
energies

Article

A Market-Driven Management Model for Renewable-Powered
Undergrid Mini-Grids

Tatiana González Grandón 1,* , Fernando de Cuadra García 2 and Ignacio Pérez-Arriaga 3

����������
�������

Citation: González Grandón T.; de

Cuadra, F.; Pérez-Arriaga, I. A

Market-Driven Management Model

for Renewable-Powered Undergrid

Mini-Grids. Energies 2021, 14, 7881.

https://doi.org/10.3390/en14237881

Academic Editors: Yun-Su Kim, Adel

Merabet and Jin-Oh Lee

Received: 19 September 2021

Accepted: 15 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Economics, Humboldt Universität Berlin (HU), Spandauerstr. 1, 10178 Berlin, Germany
2 Institute for Research in Technology (IIT), Comillas Pontifical University, 26 Calle de Santa Cruz de

Marcenado, 28015 Madrid, Spain; fernando.cuadra@iit.comillas.edu
3 MIT Energy Initiative, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,

MA 02139, USA; ipa@mit.edu
* Correspondence: grandont@hu-berlin.de

Abstract: Renewable-powered “undergrid mini-grids” (UMGs) are instrumental for electrification
in developing countries. An UMG can be installed under a—possibly unreliable— main grid to
improve the local reliability or the main grid may “arrive” and connect to a previously isolated
mini-grid. Minimising costs is key to reducing risks associated with UMG development. This article
presents a novel market-logic strategy for the optimal operation of UMGs that can incorporate
multiple types of controllable loads, customer smart curtailment based on reliability requirements,
storage management, and exports to and imports from a main grid, which is subject to failure. The
formulation results in a mixed-integer linear programming model (MILP) and assumes accurate
predictions of the following uncertain parameters: grid spot prices, outages of the main grid, solar
availability and demand profiles. An AC hybrid solar-battery-diesel UMG configuration from
Nigeria is used as a case example, and numerical simulations are presented. The load-following (LF)
and cycle-charging (CC) strategies are compared with our predictive strategy and HOMER Pro’s
Predictive dispatch. Results prove the generality and adequacy of the market-logic dispatch model
and help assess the relevance of outages of the main grid and of spot prices above the other uncertain
input factors. Comparison results show that the proposed market-logic operation approach performs
better in terms of cost minimisation, higher renewable fraction and lower diesel use with respect to
the conventional LF and CC operating strategies.

Keywords: renewable energy sources (RES); grid-connected micro-grids; unreliable grid;
market-logic unit commitment; smart curtailment; reliability; optimisation; load following; cycle
charging; predictive strategy

1. Introduction

This article has been motivated by the increasing blurring line separating on- and
off-grid electricity supply in developing countries where adequate universal access to
electricity has not been achieved. Mini-grids provide the least cost electrification solution
for mid-dense demand clusters in areas far from the national grid. Notwithstanding, the
electrification efforts to cover Global South’s mini-grid investment need up to USD 20 bil-
lion annually [1]. Thus, it is crucial to minimise costs and propose innovative operational
strategies that capture the complexity of the interaction between mini-grids and the main
grid.

Microgrids or Mini-grids (MGs) are defined in [2,3] as integrated electricity supply
systems combining generation (from 10 kW to 10 MW), energy storage systems, controllable
loads on a low and medium voltage distribution network, and retail. Furthermore, MGs
are classified depending on their architecture with regard to the main power grid.Off-grid
or isolated mini-grids are self-sufficient systems that are not connected to the main national
electricity network. Undergrid mini-grids (UMGs) are connected to a main national grid and
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can operate both as a backup system, providing grid services to the distribution system, and
as an autonomous unit. The term UMG was first coined by the Rockefeller Mountain Institute
in [4]. Some other terminology for UMG includes grid-connected micro-grids [5–7]. In this
article, the two terms will be used interchangeably. It is also assumed that UMGs rely on
renewable energy sources (RES) as a main source of energy.

Renewable-powered UMGs are instrumental for future electricity systems in develop-
ing countries. Given that 840 million people still lack access to electricity [8], until recently,
electrification programs included off-grid mini-grids as the least-costly technology to power
rural remote areas. Yet, lately the development of UMGs has increased; in developing
economies, UMGs exist in two main situations. The most frequent situation arises as the
“grid arrives”, i.e., when the distribution company, the “DisCo”, decides to extend the grid
and connect to an existing mini-grid, which can be independently managed by exchanging
power with the main grid under stipulated terms. Thus, off-grid mini-grids are increasingly
becoming UMGs [9]. The second situation occurs when “the mini-grid arrives” to an urban
or peri-urban area already supplied by the main grid, but where the power reliability or
the quality of service is inadequate and can be substantially improved by the presence of
the mini-grid. Despite the presence of central-grid infrastructure, hundreds of millions of
grid-connected households, in urban or peri-urban geographies of developing countries,
still remain in lower tiers of electrification [4]. Therefore, governments of developing
countries are also adopting UMGs in areas that lack reliable power supply from the main
grid [10].

The design and operation of UGMs substantially differ from those of isolated mini-
grids, as they have to consider the possibility of importing power from or exporting power
to the main grid, which can be functional or blacked out. It will be shown in the literature
review that the optimal operation of UMGs has not been thoroughly studied yet. Thus,
there are still open questions regarding the management of UMGs.

1. How does the connection to the main-grid impact the optimal operation of a mini-
grid?

2. What are the most relevant uncertain parameters in the operation of an UMG?
3. Does the UMG dispatch strategy impact the optimal sizing of components?

This paper is a necessary first step to fill these knowledge gaps and only focuses on
the operation of UMGs, taking the design as a given. We present a novel model predictive
control (MPC)-based scheduling and operational strategy for an UMG operator to maximise
social welfare under given forecast levels of demand, renewable energy generation, main
grid’s spot prices and main grid outages. The algorithm provided has been formulated as
a very general approach to evaluate UMG’s techno-economic and reliability indicators for
different business models and regulatory schemes. It considers various types of generation
sources, different types of consumers, and storage and main grid as prosumers. Pricing
can be modelled either dynamically or statically. A Mixed Integer Linear Program (MILP)
is constructed. To the best of our knowledge, such a model comprising accurate modelling
of a UMG complex’s services, procurement of generality for diverse applications and high
computational efficiency has never been formulated before.

UMGs are also seriously considered in industrialised economies. In these economies,
power supply reaches everywhere with excellent reliability. UMGs are being promulgated
there to decrease fossil fuels use and to increase RES [11] and community-led power
projects [12]. The algorithm proposed here can also be easily adapted to the circumstances
of industrialised economies by taking out the assumption of an unreliable main grid service.

1.1. Literature Review

The task of finding an optimal schedule for both the commitment status (on/off)
and the production level of energy generating units is referred to as Unit Commitment
(UC) [13,14]. The Economic Dispatch (ED) problem determines only the actual power
output of each generating unit. A UC problem not having commitment or binary decisions
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is called economic dispatch [15,16]. The literature on mini-grid UC or ED problems includes
two popular methods.

On the one hand, MG energy dispatch has been typically carried out by heuristic-based
methods (HM) using priority lists [17–19], which give precedence to RES, and then the
storage devices and finally the fuel-powered components. There are two main approaches
for the MG dispatch problem under the priority-list strategy, namely the load following
(LF) and cycle-charging (CC) dispatch. Under the LF strategy, when the batteries reach
their minimum state of charge, the fuel-powered generator is switched on, only to satisfy
the demand. Under the CC strategy, the generator operates at its maximum rated capacity
whenever it is switched on to serve both the demand and charge the storage unit, until a
prescribed SOC level. HOMER software [20] is considered one of the most powerful tools
for design and dispatch optimisation problems. HOMER can model both the LF and CC
strategy for both isolated and UMG. As reviewed in [18,21], the widespread diffusion of
LF and CC approaches in scientific articles and real mini-grid operation is based on the fact
that HMs have the advantage of easy implementation and low computational effort and
require neither forecasts nor expensive smart metering devices. However, the obtained
solution is not guaranteed to be a globally optimal solution. Another drawback is that the
HM allows us to deal with each time step independently from the others and ignores the
consequences of present decisions on the overall period of optimisation.

On the other hand, there is a growing trend among MG developers to use other ad-
vanced, predictive strategies for the operation of isolated and grid-connected
MGs [22,23]. Furthermore, several recent studies have endorsed the use of predictive
approaches for MGs [24,25]. Predictive dispatch strategies are more intricate, since they
require forecasts of key input parameters, which are fed into an optimisation algorithm
that outputs optimal commitment and dispatch sequences for power generation. Model
Predictive control (MPC) is a set of modern control strategies for the operation of systems.
Under this strategy, an optimal operation problem is repeatedly solved over a rolling
horizon in real-time with updated information. A detailed overview of the topic can be
found in [26–28], and its applications to isolated MGs in [29–31] and to grid-connected MGs
in [32–35]. The MPC operation framework consists of two layers: first, it takes advantage
of the analytical properties of deterministic optimisation models to generate a sequence of
points that converge to a global optimal solution; second, real-time dispatch is performed to
handle uncertainties in forecasts and checking for violations of the constraints. The optimal
control strategies developed in [32] account for RES uncertainty but do not take into consid-
eration the random variation of main grid’s outages. Kim et al. [35] use the MPC approach
to minimise electricity cost based on a MINLP model. Their model coordinates the power
supply between the grid and different BESS. The literature mentioned above selected MPC
since the increased complexity of MPC approach pays off in terms of cost minimisation.
Although the optimal solution is sensible to forecast errors [36], developments in smart
metering technology and machine learning algorithms are improving power and control
devices as well as forecasting methods. The selection and incorporation of a forecasting
methodology and the design of an UC optimisation model are cornerstones of the MPC.
The latter is the main focus of this paper.

In the literature, a great deal of research has been conducted to offer UC and ED
optimisation models for MGs [37–44]. Since off-grid mini-grids are vertically integrated
structures, mini-grids’ UC and ED problems have traditionally been formulated as cost-
minimising optimisation problems subject to power balance and technical constraints.
However, when using a cost-minimising scheme, integrating different techno-economic
and regulatory procedures and reliability levels cannot be achieved. Authors in [40,43]
formulated a typical cost minimisation problem to schedule energy generations for mini-
grids only from a technical viewpoint. In Reference [41], the optimal management of
mini-grids including RES, electric vehicles and storage devices is studied. Still, their work
is limited to the cost objective, and no assessment of reliability is performed. Other authors
such as [38] have solved optimal scheduling based on multi-objective optimisation in terms
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of fuel and emission cost minimisation. Few authors have researched UMG operation [5–7].
However, all these authors use the least-cost minimisation scheme and do not consider
pricing incentive, reliability level or main grid’s outages in their optimisation process.
Lastly, HOMER Predictive Dispatch [20] is an ED tool, which has 48 h foresight for demand
and RES availability. However, this tool can only be used for isolated mini-grids, so it does
not account for the complex interaction between MG and main grid.

In this paper, we propose a novel predictive dispatch strategy that defines a novel UC
optimisation model for isolated and grid-connected MGs. The novel operational strategy is
based upon a key aspect: the UMG operation follows a fictitious symmetric market pool
scheme [45], which can be adapted to market- and non-market-based regulatory schemes.
The UC’s objective is not, usually to minimise costs but to maximise social welfare, which
is defined as the sum of producer and consumer surplus [46,47]. To define the total welfare,
we integrate multiple types of loads, represented by different predetermined values of the
customer tariffs and CNSE (Cost of Non-Served Energy). The latter is required to explore
different reliability schemes and flexibility in the load and operation of RES. Moreover, we
add a certain number of slack variables to the power balance equation accounting for the
not-served energy (NSE) corresponding to the number of types of loads.

1.2. Contributions

The four main contributions of this work are:

1. To develop a new analytical model for the market-logic-based UMG operation with
its corresponding MILP formulation. In this way, through price signaling, one algo-
rithm can incorporate the optimal management of different UMG services, including
dispatch scheduling, smart curtailment in terms of reliability requirements, load shift,
grid spot-pricing to manage complex distributed systems, storage management and
export/import schemes from/to the unreliable main grid.

2. To provide an UMG management tool when the frequency and duration of the main
grid’s outages can be well predicted or programmed in advance.

3. To assess the relevance of different uncertain variables including main grid’s power
outages, main grid’s prices, demand, and solar irradiance.

4. To compare predictive strategies based on MILP with typical dispatch strategies like
load following and cycle charging from HOMER Pro.

The proposed market-logic model assumes accurate predictions of uncertain variables.
With this operation strategy, a MPC rolling horizon scheme could be applied to update
predictions periodically. However, the physical implementation depends on the technology
to allow sensors to update the latest information on ex ante forecasts and smart curtailment
of loads for demand management. Using the proposed algorithm, as presented here,
solely as a simulation tool is not a realistic solution for energy management systems. Still,
it provides valuable insights into the optimal behaviour of the system and the value of
accurate predictions for uncertain variables. Furthermore, it can be used to estimate an
upper bound for financial results and thus help to make economic decisions, to different
business models, regulatory challenges, financing gaps and sustainability, with reasonable
safety margins.

The article is organised as follows. In Section 2, the UMG architecture is described,
and general assumptions of the model are given. Section 3 exposes how the symmetric
market pool rules can be applied to the UMG operation problem. The corresponding
mathematical formulation is presented in Section 4. Simulation results of a case study in a
developing country, Nigeria, are presented and discussed in Section 5. Section 6 compares
the dispatch heuristic approaches of LF and CC with the proposed market-logic model.
Section 7 concludes.

2. Undergrid Mini-Grid Architecture and Modelling Assumptions

The UMG architecture is represented in Figure 1. It assumes a single connection point
to the main grid, some local generation, storage assets and different types of demand. We
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assume a trading scheme exists, whereby electricity can be imported from the main grid to
the mini-grid and vice versa. The MG can export or “feed-in energy” to the main grid at
a Feed-in Tariff (FiT) or can import energy from the main grid at Bulk Purchasing Tariff
(BPT). These energy exchanges are subject to variable spot prices. The spot prices, FiT and
BPT, may be either real or artificial. In the first case, real transactions may happen between
two different agents: the MG operator and the main grid company. In the second case,
they are understood as price signals used for smooth coordination of multiple distributed
resources. Real transactions could respond to a different (agreed) price or even not happen
at all if the grid and the MG belong to the same agent. It is assumed that at each hour, the
MG can either import or export from/to the main grid, but not both.

We assume that the main grid has an unreliable service. The reason for the main
grid’s failures can be twofold: (a) the main grid has a capacity shortage or (b) transmission
lines/poles fail. Under (a), the UMG can export electricity to the main grid (as a backup
system) but not import, while under (b), the UMG cannot import nor export and operates
on an isolated mode. The algorithm can handle both (a) and (b).

Figure 1. Configuration of an undergrid mini-grid.

The UMG topological design shown in Figure 2 is adopted throughout the present
work. It is a grid-connected hybrid AC-coupled micro-grid consisting of solar power
photovoltaics (PV), a diesel generator (DG) and battery energy storage system (BESS)
components. The PV array is connected via an inverter to the AC bus. The BESS can
exchange energy bi-directionally with an alternate current (AC) bus via an inverter/rectifier.
The loads, main grid and DG are directly connected to the AC bus. The efficiencies of the
PV array and BESS are accounted for.

The model allows different types of consumer demands, with varying requirements
of reliability that are represented in the market-logic model by different values for CNSE.
The CNSE values assigned to demand types may be defined according to each context. In
principle, they should exceed the actual retail tariff and include some pre-defined penalty
for the lack of reliability. Alternatively, they might just be given ad hoc values so that the
mini-grid behaves as expected. For instance, to prevent a particular customer type from
being supplied by diesel.

It is further assumed that there are separate circuits and/or smart devices at consumers’
connection points, so that (a) different types of demand may be curtailed in different
quantities, and (b) the aggregate demands of different customer types can be monitored
separately. The effect is that a lack of supply does not cause a total black-out.

It is assumed that given forecasts for generating power from the PV array, load profiles
for different customers, grid prices and main grid outages are accurate.

For simulation purposes, time steps have an hourly resolution; however, the model
can be easily adapted to a minute or few minutes resolution for real-time (rolling horizon)
management.
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Figure 2. Topology of a mini-grid under the grid.

3. The UMG Market-Logic Operation Strategy

This section describes how the general market rules can be applied to the UMG unit
commitment problem, considering the specific generation components of the mini-grid to
define bids (prices and quantities) in a fictitious market and how to use this market model
to find optimal dispatch decisions.

Traditionally, the UC and ED optimisation models were formulated for centralised
vertically integrated structures, so the conventional scheduling problem minimises the total
operating costs. However, with the gradual liberalisation of electricity markets, under a
symmetric market pool scheme, generators bid to sell their power and independent system
operators (ISOs) establish time-ahead and real-time operations. In this deregulated scheme,
the UC’s objective changed to maximise social welfare, which is defined as the sum of
producer and consumer surplus [46,47]. A symmetric market pool is based on a centralised
virtual power market in which all power suppliers submit an offer bid a two-dimensional
vector consisting of the lowest price per unit and maximum energy quantity that a supplier
can offer, into the virtual pool. Correspondingly, the customers submit their demand bids,
a pair made up of the demanded energy and the highest price that a customer is willing
to pay per energy unit [45]. A market operator (MO) receives the virtual bids and offers;
then, the MO carries out the optimisation task, seeking to maximise social welfare subject
to an overall supply-demand balance constraint and respecting physical constraints. This
process determines a market clearing price and a rate of production and consumption for
each producer and consumer. In symmetric market pools, electricity is sold at a single
price, the so-called market clearing price, which is subject to change every hour.

Although mini-grids are vertically integrated power systems, when connected to
a central, possibly unreliable, main grid and with increased penetration of RES, their
operation strategies are significantly modified. The traditional least-cost minimisation
UC cannot optimally handle (with low computational effort): intermittent RES, frequent
blackouts from the main-grid, demand-side management and supply for different types of
customers with varying levels of reliability. This is why we propose a novel strategy for
the operation of an UMG, based on the concept of the symmetric market pool [45].

In the proposed approach, a fictitious market pool for the UMG is considered. Dif-
ferent UMG agents are assumed to “submit” hourly bids defined by price and quantity
to the MG operator on a time-ahead basis. Supplier agents, such as solar PV and diesel
generator (more generation technologies such as wind turbines or biomass could be added),
participate by offering their hourly marginal generation costs and their capacity limits
(subject to uncertainty in the PV or wind case). Examples of offer and demand bids under
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an UMG fictitious market pool are shown in Figure 3. The blue lines represent the offer
bids of each mini-grid component, which comprise marginal costs (height in y-axis) and
quantity of energy offered (length in x-axis). The blue lines are arranged in an ascending
order to form an aggregate supply curve, while the red lines represent the demand bids of
different types of customers and main grid with their predetermined tariff levels and CNSE
(height in y-axis) and variable loads (length in x-axis). The demand bids are ordered by
the CNSE or tariff in descending order (those with premium supply contracts are assigned
a higher priority in receiving electricity). Following the market pool model, the demand
and offer bids form the aggregate demand and supply step curves. The intersection point
(match) determines a market clearing price and a rate of production and consumption for
each producer and consumer. However, in our fictitious UMG market model, the hourly
market clearing price (height of intersection point in y-axis) is ignored, since tariffs are set a
priori and MG energy is not necessarily sold at a single price. We focus our attention only
on the UMG’s quantity of dispatched energy and the amount of curtailed energy for certain
types of customers (lengths in x-axes). As shown in the four examples of Figure 3, the
total quantity of energy supplied and the smart curtailment are set by the highest accepted
UMG component to offer.

Price

kWh

Aggregate 
Demand

Aggregate
Supply

Match

Total Electricity Supplied

Demand Bid
Customer A

Demand Bid
Main Grid

Demand Bid Customer B

Supply Bid
RE component

Supply Bid MG
Component 1

Supply Bid MG Component 2

Price

kWh
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Match

Total Electricity Supplied

Price
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Total Electricity Supplied

Aggregate 
Demand

Curtailed load
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Price
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Demand
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Supply
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Total Electricity Supplied

Demand Bid
Customer A

Supply Bid
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Supply Bid MG
Component 1

Supply Bid MG
Component 2

Demand Bid
Main Grid

Demand Bid 
Customer B

Demand Bid 
Customer B

Demand Bid
Main Grid

Demand Bid Customer A

Supply Bid MG
Component 2

Supply Bid MG
Component 1

Demand Bid
Customer A

Demand Bid 
Customer B

Demand Bid
Main Grid

Supply Bid
RE component

Supply Bid
RE component

Supply Bid MG
Component 1

Supply Bid MG
Component 2

Curtailed loadCurtailed load

Figure 3. Different possible hourly UMG demand and offer bids.

Furthermore, we define generation shifting as postponing supply of electricity from one
time period to another. In the UMG operation problem, the prosumers—BESS and main-
grid—are special agents in the market pool, since they can control generation and load
shifting. BESS can buy (charge) or sell (discharge) energy; their actions are not modelled as
bids but as market interventions that cause displacements of the demand or supply curves.
Quantities are limited by maximum power and the state of charge (SOC). BESS prices are
defined to be a very small positive quantity strictly greater than the cost of PV. Batteries
are special since they are the only agents able to consider the future: they reduce welfare
in one hourly market to increase welfare in a future hourly market. They intervene in the
markets with absolute authority for the general good.

Figure 4 depicts an example of BESS’ demand (charge) and supply (discharge) actions
in a present and future market. Markets are matched without battery. The present market
has operative grid, no solar power and high grid prices. Two alternative future markets are
shown. Demand actions cause welfare loss (area in yellow), while supply actions increase
welfare (area in green). The total increment of welfare is positive, as expected when buying
at a low price and selling at a high price.
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Figure 4. Evaluation of a demand bid in the present and supply bid in the future market.

4. Mathematical Formulation: Undergrid Mini-Grid’s Market-Driven Unit
Commitment

Redefining the UC problem for mini-grids in a market-logic approach, as described
above, involves three modifications compared to the formulation in a vertically integrated
environment: (1) changing the objective function from cost minimisation to social welfare
maximisation; (2) the demand to be served includes multiple types of customers with
different reliability requirements and contracts; (3) adding slack variables to the power
balance equation characterising the NSE corresponding to the number of types of loads;
(4) penalizing the cost of NSE in the objective function by previously stipulated price
contracts. The mathematical formulation results in a deterministic mixed-integer linear
program. For this model, we assume that the design and the size of the components are
fixed and given exogenously. It is also required to input forecasts for: maximum solar

generation EPV
t , spot grid prices pGridex

t , p
Gridimp
t , demand profiles for different customers

dA
t , dB

t , and main grid’s outages data ξt.

4.1. Objective Function

The aim of the optimisation problem, as explained in the previous section, is to
maximise the hourly social welfare, i.e., consumer plus producer surplus such that power
is balanced at all periods of time. Therefore, the objective function is given by:

max
T

∑
t=1

qA

∫ dA
t

0
pA

t (z)dz− eNSEA
t CA

NSEt
+ qB

∫ dB
t

0
pB

t (z)dz− eNSEB
t CB

NSEt
+

∫ eGridex
t

0
pGridex

t (z)dz− c f (bEDieselwt + meDG
t )− rtSTCDG − cPVePV

t

− c
Gridimp
t e

Gridimp
t ,

(1)

where qA, qB are the number of customers—Type A and Type B; dA
t , dB

t are the load forecast-
ing of customers—Type A and Type B at time t; pA

t , pB
t are the retail tariffs for customers—

Type A and Type B—at time t; eNSEA
t , eNSEB

t are the decision variables representing the
amount of not served energy for customers—Type A and Type B at time t; and CA

NSEt
, CB

NSEt
are the predetermined costs for not serving energy to customers—Type A and Type B.
pGridex

t is the FiT for exporting energy to the grid, and eGridex
t is the electricity exported to

the Main Grid at time t. The fuel cost function of the diesel generator can be expressed by a
linear Equation [48,49], where c f is the marginal cost of diesel ($/kWh), b is the intercept
coefficient of the fuel curve in (L/h), m is the slope coefficient of the fuel curve (L/h/kW),
EDiesel is the rated capacity of the DG, eDG

t is the power output of the DG at time t, wt is
a binary variable that represents the on and off status of the DG, rt is a binary variable
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of the operating state of the DG, and STCDG is the startup cost of the DG. Lastly, cPV is
the marginal cost of energy from PV, ePV

t is the electricity output of PV at time interval

t; c
Gridimp
t is the BPT for importing energy from the main grid at time t, and e

Gridimp
t is the

electricity imported from the main grid at time interval t. The objective function is depicted
in Figure 5. On the left the demand bids are defined by the customer tariffs with no CNSE
(height in the y-axis) and loads (in the x-axis).
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Figure 5. Total welfare in a UC objective function without predetermined CNSEt (left) and with
predefined CA

NSEt
, CB

NSEt
> 0 (right).

The total welfare (area in yellow) is the area under the demand curve minus the area
under the supply curve. On the right, the demand bids are defined by tariff levels and
CNSE, as formulated in (1). It is shown how reducing the supplied energy to customer A
reduces the total welfare area at time t quite significantly since CA

NSEt
is high. Curtailing a

fraction of load B, which could be served with solar energy, and instead charging the BESS,
also reduces the welfare at time t, but it might be optimal to increase welfare at another
future time t.

4.2. Constraints

1. First Kirchhoff Law or Power Balance:

qAdA
t + qBdB

t + e
Gridexport
t +

e
BESSCharge
t

ηChargeηrect
= ηPV

inv ePV
t + ηDischηB,Ie

BESSDisch
t

+ eDG
t + e

Gridimp
t

eNSEA
t + eNSEB

t .

(2)

where qA, qB are the number of customers—Type A and Type B; dA
t , dB

t are the load fore-
castings of customers—Type A and Type B at time t; eGridex

t is the electricity exported to

the Main Grid at time t; e
BESSCharge
t is the amount of battery charge at time interval t; ηCharge

and ηrect are the efficiency parameter when charging the battery and the efficiency of the
rectifier, respectively; ηPV

inv is the efficiency of PV Inverter and ePV
t is the electricity output

of PV at time t; eDG
t is the power output of the DG at time t; eBESSDisch

t represents battery
discharge at time t; ηDisch and ηB,I are the efficiency parameter when discharging the BESS

and the average efficiency of the BESS-Inverter; e
Gridimp
t is the electricity imported from the

main grid at time t; and eNSEA
t , eNSEB

t are two slack variables representing the amount of
not served energy for customer-Type A and customers-Type B, respectively.

2. Definition of cost of not-served energy per customer in each period t:

CA
NSEt

= PA
NSEt

+ pA
t and CB

NSEt
= PB

NSEt
+ pB

t , (3)
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where PA
NSEt

, PB
NSEt

are the MG penalties for not serving Type-A and Type-B customers,
respectively. These penalties are defined by the cost of not serving electricity per customer
type CA

NSEt
, CB

NSEt
minus the given tariff per customer type pA

t , pB
t .

3. PV generation limits in each period t:

ePV
t ≤ EPV

t and ηPV
inv ePV

t ≤ EPV
inv . (4)

The daily PV time-series generation, denoted by ePV
t , is constrained by the forecasting of

maximum PV power production, denoted by EPV
t . Furthermore, the PV inverter converts

the variable direct current (DC) output of a PV into a utility frequency alternating current
(AC), which is fed into the AC Bus. The efficiency of the PV inverter, denoted by ηPV

inv ,
indicates how much DC power is converted to AC power.

4. Dynamics of the battery:

SOCt = SOCt−1(1− σ) + e
BESSCharge
t − eBESSDisch

t ,

SOCmin ≤ SOCt ≤ SOCmax.

(5)

The BESS performance is represented, like in [50], in terms of the instantaneous state of
charge SOCt, which is a function of the SOC in the previous period of time SOCt−1, the

self-discharge rate σ, and the amount of BESS charge e
BESSCharge
t at time t minus the amount

of BESS discharge eBESSDisch
t at time t. Moreover, the state of charge has a lower limit given

by the minimum state of scharge SOCmin and an upper limit given by the maximum state
of charge SOCmax.

5. Storage battery maximal generation in each period:

eBESSDisch
t ≤ Ldischut. (6)

The amount of BESS’ discharge eBESSDisch
t has as upper bound the maximal BESS

discharge limit Ldisch, multiplied by the binary variable ut representing the discharging
state of the BESS.

6. Storage battery maximal consumption in each period:

e
BESSCharge
t ≤ Lchargevt. (7)

The amount of BESS’ charge e
BESSCharge
t has as upper bound the minimal BESS charge

limit Lcharge, multiplied by the binary variable vt representing the charging state of the
BESS.

7. The battery cannot charge and discharge at the same time t:

ut + vt ≤ 1, (8)

where the binary variables ut, vt represent the discharging and charging state of the BESS,
respectively.

8. Diesel generation upper and lower limit lDiesel in each period t:

eDG
t ≤ EDieselwt. (9)

eDG
t ≥ lDieselwt.

9. By definition, rt and ζt are closely related to wt. The relation between these variables
is given by:

wt − wt−1 = rt − ζt. (10)
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Here, rt is the binary variable representing when the DG starts to run at time t, while ζt
is the binary variable representing when the DG is stopped at time t. As wt is a binary
variable representing the on and off state of the DG, if the on/off status changes between
time interval t and t− 1, then either rt = 1 or ζt = 1. Else everything is equal to zero.

10. As the diesel generator is a thermal energy source, we provide a more descriptive
and general model as in [51]. When the diesel generator starts to run, it has a minimum
duration period to stop generating power:

rt + ζt + ζt+1 + · · ·+ ζmin{t+MRT−1,T} ≤ 1, (11)

where MRT is the minimum running time of the DG.
11. On the other hand, once the diesel generator is stopped, it can only run after a

resting time.
ζt + rt + rt+1 + · · ·+ rmin{t+RT−1,T} ≤ 1, (12)

where RT is the minimum resting time of the DG.

12. The quantity of electricity exported to the grid, denoted by e
Gridexport
t , is less than or

equal to the maximal transmission capacity, denoted by Gmax.

e
Gridexport
t ≤ Gmaxst, (13)

since one can only import or export at each time period t, the upper limit is multiplied by
the binary variable st, representing the export to the main grid state at time t.

13. The quantity of electricity imported from the grid, denoted by e
Gridimport
t , is lower

than the maximal transmission capacity Gmax.

e
Gridimport
t ≤ (ξt − 1)Gmax(1− st), (14)

where ξt is a binary variable representing the outage or availability of the main grid. One
cannot import from the grid at the periods when it fails (ξt = 1).

14. The charging and discharging limits given by the Nominal Power of the BESS
Inverter-Rectifier, denoted by EIR:

e
BESScharge
t
ηcharge

≤ EIR and ηinvηB,Ie
BESSDisch
t ≤ EIR. (15)

The MPC technique applied in the market-logic UMG scheduling is presented in
Figure 6. The scheduling repeats every hour. At the execution of the hour t, the operator
receives measurements from BESS and historical data of key input uncertain variables. For
a chosen time horizon, i.e., next 48 h, forecasts of key input variables are figured out. Then,
the forecasts are formulated into the UC optimisation model and updates the optimisation
model with new feedback. Next, the optimal commitment and dispatch is computed for all
MG components under the given time horizon. Then, the computed outputs associated
with the current time-steps on the physical MG operation are implmented. Finally, one
moves one time horizon ahead for the next period, updates forecasts based on newly
available measurements and repeats the real-time optimisation procedure. The repeated
optimisation procedure provides closed-loop feedback and enables the MPC to counteract
key uncertainties present in the MG operation.
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Receive measurements of: 
𝑆𝑂𝐶𝑡−1, outputs, historical loads,max PV generation, grid spot prices and grid outages.

Load Forecast
Max PV generation 

Forecast
Grid Spot Prices 

Forecast
Grid Outages 

Forecast

Estimate over a control horizon hourly: 

Set 𝑆𝑂𝐶𝑡−1= 𝑆𝑂𝐶0 𝑎𝑛𝑑 𝑢𝑝𝑑𝑎𝑡𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

Time: t [h]

Solve Market- logic 
Optimisation

Implement current set of schedules for real-time dispatch

Time: t+1 [h]

Figure 6. Model-predictive control for UMG market-based optimal scheduling.

5. Case Study

This section presents computational results illustrating the proposed operation strat-
egy. Accordingly, six scenarios are analysed including three grid modes: 100% reliable grid,
unreliable grid and isolated MG; and two solar resource availability modes: dry and rainy
season. For the simulations, a weekly horizon was considered with hourly time-steps. The
MILP model has been implemented on the GAMS platform [52] and solved with CPLEX
on an Intel(R) Core(TM) i5-8265U CPU, and each simulation was completed in 4.2 s.

5.1. Description of Inputs

To verify the advantages of the UC method, we analyse a case study in Nigeria, but
the model can be adapted to any undergrid mini-grid. A hybrid PV-battery-diesel UMG
will be installed in 2022 at Kare, Kebbi State of Nigeria. Herein, we contextualize the input
parameters. It is assumed for simplicity that there are two types of customers: customers
A, with a high reliability contract and therefore higher retail tariff, and customers B, with a
lower tariff-level, which can be curtailed (pA

t = 0.5 $/kWh, pB
t = 0.2 $/kWh) and prevented

from being supplied by diesel. In Nigeria, the Regulation for Mini-grids released in 2017 by
the Nigerian Energy Regulation Commission (NERC), stipulates that grid-connected MG
operators can set a cost-reflective tariff for different types of customers, but it is fixed on a
yearly basis. This is why we assume time-independent retail prices for two differentiated
customers. Table A1 in Appendix A summarises further parameter values used in the case
study.

Regarding time series, historical solar irradiation data for the provided GPS coordi-
nates was computed from NASA database [53] and used for the given PV configuration
(see Table A1) to model the maximum PV output at each hour t. For the unreliable main
grid scenario, a daily average interruption frequency of 1.6 Int/day with an average inter-
ruption duration of 4.2 h is assumed. Based on the given input, pseudo-random outages
were generated, and unscheduled grid outages were simulated and are shown on the re-
spective scenario results. Furthermore, since there is still no regulation regarding the costs
and pricing structure for importing and exporting from/to the main grid, for modeling
purposes, we assumed changing profiles as shown in Figure A2 in Appendix A. Lastly, the
cumulative load profiles for customer group A and customer group B assume an average
daily electricity consumption of 146 kWh for customer A and 82 kWh for customer B.
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5.2. Results and Discussion

The six simulation results of the case study under our market-logic approach are
shown in the following figures. Figures 7 and 8 show the dry-season results for both a 100%
reliable main grid and an unreliable main grid. Figures 9 and 10 display the rainy-season
results for the same two main grid scenarios. Lastly, Figures 11 and 12 show the isolated
mini-grid cases, comparing dry and rainy seasons.

To ease visualisation, we portrayed only the first 48 h of the one-week dispatch. The
figures depict in the positive region the cumulative load of customers A + B and power
supply (generation, battery discharge and grid import). Battery charge and export of
energy to the grid (special types of demand) are represented in the negative region in
order to identify clearly what use is made of the generation or import surplus. Figures also
show the evolution of battery SOC over time (orange segments, scale at the right side), the
availability of the grid (blue dots, scale at the right side), and the changes in the grid energy
prices (up or down arrows). The reliability level, energy not served, costs and welfare for
all scenarios of our case study are listed in Tables 1 and 2.

Figure 7 shows how the battery is mainly used to trade energy with the main grid: it
is charged in the early hours of the morning, at low price, and discharged in the afternoon-
evening hours (at high price). The solar surplus is sold to the grid at high price. Fur-
thermore, this scenario reveals that the market-logic approach integrates price signals for
generation shifts. At low BPT levels, the main grid energy is used to charge the battery (3–6
h and 27–30 h), and the MG sells part of that energy to the main grid in the next period of
higher FIT-level (31 h).

Figure 8 shows behavioural changes due to failures. Here, one can appreciate that
the market-logic dispatch follows grid price signals to decide on smart curtailment and
load shift. In hours when there is sun or the main grid is available at low BPT, all types of
customers are served. Whereas in hours when there is sun, the main grid is available and
the FiT-level is relatively high, energy is sold to the main grid even if the SOC is still below
100% (see 33–41 h).

Moreover, the long failure at the end of the first day causes the use of diesel, and some
curtailments for Type-B customers. This is because the battery is not big enough to cover
that demand, and Type-B customers are never supplied with diesel due to the selected
input cost values. In the second day, the battery management is perfectly adapted to future
failures and less solar production. Of course, this behaviour is only feasible if predictions
for uncertain time series are accurate. Note the possibility of programmed outages in areas
with generation capacity shortages; this shows that the reduction of uncertainty may have
a dramatic effect in reliability and costs.
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Figure 7. UMG optimal dispatch for dry season and full grid.
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Figure 8. UMG optimal dispatch for dry season and unreliable grid.

Figures 9 and 10 portray the same cases as in Figures 7 and 8, but with less solar
production (rainy season). Uncertainty of the main grid service is critical. In the rainy
season, a full grid the total demand is served, while in the unreliable rainy season grid, at
night-time, when the grid is not available, load B is not served. Battery capacity is only
used to serve load A. When the grid is unreliable, the optimal dispatch saves the battery
discharge for the times when the grid is available and serves a total load with sun and
grid import (Figure 10 8: 18 h). On the contrary, in rainy season, full grid the battery is
discharged to serve customer B. Another important aspect is that the battery is more often
maintained at full charge under an unreliable grid scenario and rapidly discharged after
full charge in a 100% reliable grid. Depending on the battery type (lead acid or Li-Ion), this
could have positive or negative influence on the battery lifetime.
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Figure 9. UMG optimal dispatch for rainy season and full grid.
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Rainy Season Weak Grid
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Figure 10. UMG optimal dispatch for rainy season and unreliable grid.

Figures 8 and 10 show that changes in solar availability have no effect in the overall
management of the UMG. The main difference is in the trading with the grid: the lack of
solar production makes the system import more energy from the grid and export less.

Figures 11 and 12 show the simulation cases for an isolated mini-grid. The battery is
used, when possible, to store solar surplus and save diesel usage at night. Note that even
in hours of solar surplus, Type-B customers can be curtailed, charging the battery instead
of being supplied. This is because of the need for battery energy at night, both to save
diesel and to supply Type-A customers in full.

Dry Season Isolated Grid
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Figure 11. Optimal dispatch for dry season off-grid mini-grid.
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Figure 12. Optimal dispatch for rainy season off-grid mini-grid.

Figures 9 and 12 portray how, under the market logic, customers B are curtailed and
energy is rather stored in the BESS for later supply of load A. Load B is only served on
a reliable basis in the scenario with 100% grid availability, since the assumed retail tariff
for customers B does not cover operational costs of the diesel generator. In Table 1, the
reliability of load B stands out from off-grid dry season and off-grid rainy season. Although
these are the optimal solutions given the price signals, it might be politically required to
add a minimum reliability constraint for each customer type. For illustrative purposes,
Figure A3 in the Appendix A shows the optimal dispatch under dry season, where hourly
supply for load B is additionally constrained by a 65% reliability level.

All these results also provide insights into the optimal sizing problem and the value
of forecasting for different sources of uncertainty. It can be seen that the dispatch of the
rainy season full grid and dry season full grid are very similar. The slight difference is that
in rainy season more energy is imported from the grid, so the operation costs are slightly
higher. Thus, interestingly, solar energy is not a critical uncertainty for an UMG; moreover,
it is rather easy to forecast it in the short term. In contrast, uncertainty of the main grid’s
outages is very relevant, and they are difficult to predict in general (see Table 2 comparing
the results of rainy season with different main grid availability levels).

Table 1. Result Summary Table for Scenarios in the Dry Season.

Dry Season (48 h)

Scenarios Full Grid Unreliable Grid Off-Grid

Total Welfare ($) 182 179 150
Operat. Costs ($) −25 −24 −18

Total Served Demand (kWh) 679 664 459
MG Generation (kWh) 464 482 488

Grid Import (kWh) 244 213 0
Total shortage (kWh) 0 19 141
Overall reliability (%) 100 96 69

Reliability of Load B (%) 100 89 15
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Table 2. Result Summary Table for Scenarios in the Rainy Season.

Rainy Season (48 h)

Scenarios Full Grid Unreliable Grid Off-Grid

Total Welfare ($) 173 171 146
Operat. Costs ($) −37 −37 −54

Total Served Demand (kWh) 610 591 371
MG Generation (kWh) 317 328 385

Grid Import (kWh) 321 292 0
Total shortage (kWh) 0 19 165
Overall reliability (%) 100 96 64

Reliability of Load B (%) 100 89 0

6. Comparison

In this section, typical heuristic system operation schemes such as LF and CC used by
HOMER Pro for the UMG system dispatch optimisation are compared with the proposed
predictive deterministic strategy of the market logic. We also compared the HOMER Pro
Predictive controller (PS) algorithm to our proposed market-logic predictive dispatch to
allow for better direct comparison. For the simulations presented here, a two-day horizon
was considered.

6.1. Description of Inputs

The input data for the UMG system design and parameters have been fixed in HOMER
Pro according to a previous section (see Table A1 in the Appendix A). Since HOMER
minimises costs it does not take into account tariffs nor CNSE input data. We have
extracted the resulting dispatch decisions from the result export file generated by HOMER
Pro. For the sake of comparison, we have input different time series as in the previous
section. We assume here 48 h foresight for all time series. Load profiles A and B, maximum
PV Output, grid availability and spot grid prices can be found in Figures A4–A6 in the
Appendix A.

6.2. Discussion

We present four comparisons between the market-logic dispatch and HOMER Pro’s
dispatch models. Figures 13 and 14 show the UC results during the dry season with a 100%
reliable main grid for both the the HOMER Pro LF strategy and the market-logic dispatch.
Figures 15 and 16 show the UC results during the rainy season with an unreliable main grid
for both the HOMER Pro LF strategy and the market logic dispatch. Figures 17 and 18 show
the UC results during the dry season with an unreliable main grid for both the market logic
dispatch and the HOMER Pro CC strategy. For the latter, we have doubled the load A to
portray the use of diesel genset under the CC strategy. Lastly, Figures 19–21 show the UC
results for an isolated MG during dry season for both predictive approaches: the market-logic
model and HOMER’s PS.
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Figure 13. HOMER Pro’s LF strategy for dry season full grid.

0%

25%

50%

75%

100%

-30

-20

-10

0

10

20

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

SO
C

/G
ri

d
 A

va
ila

b
ili

ty

Lo
ad

/S
u

p
p

ly
 [

kW
]

Time [h]

Dry Season Full Grid – Market Dispatch 

PV_output_load_A Bat_discharge Grid_imp Diesel_output_Load A
Shortage PV_output_other Bat_charge Grid_Export
Diesel_output_Other Load A Load A+B SOC
Grid Availability

Main Grid price level

raise drop

Figure 14. Market-based optimal dispatch for dry season full grid.

Figure 13 shows that the single-time-step-based heuristic method of the Homer LF
strategy leads to a sub-optimal battery usage compared to the market dispatch strategy
in Figure 14. The SOC level under the HOMER LF approach is mainly kept low. During
hours 8–15, the battery is charged with excess solar energy and sold in the next time step
iteratively. This strategy leads to an empty battery at night time (17 h), and the UMG is
obliged to purchase energy from the grid, although hours 17–23 have a high price zone.
Instead, the market-logic model uses the varying grid import and export prices of the fully
available grid. It charges the battery at low tariffs to supply loads A and B and generates
additional welfare by trading with the grid. The assumed tariff and cost structure make
it disadvantageous to supply load B, and solar excess is rather sold directly to the main
grid at periods high sale prices. Depending on real regulatory constraints and market
conditions, it is likely that these assumptions might not apply, and extra constraints would
be applied accordingly. From Table 3. we see that the market-logic dispatch has lower
OPEX and higher total welfare.
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Table 3. Comparison table for simulation results under dry season with a reliable main grid.

Dry Season–Full Grid (48 h)

Simulations Homer Pro LF Market Dispatch

Total Welfare ($) 136 143
Operat. Costs ($) −43 −35

Total Served Demand (kWh) 531 631
MG Generation (kWh) 275 275

Grid Import (kWh) 228 248
Total shortage (kWh) 0 13
Overall reliability (%) 100 97

Reliability of Load B (%) 100 91
RE fraction on MG demand (%) 67.1 67.2

Figure 15 shows that the heuristic LF dispatch strategy does not make proper use
of the battery, since the SOC level does not reach its maximum. In consequence, it has a
capacity shortage of hour 45. Furthermore, the LF strategy leads to a sub-optimal economic
decision by exporting to the main grid renewable energy from the battery in one time-step
(hour 15) with favourable prices but is obliged to purchase high tariff energy from the grid
in the future (hours 18–22).
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Figure 15. HOMER Pro’s LF strategy for rainy season Unreliable Grid.
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Figure 16. Market–based optimal dispatch for rainy season unreliable grid.
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Figure 16 shows a more accurate use of the battery when trading with the main grid.
It charges the battery until its maximum SOC level when the grid spot prices are low and
imports to the main grid by discharging to the minimum SOC level when prices are high.
From the graphs and Table 4 , we see that the LF strategy leads to additional diesel genset
usage (above 50 kWh), which is more than what the market-logic dispatch curtails to load
B (22 kWh). Furthermore, the operating costs are lower in the market-logic.

Table 4. Comparison table for simulation results under rainy season with an unreliable main grid.

Rainy Season–Unreliable Grid (48 h)

Simulations Homer Pro LF Market Dispatch

Total Welfare ($) 119 124
Operat. Costs ($) −47 −38

Total Served Demand (kWh) 481 577
MG Generation (kWh) 249 197

Grid Import (kWh) 196 248
Total shortage (kWh) 1 22
Overall reliability (%) 99.7 94.6

Reliability of Load B (%) 99.3 85.7
RE fraction on MG demand (%) 47.6 50.9

Figure 17 shows that the CC strategy does not involve trading with the grid to make
use of the profit margin resulting from the BPT and FiT variation. However, under the
market dispatch strategy shown in Figure 18, trading with the main grid is done to increase
the welfare (i.e., time-steps 6 and 7). Due to the low-tariff incentives for serving load B,
under the market approach, load B is regularly curtailed and only served with low tariff
grid energy and direct solar energy. In contrast, the CC time-step-based approach uses the
energy from the grid for night loads, thereby allowing for an almost fully charged battery
in the morning, which does not allow for storing the excess solar energy. This dispatch
harms the renewable fraction and leads to higher operational costs (see Table 5 for more
details).
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Figure 17. HOMER Pro’s CC strategy for dry season unreliable grid.
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Figure 18. Market-based optimal dispatch for dry season unreliable grid.

Table 5. Comparison Table for Simulation Results under Rainy Season with an unreliable main gird.

Dry Season—Unreliable Grid-increased Load (48 h)

Simulations Homer Pro CC Market Dispatch

Total Welfare ($) 201 224
Operat. Costs ($) −85 −55

Total Served Demand (kWh) 748 732
MG Generation (kWh) 291 275

Grid Import (kWh) 377 312
Total shortage (kWh) 0 75
Overall reliability (%) 100 89

Reliability of Load B (%) 100 51
RE fraction on MG demand (%) 37.6 46.6

Figure 19 and Table 6 show that the smart curtailment allows for a significant welfare
increase compared to the predictive dispatch by HOMER Pro. This is because no high-cost
energy source (diesel) is used to cover low-tariff load B. Under the market logic, load B
is served during day-time under the condition that the battery can still be fully charged
before dusk to serve Load A during night-time.
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Figure 19. Market–based optimal dispatch for dry season off-grid mini-grid.
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In order to allow for a direct more equal comparison of the dispatch strategies by the
HOMER Pro PS and the market-logic approach, we performed an additional simulation,
shown in Figure 21, of the market-logic approach assuming a regulatory, not market-
driven, constraint of 100% reliability for Loads A and B. The comparison still shows the
cost advantage of our proposed model against the predictive dispatch approach provided
by HOMER PS in Figure 20 (see also Table 6). Although under the market-logic strategy,
the DG runs in a less optimal operation mode than in HOMER PS, the market dispatch
avoids that the DG charges the battery. The market dispatch makes the more adequate
choice to only charge the battery with solar as the DG is always available as back-up. In
fact, the comparison with HOMER PS could be done for the isolated scenario as HOMER’s
predictive strategy does not allow to model a grid-connected MG. The latter shows a
further advantage of our proposed model, which allows for the consideration of isolated
MG, UMG and a reliable and unreliable grid connection.
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Figure 20. HOMER Pro’s predictive strategy for dry season off-grid mini-grid.
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Table 6. Comparison table for simulation results under the dry season isolated MG.

Dry Season–Isolated MG (48 h)

Simulations Homer PS Market Dispatch MD 100%
Reliability

Total Welfare ($) 89 112 96
Operat. Costs ($) −68 −21 −62

Total Served Demand (kWh) 578 402 492
MG Generation (kWh) 454 310 450

Grid Import (kWh) 0 0 0
Total shortage (kWh) 0 131 0
Overall reliability (%) 100 68 100

Reliability of Load B (%) 100 15 100
RE fraction on MG demand (%) 67.1 98.8 67.2

7. Conclusions and Further Developments

This study has presented, implemented and tested a novel dispatch strategy for UMGs,
which can be used in the development of smart energy management systems and as an
essential constituent in the design of UMGs. The strategy is based on combining straight
market pricing rules in the hourly short-term dimension with maximisation of the hourly
social welfare over the multi-day relevant decision-making period. The mathematical for-
mulation results in a deterministic MILP. It is assumed that key input uncertain parameters
are well predicted in advance. It is therefore a predictive algorithm, whose conclusions can
provide useful insights but cannot be used blindly. This is serious stepping stone towards
an ultimate algorithm for optimal operation and sizing of UMGs.

With respect to the market-logic dispatch, the main conclusions are:

(i) It successfully integrates the multiple elements of the undergrid mini-grid problem:
diverse technologies for local generation and storage, trading energy with the grid,
multiple types of demand in terms of reliability and priority, and load/generation
shifts based on grid spot prices.

(ii) Connecting an isolated mini-grid to the main grid impacts the optimal operation and
design of the battery and diesel generation units.

(iii) It performs better in terms of optimal cost reduction with respect to heuristic method-
ologies.

(iv) It provides a policy tool for the design of retail tariffs schemes in developing countries
and a management tool for countries where the main grid outages can be almost
surely anticipated.

With respect to the analysis of the results, the main conclusions are:

1. In the deterministic model, the behaviour depends critically on the accurate forecast
of uncertain variables. It provides useful insights about the importance and value of
predictions and about possible strategies to handle uncertainties.

2. Uncertainty is critical in general, but it depends on the sources of uncertainty. Failures
of the main grid have high influence on the dispatch solution and are not easily
predictable. Grid prices also have high influence on the optimal dispatch solution.
Solar irradiation and demand have less influence and are more predictable. If the
frequency and duration of main grid outages could be well predicted or programmed,
and the grid prices agreed in advanced, the economic results of managing an UMG
could improve significantly.

3. The optimal sizing of components will be highly dependent on the expected scenarios
and the realistic dispatch strategy to be implemented (in addition to physical and
financial constraints).

4. Defining different values of CNSE for the several types of demand is a simple and
flexible method to implement smart curtailment policies. However, rigid CNSE values
could lead to extreme solutions for reliability. To meet specific reliability targets, CNSE
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values could be considered independent variables at the design stage, together with
the sizing of components. In real-time controllers, CNSE values could be adjusted
dynamically, according to the accumulated reliability of each demand type during
the considered period.

Future work must be focused on using this deterministic algorithm to construct
stochastic programs and in the optimal sizing of undergrid mini-grid’s components.
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Nomenclature

T Set of periods for study of t.
cPV Marginal cost of energy from PV [$/kWh]
cBESS Marginal storage energy cost [$/kWh]
c f Marginal cost of diesel [$/L]
qA Number of customers-Type A
qB Number of customers-Type B
EDiesel Rated capacity of the DG [kW]
lDiesel minimum allowable load on the DG [kW]
STCDG DG start-up cost [$]
MRT Minimum running time for DG [h]
RT Minimum resting time for DG [h]
b Intercept coefficient of the fuel curve [L/h]
m Slope coefficient of the fuel curve [L/h/kW]
ηDG Average efficiency parameter of DG [%]
SOCmax Maximum state of charge for BESS [kW]
SOCmin Minimum state of charge for BESS [kW]
SOC0 Initial state of charge for BESS [kWh]
σ Self-discharge rate of the BESS [%]
Ldisch Maximal BESS discharge limit [kW]
Lcharge Minimal BESS charge limit [kW]
ηcharge Efficiency parameter when charging BESS [%]
ηdisch Efficiency parameter when discharging BESS [%]
EPV

inv Nominal Power of PV Inverter [kW]
ηPV

inv Average efficiency of PV Inverter [%]
EIR Nominal Power of BESS Inverter-Rectifier [kW]
ηB,I Average efficiency of BESS- Inverter [%]
ηrect Average efficiency of rectifier [%]
GMAX Maximum power flow of the Grid [kWh]
GMIN Minimum power flow of the Grid [kWh]

http://power.larc.nasa.gov


Energies 2021, 14, 7881 25 of 29

dA
t Load forecasting of customers of type A at t [kW]

dB
t Load forecasting of customers of type B at t [kW]

EPV
t Maximum generation forecasting PV panel at t [kW]

pGridex
t FiT for exporting energy to the grid at t [$/kWh]

c
Gridimp
t BPT for importing energy from the grid at t [$/kWh]

pA
t Tariff for customers of type A [$/kWh]

pB
t Tariff for customers of type B [$/kWh]

CA
NSEt

Cost of NSE for A type customers
CB

NSEt
Cost of NSE for B type customers

PA
NSEt

Penalty for NSE for A type customers
PB

NSEt
Penalty for NSE for B type customers

ξt ∈ {1, 2}, Outage or Availability of the Grid at t
eBESSChar

t Battery Charge at time t [kW]
eBESSDisch

t Battery Discharge at time t [kW]

e
Gridimp
t Electricity imported from the Main Grid at time t [kW]

eGridex
t Electricity exported to the Main Grid at time t [kW]

ePV
t Electricity output of PV at time t [kW]

eDG
t Electricity output of DG at time t [kW]

SOCt State of Charge of BESS at time t [kWh]
eNSEA

t Not served energy for customer A at time t [kW]
eNSEB

t Not served energy for customer B at time t [kW]
ut Discharge of BESS at time t
vt Charge of BESS at time t
st Export to the Grid at time t
wt DG is on at time t
rt DG starts to run at time t
ζt DG is stopped at time t

Appendix A

Table A1. Parameter values for the case study.

Parameter Value Parameter Value

cPV 0.000002 $/kWh SOCmax 100 kW.
cBESS 0.000004 $/kWh SOCmin 30 kW.
c f 1 $/L σ 4% per month.
pA

t 0.5 $/kWh Ldischarge 30 kW.
pB

t 0.2 $/kWh Lcharge 30 kW.
PB

NSEt
0 $/kWh ηcharge 95% .

PA
NSEt

0 $/kWh ηdisch 95%.
EDiesel 15 kW SOC0 50 kWh.
lDiesel 3 kW. EPV

inv 30 kW.
STCDG 0.15 $. ηPV

inv 100%.
MRT 1 h. EIR 33 kW.
RT 1 h. ηBESS,Inv 94%.
b 0.01 L/h ηrect 94%.
m 0.307 L/h/kW GMAX 30 kWh.
ηDG 25%. GMIN 0 kWh.
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Figure A1. Maximum PV output for a rainy and a dry season week for Section 5.
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Figure A2. Data Input for FiT and BPT for Section 5.
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Figure A4. Maximum PV output for a rainy and a dry season week for Section 6.
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