant 
is isomorphic to ξ. �
Theorem 10.6. Let α and β be generic full flag systems of weights of rank r over (X, D). 
Let ξ be a degree d line bundle over X and assume that

g ≥ 1 + (r − 1)n− min
(⌊∑

x∈D

α1(x)
⌋
,

⌊∑
x∈D

β1(x)
⌋)

Then α and β belong to the same stability chamber of the moduli space of rank r deter-
minant ξ full flag parabolic vector bundles if and only if for every admissible n
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M(r, α, d, n) = M(r, β, d, n)

Proof. The systems of weights α and β belong to different chambers if and only if either 
there exists an α-stable vector bundle (E, E•) which is not β-stable or vice versa. Suppose 
that there exists an α-stable, β-unstable parabolic vector bundle. By Lemma 10.1, there 
exist a subbundle F � E and integers n such that

wt(F, F•) =
∑
x∈D

r∑
i=1

ni(x)αi(x)

and

M(r, β, d, n) < deg(F ) ≤ M(r, α, d, n)

so M(r, β, d, n) �= M(r, α, d, n). Reciprocally, suppose that M(r, α, d) �= M(r, β, d). Then, 
interchanging α and β if necessary, there exists an admissible n such that M(r, β, d, n) <
M(r, α, d, n). By Lemma 10.5, there exist an α-stable parabolic vector bundle (E, E•)
and a subbundle F � E of type n such that

deg(F ) = M(r, α, d, n) > M(r, β, d, n)

Therefore, from Lemma 10.1, (E, E•) is β-unstable. �
The genus condition in this Theorem deserves some remarks. First, notice that it is 

only needed for the “necessary” part of the theorem. If M(r, α, d) = M(r, β, d) then α and 
β belong to the same numerical – and therefore geometrical – chamber, independently 
of the genus of the curve.

Second, the genus condition is picked so that it is valid for any couple of systems of 
weights α and β. There are stability chambers which are more easily distinguished than 
others. For some choices of α and β, the bound for the genus can be really lowered.

Proposition 10.7. Let α and β be concentrated systems of weights and let n be an admis-
sible array such that

M(r, β, d, n) < M(r, α, d, n)

Then α and β belong to different stability chambers if

g ≥ 1 +
⌊∑

x∈D

∑r
i=1(1 − αi(x))(1 − ni(x))

⌋
r′

Proof. The proof is exactly the same as in the Theorem, but instead of using the genus 
bound in Lemma 10.5, we apply the bound in [3, Theorem 1.4.3A]. �
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Finally, observe that the genus bounds for the previous results are not well defined for 
α, β ∈ Δ̃, rather they depend on the choice of representatives in Δ. We can play this out 
in our favor and choose suitable ε, δ ∈ R|D| such that the genus bound for α[ε] and β[δ]
is as low as possible. The bound for α[ε] decreases with ε. The maximum possible shift 
that we can take at each x ∈ D is ε(x) < 1 −αr(x). Therefore, the previous Proposition 
holds if for some τ > 0

g ≥ 1 +
⌊∑

x∈D

∑r
i=1(αr(x) + τ − αi(x))(1 − ni(x))

⌋
r′

In particular, the more concentrated the weights in a numerical chamber are, the lesser 
genus is needed in order to realize the surrounding numerical walls as geometrical walls. 
This somehow justifies that our study of the concentrated chamber can be done more 
explicitly in lower genus.

Finally, we can apply the previous results to obtain the following versions of Theo-
rem 7.22 and Theorem 7.25.

Theorem 10.8. Let (X, D) and (X ′, D′) be two smooth projective curves of genus g ≥
max{1 + (r − 1)|D|, 6} and g′ ≥ 6 respectively with set of marked points D ⊂ X and 
D′ ⊂ X ′. Let ξ and ξ′ be line bundles over X and X ′ respectively, and let α and α′ be 
full flag generic systems of weights over (X, D) and (X ′, D′) respectively. Let

Φ : M(X, r, α, ξ) ∼−→ M(X ′, r′, α′, ξ′)

be an isomorphism. Then

(1) r = r′

(2) (X, D) is isomorphic to (X ′, D′), i.e., there exists an isomorphism σ : X
∼→ X ′

sending D to D′.
(3) There exists a basic transformation T such that

• σ∗ξ′ ∼= T (ξ)
• M(r, σ∗α′, deg(ξ′)) = M(r, T (α), deg(ξ′))
• For every (E, E•) ∈ M(r, α, ξ), σ∗Φ(E, E•) ∼= T (E, E•)

Corollary 10.9. Let (X, D) be a smooth projective curve of genus g ≥ max{1 + (r −
1)|D|, 6} and let α be a full flag generic system of weights over (X, D) of rank r. Let ξ
be a line bundle over X. Then the automorphism group of M(r, α, ξ) is the subgroup of 
T consisting on basic transformations T such that

• T (ξ) ∼= ξ

• M(r, T (α), deg(ξ)) = M(r, α, deg(ξ))
• If r = 2, T ∈ T +
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Unlike the original results, these versions are fully computable for each specific case, in 
the sense that for every system of weights α and every line bundle ξ we have an explicit 
morphism

(detξ,Mα) : T Pic(X) × ZN

T (T (ξ),M(r, T (α),deg(T (ξ))))

And for g ≥ 1 + (r − 1)|D| we know that the set of isomorphisms between M(r, α, ξ)
and M(r, α′, ξ′) is given by

(detξ,Mα)−1(ξ′,M(r, α′,deg(ξ′)))

In particular, the moduli spaces M(r, α, ξ) and M(r, α′, ξ) are isomorphic if and only if

(ξ′,M(r, α′,deg(ξ′))) ∈ (detξ,Mα)(T )

Moreover, from the description of T in terms of the generators D−, TL and HH given in 
Proposition 5.8

T ∼= 〈TL, TH〉� (Aut(X,x) × Z/2Z)

for each chamber α and each determinant ξ we can explicitly describe a presentation of

Aut(M(r, α, ξ)) = (detξ,Mα)−1(ξ,M(r, α,deg(ξ))) < T

or, if r = 2,

Aut(M(2, α, ξ)) = (detξ,Mα)−1(ξ,M(r, α,deg(ξ))) ∩ T + < T +

just by selecting generators in the right hand side.

11. Examples

Let X be a curve with an automorphism σ : X → X such that there exist x, y ∈ X

with σ(x) = y and σ(y) = x. Take D = {x, y}. Let 0 ≤ α1 < 1/2 < α2 < 1. Then take 
the following full flag system of weights of rank r = 2 at (X, D)

α1(x) = α1

α2(x) = α2

α1(y) = α2 − 1/2

α2(y) = α1 + 1/2
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Then, by construction Hx+y(α) ∼ Σσ(α). Let L be a line bundle of degree 1 such that 
L2 ∼= OX(x + y) Then we have that

(σ, 1, L, x + y) : M(r, α, ξ) −→ M(r, α, ξ)

is an automorphism. Now let

Aut+(X,D) = {σ ∈ Aut(X)|σ(x) = x , σ(y) = y}

Aut−(X,D) = {σ ∈ Aut(X)|σ(x) = y , σ(y) = x}

Then the following basic transformations are nontrivial automorphisms of M(r, α, ξ)

• T = (σ−, 1, L, x + y), where σ− ∈ Aut−(X, D) and T (ξ) ∼= ξ

• T = (σ+, 1, L, 0), where σ+ ∈ Aut+(X, D) and T (ξ) ∼= ξ.

Moreover, if |δ| is small enough and X has genus g ≥ 3, then the weights αi(x)
are concentrated but the weights αi(y) are not. Therefore, Hy(α) is concentrated, α is 
concentrated at x, Hx+y(α) is concentrated at y and Hx(α) is not concentrated. From 
the genus condition, it can be proved using Theorem 10.6 from the last section, that 
Hx+y(α), Hx(α) and Hy(α) do not belong to the same chamber as α. Moreover, taking 
the pullback by σ− interchange the following (distinct) chambers

• Hx(α) and Hy(α)
• α and Hx+y(α)

As all the chambers are different, in order for a basic transformation T = (σ, s, L, H) to 
preserve the stability chamber of α we need either

• σ ∈ Aut+(X, D) and H = 0 or
• σ ∈ Aut−(X, D) and H = x + y

so, taking into account that for rank 2 each transformation of the form T = (σ, −1, L, H)
is equivalent to another one of the form (σ, 1, L′, H) for some L′, we obtain that the 
automorphisms of M(r, α, ξ) are precisely the ones described above.

This example proves that there exist curves and systems of weights for which the Hecke 
transform induces nontrivial automorphisms when combined with pullbacks by suitable 
automorphisms of the curve even if the transformation HH alone does not preserve the 
stability chamber.

As we saw in the last theorem, this cannot happen in the concentrated setting and, 
in general, it is not expected to happen if the parabolic chamber is stable under trans-
formations Σσ for all σ ∈ Aut(X, D).
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Now let X be any Riemann surface and let D = x for some x ∈ X. Let 0 < ε < 1/4
and let us consider the following rank 3 system of weights over (X, D)

α1(x) = ε

α2(x) = 3ε

α3(x) = 1 − ε

A direct computation shows us that Hx(α) ∼ (ε, 1 − 3ε, 1 − ε), so Hx(α)∨ ∼ α. Let ξ
be any degree −1 line bundle over X. Then

D− ◦ Hx(ξ) = (ξ(−x))−1 = ξ−1(x)

so deg(D− ◦ Hx(ξ)) = 1 + 1 = 2 = deg(ξ) + 3. Therefore, there exists a line bundle L of 
degree 1 such that

L3 ⊗ ξ(−x) ∼= ξ−1

Take T = (Id, −1, L, x). As TL does not change the parabolic weights the previous 
computations shows that

• T (ξ) = ξ

• T (α) ∼ α

Therefore, we obtain that

(Id,−1, L, x) : M(r, α, ξ) −→ M(r, α, ξ)

is an automorphism. Moreover, for any automorphism σ : X −→ X fixing D = x we 
have that

deg(D− ◦ Hx(ξ)) = 2 = deg((σ−1)∗ξ) + 3

Therefore, there exists a line bundle Lσ of degree 1 such that

L3
σ ⊗ ξ(−x) ∼= (σ−1)∗ξ−1

As Σσ fixes the parabolic point then taking T = (σ, −1, Lσ, x) we obtain that

• T (ξ) = ξ

• T (α) ∼ α
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Therefore, we obtain that

(σ,−1, Lσ, x) : M(r, α, ξ) −→ M(r, α, ξ)

is an automorphism. Then we have found an example of a marked curve of arbitrary high 
genus and a system of weights such that the Hecke transformation induces a nontrivial 
automorphism of the moduli space when combined with the dualization. In contrast 
with the previous example, where the curved was supposed to have an automorphism 
interchanging two parabolic points, in this example the existence of an automorphism 
involving Hecke transformation is achieved even if the curve is generic and lacks nontrivial 
automorphisms.

The basic transformation T = (Id, −1, L, x) is particularly interesting. If g ≥ 4 then 
from Lemma 7.24 we know that T acts nontrivially on M(r, α, ξ), but a direct compu-
tation shows that T 2 = IdT . Therefore, T is an involution of M(r, α, ξ) that does not 
come from an involution of the Riemann surface X.

To complete the example, let us study other kinds of automorphisms that this moduli 
space admits. Let T = (σ, s, L, H) ∈ T . By construction D−(α) ∼ Hx(α). Moreover, 
if ε is small enough then H2x(α) ∼ (1 − 5ε, 1 − 3ε, 1 − ε) is concentrated. Therefore, 
so is D− ◦ H2x(α). On the other hand, α and Hx(α) are not concentrated. Using the 
results of the previous chapter we can prove that if ε is small enough and g ≥ 3 then 
α ∼ D− ◦ Hx(α), Hx(α) ∼ D−(α) and H2x(α) ∼ D− ◦ H2x(α) belong to three different 
stability chambers.

On the other hand, Σσ and TL do not change the stability chamber, so T (α) is in the 
same stability chamber as α if and only if either

• H = 0 and s = 1 or
• H = x and s = −1

In both cases, for every σ : X → X fixing D = x there exists a line bundle L such 
that (σ, 1, L, 0)(ξ) ∼= ξ or (σ, −1, L, x)(ξ) ∼= ξ respectively. In every case, such L is unique 
up to a choice of a 3-torsion point in J(X). Then

Aut(M(r, α, ξ)) ∼= J(X)[3] � (Z/2Z× Aut(X,D))

An analogous example can be found for any rank. Just take α distributed as αr(x) =
1 − ε and αk(x) = (2k− 1)ε for k < r. Then D− ◦H(r−2)x(α) ∼ α. If we take ξ of degree 
−1 then

deg(H(r−2)x(ξ)) = deg(ξ) − r + 2 = r − 1 = deg(ξ−1) + r

Therefore, there exists a line bundle L of degree 1 such that if T = (Id, −1, L, H(r−2)x)
then
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• T (α) ∼ α

• T (ξ) = ξ

so T induces an automorphism T : M(r, α, ξ) −→ M(r, α, ξ) which is an involution of 
the moduli space.
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