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Abstract

In liberalized electricity markets, aggregated stepwise supply and demand curves are at the core of many relevant
processes. Efficient and meaningful representations of the offer curves is an essential procedure for agents participating
in those markets. However, there is not a formal framework that allows operating with those offer curves using basic
arithmetic operations. In this paper we first formalize the concept of stepwise offer curve by explicitly defining the
standard True Offer Curve (TOC). To overcome the inherit difficulties of this non-continuous TOC, we propose the
Encoded Offer Curve (EOC), a continuous piecewise version that approximates the steps of the TOC with high accuracy.
We present fast and simple specialized algorithms to obtain both TOC and EOC models, as well as a formal framework
to deal with elementary mathematical operations involving TOCs and EOCs. The proposed framework has been tested
in the Italian electricity market, computing the residual demand curves of the producers in a particular Market Zone;
and in the Iberian electricity market, quantifying the differences in the bidding behavior of market agents in different
stages of the COVID-19 pandemic.
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1. INTRODUCTION

In the last decades many different countries have ex-
perienced a deregulation process which has given rise to
liberalized markets that allow companies to trade energy
in organized auctions [1]. For example, day-ahead elec-
tricity markets are generally based on sealed-bid auctions
where agents submit their selling and buying offers to the
Market Operator (MO) who then determines the market-
clearing price and the set of accepted bids for each time
period of time [2, 3, 4].

Consider, for the sake of simplicity and without loss of
generality, a simple-bid market. In this market each offer
is defined by a price p and a quantity q, which refers to the
amount of energy the agent is willing to buy or sell at that
price p. By sorting the selling (buying) offers in increas-
ing (decreasing) prices, the aggregated supply (demand)
function for the agent is built. Once all the agents have
submitted their offers, the sum of all the supply curves
results in the system supply curve, whereas the sum of all
the demand curves results in the system demand curve.
Market-clearing price is computed as the intersection of
the system aggregated supply and demand curves [5]. In
real-world electricity markets these aggregated curves are
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generally stepwise functions. For simplicity, in this paper
we use the term offer curve (OC) to refer both stepwise
aggregated supply and demand functions.

These OCs are at the core of many relevant processes in
electricity markets. For example, the MO uses these sup-
ply and demand functions in order to clear the market [3].
For market agents not only setting their bidding strategies
in terms of OCs is critical (see e.g. [2, 6, 7, 8, 9, 10, 11] or
[12, 13] for agent-based market equilibrium models), but
also analyzing, when possible, the OCs of their competitors
is essential to understand the strategic bidding behavior
of competitors (see e.g. [14]). For regulators, estimating
the slope of the residual demand curves, computed from
OCs, also provide useful information regarding the poten-
tial market power of the different producers, see e.g. [15].
Additionally, being able to model supply curves is of ut-
most importance when analyzing transmission-constrained
electricity markets [16].

While there is a considerable amount of literature on
electricity markets where dealing with OC’s is basic, to
the best of our knowledge, there is not a formal frame-
work for operating with OCs using basic arithmetic oper-
ations. An illustrative example of these needs is the com-
putation of the residual demand curve (RDC) of a given
agent, (see Section V for details). RDCs have been ex-
tensively used in the strategic bidding literature. For ex-
ample, [17] proposes a new forecasting approach for the
RDC based on functional nonparametric models that re-
quire the computation of the historical RDCs. Reference
[4] proposes a new method to compute RDCs that cap-
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tures the effect of complex offering conditions and trans-
mission constraints, making extensive use of elementary
mathematics with OCs. Both [17] and [4] compute RDCs
using a common strategy in practice, based on sampling
and lookup tables to manage the operation, but without
using any formal framework.

There is some previous work where OCs have been
explicitly modeled with different purposes. In [18, 19]
the OCs are modeled as continuous piecewise linear func-
tions, obtained using a general-purpose machine learning
approach, the so-called Linear Hinges Model (LHM). This
model provides a good compromise between the number
of pairs defining the piecewise linear function and the ob-
tained accuracy. In [20] this approach is used to create
the deterministic component of a probabilistic model of
the residual demand of a agent in order to optimize its
stepwise offer curve by genetic algorithms.

More recently, in [21] authors propose the X-model for
electricity price forecasting based on supply and demand
curves. This approach models the OCs using a piecewise
linear approximation which allows not only estimating the
market clearing price by the intersection of both supply
and demand curves, but also calculating the mean supply
and demand curves of a time period. Note that although
the structure of this piecewise function is equivalent to the
LHM of [18], the nature of the algorithm used to obtain the
model is very different. The algorithm of [21] is straight-
forward. In the case of a supply OC, after sorting the
offers in ascending order according to the price, for each
unique price there is a pair in the set of points defining the
piecewise function where, for each unique price, there is a
quantity calculated as the sum of all the offer quantities
up to this price.

The main contribution of this paper is the definition
of a practical framework to deal with OCs, with the cor-
responding theoretical basis. This goal is achieved by
first formalizing the concept of stepwise offer curves, ex-
plicitly defining the standard True Offer Curve (TOC).
Then, to overcome the inherit difficulties of operating with
these non-continuous TOCs, we propose the Encoded Of-
fer Curve (EOC), a very accurate continuous piecewise lin-
ear approximation of the original TOC that can be used
to combine demand and supply OCs, allowing computing
e.g. RDCs. To avoid misunderstandings, fast and sim-
ple specialized algorithms to obtain both TOC and EOC
models from raw offers are proposed. Furthermore, a for-
mal framework to deal with elementary mathematical op-
erations involving TOCs and EOCs has been developed,
including a fast algorithmic implementation of the basic
operations. The development of this methodology has a
direct application in the analysis and forecasting of supply
and demand curves in electricity markets, as it provides a
precise and flexible representation method for these bid-
ding curves. One recent example is the application of func-
tional forecasting models [17, 22, 23] to obtain short-term
estimations of the aggregated supply curves in day-ahead
markets, obtaining point-forecasts of the bidding behavior

of all market agents. Additionally, probabilistic functional
forecasting models have been recently used to generate
scenarios of residual demand curves [24], which can then
be used to improve certain stochastic optimization models
such as the offering optimization model proposed in [25].
As these functional models use the whole bidding curve as
an input, it is of utmost importance that the method se-
lected to define the supply curve is as accurate as possible,
in order to obtain an accurate description of each agent’s
bids. By employing the proposed EOC framework, more
accurate forecasts can be obtained, which will result in the
development of better decision making models for electric-
ity markets.

The remainder of the paper is organized as follows.
Section II defines the TOC. The proposed continuous EOC
is presented in Section III. Then the formal framework to
deal with elementary mathematics involving TOCs and
EOCs is described in Section IV. To illustrate the pro-
posed approach, Section V shows how to compute the
residual demand curve of an agent applying basic algebra
with TOCs and EOCs. Sections VI and VII present an
empirical comparative study of the proposed frameworks
in the context of both the Italian and Iberian day-ahead
electricity market. Finally, conclusions are drawn in Sec-
tion VIII.

2. TRUE OFFER CURVES

In a simple-bid market each offer is defined by a price p
and a quantity q, which refers to the amount of energy the
agent is willing to buy or sell at that price p. The set of N
raw (pi, qi) offers retains all the basic information required
by the MO to clear the market. They are the basic bricks
used by the agents to set their bidding strategies (see e.g.
the buy and sell offers displayed in the bottom of Fig. 1).

The True Offer Curve (TOC) is the stepwise aggre-
gated offer curve obtained by sorting the selling (buying)
offers in increasing (decreasing) prices. In order to differ-
entiate buy and sell curves, the following notation will be
used: selling curves will be denoted by TOC+ (monotoni-
cally increasing TOC), and buying curves will be referred
to as TOC- (monotonically decreasing TOC). Hence, the
mathematical expression of each type of TOC will be dif-
ferent. For selling offers (asks) the expression is:

fTOC+(x |CTOC) =

 0 x < a1
bj−1 aj−1 ≤ x < aj
bM x ≥ aM

(1)

Likewise, for buying offers (bids) the TOC- is defined as:

fTOC−(x |CTOC) =

 b1 x ≤ a1
bj−1 aj−1 < x ≤ aj
0 x ≥ aM

(2)

where M is the number of unique (aj , bj) steps sorted in
increasing order according to the relation aj−1 < aj , and
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Figure 1: TOC+ and TOC- obtained from the raw buying and selling
offers.

j = 2, · · · ,M . Thus, the TOC is completely defined by
the set of M pairs CTOC = {(aj , bj)}Mj=1, being M ≤ N .
Note that aj are related to the prices of the offers, whereas
bj are related to their quantities.

Fig. 1 illustrates these concepts: the top graph shows
the TOC+ and TOC- obtained from the buy and sell offers
displayed in the bottom. Note that for a given price there
can be several quantities offered that will be stacked in the
TOC representation. In order to display the steps of the
TOCs this representation includes a marker that signals
the points where the curve changes its value. For example,
the quantity offered by the TOC+ at price 2 is 75 MWh,
due to TOC+ being composed of right half-open intervals.

2.1. Stepwise computing Algorithm
Algorithm 1 is an efficient implementation for com-

puting stepwise aggregated offer curves. In the first step
it sorts the offers by price, accumulating those of equal
price. Then, the cumulative stepwise function is obtained
simply from these stacked and sorted offers. Note that
the option for TOC- (not included due to the lack of
space), is a simple modification of the detailed TOC+
version, allowing quick reverse calculations without need-
ing a flip or reflection of the set of pairs. Concerning
the running time of Algorithm 1, in the worst case it is
O(N logM) +O(M) ≈ O(N logN).

3. ENCODED OFFER CURVES

In this paper we use the idea of encoding in order to
convert an original stepwise TOC into a new piecewise lin-
ear approximation that can be used to encode in a compact
form its main characteristics. Basically, this new represen-
tation replaces the non-continuous TOC by a continuous
version conserving the steps of the original TOC.

Algorithm 1: TOC Creation Algorithm
Input: Raw offers defined by the set of pairs

{(pi, qi)}Ni=1 and type of curve
T ∈ {TOC+,TOC-}

Output: TOC fT of type T ∈ {TOC+,TOC-}
defined by the set of pairs
CTOC = {(ai, bi)}Mi=1

1 initialize CTOC = ∅ and M = 0
2 if T is TOC+ then
3 Step 1: Sorting and stacking :
4 for i ∈ {1, . . . , N} do
5 initialize l = 1, r =M − 1 and

continue = 1
6 while l ≤ r and continue = 1 do
7 compute m = b l+r

2
c

8 if pi < am then
9 actualize r = m− 1

10 else
11 if pi > am then
12 actualize l = m+ 1
13 else
14 increment quantity

bm = bm + qi
15 set continue = 0

16 if continue = 1 then
17 add (pi, qi) to the end of CTOC

18 set M equals to the number of pairs in CTOC

19 Step 2: Compute the cummulative sum:
20 for i ∈ {2, . . . ,M} do
21 compute bi = bi + bi−1

22 else
23 reverse version for TOC-

24 return fT defined by CTOC = {(ai, bi)}Mi=1

The proposed Encoded Offer Curve (EOC) is a contin-
uous piecewise linear approximation defined by a set of K
knots CEOC = {(kj , hj)}Kj=1 sorted in increasing order ac-
cording to the relation kj−1 < kj , as shown in Fig. 2. Note
that this model is valid for positive and negative TOCs.
The mathematical expression of the EOC is

fEOC(x |CEOC)=

h1, x < k1
hj−1 + sj ·(x− kj−1), kj−1 ≤ x < kj
hK , x ≥ kK

(3)
where j = 2, · · · ,K and sj = (hj − hj−1)/(kj − kj−1) is
the slope of the linear piece between knots j and j − 1.

Note that the complexity K of the EOC is twice that
of the complexity M of the TOC. For example, if there is
only one selling offer (p, q), then the associated TOC+ is
defined by the same pair (p, q), but the EOC consists of
two hinges (p− ε, 0) and (p, q).
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Figure 2: Encoded Offer Curve (EOC) consisting of natural and
artificial knots, valid for supply function curves (left) and demand
function curves (right).

3.1. Piecewise Encoding Algorithm
Exact details of the proposed approach to obtain the

set of pairs CEOC defining the EOC can be found in Algo-
rithm 2 but, briefly speaking, the idea consists in creating
the EOC by completing the set of natural knots CTOC
defining the original offer curve with artificial knots. In
particular, for each natural knot representing a step, a new
artificial knot is created to obtain a good approximation
of this step with the piecewise function. Depending on the
type of TOC, the relative position of the artificial knots
is different (see Fig. 2). Although the artificial knots are
under the natural ones, for TOC+s they are horizontally
shifted by ε to the left, whereas for TOC-s the ε shift is to
the right.

Finally, concerning the running time of Algorithm 2, it
is extremely fast, in the worst case is linear on the com-
plexity of the TOC, i.e. O(M).

4. ARITHMETIC WITH OFFER CURVES

This paper proposes a formal framework to deal with
elementary arithmetic operations involving OCs. This is
carried out by defining the operations of addition and
scalar multiplication of OCs, as well as by providing an
efficient algorithmic implementation of both operations.
Using these two standard operations it is possible to com-
pute mathematical expressions involving OCs. This arith-
metic is valid for both TOCs types (TOC+ and TOC-) as
well as EOC.

This approach fits with the mathematical concept of
vector spaces (see e.g. [26, 27]). Indeed, the three sets
of demand TOCs, supply TOCs and EOCs are different
vector spaces. The proposed operations of addition and
scalar multiplication satisfy the axioms listed in Table 1
for each set. These axioms hold for all offer curves ϕ, φ and
ψ and for all scalars c and d. Proving these axioms for the
particular case of OCs, although being straightforward, is
out of scope of this paper. Let us just remark that the set
of TOCs (i.e. ignoring the difference between positive and
negative types) is not a vector space because the closure
property is not guaranteed. Fig. 3 illustrates this point

Algorithm 2: EOC Creation Algorithm
Input: TOC fT of type T ∈ {TOC+,TOC-} defined

by the set of pairs CTOC = {(ai, bi)}Mi=1

Output: EOC fEOC defined by the set of pairs
CEOC = {(kj , hj)}Kj=1

1 set ε to a small value but larger than the machine
epsilon to avoid rounding errors in the floating point
arithmetic (e.g. 100 times the machine epsilon)

2 initialize set CEOC = ∅
3 if T is TOC- then
4 for i ∈ {1, . . . ,M − 1} do
5 add natural knot (ai, bi) to the end of CEOC

6 add artificial knot (ai + ε, bi+1) to CEOC

7 add natural knot (aM , bM ) to the end of CEOC

8 add artificial knot (ai + ε, bi+1) to CEOC

9 else
10 add artificial knot (a1 − ε, 0) to the end of CEOC

11 add natural knot (a1, b1) to the end of CEOC

12 for i ∈ {2, . . . ,M} do
13 add artificial knot (ai − ε, bi−1) to CEOC

14 add natural knot (ai, bi) to the end of CEOC

15 set K equals to the number of pairs in CEOC

16 return fEOC defined by CEOC = {(kj , hj)}Kj=1

by a simple counterexample where two offer curves fTOC−
and gTOC+ are combined by computing fTOC− − gTOC+.
The resultant function is neither a TOC- nor a TOC+,
i.e. the set of TOCs has no closure under this operation
because it does not produce a TOC of any type.

Table 1: Axioms satisfied by TOC-, TOC+ and EOC frameworks.
Property Axiom

Closure ϕ+ φ and cϕ are offer curves
Associativity ϕ+ (φ+ ψ) = (ϕ+ φ) + ψ, c(dϕ) = (cd)ϕ
Commutativity ϕ+ φ = φ+ ϕ
Distributivity c(ϕ+ φ) = cφ+ cϕ, (c+ d)ϕ = cϕ+ dϕ
Identity ϕ+ 0 = ϕ, 1(ϕ) = ϕ
Inverse ϕ+ (−ϕ) = 0

4.1. Addition
Offer Curve addition is defined for two OCs of the same

type (i.e. TOC+, TOC- or EOC). The sum of two OCs φ
and ψ, denoted by φ+ψ, is again an OC of the same type:

ϕ = φ+ ψ, (4)

where ϕ, φ and ψ are either TOCs or EOCs, as appropri-
ate.

In order to implement this addition operation, we pro-
pose the stacking law, i.e. an efficient rule for addition of
two or more OCs.

Consider φ is defined by the Mφ pairs {(uφi , v
φ
i )}M

φ

i=1,
whereas ψ is given by Mψ pairs {(uψi , v

ψ
i )}M

ψ

i=1 . Then ϕ =

φ+ ψ is defined by a new set of Mϕ pairs {(uϕi , v
ϕ
i )}

Mϕ
i=1 .
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Figure 3: Example of non-closure property when combining TOC-
and TOC+.
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Figure 4: Addition of two TOCs (left) and two EOCs (right).

In the same way the result of adding two polynomials is
a polynomial whose algebraic expression can be computed
analytically from the original polynomials, the stacking
law states that the coefficients that define the sum φ +
ψ can be obtained directly by combining the coefficients
defining φ and ψ. Basically, the resultant ϕ is obtained
by vertically stacking φ and ψ only in the horizontal co-
ordinates given by the unique set {uφi }M

φ

i=1 ∪ {u
ψ
i }M

ψ

i=1 , i.e.
without repetitions, (see examples in Fig. 4).

Because of the sets of pairs describing φ and ψ are
sorted in increasing order of the first coordinate according
to the relation ui−1 < ui, it is possible to design an ef-
ficient algorithm to implement the proposed stacking law
of addition. Algorithm 3 exploits first the idea of merging
the set of ordered coordinates uφ and uψ, avoiding repe-
titions, to obtain the ordered and unique set uϕ in linear
time O(Mφ +Mψ) ≈ O(Mϕ). Then, in a second stage,
the value of each vertical coordinate vϕk is computed by
adding the corresponding values of φ and ψ in uϕk

vϕk = φ(uϕk |C
φ) + ψ(uϕk |C

ψ), (5)

where φ(·) and ψ(·) are computed using Eqs. (1), (2)
or (3) depending on their type (TOC+, TOC- or EOC),
as appropriate. Note that because evaluating these func-
tions can be computed using binary search, the worst-
case time-complexity of the second step of the algorithm
is O(Mϕ(log(Mφ) + log(Mψ))) ≈ O(Mϕ log(Mϕ)). Thus,
the running time of Algorithm 3 in the worst-case isO(Mϕ)+
O(Mϕ log(Mϕ)) ≈ O(Mϕ log(Mϕ)).

Algorithm 3: Addition for TOCs and EOCs
Input: Two curves φ and ψ of the same type

T ∈ {TOC+,TOC-,EOC} defined by the set
of parameters Cφ = {(uφi , v

φ
i )}

Mφ

i=1 and
Cψ = {(uψi , v

ψ
i )}

Mψ

i=1 , respectively.
Output: Sum curve ϕ = φ+ ψ of type T , defined by

the set of parameters Cϕ = {(uϕi , v
ϕ
i )}

Mϕ

i=1

1 Step 1: Compute uϕ = {uϕi }
Mϕ

i=1 :
2 initialize set uϕ = ∅; i = 1; j = 1

3 while i ≤Mφ & j ≤Mψ do
4 if uφi < uψj then
5 if uφi 6∈ u

ϕ then
6 add uφi to the end of set uϕ

7 i = i+ 1

8 else
9 if uψj 6∈ u

ϕ then
10 add uψj to the end of set uϕ

11 j = j + 1

12 while i ≤Mφ do
13 if uφi 6∈ u

ϕ then
14 add uφi to the end of set uϕ

15 i = i+ 1

16 while j ≤Mψ do
17 if uψj 6∈ u

ϕ then
18 add uψj to the end of set uϕ

19 j = j + 1

20 Step 2: Compute vϕ = {vϕi }
Mϕ

i=1 :
21 initialize set vϕ = ∅
22 set Mϕ equals to the size of uϕ

23 for k ∈ {1, . . . ,Mϕ} do
24 compute vϕk using Eq. (5)

25 return ϕ defined by {(uϕi , v
ϕ
i )}

Mϕ

i=1

4.2. Scalar multiplication
Scalar multiplication allows scaling a given OC of any

type (TOC+, TOC- or EOC) by a constant factor. The
result is again an OC of the same type.

In particular, the multiplication ϕ = c · φ of a scalar
c by a OC φ defined by the set of Mφ pairs {(uφi , v

φ
i )}M

φ

i=1

produces a new OC ϕ defined by the pairs {(uϕi , v
ϕ
i )}M

ϕ

i=1 ,
where Mϕ =Mφ, uϕi = uφi and vϕi = c · vφi .

Scalar multiplication obeys the rules of vector spaces,
e.g. multiplying by 1 does not change φ, whereas multi-
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plying by 0 gives the zero OC. Multiplying by −1 gives the
additive inverse

− φ = (−1)φ, (6)

which allows the definition of the subtraction of two OCs
as

ψ − φ = ψ + (−φ). (7)

This operation is very useful in practice because it is the
base for computing the residual demand curve of an agent.
However, it is important to recall that the subtraction op-
eration is only valid for OCs of the same type (TOC+,
TOC- or EOC). This is discussed in the following section.

5. COMPUTATION OF RESIDUAL DEMAND
CURVES

This section presents an illustrative example where the
proposed methodology is applied to the computation of
the Residual Demand Curve (RDC) of a particular agent
of the market. The RDC is a function that gives the max-
imum energy quantity that the company can sell in the
market at a given price (see e.g. [28]). Note that RDCs are
used by utilities and other institutions in order to help the
analysis of participants’ behavior and the decision making
process in the electricity market. For example, estimating
the slope of the RDC of a particular agent provides use-
ful information regarding its capability to influence market
prices. Thus, the analysis of historical data allows regula-
tors to compare the potential market power of the different
companies, (see [4] for further details).

According to [4], assuming that the agent i is a pure
generation company, the RDC that agent faces can be cal-
culated as

Ri = D − S−i, (8)

where D is the system demand function and S−i is the
supply function of the firm’s competitors. The sum of the
demand functions of the firms Di results in the system
demand function

D =
∑
j=1,A

Dj , (9)

whereas the supply function of the firm’s competitors is
easily calculated as

S−i = S − Si =
∑

j = 1, A
j 6= i

Sj , (10)

where S is the system supply function given by the sum
of the supply functions of each firm and Si is the supply
function submitted by the agent i.

Note that according to the TOC mathematical frame-
work, Eqs. (9) and (10) can be calculated using the pro-
posed addition and scalar multiplication. However, Eq.
(8) can not be calculated using the TOC framework be-
cause it consists of a mixture of demand and supply curves.
It requires a new model that support the result, for exam-
ple a lookup table obtained using a discretization method.

Table 2: Synthetic demand and supply TOCs for example
D1 D2 S1 S2 S3

a b a b a b a b a b
0 300 0 160 10 100 0 25 20 70
15 200 55 50 20 150 5 45 35 90
27 180 30 170 60 150 50 130
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Figure 5: Demand and supply functions for the synthetic example
(TOC and EOC versions.)

The EOC framework allows, as opposed as to the TOC
one, carrying out all the mathematical operations involved
in these equations. Furthermore, using this framework, the
RDC of the agent can be directly calculated as

Ri =
∑
j=1,A

Dj −
∑
j=1,A

Sj + Si, (11)

or even

Ri =
∑
j=1,A

(Dj − Sj) + Si =
∑

j = 1, A
j 6= i

(Dj − Sj). (12)

Because of the flexibility of the proposed approach, it is
also possible to compute Eqs. (9) and (10) using TOC- and
TOC+, respectively, and then transform both results to
EOCs using Algorithm 2. From those EOCs the arithmetic
of Eq. (8) is straightforward, obtaining directly the RDC
as an EOC, without using sampling and a lookup table to
manage the operation. Therefore, the value of the residual
demand at a given price can be obtained using Eq. (3).
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Figure 6: RDC for the third agent of the synthetic example, total
demand and supply function of the competitors of this agent.

5.1. Illustrative example
This section provides an example in order to illustrate

the application of the TOC and EOC frameworks to cal-
culate the residual demand function of an agent. Consider
the synthetic case where there are only three agents. Ac-
cording to the TOCs of Table 2, the first two agents have
submitted both selling and buying offers, whereas the third
one is a pure generation company.

Fig. 5 shows not only the five TOCs of the agents
(given in Table 2), but the corresponding five EOCs. Note
that there are not practical differences between the EOCs
and the original TOCs.

Fig. 6 shows the system demand curve D and the
supply function of the competitors of the third agent S−3,
obtained using Eqs. (9) and (10), respectively. For these
curves both TOC as well as the EOC versions have been
included. These versions have been obtained by direct
addition of the corresponding Agent’s OC of Fig. 5, taking
into account their types. For example, STOC+

−3 = STOC+
1 +

STOC+
2 , whereas SEOC−3 = SEOC1 + SEOC2 . Finally, the

residual demand curve R3 of the third agent is shown,
obtained using Eq. (8) under the EOC framework, i.e.
applying the subtraction operation of two EOCs REOC3 =
DEOC − SEOC−3 . Note that the same R3 is obtained by
computing Eqs. (11) or (12).

6. APPLICATION TO THE DAY-AHEAD ITAL-
IAN MARKET

We have applied the proposed TOC and EOC frame-
works to compute the residual demand in a real case, the
day-ahead Italian market. Italy is one of the largest en-
ergy consumers in Europe, after countries such as France
and Germany. According to the Italian System Opera-
tor (TERNA), in 2017 more than half of the country’s
installed capacity came from conventional themal plants
(54.7%), whereas the remaining production sources were
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Macro-zone: SICI-PRGP-MALT
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MALT
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88 GWh 24 GWh

Macro-zone: Rest of Italy
ROSN

1100 GWh

Cleared demand: 2450.07 GWh
Cleared generation: 1350.07 GWh
Selling Price: 88.16 €/MWh

29-09-2017 20:00

Figure 7: The Market Zone SICI-PRGP-MALT 29-09-2017, hour
20).
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Figure 8: Zonal demand and supply TOCs in Market Zone SICI-
PRGP-MALT (Italian market, 29-09-2017, hour 20).

hydro power (19.5%), photovoltaic generation (16.8%), wind
power (8.3%) and geothermal (0.7%); providing a maxi-
mum generation capacity of 117.1 GW [29]. The Italian
power grid is split in several geographical and virtual trad-
ing zones. These zones are aggregated on an hourly basis
forming Market Zones (i.e. aggregation of geographical
and virtual zones such that the flows between the same
zones happens without transmission congestion. As such,
these are zones with the same zonal price), as a result
of the day-ahead European market coupling, solved using
the Euphemia algorithm [3]. For example, according to
the website of the Italian MO (GME, Gestore dei Mercati
Energetici SpA, www.mercatoelettrico.org), at hour 20 of
day 29-09-2017 two market Zones were formed (see Fig.
7). The Market Zone SICI-PRGP-MALT, in the South
of Italy, consists of the regions Sicily, Priolo G. (a pole of
limited production) and Malta (a virtual zone). This Mar-
ket Zone imported 1100 GWh from ROSN, the maximum
capacity of the existing connection.

Using the offer data obtained from the GME’s website,
we first have calculated the EOCs for the supply and de-
mand of the Market Zone SICI-PRGP-MALT, one of the
two aggregated Italian Market zones formed in that hour.
Note that in the GME’s website both the submitted and
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Figure 9: RDCs obtained using the proposed framework for all the
generators in Market Zone SICI-PRGP-MALT (Italian market, 29-
09-2017, hour 20).

the accepted offers and bids are available. To compute the
standard supply and demand curves as well as the RDC
that is used in the literature (see e.g. [4]), cleared func-
tions are used, i.e. those curves obtained by aggregating
only accepted offers/bids, but extending the curve to the
full range using the no-cleared ones. Therefore, we have
used all the available raw offers and bids, except those that
were rejected and their offer price is lower or equal than the
cleared price. Furthermore, in the case of demand bids, a
zero price in the Italian Market expresses the market par-
ticipant’s willingness to buy at any price. Thus, before
using our framework we have changed the bid prices equal
to zero by 3000 e/MWh.

Figure 8 shows the zonal demand DEOC
Z and supply

SEOCZ functions, as well as the supply function SEOCZ+ that
includes the 1100 GWh required from ROSN in order to
cover the demand of 2450.07 GWh. The zonal equilib-
rium is obtained from the intersection between SEOCZ+ and
DEOC
Z at 88.16 e/MWh (see right graph of Fig. 8). These

stepwise functions and figures are consistent with the in-
formation published on GME’s website for that hour. Note
that, in order to facilitate this visual comparative, we have
flipped the axis in all the figures of this section (now price
is on x-axis).

In order to obtain these EOCs, first we have computed
the total demand DTOC−

Z and supply STOC+
Z functions of

the Market Zone by summing the TOC- demand functions
of the 52 buying agents and the TOC+ supply functions of
the 11 selling firms, respectively. Then, we have estimated
DEOC
Z and SEOCZ , the EOC version of these two TOC

functions. Obviously, an equivalent result can be obtained
by direct computation of DTOC−

Z and STOC+
Z functions

by calculating both TOCs from the raw offers of the Mar-
ket Zone, without previously computing the TOCs of the
agents.
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Figure 10: Residual demand and supply curves of GDF-SUEZ and
ENEL in the Market Zone SICI-PRGP-MALT (Italian market, 29-
09-2017, hour 20).

Concerning SEOCZ+ , the most elegant way to obtain it
consists in first computing STOC+

Z+ = STOC+
Z + STOC+

ROSN ,
where STOC+

ROSN is defined by the price-quantity pair (3000
e/MWh, 1100 GWh), and then estimate SEOCZ+ from STOC+

Z+ .
Fig. 9 shows the residual demand curves for the gen-

erator agents that submitted bids for hour 20 of day 29-
09-2017 in the Market Zone SICI-PRGP-MALT. In this
case the RDC of each agent has been computed using the
EOC framework as REOCi = DEOC

Z − SEOCZ+ + SEOCi , us-
ing our previous estimations DEOC

Z and SEOCZ+ , as well as
the supply function SEOCi estimated for that agent. The
view of Fig. 10 shows, for two particular agents, a detail
of their residual demand and supply functions focused on
the zonal clearing price. Note that each agent has its own
RDC, expressing the zonal clearing price and the amount
of energy that could have been cleared if the agent had
submitted a different supply curve, assuming the agent’s
competitors do not change their offers. Thus, according to
the information provided by these EOCs, the agent GDF-
SUEZ is a price taker at that hour as its RDC is quite
horizontal, whereas ENEL has the role of price maker as
small changes in its offer produces great changes on the
zonal clearing price, e.g. increasing the price of its offer at
137 GWh the agent would have increased the zonal clear-
ing price in the same amount. Furthermore, using these
EOCs it is also possible to compute easily the amount of
energy cleared in this Market Zone at that hour by GDF-
SUEZ (10 GWh) and ENEL (161.8 GWh).

Finally, in order to quantify the accuracy of the pro-
posed EOC approach, Table 3 compares EOC with the
model obtained using the LHM approach of [18], and the
X-model of [21]. It summarizes the Root Mean Squared
Error (RMSE) and the Mean Absolute Error (MAE) when
modeling the total demand and supply curves of the Mar-
ket Zone SICI-PRGP-MALT from 1-11-2016 to 30-9-2017
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Figure 11: Demand and supply EOCs for three different sessions in the Iberian Day-Ahead Electricity Market.

Table 3: RMSE and MAE (in brackets) for the three models.
Demand curve in Market Zone SICI-PRGP-MALT (TOC-)

Model min mean max
LHM 11.34 (3.67) 28.82 (12.53) 77.93 (32.71)
X-Model 17.89 (4.39) 51.91 (24.97) 130.71 (57.99)
EOC 5.17e-13 (3.78e-13) 0.49 (0.00552) 3.66 (0.056)

Supply curve in Market Zone SICI-PRGP-MALT (TOC+)
Model min mean max
LHM 0.05 (0.016) 0.53 (0.26) 4.16 (1.42)
X-Model 0.24 (0.07) 2.76 (1.10) 18.12 (6.49)
EOC 2.48e-15 (1.74e-15) 0.0072 (6.26e-05) 0.29 (0.00242)

(8016 hours). According to Table 3, the proposed EOC is
clearly more accurate than the other two approaches.

7. APPLICATION TO THE IBERIAN
DAY-AHEAD ELECTRICITY MARKET

The previous section was devoted to illustrate how the
proposed EOC framework can be used to compute and an-
alyze residual demand curves in electricity markets. The
flexibility of the proposed methodology is displayed in this
section, whereas the EOC framework is used to quan-
tify the differences between two supply curves in the spot
Iberian Electricity Market (MIBEL). This market, which
covers the mainland of Portugal and Spain, provides mar-
ket agents with a venue to submit their selling and takeover
bids for electrical energy for next day’s 24 hours. Each day
at 12:00 CET an auction takes place, which sets the prices
and volume of energy being traded for the following 24
hours. Similarly to its Italian counterpart, the price and
energy volume for each hour h is obtained as the intersec-
tion of the aggregated supply and demand curves. By ob-
taining the EOC of both the supply and demand curves the
differences in the bidding behaviour of the agents in differ-
ent market sessions can be quantified. This case study will
analyze the aggregated curves of the MIBEL spot market
of March 2020, in order to measure the impact that the
COVID-19 pandemic had in the bidding curves.

In March 2020 the first cases of COVID-19 were de-
tected in Spain, quickly evolving and creating the first
wave of the COVID-19 pandemic [30]. Under this unusual
situation, the Spanish government adopted different pub-
lic health measures in order to slow down the spread of
the virus. These measures entailed enforced social dis-
tancing by means of stay-at-home orders. On March 29,
2020 (Sunday), an enforced complete lockdown with non-
essential business closures started, significantly impacting
the electricity demand. As such, this study will use the day
26-03-2020 as a baseline, being the last Thursday before
the complete lockdown of the country. Both the previous
(19-03-2020) and next Thursday (02-04-2020) will be in-
cluded in this comparison, in order to take into account
the weekly periodicity exhibited by these curves [23]. Us-
ing the public bidding data obtained from OMIE’s website
(MIBEL’s Market Operator, www.omie.es), the EOCs for
the supply and demand curves for these dates have been
estimated. These have been obtained following the same
procedure as the one presented in the previous section:
aggregating only accepted offers/bids and then extending
the curve to the full price range using non-cleared bids.

Fig. 11 shows the EOC’s of both the demand and sup-
ply curves for hour 10 of the three aforementioned days, de-
tailing the bidding behaviour of market agents before and
after the lockdown. As can be seen, the market clearing
price in all three sessions is similar, in the [20, 26] e/MWh
range. Nevertheless, for a market agent it is of utmost im-
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Figure 12: Top: Hourly demand EOCs of the Day-Ahead Iberian
Electricity Market for three different dates. Bottom: Difference EOC
obtained as the subtraction of the two previous demand EOCs.

portance to measure the changes in the bidding patterns
of its competitors in order to adapt its own strategy. An
useful tool to quantify these deviations is to obtain the dif-
ference between the observed supply (demand) curves in
two different hours. This difference can be easily computed
using the EOCs that have been previously calculated and
the framework proposed in this paper, as the arithmetic
that has been developed can be used to define this new
curve as

Y EOCi + (−Y EOCj ), (13)

where i, j denote the different hours being compared and
−Y EOCj denotes the additive inverse of the EOC (defined
in Section 4.2). By analyzing the shape of this curve, rel-
evant information about the changes in the bidding be-
havior of the agents can be obtained. Figs. 12 and 13
illustrate this concept by obtaining the difference between
Fig. 11’s consecutive demand and supply curves, respec-
tively. As can be seen in the right panel of Fig. 12, the
enforced lockdown shifted the whole demand curve, de-
creasing the mean level of the curve. The shape of both
pre- and post-lockdown demand curves are similar, only
exhibiting small shape differences in the [10, 25] e/MWh
price range. The left panel of Fig. 12 shows the difference
between the demand curves of the two last Thursdays be-
fore the lockdown, which can be used to quantify the im-
pact that the lockdown had on these demand curves. As
can be seen, the typical level difference between two de-
mand curves was around 4000 MWh in the weeks before
the lockdown; whereas the post-lockdown curve exhibited
a drawdown of approximately 7000 MWh when compared
to the previous week’s curve. A totally different situation
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Figure 13: Top: Hourly supply EOCs of the Day-Ahead Iberian
Electricity Market for three different dates. Bottom: Difference EOC
obtained as the subtraction of the two previous supply EOCs.

is observed in the analysis of the supply curves, illustrated
in Fig. 13. The left and right panels show the difference
between the EOCs of the supply curves before and after
the complete lockdown, highlighting the changes in the
bidding behavior of the agents. When comparing the two
pre-lockdown supply curves, a similar shape is observed
except in the price range of [0, 50] e/MWh, where the two
curves present a different slope. However, this relationship
changes when comparing the post-lockdown curve with the
previous week’s curve: in this case, the lockdown curve
exhibits an average level lower than the reference curve,
while showing strong shape discrepancies in the [25, 50]
e/MWh price range of the curve. As the market’s clear-
ing price usually falls in this price range, these variations
could be attributed to sudden changes in the bidding be-
havior of the market agents. This analysis illustrates how
the proposed EOC framework provides flexible tools to an-
alyze sudden changes in aggregated offer curves, which is
of utmost importance when analyzing electricity markets.

8. CONCLUSIONS

Liberalized electricity markets allow companies to trade
energy by submitting selling and buying offers. These raw
offers are aggregated to build stepwise supply and demand
curves. That offer curves are at the core of many rele-
vant processes. For example, the market operator uses
these supply and demand curves to clear the market. For
market agents not only setting their bidding strategies in
terms of supply curves is critical, but also analyzing, when
possible, the offer curves to understand the bidding be-
havior of their competitors. For regulators, estimating the
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slope of the residual demand curves, computed from of-
fer curves, also provide useful information regarding the
potential market power of the different producers.

In this paper we first formalize the concept of step-
wise offer curves, explicitly defining the True Offer Curve
(TOC). Although these TOCs have no error approxima-
tion, they do not allow for example computing the residual
demand curve of an agent by simple subtraction. To over-
come the inherit difficulties of those non-continuous TOCs,
we propose the Encoded Offer Curve (EOC), a continuous
piecewise version that approximates the steps of the orig-
inal TOC with high accuracy and that can be used to
model and combine both demand and supply offer curves.
We also present in this paper fast and simple specialized
algorithms to obtain both TOC and EOC models from raw
offers. Furthermore, a formal framework to deal with ele-
mentary arithmetic operations involving TOCs and EOCs
has been developed, including a fast algorithmic imple-
mentation of the basic operations. Thanks to the proposed
framework, we can operate with offer curves using the rules
of algebra. This has been successfully tested in both the
Italian electricity market, computing the residual demand
curves of the producers in a particular Market Zone; and in
the Iberian electricity market, quantifying the differences
between supply and demand curves in different stages of
the COVID-19 pandemic.

In addition, the proposed framework could also be ex-
tended by including the development of a specialized algo-
rithm to estimate the market-clearing price as the inter-
section of EOCs. Further research would also include the
quantification of the accumulation of rounding errors as
result of a large number of consecutively performed arith-
metic operations with EOCs. Finally, note that machine
learning techniques could be used to extend the applica-
tions of the proposed approach. For example, forecasting
techniques can be used to estimate EOCs for those peri-
ods where the submitted offers by the agents are not yet
available, possibly due to certain rules of confidentially of
the market.
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