#### Separation and Purification Technology 234 (2020) 116128

Contents lists available at ScienceDirect



# Separation and Purification Technology

journal homepage: www.elsevier.com/locate/seppur



## Separation of benzene from methylcycloalkanes by extractive distillation with cyano-based ionic liquids: Experimental and CPA EoS modelling



Miguel Ayuso<sup>a</sup>, Pablo Navarro<sup>b,c,\*</sup>, André M. Palma<sup>b</sup>, Marcos Larriba<sup>a</sup>, Noemí Delgado-Mellado<sup>a</sup>, Julián García<sup>a</sup>, Francisco Rodríguez<sup>a</sup>, João A.P. Coutinho<sup>b</sup>, Pedro J. Carvalho<sup>b</sup>

<sup>a</sup> Department of Chemical Engineering and Materials, Complutense University of Madrid, Madrid, Spain

<sup>b</sup> CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal

<sup>c</sup> Department of Chemical Engineering, Universidad Autónoma de Madrid, Madrid, Spain

#### ARTICLE INFO

Keywords: Ionic liquids Aromatic/aliphatic separation Extractive distillation HS-GC CPA EoS

### ABSTRACT

The aromatic/aliphatic separation using ionic liquids (ILs) has been proposed as an enhanced technology when compared to conventional liquid-liquid extraction and extractive distillation processes. Some ILs show extractive properties (distribution ratios and selectivities) greater than those of conventional solvents, like sulfolane and N-methylpyrrolidone, positioning these solvents to address challenging separations. Methylcycloalkanes and benzene are close-boiling mixtures in the petrochemical industry, presented at the hydrogenated pyrolysis naphtha where benzene is at a high concentration (ca. 70 wt%). Aiming to tackle this separation, cyano-based ILs were tested as mass agents in the benzene separation from methylcycloalkanes. A complete phase equilibria characterization with the most promising ILs,  $[C_2C_1im][DCA]$  and  $[C_2C_1im][SCN]$ , were done, using a recently developed experimental-modelling strategy. Isothermal vapour-liquid equilibria for binary, ternary and quaternary systems was measured by Headspace Gas-Chromatography (HS-GC) and modelled using the Cubic Plus Association (CPA) Equation of State (EoS). The presence of the ILs improved the methylcycloalkane/benzene relative volatilities by one order of magnitude, whereas homogeneous and heterogeneous regions were determined by HS-GC, leading to a consistent model.

\* Corresponding author at: Department of Chemical Engineering, Universidad Autónoma de Madrid, Madrid, Spain. *E-mail address:* pablo.navarro@uam.es (P. Navarro).

https://doi.org/10.1016/j.seppur.2019.116128

Received 28 May 2019; Received in revised form 13 August 2019; Accepted 23 September 2019

Available online 24 September 2019 1383-5866/ © 2019 Elsevier B.V. All rights reserved.