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Abstract:. In the current practice of short-term power scheduling, reserve power is used as a tool to address 

generation mismatch and contingencies. The practice is starting to fall short especially in smaller power systems, 

as the injection of uncertain renewable sources is growing, there is already a scarcity of primary frequency 

response, and any contingency leads to relatively big power mismatches. This paper points out the inadequacy of 

current practice to sufficiently guarantee the frequency dynamic quality after outages. First the UC problem is 

solved for different levels of reserve requirement. Then a coherent data-set is obtained by simulating the System 

Frequency Response (SFR) of single outages. The results of the SFR model are statistically analyzed to prove that 

there are more correlated representatives of frequency quality, compared to the amount of reserve that is used in 

the current practice. 

Index terms: System Inertia, Reserve Requirement, System Frequency Model, Robust Optimization. 
 

 

I. INTRODUCTION 

 

Variability and uncertainty are becoming a 

bigger concern in power systems, by ever increasing 

penetration of renewable energies as a source of power 

generation. Among power systems, small isolated 

systems suffer more, as they inherently possess less 

inertia. Inertia scarcity in island power systems makes 

them more susceptible to power outages and the 

fluctuations in uncertain renewable sources. 

Traditionally online reserve power brought by the 

conventional units has been the main tool to tackle 

unforeseen sudden changes of power balance, and 

maintain the frequency within a tolerable range. This 

practice is falling short as the conventional units are 

becoming obsolete by increasing the share of 

renewable energy sources (RES). Also, the amount of 

available reserve might vary depending on the changes 

in RES infeed, which is exposed to forecast errors. To 

address the volatile nature of RES and include the 

stochasticities in the scheduling process, usually 

stochastic and robust models are employed. For 

stochastic optimization many discrete samples are 

needed with known probability description. However, 

in practice it is not easy to obtain an accurate 

probability distribution of the uncertain variable. 

Moreover, the computational burden increases 

massively as the number of samples goes higher. 

Robust optimization assumes that the upper and lower 

bound of the uncertain variable is predictable. The goal 

of the robust optimization is to find the optimal 

solution under the worst possible scenario for the 

system, hence the solution might be overconservative 

[1]. A data-driven adaptive robust UC approach is 

proposed in [2], that is able to withstand wind power 

forecast errors and mitigate the conservatism of the 

solution by reducing operational costs. To further 

reduce the conservetiveness of the uncertainty set for 

solving UC problem and enhance the computational 

efficiency, a partition-combine method is proposed in 

[3] to build a minimal uncertainty set with the 

irregularly distributed historical data. To ensure power 

balance under the growing level of wind power 

injection, and also noting that wind power uncertainty 

reduces over time, the problem is broken into three 

decision-making problems, which are solved under 

different degrees of uncertainty in [4]. Numerical 

results confirm that this approach outperforms existing 

non-anticipative robust UC models, in both feasibility 

and optimality. To ensure the provision of sufficient 

and fast reserves, different solutions are introduced in 

the literature. In [5], reserved energy in energy storage 

system (ESS) is proposed as a source of ancillary 

service, which also takes into account wind speed 

fluctuations as a source of uncertainty. It concludes 

that providing reserve by RES can mitigate the need of 

other types of reserve providers and reduce the 

operation costs consequently. To quantify how much 

reserve is required for different uncertainty levels, an 

endogenous reserve determination method is proposed 

in [6]. Different sources of uncertainty, including wind 

generation, load forecast, generator failures, and 

power flow uncertainties caused by wind power 

forecast errors, are considered to jointly schedule the 

generation and reserve. The proposed approach can 

ensure amount of reserve can sufficiently maintain the 

operational reliability. To increase the amount of 

online inertia, the concept of synthetic inertia provided 

by wind power plants is exploited in [7]. Synthetic 

inertia and primary frequency response with the 
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support from wind power plants are modeled to 

actively estimate the system inertia and primary 

frequency response requirement in a day-ahead 

stochastic scheduling framework. Result show that the 

participation of wind sources can increase the overall 

inertia of the system by 12%. The viability of 

providing up and down reserve by RES in island power 

systems is studied in [8]. 

In this paper the unit commitment problem is 

solved for different levels of reserve requirement in La 

Palma island, with an adaptive robust UC formulation. 

The binary solution is then used to solve economic 

dispatch (ED) problem for 10 different stochastic 

scenarios. The result of ED is fed to an SFR model, to 

simulate the frequency response quality after every 

single outage. SFR outputs are analyzed to conclude 

that there are better representatives that can be used in 

UC problem in Spanish islands, compared to reserve 

criteria that is currently employed. 

The rest of the paper is organized as follows. First 

the methodology is explained in section II. In this part 

both adaptive robust UC and the employed SFR model 

are introduced. In section III, the results of the 

simulations on real data of La Palma island are 

presented and analyzed. Finally, the conclusions are 

drawn after that. 

 

II. Methodology 

 

An adaptive robust UC with reserve constraint is 

used in this paper to obtain this data-set, which is 

explained in II-A. The UC problem is solved for 

different levels of reserve requirement, and ED is 

solved for all of the stochastic scenarios. The obtained 

results predominantly picture the possible feasible 

solutions that might be encountered in real-time. Using 

these data dynamic simulations can be carried out to 

see the quality of frequency response in case of all 

potential outages. To perform the dynamic simulations 

an SFR model with no UFLS sceme is used (II-B). As 

the inputs of SFR model have different levels of 

reserve and the amount of inertia is ignored, the 

simulation results will be a broad-ranging mix of 

tolerable frequency responses, poor responses and 

even unstable case. Analyzing the correlation between 

inputs and outputs of the SFR model is interesting, as 

it can highlight the most correlated factors of the 

commitment problem to the frequency response 

quality. 

 

II-A. Adaptive Robust UC 

The Unit Commitment (UC) problem is a mixed 

integer problem, and is usually solved with MIL 

Programming solvers after the linearization of 

nonlinear terms. To solve the UC problem with 

uncertainty, an adaptive robust formulation is 

employed in [9] and [10]. The formulation is robust, 

because it considers all of the possible realizations of 

the uncertain input, and makes sure that the chosen 

commitment status of the units, which is decided in the 

master level, will be feasible for any realization of the 

uncertain variable. The formulation is adaptive 

because the subproblem level is a function of the 

uncertain variables and can adapt the master level 

decision variable, depending on the different 

realizations of the uncertain variable. A general 

representation of UC problem with reserve constraint 

and uncertain wind power injection is provided here, 

 

The aim is to solve (1) subject to (2a)-(2d), which only 

depends on binary variables, and (3a)-(3g), which 

depend on both binary and real variables. gc(.) is 

usually a quadratic cost function, which will be piece-

wise linearized to be utilized in an MIL problem. (2a) 

and (2b) represent the binary logic of the UC problem. 

(2c) and (2d) are the minimum up-time and minimum 

down-time constraints of the units. (3a) is the 

minimum power generation constraint, with dual 

multiplier α. (3b) is the maximum power generation 

constraint with dual multiplier β, and states that the 

summation of power generation and power reserve of 

every online unit, should be less that maximum output 

of the unit. (3c) and (3d) are ramp-down and ramp-up 

constraints, with dual multipliers γ and δ respectively. 

(3e) is the power balance equation with dual multiplier 

ζ. (3f) with dual multiplier η makes sure that the 

scheduled wind power is always less than uncertain 

forecasted wind. (3g) is the reserve constraint with 

dual multiplier µ, and makes sure that in case of any 

contingency, there is enough headroom to compensate 

lost generation. Note that all the decision variables 
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from (3a) to (3g) are a function of uncertain wind 

power realization. In practice an iterative delayed 

constraint generating Benders’ decomposition 

algorithm is used to solve this problem [9]. So, the 

problem would be broken to a master problem which 

only depends on binary variables and a subproblem 

which contains all the other constraint. Then writing 

the dual formulation of the subproblem will facilitate 

using the iterative approach. To find out how to 

properly write the standard form of a problem, and take 

the dual, have a look at [11]. In case of encountering 

non-linearity, like a dual variable multiplying the 

uncertain variable, an iterative outer approximation 

can be employed [12]. 

II-B. The SFR Model 

This section briefly presents SFR models used to 

analyze frequency stability of small isolated power 

systems. The model is able to reflect the underlying 

short-term frequency dynamics of small isolated 

power systems. Figure 1 details the power system 

model used to design UFLS schemes for a small 

isolated power system, consisting of I generating units. 

Each generating unit i is represented by a second-order 

model approximation of its turbine-governor system. 

In fact, frequency dynamics are dominated by rotor 

and turbine-governor system dynamics. Excitation and 

generator transients can be neglected for being much 

faster than the turbine-governor dynamics. 

 

Figure 1. SFR model. 

The overall response of loads can be considered 

by means of a load-damping factor D if its value is 

known. The gain ki and parameters ai,1, ai,2, bi,1 and bi,2, 

of each generating unit i can be deduced from more 

accurate models or field tests. Since primary spinning 

reserve is finite, power output limitations ∆pi,min and 

∆pi,max are also modelled. The complete model is 

explained in [13]. This SFR model uses the outputs of 

adaptive robust UC as an input, and delivers the 

frequency response of the system after any single 

outage of the generators. The obtained results are 

analyzed to compare the correlation of different 

metrics. 

 
          

III. Results 

 
Simulations for the proposed methodology are 

carried on the real power system of La Palma island, 

one of Spain’s Canary Islands. The yearly demand in 

2018 is reported about 277.8 GWh (average hourly 

demand of 31.7 MWh), supplied by eleven Diesel 

generators predominantly. According to [14], the 

installed capacity of the La Palma island power system 

mounts to 117.7 MW, where about 6% of the installed 

capacity belongs to wind power generation. 

Renewable generation covers about 10% of the yearly 

demand. The input data for solving UC problem is 

obtained from real data. The forecasted wind 

generation data of a sample day is chosen, with 

different scenarios, that also provide us the upper 

bound and the lower bound of for the robust 

formulation. Wind data with 10 scenarios is shown in 

figure 2. 

 

                            
   
Figure 2: Wind Data 

 

Conventional day-ahead robust UC is solved for 

ascending reserve requirements levels, starting from 

zero requirement until the problem becomes 

infeasible. In the conventional UC, the reserve 

requirement is the biggest source of power. A 

multiplier is defined here for the reserve requirement 

starting from 0, with 0.1 ascending steps, until 1.5, 

which is the point that problem becomes infeasible. 

Then the ED solution of 10 wind scenarios for each 

reserve requirement level is fed to the SFR model, and 

all single contingencies are simulated. Obtained results 

confirm that other system characteristics, like online 

inertia, lost power, lost power percentage, and 
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normalized gain of turbine governor are more related 

to the quality of the frequency response, rather that the 

amount of reserve. Table 1 shows the Pearson’s 

correlation between mentioned characteristics and 

frequency response metrics, for more than 20000 

single outages, simulated by the SFR model. As 

expected, the ratio of lost generation to hourly demand 

has the best correlation with frequency metrics, as the 

big outages relatively to the whole generation tend to 

disturb frequency considerably. Interestingly enough, 

the sum of available reserve has a weaker correlation 

with frequency metrics, compared to the others. So 

other parameters like total available inertia and power 

loss ratio, might be better representatives of the system 

dynamics. 

 
Table 1 

Pearson’s correlation between parameters 
 

 fnadir fqss RoCoF 

Total H 0.568 0.558 0.668 

Total K 0.286 0.283 0.319 

ploss -0.561 -0.532 -0.876 

ploss/d -0.617 -0.588 -0.965 

Total r 0.506 0.516 0.269 

 

La Palma island, like other power systems, is 

equipped with UFLS scheme that sheds load 

depending on the severity of RoCoF (Rate of Change 

of Frequency) and amount of frequency drop. In bigger 

systems the purpose is to avoid any incident that leads 

to load shedding, by providing enough primary 

frequency response. In islands and smaller system, 

usually there is not enough primary frequency 

response, so the aim is to minimize the expected 

amount of UFLS. The current practice of power 

schedule in islands only includes the reserve criteria to 

cover outages, and as mentioned, the correlation of 

reserve does not have a strong correlation with the 

frequency response metrics. 

       
CONCLUSION 

 

The paper tries to find out what are the most 

correlated features in the scheduling process to the post 

fault frequency. To realize that, day-ahead UC 

simulations are carries out for La Palma island with the 

real input data. To cover the variety of possible real-

time outcomes, different levels of reserve requirement 

are considered. Then the economic dispatch problem 

is solved for 10 stochastic wind realization scenarios. 

The results are fed to an SFR model to simulate 

frequency changes after each outage. Analyzing the 

outputs of the SFR model, confirms that the reserve 

criteria is much less correlated with the frequency 

response, compared to other characteristics like the 

amount of online inertia, turbine-governor constants, 

and the size of the outage. In island power system that 

the frequency stability is of high importance, other 

criteria should be taken into account to better represent 

the frequency behavior of the system in short-time 

scheduling process. 
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