

Contents lists available at ScienceDirect

Fuel Processing Technology

journal homepage: www.elsevier.com/locate/fuproc

Dearomatization of pyrolysis gasoline by extractive distillation with 1-ethyl-3-methylimidazolium tricyanomethanide

Pablo Navarro^{a,*}, Ignacio de Dios-García^b, Marcos Larriba^b, Noemí Delgado-Mellado^b, Miguel Ayuso^b, Daniel Moreno^a, José Palomar^a, Julián García^b, Francisco Rodríguez^b

^a Department of Chemical Engineering, Universidad Autónoma de Madrid, E–28049 Madrid, Spain
^b Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, E–28040 Madrid, Spain

ARTICLE INFO

ABSTRACT

This work proposes the use of the extractive distillation with ionic liquids (ILs) for the separation of aromatics from pyrolysis gasoline to overcome liquid-liquid extraction limitations. Among all the ILs proved so far, 1-ethyl-3-methylimidazolium tricyanomethanide ([emim][TCM]) stands as the most promising in the extractive distillation of aromatics due to its high and compensate aromatic/aliphatic selectivities and aromatic distribution ratios, high thermal stability, and low viscosity. The separation of benzene, toluene, and xylene (BTX) from a pyrolysis gasoline model was experimentally investigated to check the real suitability of the [emim][TCM] for extractive distillation. A shortcut model, Fenske-Underwood-Gilliland-Kirkbride (FUGK) model, was used to simulate the extractive distillation column. A shortcut simulation of the flash distillation unit destined to separate the BTX from the IL was also accomplished. On the other hand, the quantum chemical-based simulation methodology (COSMO-based/Aspen Plus) was used to simulate the extractive distillation process rigorously. Overall, homogeneous extractive distillation with [emim][TCM] was revealed as a feasible and potential process to separate BTX from pyrolysis gasoline, showing an enhanced technology in comparison with the widely studied liquid-liquid extraction.

Keywords: Ionic liquids Aromatic/aliphatic separation Process simulation Extractive distillation

* Corresponding author. *E-mail address:* pablo.navarro@uam.es (P. Navarro).

https://doi.org/10.1016/j.fuproc.2019.106156 Received 28 May 2019; Received in revised form 15 July 2019; Accepted 15 July 2019 Available online 24 July 2019 0378-3820/ © 2019 Elsevier B.V. All rights reserved.