

1 18-08-2022

Reinforcement learning applied to a Universal

Robot with a vacuum gripper
Álvaro Burgos Madrigal

ICAM, Universidad Pontificia Comillas – ICAI

E-mail: 201603823@alu.comilllas.edu

Abstract

In collaboration with the ICAM university, this project approaches the problem of teaching

a robot with a vacuum gripper to pick and place, from a box full of the same objects, one of

the objects, by identifying the best position to place its vacuum gripper and without any

major information about the object and only using a depth and color camera. In the project,

a digital twin of the scenario is developed and a reinforcement learning algorithm is

deployed, performing a sensitivity analysis and comparing the optimized results with

different approaches of sampling the batch of experiences used for training.

Key Words: vacuum gripper, Resnet, CNN, NN, Replay Memory, Reinforcement Learning

Introduction

Artificial intelligence is one of angular

pieces of the smart industry, or industry

4.0, which will disrupt the present

paradigm of the day-to-day industrial

processes as they are known.

The smart industry focuses on two main

objectives. The first objective is to

improve the efficiency and efficacity of

the current industrial processes. When a

robot learns to do a task by his own, he

will be often capable of delivering the

same result as a human but in less time,

with fewer defects and consuming less

resources. These improvements will drive

long term rentability on the enterprises

and thus it is destined to arrive. The

second important objective of the smart

industry, and specially in reinforcement

learning, is to place the humanity where

the true value of the enterprise is. A robot

will mostly serve to eliminate the

repetitive tasks that a worker is forced to

do and that do not contribute to giving

meaning to his life, and to assist the human

providing enhanced visibility where the

human skills don’t keep up.

The purpose of this project follows these

objectives. The project and report that will

be presented represent the next steps of a

Research & Development team of the

university of ICAM, in Toulouse. The

team started developing this project two

years ago, and its final objective is to teach

a robot to pick up objects using vision. The

scenario which the robot is set to resolve

is formed by two boxes, one camera and

the robot itself. One of the boxes is full of

the same objects, and the other one is

empty. Then, the objective is that the robot

detects the point with the highest

mailto:201603823@alu.comilllas.edu

2 18-08-2022

probability of being apt for the pick. Then,

the robot will then place the vacuum

gripper in the point selected and

successfully pick the object and place it in

the other box.

The main complexity of the problem is

due to the lack of information about the

object that is going to be picked. The

algorithm will only have access to a color

camera, a depth camera, and will know the

depth of the floor.

This project, could ultimately have

various applications. Among them, this

robot, trained correctly, would be able to

place some objects, such as components of

a product, screws, tools etc, from the

inventory of a factory to the plate of an

AGV which could, once the robot has

finished approach these items to the

operator, save him the time and the

discomfort of having to stand up to go

from the workspace to the storage and

carry all the needed items with himself.

Overview of the technologies

Reinforcement Learning is a subfield of

Machine Learning, but is also a general-

purpose formalism for automated

decision-making and AI. A reinforced

learning algorithm benefits from a

continuous experience on the

environment, enlarging the available

dataset and continuously learning from the

mistakes to improve recurrently the

overall accuracy.

One of the bigger differences between a

reinforcement learning algorithm and a

supervised algorithm is the existence of

consequent decision-making processes

that depend on each other. In a classic

reinforcement learning system the

algorithm will interact with a scenario,

starting from an initial position and

making a decision based on the scenario.

This decision will drive a new position in

which the algorithm will have to make a

decision. This process will be repeated

until the scenario gets to an end and the

scenario is reset, starting from the starting

position again. The group of consequent

decisions and positions until the scenario

finishes is called an episode.

The process of continuously learning is

defined using the concepts of state, action

and reward, present in Figure 1. Firstly, a

state gives the algorithm a full overview of

the current scenario of the robot.

Secondly, the algorithm chooses, from all

the possible actions, one action. Thirdly,

the action implemented in the scenario

results in a reward and the next state. With

this information in mind, the reinforced

learning algorithm will learn to

understand, for a given state, which

actions are the ones that will maximize the

total reward on the episode, which not

only includes the reward resulted after an

action, but also all the predicted rewards

after the consequent actions on the states

resulting from that action.

Figure 1 Reinforcement Learning Block Diagram

The reinforcement algorithm is divided

into several modules that interact with

each other:

Environment

The environment is the scenario (system,

machine, game, etc) where the user wants

to excel. A reinforcement learning

algorithm communicates with the

environment in two steps. In the first one,

the environment sends information about

3 18-08-2022

the current situation (current state,

actions). In the second one, the

environment receives the decision about

the actions the environment should do,

and receive a reward for this action as a

reply, as well as the next state of the

environment.

Between the environment and the

algorithm there is usually an environment

manager, whose task is to mediate

between the format the algorithm needs

and the formats of the environment, for

every state, action or reward.

In this project, the environment will be the

virtual representation (made in Coppelia)

of the laboratory in Toulouse.

Agent

The agent is the decision maker who

impersonates all the decisions that are

made across the training of the algorithm.

It is the agent that usually merges all the

elements that form a reinforcement

learning algorithm.

Replay Memory

At every timestep, the agent is in a state

and has to make an action. The action

leads to a reward and the next state. This

tuple of state, action, reward and next step

is called experience. Thus, Replay

Memory is the term for the dataset that

stores the agent’s experiences while

training, so they can be accessed for

improving the accuracy of the results.

In this project the replay memory will be

formed by tuples of all the points where

the robot has tried to picked an object,

represented by a preprocessed image of 50

px around the point of grip, and the reward

of the action once executed.

It is important to outline that, at the end of

every episode, if the number of

experiences is higher than the batch size,

the policy (Neural Network) is trained. To

do that a batch of experiences in the

Replay Memory is sampled. In a common

reinforcement learning algorithm, this

sampling is random, whereas in this

project, other ways of sampling this batch

will be explored.

Policy

The policy is the term that corresponds to

the intelligence that recurrently progresses

in the decision-making process across

every training. In a classical reinforcement

problem, the input is the current state of

the environment, and the output is the

recommendation of the action to be taken,

having one node in the output layer for

every possible action that the agent can

take.

In the cases with some complexity,

notably in those cases where the number

of possible states is not defined (i.e. a state

defined by a photo), a Neural Network is

used to reduce the computation needed to

achieve acceptable results.

In this project, the input of the Neural

Network will be a preprocessed squared

snapshot of 50 px centered in the point of

grip. The neural network will have one

node in the output layer, which represents

the probability of the robot picking an

object if positioning in this point.

Thus, in this project, for every episode the

Neural Network will be run as many times

as eligible points in the current scenario.

Then, the agent will pick the point whose

probability is the highest.

Strategy

The strategy stands for the Epsilon Greedy

Strategy. In every reinforcement learning

algorithm, there is always a balance

between exploration and exploitation. If

4 18-08-2022

the agent is in mode exploration, it will

pick an action randomly out of the

possible options. Nevertheless, in the

exploitation mode, the policy will be used

to decide which of the actions is the most

suitable, looking for maximizing the

reward.

In the first episodes of the training, the

epsilon greedy strategy must be

programmed to explore predominantly, as

the scenario is still unknown and an

exploration phase could drive results

biased. For example, in a scenario with

several positive rewards, if only exploiting

the environment, the agent could find the

less positive reward first, and keep

exploiting this reward, without adverting

that there is a bigger reward at reach.

However, after the Neural Network is

trained, if the scenario is not planned to

change, the epsilon greedy strategy should

be favoring more and more exploitation

episodes, to maximize the output and

perfectionate the current results.

State of the Art

The prior version of the solution uses a

supervised learning algorithm to train the

robot, based on three phases:

1. The first one is the data

acquisition, in which the robot

tries to pick randomly points

inside the box full of objects and

saves a cropped snapshot of the

camera around the selected point

with a tag of success/fail

depending if the object was picked

or not.

2. The second one is the training

phase in which a Residual

Convolutional Neural Network

(Resnet CNN) and a Neural

Network (NN) are used to provide

the optimal weights to predict

success/fail with the snapshot of

the point selected. The

Convolutional Neural Network is

already trained to provide the main

characteristics of a snapshot.

3. The third one is the test phase,

which ultimately will be the

production phase, in which the

algorithm is tested to calculate the

accuracy.

These phases are manually started and

finished, and thus is not optimal.

Objectives of the project

Therefore, the project explained in this

report will explore a different solution,

using reinforcement learning. The CNN

will still be a Resnet pretrained, but the

NN will follow a reinforcement learning

algorithm, which will convert the three

phases mentioned above into one dynamic

algorithm.

Another pain point of the researches of

ICAM these years is that they have had to

resolve all the problems in the robot in

order to train the CNN/NN algorithm,

which sometimes results in slow project

advances. Thus, the project will be built

under a digital twin of the laboratory in

Toulouse, using the simulation software

Coppelia.

To do so, the 6 months of the project will

be divided in three parts equally

distributed in time. The first two months

of the project will focus on acquiring the

expertise on both the reinforcement

learning and Coppelia. The second two

months of the project will be reserved for

developing the software and the

algorithm. Lastly, in the last two months

the results will be analyzed, a sensitivity

analysis will be conducted, and the report

will be written.

5 18-08-2022

Model Deployed

Figure 2 shows the scenario built in the

software Coppelia. The robot UR5 is in

the middle of the scenario, and has two

boxes at either sides of the robot, one full

of objects and the other one empty. Each

box has two different cameras, one RGB

and one that measures depth. The output

of these cameras can be seen on the top left

and top right of the figure.

Figure 2 Coppelia Environment Representation

The general procedure of the algorithm

will start by making RGB and depth a

photo of the box full of objects. The depth

camera will preprocess the points, being

eligible points only those with a height

higher than a threshold, to prevent the

robot from picking a point in the base of

the box. Then, the reinforcement learning

algorithm will select, following

exploration/exploitation, the point that

will be picked.

Figure 3 Preprocessed photo of the virtual box

with contour, grid, and the point where the robot

will pick

Figure 3 shows a green rectangle,

corresponding to the computed contour of

the box, some blue points, corresponding

to non-eligible points in the grid (height

lower than threshold), some red points,

corresponding to the eligible points, and a

green point, corresponding to the point out

of the eligible points that the algorithm has

decided to place the vacuum gripper.

(image of exploration episode)

Figure 4 shows a schema of the CNN and

the Neural Network, that relates the

snapshot of the camera with the

success/fail variable. Note that the final

layer of the NN is only one node

(success/fail).

Figure 4 Illustrative Block Diagram of a CNN

followed by a Neural Network

Once the point has been selected, the robot

targets the point, places the vacuum

gripper there, and activates it. If the pick

6 18-08-2022

was successful, the robot places the point

in the other box. If not, it returns to the

position of safety (Figure 2). As the

algorithm improves, the reinforcement

learning algorithm will predominantly use

the Neural Networks to select the points,

and the accuracy of the algorithm will be

higher and higher.

Once the model is deployed, a sensitivity

analysis will be conducted to find the

optimal hyperparameters that provide the

best accuracies. Additionally, an

improvement on the batch of images used

to train the NN will be presented. In a

general reinforcement learning algorithm,

the batch of images is randomly selected.

In this project two new ways of selecting

the batch of images will be presented. The

first one will be selecting those points

whose prediction is closer to 0,5

(indecisive sampling, algorithm not

deciding between success/fail). The

second one will select those points whose

prediction is further from the real outcome

of the point (worst-case sampling).

Results

A sensitivity analysis has been conducted

to find the best hyperparameters for the

whole model. Specifically, the following

parameters have been optimized:

• Percentage Decay: Term

acquainted in the study, directly

related with the actualization rate

in the Epsilon Greedy Strategy,

which is responsible for deciding

if between exploration and

exploitation. A percentage decay

of 30% means that when the

training has arrived to the 30% of

all its training episodes, epsilon is

0,5, and thus the probability of

exploration vs exploitation is 50%.

• Learning Rate: Learning rate of

the Neural Network. A high

learning rate will trust more the

new trainings than the old weights.

Therefore, a high learning rate can

drive a faster convergence, but it

can lead to higher variance in the

final results.

• Memory Capacity: Number of

experiences that can be stored in

the Replay Memory, which will be

used for training the NN. A high

Memory Capacity drives an

unbiased random distribution, but

can have difficulties in a changing

environment.

Batch Size: Number of

experiences used from Replay

Memory to train the NN in every

episode. A higher batch size drives

faster convergence but needs

higher computation resources.

For every sensitivity analysis three

different plots have been analyzed.

Figure 5 Sensitivity plots: Average of last

rewards

The first plot in Figure 5 corresponds to

the average of the last 10 rewards for

every training. Therefore, this plot

represents how the algorithm is

performing in the last episodes.

7 18-08-2022

Figure 6 Sensitivity plots: First episode with

recurring accuracies of above 0.9

The second plot in Figure 6 shows the first

episode for every training in which the

accuracy in the training batch is higher

than 0,9. Hence, this plot shows how fast

the algorithm is converging.

Figure 7 Sensitivity plots: Accuracy on training

batch and loss function

The third plot in Figure 7 shows the last

values of the accuracy and loss of the

Neural Network, representing how well

the Neural Network has been optimized

through the episodes.

Once the hyperparameters were optimal,

the different memory samplings were

compared to find the most suitable one.

Figure 8 shows the accuracy growth over

episodes in the reinforcement learning

algorithm, for the optimized

hyperparameters, for the three cases of

batch sampling mentioned above

(Randomly Sampling, Indecisive

Sampling and Worst-case Sampling,

respectively).

Figure 8 Comparison on results based by batch

sampling

The model which seems to be converging

faster is the indecisive sampling, with a

convergence of around 90% in the episode

100, but the worst-case sampling has the

best accuracy of everyone. Therefore, if

this model was to be implanted in a

warehouse, the worst-case sampling

would be selected.

As indecisive sampling and worst-case

sampling offer different advantages

throughout the episodes, a dynamic

sampling has been explored, which means

that the way of sampling changes across

the training. As the indecisive sampling

has a fast convergence, and the worst-case

sampling is giving a good final result, the

training will start with indecisive

sampling, then random sampling (to

soften the changes) and lastly worst-case

sampling.

Two different models have been created,

with split 30/40/30 % and 15/35/50% of

indecisive sampling, random sampling

and worst-case sampling, respectively.

The result is in Figure 9:

8 18-08-2022

Figure 9 Comparison of the dynamic sampling

strategies

It seems that the model in blue (30/40/30

% split) is converging faster, which makes

sense as the indecisive sampling is longer.

Nevertheless, the two models finish with

similar end results, which do not seem

higher than for the worst-case scenario. In

the Figure 10 all the models have been

analyzed:

Figure 10 Comparison of all the final results

As mentioned, the dynamic sampling,

though promising, seems to have worse

results that the worst-case sampling, and

therefore the worst-case sampling is the

selected one.

Conclusions

There are several conclusions to drive

from the results. The first conclusion is

that the indecisive sampling seems to have

a faster improvement in accuracy, but a

lower final accuracy than the worst-case

sampling. Thus, the best solution is the

worst-case Sampling, because the final

accuracy is far higher than the other two

solutions. The final accuracy over 300

episodes of training is around 97%.

In second place, a dynamic sampling, even

though it has not given the correct results,

could be furtherly explored as it could

provide the perfect balance of fast

convergence and final accuracy.

The third conclusion concerns the digital

environment. It seems to be working well

as it mimics perfectly the normal

operation of an anthropomorphic robot,

such as the one in the laboratory. In terms

of the objects used, the shape and the

orientation of the object is similar to the

objects used in the laboratory. The

dynamic behavior of the objects is also an

acceptable representation of the physical

world. Therefore, it can be used for testing

the algorithms built in the laboratory when

the real environment is not working.

Nevertheless, there are two features of the

robot that could be improved to better

represent the reality: the vacuum gripper

and the sensor that detects if the object is

attached. The vacuum gripper only grips

an object if the point if the middle of the

tool is touched by the object. In that case,

the base of the gripper may not be entirely

covered by an object, and still pick the

object (something impossible in a real

vacuum gripper). Additionally, the sensor

that detects if an object is gripped

corresponds to the same point, in the

middle of the vacuum gripper. The object

is detected only if the object is touching

the middle of the base of the vacuum

gripper, which could not always be the

case in the real world (Due to pression in

9 18-08-2022

the vacuum gripper the height of the base

could change).

The fourth conclusion of the project is

regarding the robustness of the results.

Even though these results are promising,

the scenario is a software. The main next

step should be to deploy the solution in the

real laboratory, to confirm the results in a

physical scenario.

Bibliography

Antoniadis, P. (2022, 7 2). Activation

Functions: Sigmoid vs Tanh.

Retrieved from Baeldung.com:

https://www.baeldung.com/cs/sig

moid-vs-tanh-

functions#:~:text=and%20present

s%20a%20similar%20behavior,in

stead%20of%201%20and%200.

Armesto, L. (n.d.). Introduction to

CoppeliaSim Course |

CoppeliaSim (V-REP). Retrieved

from youtube.com:

https://www.youtube.com/watch?

v=PwGY8PxQOXY

Arubai, N. (2022, 5 20). wiki.ros.org.

Retrieved from Documentation:

https://wiki.ros.org/

deeplizard. (2019). Convolutional Neural

Networks (CNNs) explained.

Retrieved from Youtube:

https://www.youtube.com/watch?

v=YRhxdVk_sIs

Education, I. C. (2020, 07 15). Machine

Learning. Retrieved from

ibm.com:

https://www.ibm.com/cloud/learn/

machine-learning

Gharat, S. (2019, 4 14). medium.com.

Retrieved from What, Why and

Which?? Activation Functions:

https://medium.com/@snaily16/w

hat-why-and-which-activation-

functions-b2bf748c0441

Lizard, D. (n.d.). deeplizard.com.

Retrieved from Reinforcement

Learning - Developing Intelligent

Agents:

https://deeplizard.com/learn/playli

st/PLZbbT5o_s2xoWNVdDudn5

1XM8lOuZ_Njv

Nations, U. (n.d.). Do you know all 17

SDGs? Retrieved from

sdgs.un.org:

https://sdgs.un.org/goals

Rastogi, A. (2022, 3 14). ResNet50.

Retrieved from blog.devgenius.io:

https://blog.devgenius.io/resnet50

-6b42934db431

Regular API reference. (n.d.). Retrieved

from

https://www.coppeliarobotics.com

/helpFiles/en/apiFunctions.htm:

coppeliarobotics.com

reshalfahsi. (2019, 10 23). arm-suction-

sim. Retrieved from github.com:

https://github.com/reshalfahsi/arm

-suction-sim

Technology, I. (2021). What are

Convolutional Neural Networks

(CNNs)? Retrieved from

youtube.com:

https://www.youtube.com/watch?

v=QzY57FaENXg

