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Abstract 

Large power systems, e.g., bulk power transmission networks, base their generation control functions 

on a three-layered hierarchical control structure comprising a primary, secondary, and tertiary control 

layer. Conventionally, the secondary and tertiary control layers are based on a centralized control 

architecture in which a centrally located computer performs all the relevant computational tasks that are 

required to execute the pertinent control functions [3]. Its main drawback relies on the fact that this 

central computer needs to receive a massive amount of information from all the generating buses to 

execute each particular iteration of the control algorithm. This is where distributed control architecture 

comes into play. 

The distributed architecture for Islanded AC Microgrids, which we will be working on, replicates the 

functionality of the secondary and tertiary control layers, e.g., secondary frequency regulation and 

optimal dispatch. In this project, we will synthesize numerous distributed algorithms on industrial-grade 

control hardware devices. These algorithms will facilitate the implementation of secondary frequency 

control, secondary voltage control, and economic dispatch via a distributed control architecture.  

The hardware that will be utilized to emulate the microgrid's generators is the HIL’s 4th Generation 

Typhoon HIL404, and C-language is the programming language that will be used to synthesize the 

distributed algorithms onto this hardware. Each HIL device will communicate with an Arduino Due 

microcontroller via CAN Bus communication protocol, which in turn will be able to wirelessly exchange 

information with each other through embedded MaxStream XB24-DMCIT-250 rev B XBee modules. 

Finally, we will test and validate it in a hardware-in-the-loop testbed under a variety of scenarios.  

Subject Keywords: microgrid; distributed generation control architecture; distributed control 

algorithms; optimal dispatch; Distributed Generation Resources (DGR); CAN Bus; CAN Bus – XBee.  
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RESUMEN DEL PROYECTO  

Se trabajará en una arquitectura de control de generación distribuido para microgrids, que replica la 

funcionalidad del segundo y tercer nivel del control frecuencia-potencia que impera en los grandes 

sistemas eléctricos -regulaciones secundaria y terciaria-. Se desarrollarán algoritmos de control 

distribuidos (programados en lenguaje C), que se implementarán en varias unidades de hardware de 

control de grado industrial (HIL's 4th Generation Typhoon HIL404). Cada dispositivo HIL se comunicará 

con un microcontrolador Arduino Due a través del protocolo de comunicación CAN Bus. A su vez, estos 

podrán intercambiar información entre sí de forma inalámbrica por medio de módulos XBee MaxStream 

XB24-DMCIT-250 rev B integrados. Finalmente, los algoritmos y los mencionados protocolos de 

comunicación serán probados y validados mediante pruebas de hardware-in-the-loop ante múltiples 

escenarios. 

Palabras clave: microgrid; arquitectura de control de generación distribuida; algoritmos de control 

distribuido; Recursos de Generación Distribuida (RGD); CAN Bus; CAN Bus – XBee.  

1. Introducción 

El naciente campo de los microgrids atrae cada vez más atención y estudios que buscan explotar su 

potencial. Se prevé que los actuales grandes sistemas eléctricos centralizados evolucionen hacia redes 

más descentralizadas [3]. El trabajo que aquí se presenta pretende aprovechar las características 

inherentes de los microgrids para optimizar su arquitectura de control frecuencia-potencia. 

Un microgrid puede definirse genéricamente como una red de cargas y generadores interconectados, 

que es físicamente más pequeño, maneja potencias y capacidades inferiores a las de los grandes sistemas 

de energía eléctrica, y puede funcionar aislado de la red. A pesar de estas diferencias, el funcionamiento 

normal tanto de los microgrids como de los grandes sistemas eléctricos puede reducirse a tres requisitos: 
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(i) la generación debe satisfacer la demanda total de la red, (ii) la frecuencia debe mantenerse próxima a 

su valor nominal (50 Hz en Europa, 60 Hz en Estados Unidos), y (iii) los costes de generación deben 

minimizarse [1]. Variaciones de carga o fallos en generadores y líneas de transmisión pueden provocar un 

desajuste en el sistema. 

Para hacer frente a estas situaciones, cualquier tipo de sistema eléctrico de corriente alterna 

implementa una arquitectura de control de generación organizada en tres niveles: primario, secundario y 

terciario. La regulación primaria actúa localmente de forma instantánea y se encarga de equilibrar la 

potencia generada y la demandada, al tiempo que garantiza que la frecuencia no se desvíe en exceso de 

su valor nominal. La regulación secundaria o Automatic Generation Control (AGC), restablece la frecuencia 

nominal y mantiene un intercambio de energía adecuado entre las diferentes áreas del sistema. Por 

último, la regulación terciaria se encarga de ajustar los niveles de oferta de los distintos generadores de 

la red de forma que se minimice el coste total de generación [2], [4].  

Convencionalmente, para los grandes sistemas de energía, únicamente la regulación primaria depende 

de información local. La regulación secundaria y terciaria, en cambio, se fundamentan en una arquitectura 

centralizada [4]. En otras palabras, un ordenador central se encarga de recopilar información de todos los 

nodos de generación y de coordinar las funciones de control. Sin embargo, debe notarse que este enfoque 

centralizado implica una gran complejidad computacional, ya que el ordenador central debe recibir y 

gestionar una enorme cantidad de información de cada nudo generador en cada iteración.  

2. Definición del Proyecto 

El enfoque centralizado del control frecuencia-potencia está ya sobradamente establecido en la actual 

operación de los grandes sistemas de energía eléctrica, pero este no es el caso en el emergente campo de 

los microgrids [1]. Además, sus características estructurales hacen que estos sean especialmente 

adecuados para la implementación de una arquitectura de control distribuido. De este modo, los 

controladores ubicados en cada Recurso de Generación Distribuido (RGD)1 podrían realizar 

colectivamente la misma función que un ordenador central mediante el simple intercambio de 

información local con sus controladores vecinos. 

 
1 El término Recursos de Generación Distribuidos (RGD) hará referencia tanto a generadores síncronos como a 
aquellos conectados a la red a través de inversores (generación renovable principalmente) [1]. 
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A lo largo del proyecto se demostrará cómo la arquitectura de control distribuido para microgrids de 

CA en isla puede replicar la funcionalidad de la regulaciones secundaria y terciaria de los grandes sistemas 

eléctricos. Esta estructura descentralizada puede aportar indudables ventajas sobre el enfoque 

centralizado tradicional, ya que no requiere conocimiento del tipo y características de cada generador, ni 

la existencia de una compleja red de comunicación entre cada RGD y un procesador central responsable 

del manejo de toda esta información. Una arquitectura de control distribuido también aumentaría la 

adaptabilidad del sistema para añadir o eliminar unidades de generación sin afectar a su normal 

funcionamiento [1]. 

3. Descripción General del Sistema 

La arquitectura de control de generación distribuido se implementará en un microgrid de laboratorio 

compuesto por cuatro generadores síncronos interconectados con varias cargas resistivas. Cada RGD 

(HIL's 4th Generation Typhoon HIL404) está equipado con un microcontrolador Arduino Due, capaz de 

intercambiar información (bi o unidireccionalmente) con sus controladores vecinos a través de módulos 

MaxStream XB24-DMCIT-250 rev B integrados. La Figura 1 muestra un esquema representativo del 

sistema. 

Figura 1. Esquema general del proyecto 
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La primera y principal tarea requerirá la síntesis de diferentes algoritmos distribuidos en cuatro 

dispositivos de hardware de control de grado industrial (HIL's 4th Generation Typhoon HIL404). Estos 

algoritmos permitirán a los generadores llevar a cabo tanto la regulación de frecuencia como, 

principalmente, la regulación terciaria.  

Una vez implementado el código en estos dispositivos, el siguiente paso será permitir que cada uno de 

los HIL404 (en la práctica, los RGD) interactúe con sus respectivos microcontroladores Arduino a través 

del protocolo de comunicación CAN Bus. A su vez, estos controladores locales podrán enviar y recibir 

información de forma inalámbrica hacia y desde su vecindario a través de módulos XBee integrados.  

Por último, aunque no será abordado en este proyecto, este sistema de cuatro nodos se sintetizará, a 

través del protocolo de comunicación ModBus, en una simulación en tiempo real del microgrid a nivel de 

laboratorio (dispositivo HIL 603) para probarlo y validarlo frente a diferentes escenarios. 

4. Resultados 

La primera etapa de la implementación del control de generación distribuido, representado en la 

Figura 1, consiste en el desarrollo y programación de los algoritmos distribuidos. En primer lugar, se 

aborda el denominado Ratio-Consensus, un algoritmo lineal iterativo que servirá de punto de partida para 

ejecutar la regulaciones secundaria y terciaria de manera distribuida. Sin embargo, Ratio-Consensus 

resulta insuficiente a la hora de su aplicación práctica, ya que no tiene en cuenta la pérdida de paquetes 

de información al viajar entre nodos. Por lo tanto, se hace necesario desarrollar una extensión de este 

algoritmo: el así llamado Robust Ratio-Consensus.   

Finalmente, utilizamos estos algoritmos preliminares para programar y modelar el algoritmo Robust 

Distributed Primal-Dual, que se probará capaz de resolver de forma distribuida el problema del reparto 

óptimo de generación en un microgrid de CA en funcionamiento en isla. Dejemos que 𝑓𝑖(𝑝𝑖) = 𝑎𝑖 · 𝑝𝑖
2,

𝑖 = 1, 2, 3, 4, denote las funciones de coste de los cuatro RGD del microgrid representado en la Figura 1 

[5]. A continuación, en Figura 2 se incluye la convergencia del algoritmo ante diferentes valores de los 

parámetros 𝑎𝑖. 

La gráfica superior de la Figura 2 muestra el caso en el que 𝑎𝑖 = 0.1, 𝑖 = 1, 2, 3, 4, es decir, los cuatro 

generadores tienen idénticos costes de generación. El resultado es que las potencias de salida convergen 

sinusoidalmente a 0,4 pu, coincidiendo la demanda total previamente fijada en 1,6 pu. En la parte central 

de la Figura 2, las funciones de coste de los DGR se han modificado de forma que 𝑎1 = 𝑎2 = 0.1, 𝑎3 =
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𝑎4 = 0.4. Aunque las curvas se solapan, es fácil ver que la potencia suministrada por los generadores 1 y 

2 (gamma9 y gamma10) es mayor que la suministrada por 3 y 4 (gamma11 y gamma12). Por último, la 

gráfica inferior de la Figura 2 considera el escenario en que todos los DGR tienen diferente rentabilidad: 

𝑎1 = 0.1, 𝑎2 = 0.2, 𝑎3 = 0.3, 𝑎4 = 0.4. Al igual que antes, la potencia generada por cada uno está 

inversamente relacionada con el coste de su generación. Se puede comprobar fácilmente que, en estado 

estacionario, la suma de las cuatro potencias satisface la demanda total de 1,6 pu. 

Con estas simulaciones se pretende ilustrar que el algoritmo Robust Distributed Primal-Dual puede ser 

utilizado para implementar con éxito la regulación terciaria de forma distribuida. Para ello, primero se 

deben desarrollar y testar los protocolos de comunicación que permitirán el intercambio de información 

entre los nodos de la red. 

Figura 2. Convergencia del algoritmo Robust Distributed Primal-Dual 
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En primer lugar, una vez sintetizados los algoritmos de control distribuido en los dispositivos Typhoon 

HIL404, se aborda el intercambio bidireccional de información entre éstos -los DGR- y los controladores 

locales -placas Arduino con módulos XBee integrados- a través del protocolo Controller Area Network 

(CAN o CAN Bus). A continuación, se incluyen los resultados de la prueba de comunicación CAN Bus, si 

bien el presente resumen omitirá una descripción más detallada de este protocolo.  

En lugar de ejecutar el algoritmo completo de regulación terciaria (Robust Distributed Primal-Dual), se 

enviarán cuatro valores constantes (5, 10, 15 y 1) desde el generador HIL a su correspondiente controlador 

local Arduino-XBee. A su vez, el Arduino leerá y procesará esta información, y también transmitirá otras 

cuatro variables desde el microcontrolador al HIL404. Estas se inicializan a 1, 2, 3 y 4, y se incrementarán 

en 0.1 en cada iteración. Estos valores serán recibidos y monitorizados por el dispositivo HIL. Los 

resultados se muestran en la Figura 3. 

En la parte izquierda de la Figura 3, el Serial Port Monitor del microcontrolador Arduino recoge los 

datos recibidos desde el HIL404 a lo largo de un breve fragmento de tiempo. Se puede comprobar 

fácilmente que los valores (con sus respectivos identificadores de mensaje -CanID- de 0 a 3) coinciden con 

las constantes 5, 10, 15 y 1 mencionadas anteriormente. En la parte superior derecha, vemos la evolución 

de las variables enviadas desde el Arduino al dispositivo HIL (aumentando en 0,1 cada vez que se envían). 

Por último, la gráfica inferior derecha representa simplemente un contador del número de veces que se 

recibe cada señal. 

Figura 3. Resultado de la prueba de comunicación CAN Bus 
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Una vez demostrada la efectividad de la comunicación CAN Bus entre los generadores y sus respectivos 

controladores locales, se aborda la siguiente y última capa de comunicación: el intercambio inalámbrico 

de información entre los controladores locales situados en cada RGD. Nos referiremos a esta 

interconexión como comunicación CAN Bus - XBee y, como antes, se incluyen aquí únicamente los 

resultados de la prueba que se ha llevado a cabo. 

Al igual que en el test anterior, no se utilizará en este caso el algoritmo Robust Distributed Primal-Dual 

completo, sino que nos limitaremos a intercambiar algunos valores constantes entre dos nodos. 

Pasaremos al primer HIL404 las mismas entradas constantes que antes (5, 10, 15 y 1), mientras que el 

segundo nodo emitirá los valores 20, 25, 30 y 2 (pese a no ser relevante en este momento, el valor 1 

enviado desde el primer nodo y el valor 2 enviado desde el segundo se corresponden con el identificador 

de cada bus, cuyo conocimiento es requerido por cada controlador local para ejecutar el algoritmo Robust 

Distributed Primal-Dual). Por lo tanto, esperamos ver que cada microcontrolador Arduino recibe a través 

de CAN Bus los valores emitidos por su propio HIL404 por un lado, y los datos XBee procedentes de los 

controladores vecinos por otro. Estos últimos, a su vez, deberían ser transmitidos de nuevo al dispositivo 

HIL de su propio nodo a través de CAN Bus. 

Figura 4. Resultados de la prueba de comunicación CAN Bus – XBee correspondientes al nodo 1 
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La Figura 4 trata de recoger estos resultados para el nodo 1. Se ha incluido la cabecera del Serial Port 

Monitor de Arduino con el número de puerto (COM4) para facilitar la distinción entre nodos. 

El controlador local recibe vía CAN Bus las constantes transmitidas por el HIL404 de su mismo nodo 

(1), pero también recibe vía XBee los valores emitidos por el nodo 2 (neighborID=2, data=20, 25, 30, 2). 

Finalmente, esta información es enviada a su vez a su propio RGD, de nuevo a través del protocolo de 

comunicación CAN Bus. La Figura 4 muestra el Serial Port Monitor del microcontrolador Arduino (arriba), 

cuatro displays digitales con las cuatro señales XBee finalmente recibidas por el HIL404 -desde el Arduino- 

procedentes del nodo 2 (abajo a la izquierda), y la evolución del contador de paquetes de información 

recibidos (abajo a la derecha). Los mismos resultados se presentan en la Figura 5 para el nodo 2. 

Una vez desarrollados los algoritmos de control distribuido y demostrada la capacidad de estos 

protocolos de comunicación para el intercambio inalámbrico de información entre los nodos, se tienen 

todos los elementos para proceder a la implementación la regulación terciaria de manera distribuida. 

Figura 5. Resultados de la prueba de comunicación CAN Bus – XBee correspondientes al nodo 2 
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Desgraciadamente, debido a limitaciones de tiempo y otras dificultades, la implementación del 

algoritmo Robust Distributed Primal-Dual en un banco de pruebas de laboratorio no pudo llevarse a cabo 

en la práctica. Se experimentaron múltiples problemas de conectividad al intentar cargar y ejecutar los 

modelos en los cuatro dispositivos HIL, así como al utilizar una configuración de arranque independiente 

para activar los modelos automáticamente sin conexión con un ordenador. Además, posiblemente debido 

a la falta de una sincronización de reloj adecuada y de protocolos de inicialización como los incluidos en 

[1], o tal vez debido a detalles menores en el código que han podido resultar cruciales en la práctica, a 

menudo se ha incurrido en problemas de sobrecarga de datos, la aparición de valores infinitos y, en el 

mejor de los casos, la no convergencia de las potencias de salida de los generadores. 

5. Conclusión 

El proyecto aquí propuesto ha intentado demostrar que una arquitectura de control de generación 

distribuido, basada en el intercambio de información local entre nodos vecinos y en sencillas 

computaciones, puede realizar las mismas funciones que una estructura centralizada. Además, un 

enfoque distribuido aumentaría la adaptabilidad del sistema para añadir o eliminar unidades de 

generación sin afectar al resto de la red, y evitaría la necesidad de un procesador central responsable de 

almacenar y gestionar enormes cantidades de información y coordinar la respuesta de la red.  

Aunque no ha sido posible completar con éxito una simulación completa de regulación terciaria a nivel 

de laboratorio, el trabajo descrito en este documento ha sido capaz de programar y modelar varios 

algoritmos de control distribuido y ha demostrado -mediante simulaciones por ordenador- la capacidad 

del algoritmo Robust Distributed Primal-Dual para implementar la regulación terciaria de forma 

distribuida. Además, se ha desarrollado y probado el rendimiento de los protocolos de comunicación CAN 

Bus y CAN Bus - XBee en el intercambio de información local entre los nodos de la red. Todo ello se suma 

al trabajo previo sobre arquitecturas de control de generación distribuido para microgrids de CA en isla -

un pequeño fragmento del cual puede encontrarse entre las referencias utilizadas en la redacción de este 

proyecto- y abre puertas a nuevos estudios que continúen lo aquí propuesto. 
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ABSTRACT  

The distributed architecture for Islanded AC Microgrids which we will be working on, replicates and 

intends to optimize the functionality of their generation control architecture in a distributed fashion. In 

this project, we will synthesize numerous distributed algorithms (programmed in C-language) and we will 

implement them on several industrial-grade control hardware units (HIL’s 4th Generation Typhoon 

HIL404). Each HIL device will communicate with an Arduino Due microcontroller via CAN Bus 

communication protocol, which in turn will be able to wirelessly exchange information with each other 

through embedded MaxStream XB24-DMCIT-250 rev B XBee modules. Finally, we will test and validate 

the algorithms and the communication network in a hardware-in-the-loop testbed under a variety of 

scenarios.  

Keywords: microgrid; distributed generation control architecture; distributed control algorithms; 

optimal dispatch; Distributed Generation Resources (DGR); CAN Bus; CAN Bus – XBee. 

1. Introduction 

The nascent field of microgrids is attracting increasing attention and research that seeks to harness its 

potential. It is envisioned that current large and centralized power systems will evolve towards more 

decentralized networks [3]. The work presented herein is intended to take advantage of microgrids’ 

inherit characteristics to optimize their generation control architecture.  

A microgrid can be generically defined as a network of interconnected loads and generators, which is 

physically smaller, has lower power ratings and capacities than large power systems, and can operate in 

isolation from the utility grid. Despite these differences, the normal operation of both microgrids and 

large power systems, e.g., bulk power transmission networks, can be reduced to three requirements: (i) 

supply must match demand, (ii) frequency must be regulated to its nominal value (50 Hz in Europe, 60 Hz 
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in the United States), and (iii) costs of generation must be minimized [1]. Load variations or faults in 

generators and transmission lines can cause a mismatch in the system. 

To deal with these situations, any type of ac power system implements a three-layered (primary, 

secondary and tertiary) generation control architecture. Primary regulation acts instantaneously and is 

responsible for balancing supply and demand, while, at the same time, it ensures that frequency does not 

deviate in excess from its nominal value. Secondary control layer, also called frequency regulation, 

restores nominal frequency and maintains appropriate power interchange between control areas. Finally, 

tertiary regulation -optimal dispatch- is responsible for adjusting the supply levels of the different 

generating units so that the total generation cost of the system is minimized [2], [4]. 

Conventionally, for large power systems, only the first layer -droop control- of the three previously 

mentioned relies on local information. Secondary and tertiary control layers, i.e., frequency regulation 

and optimal dispatch, are based on a centralized control architecture [4]. In other words, a centrally 

located computer is responsible for gathering information from all the generator buses and coordinating 

the control functions. However, this centralized architecture involves a great computational complexity 

since the central computer needs to receive and manage a huge amount of information from every gen-

bus at every iteration.  

2. Project Definition 

The centralized control strategy is already well established in the current operation of large electrical 

power systems, but it is not in the emerging field of microgrids [1]. Besides, its structural characteristics 

make microgrids particularly suitable for a distributed control architecture. In this way, the controllers 

located at each distributed generation resource (DGR)2 could collectively perform the same function as a 

central computer by simply exchanging local information with their neighboring controllers.  

Throughout the project, it will be demonstrated how the distributed control architecture for islanded 

ac microgrids can replicate the functionality of the frequency regulation and optimal dispatch -secondary 

and tertiary control layers- of large electrical systems. This implementation has clear advantages over 

traditional centralized generation controls, since it does not require either full knowledge of the type and 

characteristics of each generator or a complex communication network between each DGR and a central 

 
2 Distributed Generation Resource (DGR) will refer to both synchronous generators and inverter-interfaced power 
supplies [1]. 
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processor. A distributed control structure would also increase the adaptability of the system to add or 

remove generating units without affecting its normal operation [1].  

3. General Description of the System 

The distributed generation control architecture will be implemented on a laboratory-grade microgrid 

comprised of four synchronous generators interconnected with several resistive loads. Each DGR (HIL’s 

4th Generation Typhoon HIL404) is equipped with an Arduino Due microcontroller that is capable of 

exchanging information (bi or unidirectionally) with its neighboring controllers via embedded MaxStream 

XB24-DMCIT-250 rev B XBee modules. A representative schematic of the system is shown in Figure 6.  

The first and main task will require the synthesis of distributed algorithms onto four industrial-grade 

control hardware devices (HIL’s 4th Generation Typhoon HIL404), each one of them representing a DGR. 

These distributed algorithms will enable the generators to perform both frequency regulation and, mainly, 

optimal dispatch.  

Once the code is implemented on the hardware control units, the next step will be to allow each of 

the HIL devices (in practice, the DGRs) to interact with their respective Arduino microcontrollers via CAN 

Figure 6. General diagram of the project 
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Bus communication protocol. These local controllers will be able to wirelessly send and receive 

information to and from their neighborhood through embedded XBee modules.  

Finally, although this will not be addressed in this project, this four-node system will be integrated via 

ModBus communication protocol into a laboratory-grade real-time simulation of the microgrid (HIL 603 

device) to test and validate it under a variety of scenarios.  

4. Results  

The first stage of the distributed generation control implementation, depicted in Figure 6, consists of 

developing and programming the distributed algorithms. First, we address the so-called Ratio-Consensus, 

a linear iterative algorithm which will serve as the starting point to execute frequency regulation and 

optimal dispatch -secondary and tertiary generation control layers- on a distributed basis. However, Ratio-

Consensus happens to be insufficient when it comes to its practical implementation, since it does not 

account for the loss of information packages when traveling among nodes. Therefore, a robust extension 

of this algorithm -Robust Ratio-Consensus- must be developed.  

Finally, we use these preliminary distributed algorithms to program and model Robust Distributed 

Primal-Dual algorithm, which will be proved capable of solving the optimal dispatch problem in an AC 

microgrid in a distributed fashion. Let  𝑓𝑖(𝑝𝑖) = 𝑎𝑖 · 𝑝𝑖
2, 𝑖 = 1, 2, 3, 4, denote the cost functions of the four 

DGRs of the microgrid in Figure 6 [5]. Then, Figure 7 includes the convergence of the algorithm to different 

values of the 𝑎𝑖  parameters.  

Figure 7 (top) shows the case when 𝑎𝑖 = 0.1, 𝑖 = 1, 2, 3, 4, i.e., the four generators have identical 

supply costs. The result is that the power outputs sinusoidally converge to 0.4 pu, matching the total 

demand, previously set to 1.6 pu. In Figure 7 (middle), the DGRs’ cost functions have been modified so 

that 𝑎1 = 𝑎2 = 0.1, 𝑎3 = 𝑎4 = 0.4. Although the curves overlap, it is easy to see that the generated 

power by generators 1 and 2 (gamma9 and gamma10) is greater that the power supplied by 3 and 4 

(gamma11 and gamma12). Lastly, Figure 7 (bottom) considers the situation in which all the DGRs have 

different cost-efficiency: 𝑎1 = 0.1, 𝑎2 = 0.2, 𝑎3 = 0.3, 𝑎4 = 0.4. As before, the power produced by each 

of them is inversely correlated to the cost of its power output. One can easily check that the steady-state 

power supplies add up to meet the total demand of 1.6 pu. 
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With these computer simulations we intend to illustrate that Robust Distributed Primal-Dual algorithm 

can be used indeed to implement optimal dispatch in a distributed fashion. To this end, we first need to 

describe and test the communication protocols that will allow for the exchange of information among 

nodes. 

First, once the distributed control algorithms have been synthesized onto the Typhoon HIL404 devices, 

the bidirectional exchange of information between these -the DGRs- and the local controllers -Arduino 

boards with embedded XBee modules- has been addressed via the Controller Area Network (CAN or CAN 

Bus) protocol. Further details will be omitted in this summary, but we include below the results of the 

CAN Bus communication test.  

Figure 7. Robust Distributed Primal-Dual algorithm successful convergence  
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Instead of running the full optimal dispatch algorithm, four constant values (5, 10, 15 and 1) will be 

sent from the HIL DGR to its Arduino-XBee local controller. In turn, the Arduino will read and process this 

information, and will also send four other variables from the microcontroller to the HIL404. These are 

initialized to the values 1, 2, 3, and 4, and will be increased by 0.1 in each iteration. They will be received 

and monitored by the HIL device. The results are depicted in Figure 8.  

On the left-hand side, the Serial Port Monitor of the Arduino microcontroller gathers the data received 

from the HIL404 over a fragment of time. One can easily check that the values (with their respective 

message identifiers -CanID- from 0 to 3) match the aforementioned constants 5, 10, 15, and 1. At the top 

right, we see the evolution of the variables transmitted from the Arduino to the HIL device (increasing by 

0.1 each time they are sent). Finally, the graph at the bottom right is simply a counter of the number of 

times each signal is received.  

Once CAN Bus communication between the DGRs and their respective local controllers have been 

demonstrated successful, we address the following and last communication layer, i.e., the wireless 

exchange of information among the local controllers located at each DGR. This will be referred to as CAN 

Bus – XBee communication and, as before, we limit ourselves to include here only the results of the test 

that has been conducted. 

Figure 8. CAN Bus communication test results 
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As in the previous test, we will not be using the Robust Distributed Primal-Dual algorithm but 

exchanging some constant values between two nodes, since the only objective here is to test the 

performance of the communication protocol. We are passing to the first HIL404 the same inputs as before 

(5, 10, 15 and 1), whereas the second node will broadcast the values 20, 25, 30 and 2 (not relevant here, 

but the value 1 sent from the first node and the value 2 sent from the second, correspond to the identifier 

of each bus, whose knowledge is required by each local controller to execute Robust Distributed Primal-

Dual algorithm). Therefore, we expect to see every Arduino microcontroller receiving CAN Bus data from 

its own HIL404 on one side, and XBee data coming from the neighboring controllers on the other, which 

in turn should be able to communicate back to its HIL device via CAN Bus.  

Figure 9 tries to gather these results for node 1. The header of the Arduino Serial Port Monitor with 

the port number (COM4) has been included for an easier distinction between nodes. 

Clearly, the local controller receives via CAN Bus the constant inputs passed to the HIL404 of its same 

node (1), but it also receives XBee data taking the values broadcasted by node 2 (neighborID=2, data=20, 

25, 30, 2). Then, this information is sent to its own HIL device. Figure 9 shows the Serial Port Monitor of 

the Arduino microcontroller (top), four digital displays with the four XBee signals finally received by the 

Figure 9. Node 1 CAN Bus – XBee communication test results 
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HIL404 from the Arduino coming from node 2 (bottom left) and the evolution of the counter of received 

information packets (bottom right). The same results are depicted in Figure 10 for node 2.  

Now that the distributed control algorithms have already been developed, and these communication 

protocols have been proved capable of wirelessly exchanging information among nodes, we have all the 

elements to implement optimal dispatch in a distributed fashion.  

Unfortunately, due to time constraints and other difficulties, the implementation of the Robust 

Distributed Primal-Dual algorithm in a laboratory testbed could not be accomplished in practice. We 

experienced multiple connectivity issues when trying to upload and run the models on the four HIL 

devices; and we struggled to use the HIL standalone boot configuration to activate the models 

automatically with no connection to a computer. Moreover, possibly due to the lack of a proper clock 

synchronization and initialization protocols as included in [1], or maybe because of minor details in the 

code that happened to become crucial in practice, we often ran into data overrun issues, the appearance 

of NaN values, and, in the best-case scenario, the non-convergence of the generators’ power outputs. 

Figure 10. Node 2 CAN Bus – XBee communication test results 
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5. Conclusion 

The project here proposed has attempted to prove that a distributed generation control architecture, 

based on local information exchanged with the neighboring nodes and simple computations, can perform 

the same functions as its centralized counterpart. Moreover, a distributed approach would increase the 

adaptability of the system to add or remove generating units without affecting the rest of the network, 

while avoiding the need for resource-consuming central processor. 

Even though we have not been able to complete a successful optimal dispatch simulation in a 

laboratory testbed, the work described in this document has programs and models several distributed 

control algorithms and proved -with software simulations- the capability of Robust Distributed Primal Dual 

algorithm to distributively implement optimal dispatch. Moreover, we develop and test the performance 

of CAN Bus and CAN Bus – XBee communication protocols in the exchange of local information between 

the nodes participating in the distributed algorithms. All this adds to the existing groundwork on 

distributed generation control architectures for islanded AC microgrids -a piece of which can be found 

among the references used in the writing of this thesis- and allows for further developments based on 

what has been proposed herein. 
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1. Introduction 

1.1. Microgrids. Power Systems’ Operation.  

The nascent field of microgrids is attracting increasing attention and research that seeks to harness its 

potential. It is envisioned that current large and centralized power systems will evolve towards more 

decentralized networks [10]. The work presented herein is intended to take advantage of microgrids’ 

inherit characteristics to optimize their generation control architecture.  

A microgrid can be generically defined as a network of interconnected loads and generators, which is 

physically smaller, has lower power ratings and capacities than large power systems, and can operate in 

isolation from the utility grid. Despite these differences, the normal operation of both microgrids and 

large power systems, e.g., bulk power transmission networks, can be reduced to three requirements: (i) 

supply must match demand, (ii) frequency must be regulated to its nominal value (50 Hz in Europe, 60 Hz 

in the United States), and (iii) costs of generation must be minimized [4]. Load variations or faults in 

generators and transmission lines can cause a mismatch in the system. 

When generation overcomes demand, the excess of supply is transformed into an excess of kinetic 

energy that, in turn, involves an increase in the rotating speed of the generators and the frequency of the 

system. When demand is greater than supply, the inverse process leads to a frequency drop. On the one 

hand, sub-frequencies can cause refrigeration difficulties and even the alternators to resonate. Under 

Frequency Load Shedding (UFLS) mechanisms are meant to prevent frequency drops. Over-frequencies, 

on the other hand, increase losses due to hysteresis, Foucault currents, and frictions [8]. 

To deal with these situations, any type of ac power system implements a three-layered (primary, 

secondary and tertiary) generation control architecture. Primary regulation acts instantaneously and is 

responsible for balancing supply and demand, while, at the same time, it ensures that frequency does not 

deviate in excess from its nominal value. Secondary control layer, also called frequency regulation, 

restores nominal frequency and maintains appropriate power interchange between control areas. Finally, 

tertiary regulation -optimal dispatch- is responsible for adjusting the supply levels of the different 

generating units so that the total generation cost of the system is minimized [8], [16]. 
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1.2. Introduction to Distributed Generation Control 

Conventionally, for large power systems, only the first layer -droop control- of the three previously 

mentioned relies on local information. Secondary and tertiary control layers, i.e., frequency regulation 

and optimal dispatch, are based on a centralized control architecture [16]. In other words, a centrally 

located computer is responsible for gathering information from all the generator buses and coordinating 

the control functions. However, this centralized architecture involves a great computational complexity 

since the central computer needs to receive and manage a huge amount of information from every gen-

bus at every iteration.  

As mentioned, this control strategy is already well established in the current operation of large 

electrical power systems, but it is not in the emerging field of microgrids [3]. Besides, its structural 

characteristics make microgrids particularly suitable for a distributed control architecture. In this way, the 

controllers located at each distributed generation resource (DGR)3 could collectively perform the same 

function as a central computer by simply exchanging local information with their neighboring controllers.  

Throughout this thesis, it will be demonstrated how the distributed control architecture for islanded 

ac microgrids can replicate the functionality of the frequency regulation and optimal dispatch -secondary 

and tertiary control layers- of large electrical systems. This implementation has clear advantages over 

traditional centralized generation controls: it does not require either full knowledge of the type and 

characteristics of each generator or a complex communication network between each DGR and a central 

processor. A distributed control structure would also increase the adaptability of the system to add or 

remove generating units without affecting its normal operation [3].  

1.3. Project Overview 

The distributed generation control architecture will be implemented on a laboratory-grade microgrid 

comprised of four synchronous generators interconnected with several resistive loads. Each DGR is 

equipped with an Arduino microcontroller that is capable of exchanging information (bi or 

unidirectionally) with its neighboring controllers via wireless XBee transceivers. A representative 

schematic of the project is shown in Figure 11.  

 
3 In the remainder, the term Distributed Generation Resource (DGR) will collectively refer to both synchronous 
generators and inverter-interfaced power supplies [3]. 
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The first and main task will require the synthesis of distributed algorithms onto four industrial-grade 

control hardware devices (HIL’s 4th Generation Typhoon HIL404), each one of them representing a DGR. 

These distributed algorithms will enable the generators to perform both frequency regulation and, mainly, 

optimal dispatch.  

Once the code is implemented on the hardware control units, the next step will be to allow each of 

the HIL devices (in practice, the DGRs) to interact with their respective Arduino microcontrollers via CAN 

Bus communication protocol. These local controllers will be able to wirelessly send and receive 

information to and from their neighborhood through embedded XBee modules.  

Finally, although this will not be addressed in this thesis, this four-node system will be integrated via 

ModBus communication protocol into a laboratory-grade real-time simulation of the microgrid (HIL 603 

device) to test and validate it under a variety of scenarios.  

  

Figure 12. General diagram of the project.  
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2. Literature Review: Distributed Generation Control Architecture for 

Islanded AC Microgrids 

2.1. Preliminaries 

This section introduces a theoretical framework for distributively implementing a generation control 

architecture in ac microgrids. First, a brief overview is included of the control functions of this architecture, 

which are essentially parallel to those applicable to large power systems. Then, it will follow a dynamical 

analysis of the generators’ behavior, together with the description of the cyber communication network 

interconnecting the local controllers of the DGRs. Finally, we will formulate an iterative algorithm that 

constitutes a starting point for implementing frequency regulation and optimal dispatch on a distributed 

basis.  

2.1.1. Control Objectives 

As it has been previously stated, the generation control objectives for islanded AC microgrids are 

equivalent to those of bulk power systems [3]. The only, yet crucial, difference is that, in this case, these 

objectives will be achieved through a distributed computation, while traditional electrical systems 

commonly rely on centralized architectures. This distributed computation will be based on a simple 

iterative algorithm described in the next chapter. For the time being, a brief discussion is provided of the 

control functions of each of the three layers that typically characterize the generation control. The reader 

is referred to [8] and [16] for further information.  

1) Droop Control 

Also referred to as primary generation control, it acts instantaneously (less than one minute) to balance 

supply and demand after a load variation or any type of fault occurs. It is based on a proportional control; 

thus, it does not completely restore the frequency to its nominal value. Moreover, and more importantly 

concerning this project, droop control is executed on a decentralized basis, since it only relies on local 

measurements and actions taken by each DGR [3]. This means that there is no need for a distributed 

alternative to primary regulation and, therefore, it will not be addressed in the remainder of this thesis.  
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2) Frequency Regulation 

The secondary generation control or automatic generation control (AGC) relies on an integral control 

that adjusts the generators’ set-points to restore the frequency to its nominal value (typically 50/60 Hz). 

It is slower than primary control, and it allows to recover the primary reserve of the generating units. At 

the same time, it is responsible for eliminating the error in the interchange of power between control 

areas. Nevertheless, since no control areas can be distinguished within a microgrid, this functionality will 

not be considered either in the following developments. Finally, its implementation is centralized: a 

central computer gathers data and measurements from every generating unit and coordinates the 

system’s response.  

3) Optimal Dispatch 

The tertiary control reallocates the power supply among the generating units in the most economically 

efficient way. In other words, assuming that the cost derived from each generator is dependent on its 

power output, the objective is to minimize the total generation cost.  

As well as the frequency regulation, this third layer of the control architecture is implemented via a 

centrally located computer [3]. This central controller requires information of, e.g., cost functions, 

maximum and minimum power outputs of each DGR, total supply and demand of the system, the 

magnitude and angle of the phasor associated with the voltage at each bus, and active and reactive power 

injections at every generator and load bus. This is just a sample of the operational complexity that this 

centralized control architecture involves, not to mention the amount of data that needs to flow through 

the cyber layer of the network at every iteration.  

2.1.2. DGRs’ Dynamics and Communication Network 

Firstly, some notions about the dynamic behavior of the generating units of an islanded ac microgrid 

must be introduced in order to implement the aforementioned distributed frequency regulation and 

optimal dispatch. Then, we describe the communication network that will allow the exchange of 

information between the local controllers located at each generator. Figure 12 (extracted from [3]) below 

shows a graphical depiction of the physical (DGRs) and cyber layer (controllers) of a microgrid.  



8 
 

A) Physical Layer Model 

The analysis of the DGRs’ dynamics corresponds to the physical layer of the microgrid [3]. This section 

will briefly recall the dynamical models of both synchronous generators and inverter-interfaced power 

supplies. Although these models will not be addressed or used directly over the project, it has been 

deemed appropriate to include them here in order to provide an overview of how generators are capable 

of adjusting their power supply via their speed governors.  

Figure 14. Per-phase equivalent circuit model of a synchronous generator [4]. 

Figure 13. Block diagram describing the physical and cyber layer of a microgrid’s distributed control architecture [3]. 
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Synchronous generators can be described as constant voltage sources behind a reactance as 

represented in Figure 13 (from [4]), where Xd accounts for the stator winding reactance [4]. For a 

synchronous generator that is injecting active power into the microgrid at bus i, let δi(t) denote the phase 

angle of the voltage source (behind the reactance) as measured with respect to a reference that rotates 

at the system nominal electrical frequency ω0. Let also ωi(t) denote the rotor electrical angular speed. 

Finally, Pi
m(t) denotes the mechanical power applied to the generator, and Pi

r (t) its generation set-point. 

Then: 

𝑑𝛿𝑖

𝑑𝑡
= 𝜔𝑖 −  𝜔0 

𝑀𝑖

𝑑𝜔𝑖

𝑑𝑡
= −𝐷𝑖(𝜔𝑖 − 𝜔0) + 𝑃𝑖

𝑚 − 𝑉𝑖 ∑ 𝑉𝑘[𝐺𝑖𝑘cos (𝜃𝑖

𝑛

𝑘=1

− 𝜃𝑘) + 𝐵𝑖𝑘sin (𝜃𝑖 − 𝜃𝑘)] 

𝜏𝑖

𝑑𝑃𝑖
𝑚

𝑑𝑡
= −𝑃𝑖

𝑚 −
1

𝑅𝑖𝜔0

(𝜔𝑖 − 𝜔0) + 𝑃𝑖
𝑟  

where n is the number of buses of the system, Di [s/rad] is the so-called generator’s damping coefficient, 

Mi [s2/rad] is a scaled inertia constant, 𝜏𝑖 is the time constant of the generator, Ri [pu] is the speed-droop 

characteristic slope, and 𝐺𝑖𝑘  and 𝐵𝑖𝑘  are the real and imaginary part of the system’s admittance matrix 

respectively [3]-[4].  

Inverter-interfaced power supplies can be similarly described by the equivalent model shown in Figure 

13 for synchronous generators [4], i.e., a constant voltage source behind a reactance. Therefore, for an 

inverter-interfaced power supply connected to bus i, let δi(t) denote the phase angle of the voltage source 

(behind the reactance) as measured with respect to a reference that rotates at the system nominal 

electrical frequency ω0, and Pi
r (t) its generation set-point. Then: 

𝑑𝛿𝑖

𝑑𝑡
= 𝜔𝑖 −  𝜔0 =

1

𝐻𝑖
[𝑃𝑖

𝑟 − 𝑉𝑖 ∑ 𝑉𝑘[𝐺𝑖𝑘cos (𝜃𝑖

𝑛

𝑘=1

− 𝜃𝑘) + 𝐵𝑖𝑘sin (𝜃𝑖 − 𝜃𝑘)] 

where Hi [s/rad] is the speed-droop characteristic slope of the generating unit [3]-[4]. 

It is worth mentioning that no reference has been made to the reactive power injected by the 

generators nor to the voltage magnitudes at each bus, since they are not necessary for the development 

of frequency regulation and optimal dispatch algorithms that is addressed herein.   
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B) Cyber Layer Model 

For the successful operation of the distributed generation control architecture, it is required that the 

DGRs can send and receive information from and to one another. This interconnection is achieved through 

the local controllers located at each generating unit, which conform the cyber layer of the microgrid. 

These are capable of both communicating with the respective generator and exchanging data with their 

neighboring controllers. In addition, the controllers can compute simple primitive algorithms that will 

allow for implementing frequency regulation and optimal dispatch [3]. These methods will be addressed 

in the following section but, for the moment, it will be briefly described the communication network 

through which the DGR’s local controllers are interconnected.  

Let  𝒢 = {𝒱, ℰ}  denote a directed graph, where 𝒱 ∶= {1, 2, … , 𝑚} is the set of generator buses, and 

ℰ ⊆ 𝒱 𝑥 𝒱 is the edge set with (𝑖, 𝑗) ∈ ℰ if and only if the controller located at node j can receive 

information from the controller at node i. By using a directed graph, we allow for cases in which bus i can 

send information to bus j ((𝑖, 𝑗) ∈ ℰ), but not the other way around ((𝑗, 𝑖) ∉ ℰ).  

We introduce next the concept of in-neighborhood of node i, i.e., the set of nodes from which the 

controller located at this bus can receive information: 𝒩𝑖
− ∶= {𝑗 ∈ 𝒱 ∶ (𝑗, 𝑖) ∈ ℰ}. Equivalently, the set of 

nodes to which bus i can send information can be defined as its out-neighborhood: 𝒩𝑖
+ ∶= {𝑗 ∈ 𝒱 ∶

(𝑖, 𝑗) ∈ ℰ}. Finally, the cardinality of the out-neighborhood will be denoted as 𝐷𝑖
+ ∶= |𝒩𝑖

+|, and referred 

to in the remainder as the out degree of node i [15].  

The correct coordination of the physical and cyber layers described above and schematized in Figure 

12 will allow for distributively implementing frequency regulation and optimal dispatch. In this case, the 

distributed implementation of the secondary and tertiary generation control functions will rely on a 

primitive iterative model: the so-called Ratio-Consensus algorithm.  

2.1.3. Ratio-Consensus Algorithm  

To compute ratio-consensus, each DGR’s local controller maintains two values denoted as internal 

states. At every iteration, each controller updates its internal states as a linear combination of the previous 

states of all nodes in its in-neighborhood. In particular, at every time instant 𝑘 ≥ 0:  

𝑦𝑖[𝑘 + 1] = ∑
1

𝐷𝑗
+ 𝑦𝑗[𝑘]

𝑗∈𝒩𝑖
− 

 
(2.1a) 
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𝑧𝑖[𝑘 + 1] = ∑
1

𝐷𝑗
+ 𝑧𝑗[𝑘],

𝑗∈𝒩𝑖
− 

 
(2.1b) 

 

where 𝐷𝑗
+ is the out-degree of DGR j that belongs to the in-neighborhood of i (𝑗 ∈ 𝒩𝑖

−) [3]. At every 

iteration, the local controller i also computes  

𝛾𝑖[𝑘] =
𝑦𝑖[𝑘]

𝑧𝑖[𝑘]
 

(2.2) 
 

assuming that  𝑧[𝑘] ≠ 0, ∀ 𝑘 ≥ 0 [3].  

It can be proved [6] that, for 𝑦𝑖[𝑘] and 𝑧𝑖[𝑘] being the result of (2.1) for some 𝑦𝑖[0] and 𝑧𝑖[0] > 0, 

then: 

lim
𝑘→∞

𝛾𝑖[𝑘] =
∑ 𝑦𝑗[0]𝑛

𝑗=1

∑ 𝑧𝑗[0]𝑛
𝑗=1

  ∀𝑖. 
(2.3) 

 

In other words, (2.2) converges to some constant value that is the same for every bus i, which is equal 

to the ratio of the summation of the initial internal states of every node. The number of iterations that 

are required for (2.2) to converge is dependent on the structure of communication network and on the 

out-degrees of the local controllers [3]. 

The consequence of this result is that, only through the exchange of information with their own 

neighborhood, the local controllers can obtain knowledge of the full network (the value of the ratio  

∑ 𝑦𝑗[0]𝑛
𝑗=1

∑ 𝑧𝑗[0]𝑛
𝑗=1

 ). This conclusion suggests that a distributed architecture can indeed perform the same functions 

as a centralized approach. In the remainder, it will be proved that ratio-consensus can be employed as a 

primitive algorithm to distributively implement frequency regulation and optimal dispatch.  

Figure 14. Power system with three generators and one load for Ratio-Consensus application example [4]. 
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2.1.4. Ratio-Consensus – Motivating Application Example 

Let us say that a 5 MW increase in demand (∆𝑃𝐷 = 5 𝑀𝑊) must be collectively covered by three 

synchronous generators (DGR 1, DGR 2 and DGR 3) located nearby. A graphical depiction can be seen in 

Figure 14 (from [4]).  Each DGR can generate between its respective maximum and minimum power 

outputs. In the case of DGR 1, we have that 𝑃1 ∈ [−3, 3]; DGR 2 can supply 𝑃2 ∈ [−5, 5] and DGR 3 

provides 𝑃3 ∈ [−2, 2]. Let us assume further that the three generators were offline (𝑃1 = 𝑃2 = 𝑃3 =

0 𝑀𝑊) at the moment of the load increase. Imagine a scenario in which the DGRs are participating in 

Ratio-Consensus algorithm, and their initial states are initialized as follows:  

𝑦𝑖[0] =
∆𝑃𝐷

𝑛
, 𝑧𝑖[0] = 𝑃𝑖

𝑚𝑎𝑥 − 𝑃𝑖
𝑚𝑖𝑛, 𝑖 = 1,2,3 = 𝑛  

After several iterations, (2.2) will converge to: 

lim
𝑘→∞

𝛾𝑖[𝑘] = lim
𝑘→∞

𝑦𝑖[𝑘]

𝑧𝑖[𝑘]
=

∑ 𝑦𝑗[0]𝑛
𝑗=1

∑ 𝑧𝑗[0]𝑛
𝑗=1

=
∆𝑃𝐷

∑ (𝑃𝑗
𝑚𝑎𝑥 − 𝑃𝑗

𝑚𝑖𝑛)𝑛
𝑗=1

=
1

4
= 𝛾, 𝑖 = 1,2,3 

 Therefore, each generator could determine the power that it must supply in steady state by using this 

information. One possible approach to do this is the following: 

∆𝑃1 = (𝑃1
𝑚𝑎𝑥 − 𝑃1

𝑚𝑖𝑛) · 𝛾 =
3

2
 𝑀𝑊 

∆𝑃2 = (𝑃2
𝑚𝑎𝑥 − 𝑃2

𝑚𝑖𝑛) · 𝛾 =
5

2
 𝑀𝑊 

∆𝑃3 = (𝑃3
𝑚𝑎𝑥 − 𝑃3

𝑚𝑖𝑛) · 𝛾 = 1 𝑀𝑊 

from where one can easily check that: 

∆𝑃1 + ∆𝑃2 + ∆𝑃3 =
3

2
+

5

2
+ 1 = 5 𝑀𝑊 = ∆𝑃𝐷 

 
 

By executing Ratio-Consensus, the DGR’s local controllers have been able to obtain information of the 

full network (𝛾) to compute the fraction of ∆𝑃𝐷 they must cover. This example proves that Ratio-

Consensus can be utilized to compute frequency regulation and, as it will be shown later, as a primitive 

algorithm for distributively implementing optimal dispatch.  
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2.1.5. Ratio-Consensus Practical Implementation – Robust Ratio-Consensus 

In regards to practical implementation, the ratio-consensus algorithm happens to be insufficient, since 

it does not account for the loss of information packets when sent from one bus to another [3]. If the 

communication link between nodes i and j is unavailable at a time instant 𝑘 ≥ 0, the computation of (2.1) 

will be inaccurate and may imply the non-convergence of the algorithm. Therefore, a modified version of 

the ratio-consensus must be implemented in practice.  

In the Robust Ratio-Consensus algorithm (see [7] for a complete description), the DGR’s local 

controllers broadcast a cumulative sum of their internal states up to the current iteration 𝑘. In this way, 

in case of loss of information, the controllers can recover the lost packets at the following successful 

iteration.  

To execute this version of the algorithm, each node i computes the same two internal states as before, 

i.e., 𝑦𝑖[𝑘] and 𝑧𝑖[𝑘] for every 𝑘 ≥ 0. Besides, each bus also maintains two additional values, 𝜇𝑖[𝑘] and 

𝜎𝑖[𝑘], which are accumulated sums of the internal states from 𝑘 = 0. These are the broadcasted values 

to the out-neighbors of bus i to account for unreliable communication. Mathematically:  

𝜇𝑖[𝑘 + 1] = 𝜇𝑖[𝑘] +
1

𝐷𝑖
+ 𝑦𝑖[𝑘] = ∑

1

𝐷𝑖
+ 𝑦𝑖[𝑡]

𝑘

𝑡=0

 
(2.4a) 

 

𝜎𝑖[𝑘 + 1] = 𝜎𝑖[𝑘] +
1

𝐷𝑖
+ 𝑧𝑖[𝑘] = ∑

1

𝐷𝑖
+ 𝑧𝑖[𝑡]

𝑘

𝑡=0

 
(2.4b) 

 

with 𝜇𝑖[0] = 0 and 𝜎𝑖[0] = 0. Then, the internal states are updated as follows:  

𝑦𝑖[𝑘 + 1] =
1

𝐷𝑖
+ 𝑦𝑖[𝑘] + ∑ (𝜐𝑖𝑗[𝑘 + 1]

𝑖≠𝑗; 𝑗∈𝒩𝑖
− 

− 𝜐𝑖𝑗[𝑘]) 
(2.4c) 

 

𝑧𝑖[𝑘 + 1] =
1

𝐷𝑖
+ 𝑧𝑖[𝑘] + ∑ (𝜏𝑖𝑗[𝑘 + 1]

𝑖≠𝑗; 𝑗∈𝒩𝑖
− 

− 𝜏𝑖𝑗[𝑘]) 
(2.4d) 

 

where 𝜐𝑖𝑗[𝑘 + 1] and 𝜏𝑖𝑗[𝑘 + 1] are auxiliar variables whose values depend on the successful 

transmission of information from bus j to bus i at iteration k, i.e., 

𝜐𝑖𝑗[𝑘 + 1] = 𝜇𝑗[𝑘 + 1] , 𝑖𝑓 (𝑖, 𝑗) ∈ ℰ[𝑘]  

𝜐𝑖𝑗[𝑘 + 1] = 𝜐𝑖𝑗[𝑘] , 𝑖𝑓 (𝑖, 𝑗) ∉ ℰ[𝑘]   

 

(2.4e) 
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𝜏𝑖𝑗[𝑘 + 1] = 𝜎𝑗[𝑘 + 1] , 𝑖𝑓 (𝑖, 𝑗) ∈ ℰ[𝑘]  

𝜏𝑖𝑗[𝑘 + 1] = 𝜏𝑖𝑗[𝑘] , 𝑖𝑓 (𝑖, 𝑗) ∉ ℰ[𝑘] 

(2.4f) 
 

where the use of ℰ[𝑘] ⊆ ℰ denotes the corrected edge set at time instant 𝑘 ≥ 0, that accounts for the 

possible failure of communication links [3]-[7]. Finally, as it is shown in [7], the convergence of (2.2) as in 

(2.3), i.e., to the ratio of the summation of the initial internal states of every bus, identically applies to the 

robust version of ratio-consensus.  

Robust Ratio-Consensus provides a solid basis for distributively implementing frequency regulation 

and optimal dispatch. However, as it has been demonstrated in the example in Section 2.1.4, it can be 

directly used to compute, e.g., the amount of power that a group of DGRs must supply to satisfy a certain 

increase in demand (and therefore, to perform frequency regulation). In the remainder, attention will be 

focused on applying Robust Ratio-Consensus algorithm to the third layer of the generation control 

structure for islanded ac microgrids: the optimal coordination of the network’s distributed generation 

resources. 
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2.2. Optimal Coordination of Distributed Generation Resources 

In this chapter, we address the distributed implementation of optimal dispatch, taking as starting point 

the algorithms developed in the previous section. It will be shown that this third layer of the generation 

control architecture can be approached as a convex optimization problem, in which we seek to minimize 

a sum of convex functions, i.e., the generators’ cost functions, respecting a linear equality constraint 

(supply must match demand) and multiple linear inequality constraints due to the DGR’s capacity limits 

[17]. To solve this optimization problem, a preliminary distributed primal-dual algorithm will be presented 

in first place. Then, we will tailor robust ratio-consensus to refine this algorithm and obtain a complete 

set of equations that can successfully synthesize optimal dispatch in a distributed fashion. 

2.2.1. Convex Optimization Problem  

As previously stated, the third layer of the generation control architecture is responsible for minimizing 

the total generation cost of the system while meeting the full electric power demand and respecting the 

capacity limits of the generating units. In the remainder, we assume that the individual generation cost of 

each DGR is a function of its power output. We assume further that these cost functions are quadratic -

thus, twice differentiable, and strongly convex- of the form:  

𝑓𝑖(𝑝𝑖) = 𝑎𝑖 · 𝑝𝑖
2 + 𝑏𝑖 · 𝑝𝑖 + 𝑐𝑖 (2.5) 

 

where 𝑓𝑖(·) denotes the generation cost associated to DGR i, 𝑖 = [1, 2, . . . , 𝑛]; 𝑝𝑖  is the power output; and 

𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are constant parameters [5].  

Therefore, optimal dispatch can be approached through a convex optimization problem, in which we 

intend to minimize a convex function -the sum of the DGRs’ individual cost functions- subject to a linear 

equality constraint related to the total power supply being equal to the total demand (assuming the 

system to be lossless), and linear inequality constraints that account for the DGRs’ capacity limits. 

Mathematically: 

Minimize
𝑝 ∈ 𝑅𝑛

∑ 𝑓𝑖(𝑝𝑖)

𝑘

𝑖=1

= ∑(𝑎𝑖 · 𝑝𝑖
2 + 𝑏𝑖 · 𝑝𝑖 + 𝑐𝑖)

𝑘

𝑖=1

 

        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  1𝑇𝑝 =  1𝑇𝑙                                                 

        𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥                   

 

(2.6a) 

(2.6b) 

(2.6c) 
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where 𝑝 = [𝑝1, 𝑝2, . . . , 𝑝𝑛]𝑇;   𝑙 = [𝑙1, 𝑙, . . . , 𝑙𝑛]𝑇 denotes the power demanded at every bus 𝑖 =

[1, 2, . . . , 𝑛]; 1𝑇 ∈ 𝑅𝑛 is the all-ones vector; and 𝑝𝑚𝑖𝑛 = [𝑝𝑚𝑖𝑛_1, 𝑝𝑚𝑖𝑛_2, . . . , 𝑝𝑚𝑖𝑛_𝑛]𝑇 and 𝑝𝑚𝑎𝑥 =

[𝑝𝑚𝑎𝑥_1, 𝑝𝑚𝑎𝑥_2, . . . , 𝑝𝑚𝑎𝑥_𝑛]𝑇 denote the lower and upper generation limits of each DGR [5], [17]-[18].  

2.2.2. Preliminary Distributed Primal-Dual Algorithm 

By introducing the so-called Lagrange multiplier λ, associated with the power balance constraint, i.e., 

1𝑇𝑝 =  1𝑇𝑙, we have the following primal-dual algorithm [2] to help solve (2.6):  

𝑝𝑖[𝑘 + 1] = [ 𝑝𝑖[𝑘] − 𝑠𝑓𝑖(𝑝𝑖[𝑘]) + 𝑠𝜉λ̅[k] ]𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥  

λ̅[k + 1] = λ̅[k] − 𝑠1𝑇(𝑝[𝑘] − 𝑙) 

(2.7a) 

(2.7b) 
 

where 𝑠 is constant step-size, 𝜉 is costant parameter,  𝑝[𝑘] = [𝑝1[𝑘], 𝑝2[𝑘], . . . , 𝑝𝑛[𝑘]]𝑇 , and [·]𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥  

denotes the projection of p onto the interval defined by its upper and lower limits: p = pmax if p > pmax , p 

= pmin if p > pmin , and p = p if pmin < p < pmax . Finally, λ̅[k] denotes an estimate of the Lagrange multiplier at 

time k ≥ 0.  

To develop a distributed version of (2.7), the controller at bus i must maintain a local estimate of λ̅[k], 

i.e., 𝜆𝑖[𝑘]. In order to obtain 𝜆𝑖[𝑘], each DGR i will also need an estimation of the total power imbalance 

1𝑇(𝑝[𝑘] − 𝑙), which will be denoted as 𝑦𝑖[𝑘]. This will be calculated by computing the average of bus i’s 

power imbalance and the estimates of its neighbors: 

𝑦𝑖[𝑘 + 1] = (1 − ∑ 𝑎𝑖𝑗[𝑘]

𝑗

)𝑦𝑖[𝑘] + ∑ 𝑎𝑖𝑗[𝑘]

𝑗

𝑦𝑗[𝑘] + �̂�(𝑝𝑖[𝑘 + 1] −  𝑝𝑖[𝑘]) (2.8) 

 

where �̂� is an estimate of the number of nodes (n) that each local controller has, and 𝑎𝑖𝑗[𝑘] > 𝜂 > 0 if 

(i, j) ∈ ℰ, and 𝑎𝑖𝑗[𝑘] = 0 otherwise. 𝜂 is chosen so that 1 − ∑ 𝑎𝑖𝑗[𝑘]𝑗 ≥ 𝜂 [18]. 

Now, by introducing the local estimate of the Lagrange multiplier 𝜆𝑖[𝑘] and using (2.8), we can express 

(2.7) in a distributive fashion as: 

𝑝𝑖[𝑘 + 1] = [ 𝑝𝑖[𝑘] − 𝑠𝑓𝑖(𝑝𝑖[𝑘]) + 𝑠𝜉𝜆𝑖[𝑘] ]𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥  

𝜆𝑖[𝑘 + 1] = (1 − ∑ 𝑎𝑖𝑗[𝑘]

𝑗

)𝜆𝑖[𝑘] + ∑ 𝑎𝑖𝑗[𝑘]

𝑗

𝜆𝑗[𝑘] − 𝑠𝑦𝑖[𝑘] 

𝑦𝑖[𝑘 + 1] = (1 − ∑ 𝑎𝑖𝑗[𝑘]

𝑗

)𝑦𝑖[𝑘] + ∑ 𝑎𝑖𝑗[𝑘]

𝑗

𝑦𝑗[𝑘] + �̂�(𝑝𝑖[𝑘 + 1] −  𝑝𝑖[𝑘]) 

(2.9a) 

(2.9b) 

(2.9c) 



17 
 

where 𝜆𝑖[0] = 0; 𝑦𝑖[0] = �̂�(𝑝𝑖[0] −  𝑙𝑖), and 𝑝𝑖[0] and 𝑙𝑖 are given by the system [18].  

Finally, by recalling the ratio-consensus algorithm described in Section 2.1.3 and utilizing it to estimate 

the total power imbalance 𝑦𝑖[𝑘] and the Lagrange multiplier 𝜆𝑖[𝑘], (2.9) can be rewritten for directed 

communication networks as: 

𝑝𝑖[𝑘 + 1] = [ 𝑝𝑖[𝑘] − 𝑠𝑓𝑖(𝑝𝑖[𝑘]) + 𝑠𝜉𝑥𝑖[𝑘] ]𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥  

𝜆𝑖[𝑘 + 1] = ∑
𝜆𝑗[𝑘] − 𝑠𝑦𝑗[𝑘]

𝐷𝑗
+[𝑘]

𝑗∈𝒩𝑖
−[k] 

 

𝜐𝑖[𝑘 + 1] = ∑
𝜐𝑗[𝑘]

𝐷𝑗
+[𝑘]

𝑗∈𝒩𝑖
−[k]

 

𝑥𝑖[𝑘 + 1] =
𝜆𝑖[𝑘 + 1]

𝜐𝑖[𝑘 + 1]
  

𝑦𝑖[𝑘 + 1] = ∑
𝑦𝑗[𝑘]

𝐷𝑗
+[𝑘]

𝑗∈𝒩𝑖
−[k]

+ �̂�(𝑝𝑖[𝑘 + 1] −  𝑝𝑖[𝑘]) 

(2.10a) 

(2.10b) 
 
 
(2.10c) 
 
 

(2.10d) 
 
 

(2.10e) 

where 𝜆𝑖[0] = 0; 𝜐𝑖[0] = 1; 𝑥𝑖[0] = 0; 𝑦𝑖[0] = �̂�(𝑝𝑖[0] −  𝑙𝑖); and 𝑝𝑖[0] and 𝑙𝑖 are given by the system 

[18]. It is required to distinguish between the instantaneous out-degree of node i at time k (𝐷𝑖
+[𝑘]) and 

its nominal out-degree (𝑑𝑖
+). This differentiation lies on the possible loss of information packages when 

sent from bus i, what reduces its number of “real” neighbors at that iteration. In the remainder, it will be 

assumed that only the nominal out-degrees are known by the local controllers [18], which means that a 

robust version of the Distributed Primal-Dual algorithm presented in (2.10) must be developed.  

2.2.3. Robust Distributed Primal-Dual Algorithm 

To account for the lack of knowledge of the instantaneous out-degrees, due to unreliable 

communication links, a variation of the Robust Ratio-Consensus must be implemented (the so-called 

Running-Sum Ratio-Consensus, the reader is referred to [9] for a more detailed depiction of the 

algorithm). Recall the expressions in (2.4a – 2.4d), as well as the convergence of (2.2) as in (2.3), but now 

the auxiliar variables 𝜐𝑖𝑗[𝑘] and 𝜏𝑖𝑗[𝑘], dependent on the successful sending of information from local 

controller j to i, will be updated in a slightly different manner [18]:  
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𝜐𝑖𝑗[𝑘 + 1] = (1 − 𝛾)𝜐𝑖𝑗[𝑘] + 𝛾 ∑
1

𝑑𝑗
+ 𝑦𝑗[𝑡], 𝑖𝑓 𝑗 ∈ 𝒩𝑖

−[𝑘], 𝑗 ≠ 𝑖

𝑘

𝑡=0

 

𝜐𝑖𝑗[𝑘 + 1] = 𝜐𝑖𝑗[𝑘] +
1

𝑑𝑗
+ 𝑦𝑗[𝑘], 𝑖𝑓 𝑗 = 𝑖 

𝜐𝑖𝑗[𝑘 + 1] = 𝜐𝑖𝑗[𝑘], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
(2.11a) 
 

𝜏𝑖𝑗[𝑘 + 1] = (1 − 𝛾)𝜏𝑖𝑗[𝑘] + 𝛾 ∑
1

𝑑𝑗
+ 𝑧𝑗[𝑡]

𝑘

𝑡=0

, 𝑖𝑓 𝑗 ∈ 𝒩𝑖
−[k], 𝑗 ≠ 𝑖 

𝜏𝑖𝑗[𝑘 + 1] = 𝜏𝑖𝑗[𝑘] +
1

𝑑𝑗
+ 𝑧𝑗[𝑘], 𝑖𝑓 𝑗 = 𝑖 

𝜏𝑖𝑗[𝑘 + 1] = 𝜏𝑖𝑗[𝑘], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 
(2.11b) 
 

where 0 < 𝛾 < 1 is constant parameter.  

By using the Robust Ratio-Consensus in (2.4a – 2.4d) with 𝜐𝑖𝑗[𝑘] and 𝜏𝑖𝑗[𝑘] updated as in (2.11), we 

can formulate a robust extension of the Distributed Primal-Dual algorithm depicted in (2.10) [18]:  

𝑝𝑖[𝑘 + 1] = [ 𝑝𝑖[𝑘] − 𝑠𝑓𝑖(𝑝𝑖[𝑘]) + 𝑠𝜉𝑥𝑖[𝑘] ]𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥  

𝜆𝑖[𝑘 + 1] = ∑ (𝜆𝑖𝑗[𝑘 + 1] − 𝜆𝑖𝑗[𝑘] − 𝑠𝑦𝑖𝑗[𝑘 + 1] + 𝑠𝑦𝑖𝑗[𝑘])

𝑗∈𝒩𝑖
−[k] 

 

𝜐𝑖[𝑘 + 1] = ∑ (𝜐𝑖𝑗[𝑘 + 1] − 𝜐𝑖𝑗[𝑘])

𝑗∈𝒩𝑖
−[k] 

 

𝑥𝑖[𝑘 + 1] =
𝜆𝑖[𝑘 + 1]

𝜐𝑖[𝑘 + 1]
  

𝑦𝑖[𝑘 + 1] = ∑ (𝑦𝑖𝑗[𝑘 + 1] − 𝑦𝑖𝑗[𝑘])

𝑗∈𝒩𝑖
−[k] 

+ �̂�(𝑝𝑖[𝑘 + 1] −  𝑝𝑖[𝑘]) 

(2.12a) 

(2.12b) 

 

(2.12c) 

 

(2.12d) 

(2.12e) 

with 𝜆𝑖𝑗[𝑘], 𝜐𝑖𝑗[𝑘] and 𝑦𝑖𝑗[𝑘] updated by tailoring the expressions in (2.11):  

𝜆𝑖𝑗[𝑘 + 1] = (1 − 𝛾)𝜆𝑖𝑗[𝑘] + 𝛾 ∑
1

𝑑𝑗
+ 𝜆𝑗[𝑡], 𝑖𝑓 𝑗 ∈ 𝒩𝑖

−[𝑘], 𝑗 ≠ 𝑖

𝑘

𝑡=0

 

𝜆𝑖𝑗[𝑘 + 1] = 𝜆𝑖𝑗[𝑘] +
1

𝑑𝑗
+ 𝜆𝑗[𝑘], 𝑖𝑓 𝑗 = 𝑖 

𝜆𝑖𝑗[𝑘 + 1] = 𝜆𝑖𝑗[𝑘], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
(2.12f) 
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𝜐𝑖𝑗[𝑘 + 1] = (1 − 𝛾)𝜐𝑖𝑗[𝑘] + 𝛾 ∑
1

𝑑𝑗
+ 𝜐𝑗[𝑡], 𝑖𝑓 𝑗 ∈ 𝒩𝑖

−[𝑘], 𝑗 ≠ 𝑖

𝑘

𝑡=0

 

𝜐𝑖𝑗[𝑘 + 1] = 𝜐𝑖𝑗[𝑘] +
1

𝑑𝑗
+ 𝜐𝑗[𝑘], 𝑖𝑓 𝑗 = 𝑖 

𝜐𝑖𝑗[𝑘 + 1] = 𝜐𝑖𝑗[𝑘], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
(2.12g) 
 

𝑦𝑖𝑗[𝑘 + 1] = (1 − 𝛾)𝑦𝑖𝑗[𝑘] + 𝛾 ∑
1

𝑑𝑗
+ 𝑦𝑗[𝑡]

𝑘

𝑡=0

, 𝑖𝑓 𝑗 ∈ 𝒩𝑖
−[k], 𝑗 ≠ 𝑖 

𝑦𝑖𝑗[𝑘 + 1] = 𝑦𝑖𝑗[𝑘] +
1

𝑑𝑗
+ 𝑦𝑗[𝑘], 𝑖𝑓 𝑗 = 𝑖 

𝑦𝑖𝑗[𝑘 + 1] = 𝑦𝑖𝑗[𝑘], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 
(2.12h) 
 

where 0 < 𝛾 < 1 and the iterative process is initialized with 𝜆𝑖[0] = 0, 𝜐𝑖[0] = 1, 𝑥𝑖[0] = 0, 𝑦𝑖[0] =

�̂�(𝑝𝑖[0] −  𝑙𝑖); and 𝑝𝑖[0] and 𝑙𝑖  are given by the system. The choice of the parameters 𝑠 and 𝜉 will not be 

developed in this paper. Based on the results in [18], reasonable values are 0 < 𝑠 << 1 and 0 < 𝜉 < 1.  

Deeper theoretical analysis of the convergence of this algorithm will not be addressed herein; the 

reader is referred to [18] for further information. However, in this project, Robust Distributed Primal-Dual 

algorithm will be programmed and simulated using the Typhoon HIL Control Center software in first place, 

and then synthesized onto several industrial-grade control hardware devices (HIL’s 4th Generation 

Typhoon HIL404) to showcase its performance in the implementation of optimal dispatch.   
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3. Description of Research Results 

3.1. Distributed Control Algorithms  

Throughout this section, we address the first stage of the distributed generation control 

implementation, i.e., the development and programming of the distributed algorithms. First, a description 

is included of the cyber layer of the microgrid where the algorithms are to be applied. Then, we show the 

modeling, programming and numerical simulations of the three algorithms described above using the 

Typhoon HIL toolchain. 

3.1.1. Communication Graph and Software Utilized to Implement the Distributed Algorithms 

The developed algorithms will be synthesized onto a four-DGRs, laboratory-grade testbed. Each of 

these generators will be equipped with an Arduino microcontroller, with which it will be able to interact. 

In turn, these local controllers will send and receive information, to and from their out- and in-

neighborhood respectively, through the four-node directed communication network depicted in Figure 

15 (from [3]).  

This schematic can be understood as a graphical representation of the cyber-layer of the microgrid, 

which results from tailoring the left-hand side of Figure 2 (see Section 2.1.2) to the system proposed 

herein. In view of Figure 15, we can derive:  

Figure 15. Four-node communication network [3]. 
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𝒩1
− = 𝒩1

+ = {1,2,3};  𝐷1
+ ∶= |𝒩1

+| = 3 

𝒩2
− = 𝒩2

+ = {1,2,4};  𝐷2
+ ∶= |𝒩2

+| = 3 

𝒩3
− = {1,3};   𝒩3

+ = {1,3,4};  𝐷3
+ ∶= |𝒩3

+| = 3 

𝒩4
− = {2,3,4};   𝒩4

+ = {2,4};  𝐷4
+ ∶= |𝒩4

+| = 2 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

With this information we can now address the implementation of the distributed generation control 

algorithms described earlier, i.e., Ratio-Consensus, Robust Ratio-Consensus and Robust Distributed 

Primal-Dual (optimal dispatch).  

The initial synthesis and numerical simulations of the algorithms, as well as the modeling of the 

network described above, has been performed by using the Model-Based System Engineering (MBSE) 

toolchain Typhoon HIL Control Center, designed for high performance and long-term numerical stability 

[13]. In particular, the drawing of the models and the programming and compiling of the algorithms have 

been conducted in the Schematic Editor tool of this software, whereas HIL SCADA has allowed the testing, 

visualization of the results and convergence analysis.   

3.1.2. Ratio-Consensus Algorithm 

 The preliminary Ratio-Consensus lays the groundwork, both theoretically and in terms of 

programming, for developing the rest of the work proposed herein, so it is the first to be addressed.  

Figure 16. Ratio-Consensus algorithm – Typhoon HIL Schematic Editor. 
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A) Model 

Figure 16 shows the model used to implement the basic version of Ratio-Consensus algorithm in the 

Typhoon HIL Schematic Editor software, where each C-function block plays the role of the local controller 

located at a DGR (where the code is synthesized) and the lines interconnecting them represent the 

communication network depicted in Figure 15 and allow the sending and receiving information between 

nodes. The reader is referred to Appendix A for the complete code of the algorithm. 

It is worth noting that, at every iteration k ≥ 0,  each node j broadcasts the values  
𝑦𝑗[k]

𝐷j
+  and 

z𝑗[k]

𝐷j
+  

(denoted by 𝑦_𝐷 and 𝑧_𝐷 respectively in the model) to its out-neighborhood. This prevents the local 

controllers from requiring previous knowledge of the out-degrees of their neighbors (𝐷j
+), so that they 

can update their states by simply adding up the values they receive (𝑦𝑖𝑛1_𝐷 =
𝑦1[𝑘]

𝐷1
+ , . . . , 𝑦𝑖𝑛4_𝐷 =

𝑦4[𝑘]

𝐷4
+ ;  𝑧𝑖𝑛1_𝐷 =

𝑧1[𝑘]

𝐷1
+ , . . . , 𝑧𝑖𝑛4_𝐷 =

𝑧4[𝑘]

𝐷4
+ ).  Note also that each node’s own out-degree is passed as an 

input to the corresponding C-function, since it is assumed to be known by the local controllers. 

Moreover, if there is not a communication link between nodes i and j, then the input i of node j will be 

zero (see node 1, input 𝑦𝑖𝑛4_𝐷). In this regard, the communication network defining the in- and out-

neighborhood of every bus as described in (3.1) has been manually fixed by directly interconnecting the 

corresponding inputs and outputs. However, in a more realistic setup, this could be dynamically 

determined in base of, e.g., the strength of the signals and, therefore, the proximity of two nodes [3].  

Finally, at every iteration each local controller computes 𝛾[𝑘] as in (2.2), which has been referred to 

as gamma in the model. This output is connected to a probe to visualize its evolution.  

B) Simulation 

The algorithm is initialized with the following values for the internal states [3]:  

𝑦1[0] = 0.35; 𝑦2[0] = 0.5; 𝑦3[0] = −0.15; 𝑦4[0] = −0.1 

𝑧1[0] = 0.15; 𝑧2[0] = 0.15; 𝑧3[0] = 0.25; 𝑧4[0] = 0.15 

(3.2a) 

(3.2b) 

Inspection of (2.3) reveals that 𝛾𝑖[𝑘] (𝑔𝑎𝑚𝑚𝑎 in the model) of every node must converge to [6]:  

lim
𝑘→∞

𝛾𝑖[𝑘] =
∑ 𝑦𝑗[0]𝑛

𝑗=1

∑ 𝑧𝑗[0]𝑛
𝑗=1

=
0.6

0.7
= 0.8571, 𝑖 = 1,2,3,4 

 
(3.3) 
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By compiling the model and plotting the information collected by the probes in HIL SCADA (see Figure 

17 below), we can observe that the output signals of the four local controllers (𝛾𝑖[𝑘], 𝑖 = 1,2,3,4) converge 

to the expected value calculated in (3.3) after about eight iterations (eight divisions, 1.0 sec/div, 1 sec. 

execution rate).  

3.1.3. Robust Ratio-Consensus Algorithm 

As explained above, Ratio-Consensus is insufficient when it comes to its practical implementation. To 

mitigate the effects of lost communication packages when sent from one bus to another, a robust version 

of this algorithm must be developed.  

  

Figure 17. Ratio-Consensus algorithm successful convergence – HIL SCADA 

Figure 18. Robust Ratio-Consensus algorithm – Typhoon HIL Schematic Editor. 
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A) Model 

The model developed to synthesize Robust Ratio-Consensus is depicted in Figure 18. Note that the 

values broadcasted by the local controllers are now the running sums 𝜇𝑖[𝑘] = ∑
1

𝐷𝑖
+ 𝑦𝑖[𝑡]𝑘

𝑡=0  and 𝜎𝑖[𝑘] =

∑
1

𝐷𝑖
+ 𝑧𝑖[𝑡]𝑘

𝑡=0  (𝑚𝑢 and 𝑠𝑖𝑔𝑚𝑎) defined in (2.4a – 2.4b), which are then used by each node in its out-

neighborhood to update its internal states 𝑦𝑖[k] and 𝑧i[𝑘] as in (2.4c – 2.4d).  

Inspection of (2.4c – 2.4f) indicates that the controllers are required to maintain, for the next iteration, 

the most recent successfully received values 𝜐𝑖𝑗[𝑘 − 1] and 𝜏𝑖𝑗[𝑘 − 1] from each node in its in-

neighborhood [3]. This has been achieved by creating two arrays (𝜐𝑖𝑗_𝑛𝑒𝑤[𝑖], 𝜏𝑖𝑗_𝑛𝑒𝑤[𝑖], 𝑖 = 1, 2, 3, 4) 

containing all the 𝜇𝑖  and 𝜎𝑖 received from every bus (𝑚𝑢_𝑖𝑛_𝑖, 𝑠𝑖𝑔𝑚𝑎_𝑖𝑛_𝑖, 𝑖 = 1, 2, 3, 4, obviously some 

elements will be zero); and other two dummy arrays (𝜐𝑖𝑗[𝑖], 𝜏𝑖𝑗[𝑖], 𝑖 = 1, 2, 3, 4) saving the previous 

successfully received values. Clearly, at the end of every iteration, 𝜐𝑖𝑗[𝑖] and 𝜏𝑖𝑗[𝑖] are set equal to 

𝜐𝑖𝑗_𝑛𝑒𝑤[𝑖] and 𝜏𝑖𝑗_𝑛𝑒𝑤[𝑖], so that the new received values can be stored in these latter two.  

Note also that the summations in (2.4c – 2.4d) involve that each local controller must know its node 

number (from 1 to 4), i.e., at which node it is located. This have been set as a parameter in the initialization 

of each C-function in the model. Finally, the local controllers compute the ratio of their internal states 

(𝑔𝑎𝑚𝑚𝑎) normally as in (2.2), value that we are monitoring here with a probe as in the Ratio-Consensus 

model. The reader is referred to Appendix A for the complete code of the algorithm.  

B) Simulation 

The internal states of each node are initialized to the same values included in (3.2) for the basic Ratio-

Consensus [3]. But now, in addition, we need to set the running sums 𝜇𝑖[0] and 𝜎𝑖[0] to be zero at the 

beginning of the iterative process.  

Again, 𝛾𝑖[𝑘] =
𝑦𝑖[𝑘]

𝑧𝑖[𝑘]
, i = 1, 2, 3, 4, must converge [6] to 

∑ 𝑦𝑗[0]𝑛
𝑗=1

∑ 𝑧𝑗[0]𝑛
𝑗=1

=
0.6

0.7
= 0.8571 as in (3.3). 

Figure 19 illustrates the evolution of 𝛾𝑖[𝑘] for every node. We see a very similar behavior to the 

observed for Ratio-Consensus algorithm, with a slightly faster convergence after six iterations (six 

divisions, 1.0 sec/div, 1 sec. execution rate) to the value indicated above.  
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3.1.4. Robust Distributed Primal-Dual Algorithm  

By utilizing the Robust Ratio-Consensus as in (2.4a – 2.4d) and (2.11), we develop the algorithm 

described in (2.12). Robust Distributed Primal-Dual algorithm will be proved capable of solving the optimal 

dispatch problem in an AC microgrid in a distributed fashion.  

  

Figure 19. Ratio-Consensus algorithm successful convergence – HIL SCADA 

Figure 20. Robust Ratio-Consensus algorithm – Typhoon HIL Schematic Editor. 
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A) Model 

Figure 20 shows the model utilized to implement the algorithm. As with the robust version of Ratio-

Consensus, we let each local controller j broadcast the accumulated sums ∑
𝜆𝑗[𝑡]

𝑑𝑗
+

𝑘
𝑡=0 , ∑

𝜐𝑗[𝑡]

𝑑𝑗
+

𝑘
𝑡=0  and 

∑
𝑦𝑗[𝑡]

𝑑𝑗
+

𝑘
𝑡=0  (𝑠𝑢𝑚_𝑙𝑎𝑚𝑏𝑑𝑎_𝑑, 𝑠𝑢𝑚_𝑣_𝑑, 𝑠𝑢𝑚_𝑦_𝑑), which will be used by receiving node i to update the 

variables 𝜆𝑖𝑗[𝑘], 𝜐𝑖𝑗[𝑘] and 𝑦𝑖𝑗[𝑘].  

Again, one can check that each agent is required to store the latest 𝜆𝑖𝑗[𝑘], 𝜐𝑖𝑗[𝑘] and 𝑦𝑖𝑗[𝑘], in order 

to update these values (i.e., to calculate 𝜆𝑖𝑗[𝑘 + 1], 𝜐𝑖𝑗[𝑘 + 1] and 𝑦𝑖𝑗[𝑘 + 1]) and to compute the 

summations in (2.12b – 2.12c) and (2.12e). Therefore, as explained in the previous section, three arrays 

𝜆𝑖𝑗_𝑛𝑒𝑤[𝑖], 𝜐𝑖𝑗_𝑛𝑒𝑤[𝑖], 𝑦𝑖𝑗_𝑛𝑒𝑤[𝑖], 𝑖 = 1, 2, 3, 4, have been created to store the most recent calculated 

values, together with three dummy arrays to save the ones of the previous iteration (𝜆𝑖𝑗[𝑖], 𝜐𝑖𝑗[𝑖], 𝑦𝑖𝑗[𝑖],

𝑖 = 1, 2, 3, 4). Besides, inspection of (2.12e) reveals that also the most recent value of the DGRs’ output 

power must be stored, so two different variables 𝑝𝑛𝑒𝑤  (the actual output, monitored by a probe) and 𝑝 

have been used in each node. At the end of each iteration, 𝜆𝑖𝑗[𝑖] = 𝜆𝑖𝑗_𝑛𝑒𝑤[𝑖], 𝜐𝑖𝑗[𝑖] = 𝜐𝑖𝑗_𝑛𝑒𝑤[𝑖],

𝑦𝑖𝑗[𝑖] = 𝑦𝑖𝑗_𝑛𝑒𝑤[𝑖] and 𝑝 = 𝑝𝑛𝑒𝑤. 

This time, in addition to its node number and out-degree, each local controller requires knowledge of 

its DGR’s maximum and minimum power outputs and cost function (parameters a, b and c), the load 

demand at that bus, and the estimation of the number of nodes. In this case, the load has been set as an 

input (to allow for demand variations), whereas the other values (a priori constant for each node), as well 

as the parameters 𝑠, 𝜉, and 𝛾, have been included in the initialization of each C-function block. See 

Appendix A for a complete depiction of the algorithm.  

B) Simulation 

The iterative process is initialized with: 

𝑝𝑖[0] = 0, 𝜆𝑖[0] = 0, 𝜐𝑖[0] = 1, 𝑥𝑖[0] = 0, 𝑦𝑖[0] = �̂� · (𝑝𝑖 − 𝑙𝑜𝑎𝑑𝑖),  

𝜆𝑖𝑗[0] = 𝜐𝑖𝑗[0] = 𝑦𝑖𝑗[0] = 0,   𝑖 = 1, 2, 3, 4 

(3.4) 

where the estimation of the number of nodes has been set to the real number of nodes (�̂� = 4), and the 

load is passed as an input at every bus in the system as shown in Figure 20.  

The parameter values have been chosen as in the numerical simulations performed in [18]: 



27 
 

𝑠 = 0.02, 𝜉 = 0.02, 𝛾 = 0.9 (3.5) 

The load demands at every bus have been picked randomly, to make a total of 1.6 pu (per unit 

magnitude) as can be checked in Figure 20. The generation capacity limits of the DGRs have been also 

arbitrarily selected as:  

𝑝𝑚𝑖𝑛,𝑖 = −1 𝑝𝑢, 𝑝𝑚𝑎𝑥,𝑖 = 1 𝑝𝑢, 𝑖 = 1, 2, 3, 4 (3.6) 

Finally, the DGR’s cost functions have been modified to perform different simulations. As in [18], we 

choose 𝑏𝑖 = 𝑐𝑖 = 0, 𝑖 = 1, 2, 3, 4, so that: 

𝑓𝑖(𝑝𝑖) = 𝑎𝑖 · 𝑝𝑖
2, 𝑖 = 1, 2, 3, 4 (3.7) 

where 𝑎𝑖  will vary to test the performance of the algorithm in different scenarios.  

Figure 21. Robust Distributed Primal-Dual algorithm successful convergence – HIL SCADA.  
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Figure 21 (top) shows the case when 𝑎𝑖 = 0.1, 𝑖 = 1, 2, 3, 4, i.e., the four generators have identical 

cost functions. The result is that the power outputs sinusoidally converge to 0.4 pu, matching the total 

demand of 1.6 pu. Then, we alter the DGRs’ cost functions so that 𝑎1 = 𝑎2 = 0.1, 𝑎3 = 𝑎4 = 0.4 -Figure 

21 (middle)-. Although the curves overlap, it is easy to see that the generated power by generators 1 and 

2 (gamma9 and gamma10) is greater that the power supplied by 3 and 4 (gamma11 and gamma12).  

Finally, Figure 21 (bottom) considers the situation in which all the DGRs have different cost-efficiency: 

𝑎1 = 0.1, 𝑎2 = 0.2, 𝑎3 = 0.3, 𝑎4 = 0.4. As before, the power produced by each of them is inversely 

correlated to the cost of its power output. One can easily check that the steady-state power supplies add 

up to meet the total demand of 1.6 pu. It is worth mentioning that, for this algorithm to converge (after 

about 14 seconds), the execution rate had to be decreased to 0.005 sec., which is consistent with its 

increased computational complexity.  

With these computer simulations we intend to illustrate that Robust Distributed Primal-Dual 

algorithm, largely based on those developed earlier, can be used to implement optimal dispatch in a 

distributed fashion. As explained in Section 1.3, these algorithms are meant to be synthesized onto four 

industrial-grade control hardware devices (HIL’s 4th Generation Typhoon HIL404) in order to perform real-

time simulations of the distributed generation control architecture on a laboratory-grade four-DGRs 

microgrid (not addressed in this paper). In the remainder, we describe the communication protocols that 

allow not only the HIL404 devices (in practice, the DGRs) to exchange information with their respective 

local controllers, but also these to interact with one another.   
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3.2. Laboratory Testbed  

This section will briefly describe the hardware components that have been used as the physical and 

cyber layers of the microgrid testbed. Then, we develop the communication protocols that will enable the 

wireless exchange of information among nodes and, therefore, that will allow for the implementation of 

the distributed control algorithms depicted above.  

3.2.1. Physical and Cyber Layer Hardware  

A) Physical Layer  

The proposed distributed generation control architecture will be implemented on a laboratory-grade 

microgrid with four generation nodes.  The physical layer of this microgrid will be comprised of four HIL’s 

4th Generation Typhoon HIL404. Customized to the HIL Control Center software and tailored for multiple 

interface possibilities including USB 3.0, Ethernet and mainly CAN [13], these devices constitute a very 

suitable option for the work presented herein. 

Designed for automotive drives, Typhoon HIL404 features the most detailed inverter and electric 

motors models, broad compatibility, and several connectivity options. It includes an up-to-four-cores 

processor, 16-bit Analog I/O resolution on all its 16 channels with ±10V voltage range, and 32 Digital I/O 

channels with 3.5 ns GDS oversampling resolution. Time-steps down to 200ns, real-time emulations and 

communication with other devices, and parallel connection of up to four HIL404 (particularly useful for 

their integration in a microgrid) complete the basic specifications of these devices [13]. 

B) Cyber Layer 

The cyber communication network of the microgrid has been built around the open-source electronic 

prototyping platform Arduino. Each DGR is equipped with an Arduino Due microcontroller board, that has 

been connected to a CAN-BUS Shield V2.0 to allow for CAN Bus communication. In turn, a MaxStream 

XB24-DMCIT-250 rev B XBee module embedded in the Arduino shield will enable the wireless exchange 

of information between nodes.  

The Arduino Due board is based on the Atmel SAM3X8E ARM Cortex-M3 CPU, a 32-bit microcontroller 

with an 84 MHz clock, 54 digital I/O pins with a maximum voltage of 3.3 V, 12 analog inputs, and four 

Universal Asynchronous Receiver/Transmitter serial ports (UARTs) [1]. The CAN-BUS Shield acts as an 

interface between the Arduino microcontrollers and the XBees. It features MCP2515 CAN Bus controller 
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with Serial Peripheral Interface speed up to 10 MHz and MCP2551 CAN transceiver to provide CAN Bus 

connectivity to the board [11]. Finally, the Series 1 – chip antenna XBee modules serve as embedded RF 

transceivers that allow the local controllers to wirelessly interact with each other. They operate at 2.4 GHz 

frequency, and provide 3.3 V of rated voltage, 300 ft range, and 250 kbps of data rate [12]. 

In the following sections, we describe the communication protocols developed to allow for the 

exchange of information between nodes through the cyber layer of the microgrid. Once this exchange of 

information is proved successful, we will be in a position to distributively implement optimal dispatch to 

the system here proposed. 

3.2.2. CAN Bus Communication  

Once the distributed control algorithms have been synthesized onto the Typhoon HIL404 devices, the 

bidirectional exchange of information between these -the DGRs- and the local controllers -Arduino boards 

with embedded XBee modules- has been addressed via the Controller Area Network (CAN or CAN Bus) 

protocol.  

Figure 22. CAN Bus Communication – Typhoon HIL Schematic Editor. 
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In order to establish this communication, it was necessary to develop an Arduino script to set the SPI 

CS pin, fix the baud rate of the CAN Bus system, regulate the incoming and outcoming information (e.g., 

binary to float conversion and vice versa) and display the received values. This code can be found in 

Appendix B. In addition, a Typhoon HIL model has been created to implement this communication 

protocol. Figure 22 illustrates the designed CAN Bus communication model in the Typhoon HIL Schematic 

Editor toolchain.  

Exactly one CAN Setup component must exist in the model [13], where the HIL device ID (0 by default), 

baud rates and execution rates are specified. Note also that we are using four CAN Bus Send and four CAN 

Bus Receive components. This makes sense, since -recalling Robust Distributed Primal-Dual algorithm- 

each DGR has to broadcast three different values, i.e., ∑
𝜆𝑗[𝑡]

𝑑𝑗
+

𝑘
𝑡=0 , ∑

𝜐𝑗[𝑡]

𝑑𝑗
+

𝑘
𝑡=0 , ∑

𝑦𝑗[𝑡]

𝑑𝑗
+

𝑘
𝑡=0  

(𝑠𝑢𝑚_𝑙𝑎𝑚𝑏𝑑𝑎_𝑑, 𝑠𝑢𝑚_𝑣_𝑑, 𝑠𝑢𝑚_𝑦_𝑑), plus an identifier of the node at which it is located. Similarly, four 

signals are to be received by the corresponding CAN Bus Receive: the three broadcasted values (received 

as 𝑠𝑢𝑚_𝑙𝑎𝑚𝑏𝑑𝑎_𝑑_𝑖𝑛, 𝑠𝑢𝑚_𝑣_𝑑_𝑖𝑛, 𝑠𝑢𝑚_𝑦_𝑑_𝑖𝑛), and the identifier of the device they are coming 

from. Figure 23 shows dialog window of a CAN Bus Send a Receive component.  

Each HIL404 device has two separate CAN controllers (CAN1 and CAN2) that can be used to send and 

receive information. However, the amount of information managed has only required the use of CAN1 in 

this case. It is worth noting that different message IDs (any number in the range 0 – 2N-1, where N is either 

11 or 29 depending on the chosen ID type) must be used for each CAN Bus component. Although the IDs 

could be repeated between a Receive and a Send block, they have been chosen different as a preventive 

measure (0 – 3 for the sent messages and 100 – 103 for the received) [13]. Since the minimum length for 

Figure 23. CAN Bus Send and CAN Bus Receive dialog window – Typhoon HIL Schematic Editor. 



32 
 

signed float variables is 32 bits and there is no need for working with very large quantities or with many 

decimal places, the message data length has been chosen to be 4 bytes. The execution rate for the CAN 

Bus Receive components has been set to a constant parameter (Ts) defined in the model initialization 

scrips as 0.1 seconds. Testing revealed that multiple signals being sent at the same time led to loss of 

information. Therefore, we set the message transmission rate of the CAN Bus Send blocks to happen On 

event, triggered by a C-function that aims to avoid this situation. Finally, multiple signals could be sent 

(received) in a single message, i.e., by a single CAN Bus Send (Receive) component up to 64 bits (see the 

signal information window at the bottom of Figure 23). Nevertheless, we needed each of them to have 

different IDs for the local controller to be able to recognize them separately and assign them to the 

appropriate variable. Thus, it was decided to send and receive each signal within a different message, i.e., 

a different component. 

The schematic in Figure 22 has been included into a single subsystem which, in turn, has been defined 

as Typhoon Library to simplify its manipulation, edition and integration in other models requiring CAN Bus 

communication protocol. This library block is illustrated in Figure 24 under the name of CanBus 

communication, together with the model that will be used to test this communication protocol.  

Note that, instead of running the full optimal dispatch algorithm, four constant inputs (values 5, 10, 15 

and 1) have been connected to the CAN Bus subsystem. These will be sent from the HIL DGR to the 

Arduino-XBee local controller. In turn, the Arduino will read and process this information, and will also 

send four other variables from the microcontroller to the HIL404. These variables are initialized to values 

1, 2, 3 and 4, and will increase by 0.1 in each iteration. They will be received by the HIL device and 

monitored using the probes connected to the outputs of the Typhoon library. The results of this test are 

depicted in Figure 25.  

Figure 25. Model for CAN Bus communication test – Typhoon HIL Schematic Editor. 
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On the left-hand side, the Serial Port Monitor of the Arduino microcontroller gathers the data received 

from the HIL404 over a fragment of time. One can easily check that the values (with their respective 

message IDs from 0 to 3) match the constants connected to the inputs of the CanBus communication 

library. At the top right, we see the evolution of the variables transmitted from the Arduino to the HIL 

device (increasing by 0.1 each time they are sent). Finally, the graph at the bottom right is simply a counter 

of the number of received signals.  

Once CAN Bus protocol between the DGRs and their respective local controllers have been proven 

successful, we address the following and last communication layer, i.e., the wireless exchange of 

information among the nodes in the cyber network of the microgrid. 

3.2.3. CAN Bus – XBee Communication  

We include the Arduino code developed for the CAN Bus communication into a new Arduino library 

named as CANBUS_XBEE. Although this is not the work of the author of this paper, this library includes 

functions that allow the local controllers to receive information via CAN Bus and to send it through the 

XBee RF modules (canbus2xbee), and vice versa (xbee2canbus).  

Then, as for CAN Bus, we create a new Arduino script for the CAN Bus – XBee communication. Here we 

include CANBUS_XBEE and a slightly modified version of the XBee library -part of the XBee-Arduino 

Figure 26. CAN Bus communication test results – Arduino Serial Port Monitor (left), HIL SCADA (right). 
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Application Programming Interface (API)-. As before, we use this code to set pins, fix baud rates, assign 

objects to libraries, initialize serial ports and specify one for XBee, and, crucially, to declare the 

neighboring agents for each local controller (therefore, this will vary for each node in the cyber network). 

The reader is referred to Appendix B for the complete code. 

Regarding the Typhoon models utilized to implement CAN Bus – XBee communication, we use the 

same schematic described in the previous section (see Figure 22) and included in the CanBus 

communication library. Since at least two nodes are required to test this communication layer, two models 

-implemented in two different HIL404 devices- like the one illustrated in Figure 24 have been used. Figure 

26 shows them together.  

As in the previous test, we will not be using the Robust Distributed Primal-Dual algorithm but 

exchanging some constant values between both nodes, since the only objective here is to test the 

performance of the communication protocol. We are passing to the first HIL404 the same inputs as before 

(5, 10, 15 and 1), whereas the second DGR will broadcast the values 20, 25, 30 and 2 (recall that each 

model is uploaded to a different device). Therefore, we expect to see every Arduino microcontroller 

receiving CAN Bus data from its own HIL404 on one side, and XBee data coming from the neighboring 

controllers on the other, which in turn should be able to communicate back to its HIL device via CAN Bus.  

Figure 27. Models for CAN Bus – XBee communication test – Typhoon HIL Schematic Editor. 
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Figure 27 tries to gather these results for node 1. The header of the Arduino Serial Port Monitor with 

the port number (COM4) has been included for an easier distinction between nodes. 

Clearly, the local controller receives via CAN Bus the constant inputs passed to the HIL404 of its same 

node, but it also receives XBee data taking the values broadcasted by node 2 (neighborID=2, data=20, 25, 

30, 2). Then, this information is sent to its own HIL device and, in this case, displayed in HIL SCADA. Figure 

27 (top) shows the Serial Port Monitor of the Arduino microcontroller, four digital displays with the four 

XBee signals finally received by the HIL404 from the Arduino (bottom left) and the evolution of the counter 

of received information packets (bottom right). The same results are depicted in Figure 28 for node 2.  

It is worth mentioning that other tests with more devices showed that, in fact, only the data from the 

specified neighboring agents (see Arduino code for CAN Bus – XBee communication in Appendix B) was 

received by the local controllers, while the information coming from the rest was blocked. In these cases, 

the Arduino detected that something was arriving from those nodes, but the information was not read 

nor displayed.  

 

Figure 28. Node 1 CAN Bus – XBee communication test results – Arduino Serial Port Monitor (top), HIL SCADA (bottom). 
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Now that the distributed control algorithms have already been developed, and these communication 

protocols have been proved capable of wirelessly exchanging information among the nodes in the cyber 

network of the microgrid, we have all the elements to implement optimal dispatch in a distributed fashion. 

However, as it will be shown in the following section, due to time constraints and other difficulties, this 

could not be accomplished in practice.  

 

  

Figure 29. Node 2 CAN Bus – XBee communication test results – Arduino Serial Port Monitor (top), HIL SCADA (bottom). 
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3.3. Optimal Dispatch Distributed Implementation  

Recall from section 3.1.4. that the optimal dispatch could be successfully achieved in a distributed 

fashion through the Robust Distributed Primal-Dual algorithm described in chapter 2.2. and modeled in 

the Typhoon HIL Schematic Editor toolchain as in Figure 20. To address its practical implementation, it is 

required to complete the model in section 3.1.4 by incorporating the CAN Bus functionality to each node. 

Therefore, and since a separate model must be uploaded to each HIL404 DGR in order to run the algorithm 

simultaneously in all of them, we create four parallel schematics as the one depicted in Figure 29 

corresponding to node 3. 

The CanBus communication library on the right-hand side is identically the same described in section 

3.2.2. The block on the left has been also created as a Typhoon library, and it comprises the C-function 

where the Robust Distributed Primal-Dual algorithm in included, together with some so-called in the 

model Input Functions. Figure 30 shows the model behind the library mask.  

Figure 210. Node 3 model for optimal dispatch implementation – Typhoon HIL Schematic Editor. 

Figure 11. Robust Distributed Primal-Dual library model – Typhoon HIL Schematic Editor. 
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On the right, Robust Distributed Primal-Dual algorithm C-function has already been described earlier, 

and it has only suffered minor changes. The three Input Functions (Appendix A) on the left-hand side, 

which have also been included in a library (since the three of them are identical) to facilitate its 

modification, have two main objectives. On the one hand, they receive two inputs, i.e., one of the values 

broadcasted by each local controller (𝑠𝑢𝑚_𝑙𝑎𝑚𝑏𝑑𝑎_𝑑, 𝑠𝑢𝑚_𝑣_𝑑, 𝑠𝑢𝑚_𝑦_𝑑) and the ID of the node they 

are coming from (0 – 3), and they assign the received value to the appropriate input of the algorithm C-

function block according to the identifier. On the other hand, they include four flags that are raised 

whenever a signal is received from a certain node. This attempts to prevent two values sent by same node 

from being used in the same iteration in case the local controllers are not transmitting with the same 

reliability. Finally, note also that rate transition components have been used in every input to account for 

the fact that the CanBus communication system is not operating at the same execution rate as the optimal 

dispatch algorithm.  

Unfortunately, this setup did not allow the successful laboratory-grade implementation of the 

algorithm. We experienced multiple connectivity issues, mainly trying to use Ethernet to upload and run 

the models on the four HIL devices from a single computer; and we struggled to use the HIL standalone 

boot configuration to activate the models automatically with no connection to a computer. Another 

possible solution consisted of implementing the same four-node model -instead of four different one-

node schematics- onto the four HIL404. After some adjustments regarding the HIL devices IDs and having 

removed the extra CAN Setup components and included some device markers to every input signal in the 

model, the resulting schematic is illustrated in Figure 31.  

Figure 12. Four-node model for optimal dispatch implementation – Typhoon HIL Schematic Editor. 
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Nevertheless, this approach did not seem to yield the expected results either. The only strategy that 

seemed to be functional was the utilization of four different computers connected to each of the HIL404 

devices to implement the four individual models depicted in Figure 29 separately. However, possibly due 

to the lack of a proper clock synchronization and initialization protocols as the included in [3], or maybe 

because of minor details in the code that happened to become crucial in practice, we often ran into data 

overrun issues and the appearance of NaN values.  

We managed to solve most of these problems in the latest version of the models that has been 

described above, but the simulations resulted still in the non-convergence of the generators’ power 

outputs. However, in previous sections, the performance of Robust Distributed Primal-Dual algorithm on 

the implementation the optimal dispatch function has been proved -on software. Besides, we have tested 

and demonstrated the effectiveness of the communication protocols described above to allow for the 

exchange of information through the cyber layer of the microgrid. Thus, it is reasonable to conclude that 

we are close to the successful implementation of distributed optimal dispatch, and this work is left open 

for further developments.  
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4. Conclusion 

Microgrids are physically smaller and usually have lower power ratings and capacities than large power 

systems. In spite of these differences, we have seen that the operation of both microgrids and large 

electrical systems are subject to the same three requirements, i.e., supply must match demand, frequency 

must be kept close to its nominal value, and total generation cost must be minimized. In order to meet 

these conditions, a three-layered generation control architecture is implemented in any type of power 

system.  

Among these layers, only the bottom one (droop control) relies on local information, whereas the 

other two (frequency regulation and optimal dispatch) depend on a centrally-located computer 

responsible for coordinating the control functions. As mentioned, this architecture is already well 

established in large power systems, but it is not in the emerging field of microgrids. The work proposed 

here has attempted to prove that a distributed generation control architecture, based on local 

information exchanged with the neighboring nodes and simple computations, can perform the same 

functions as a centralized one. A distributed approach would increase the adaptability of the system to 

add or remove generating units without affecting the rest of the network, while avoiding the need for 

resource-consuming central processor. 

Even though we have not been able to complete a successful optimal dispatch simulation in a 

laboratory testbed, the work described above has programmed and modeled several distributed control 

algorithms and proved -with software simulations- the capability of Robust Distributed Primal Dual 

algorithm to distributively implement optimal dispatch. Moreover, we have developed and tested the 

performance of CAN Bus and CAN Bus – XBee communication protocols in the exchange of local 

information between the nodes participating in the distributed algorithms. All this adds to the existing 

groundwork on distributed generation control architectures for islanded AC microgrids -a piece of which 

can be found among the references used in the writing of this paper- and allows for further developments 

based on what has been proposed herein.   
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Appendix A: Distributed Control Algorithms  

For being practically identical, only the code corresponding to node 1 in each model will be included 

in this appendix. It must be noted that the Typhoon HIL C-Function component organizes the code as 

follows: the initialization function (init_fnc) is only run once, then, the output (output_fnc) and update 

(update_fnc) functions are run continuously and in this order.  

A.1. Ratio-Consensus Algorithm 

//INIT_FNC 

y_ini = 0.35;   

z_ini = 0.15;  

//The initial values for the internal states of the rest of the nodes can be found in Section 3.1.2. 

y_D = y_ini/D; 

z_D = z_ini/D; 

 

//OUTPUT_FNC 

gamma = y_D/z_D; 

  

 

//UPDATE_FNC 

yin_D[0] = yin1_D; 

yin_D[1] = yin2_D; 

yin_D[2] = yin3_D; 

yin_D[3] = yin4_D; 

zin_D[0] = zin1_D; 

zin_D[1] = zin2_D; 

zin_D[2] = zin3_D; 

zin_D[3] = zin4_D; 

  

sum_y = 0; 

sum_z = 0; 

 

for (i=0; i<=3; i++) { 

   sum_y = sum_y + yin_D[i]; 

   sum_z = sum_z + zin_D[i]; 

} 
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y_D = sum_y/D; 

z_D = sum_z/D; 

 

A.2. Robust Ratio-Consensus Algorithm 

//INIT_FNC  

N=1;  //node number 

  

y_ini = 0.35;   

z_ini = 0.15;  

The initial values for the internal states of the rest of the nodes can be found in Section 3.1.2. 

mu = 0; 

sigma = 0; 

  

for (i=0; i<=3; i++) { 

    vij[i] = 0; 

    tauij[i] = 0; 

} 

  

//OUTPUT_FNC 

mu = mu + y/D; 

sigma = sigma + z/D; 

 

gamma = y/z; 

 

//UPDATE_FNC 

mu_in[0]=mu_in_1; 

mu_in[1]=mu_in_2; 

mu_in[2]=mu_in_3; 

mu_in[3]=mu_in_4; 

sigma_in[0]=sigma_in_1; 

sigma_in[1]=sigma_in_2; 

sigma_in[2]=sigma_in_3; 

sigma_in[3]=sigma_in_4; 
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for (i=0; i<=3; i++) { 

    vij_new[i]=mu_in[i]; 

    tauij_new[i]=sigma_in[i]; 

} 

  

sum_v = 0; 

sum_tau = 0; 

  

for (i=0; i<=3; i++) { 

    if (i!=N-1){ 

        sum_v = sum_v + (vij_new[i]-vij[i]); 

        sum_tau = sum_tau + (tauij_new[i]-tauij[i]); 

    } 

} 

  

y = y/D + sum_v; 

z = z/D + sum_tau; 

  

for (i=0; i<=3; i++) { 

    vij[i] = vij_new[i]; 

    tauij[i] = tauij_new[i]; 

} 

 

A.3. Robust Distributed Primal Dual Algorithm 

//INIT_FNC  

N=1;    //node number 

  

p = 0; 

p_max = 1; 

p_min = -1; 

  

a = 0.1;    //cost function parameters 

b = 0; 

c = 0; 

s = 0.02; 

epsilon = 0.2; 

gamma = 0.9; 

n = 4;    //estimate of the number of nodes 

  

x = 0; 

lambda = 0; 

v = 1; 
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y = n*(p - load_N); 

  

for (i=0; i<=3; i++) { 

        lambdaij[i] = 0; 

        vij[i] = 0; 

        yij[i] = 0; 

} 

  

//OUTPUT_FNC 

sum_lambda_d = sum_lambda_d + lambda/d; 

sum_v_d = sum_v_d + v/d; 

sum_y_d = sum_y_d + y/d; 

  

p_new = p - s*(a*p*p+b*p+c) + s*epsilon*x; 

 

    if (p_new<=p_min) {  

        p_new = p_min;  

    } else if (p_new>=p_max) { 

        p_new = p_max; 

    } 

   

//UPDATE_FNC  

sum_lambda_d_in[0]=sum_lambda_d_in_1; 

sum_lambda_d_in[1]=sum_lambda_d_in_2; 

sum_lambda_d_in[2]=sum_lambda_d_in_3; 

sum_lambda_d_in[3]=sum_lambda_d_in_4; 

  

sum_v_d_in[0]=sum_v_d_in_1; 

sum_v_d_in[1]=sum_v_d_in_2; 

sum_v_d_in[2]=sum_v_d_in_3; 

sum_v_d_in[3]=sum_v_d_in_4; 

  

sum_y_d_in[0]=sum_y_d_in_1; 

sum_y_d_in[1]=sum_y_d_in_2; 

sum_y_d_in[2]=sum_y_d_in_3; 

sum_y_d_in[3]=sum_y_d_in_4; 

  

for (i=0; i<=3; i++) { 

    if (i==N-1) { 

        lambdaij_new[i] = lambdaij[i] + lambda/d; 

        vij_new[i] = vij[i] + v/d; 
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        yij_new[i] = yij[i] + y/d; 

    } else { 

        lambdaij_new[i] = (1-gamma)*lambdaij[i] + 

gamma*sum_lambda_d_in[i]; 

        vij_new[i] = (1-gamma)*vij[i] + gamma*sum_v_d_in[i]; 

        yij_new[i] = (1-gamma)*yij[i] + gamma*sum_y_d_in[i]; 

    } 

} 

  

sum_lambda = 0; 

sum_v = 0; 

sum_y = 0; 

  

for (i=0; i<=3; i++) { 

    sum_lambda = sum_lambda + (lambdaij_new[i] - lambdaij[i]) - 

s*(yij_new[i] - yij[i]); 

    sum_v = sum_v + (vij_new[i] - vij[i]); 

    sum_y = sum_y + (yij_new[i] - yij[i]); 

} 

   

lambda = sum_lambda; 

v = sum_v; 

x = lambda/v; 

y = sum_y + n*(p_new - p); 

  

for (i=0; i<=3; i++) { 

    lambdaij[i] = lambdaij_new[i];   

    vij[i] = vij_new[i]; 

    yij[i] = yij_new[i]; 

} 

  

p = p_new; 

 

A.4. Input Function - Robust Distributed Primal-Dual Library 

//INIT_FNC 

aux1 = 0; 

aux2 = 0; 

aux3 = 0; 

aux4 = 0; 

  

timer = 0; 

t = 0;  
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flag1 = 0; 

flag2 = 0; 

flag3 = 0; 

flag4 = 0; 

   

//OUTPUT_FNC 

sum_in_1 = aux1; 

sum_in_2 = aux2; 

sum_in_3 = aux3; 

sum_in_4 = aux4; 

  

//UPDATE_FNC 

timer += Ts; 

  

if((timer-t) < (Ts*10)) {  

  

    if ((ID_in == 1) && (flag1 == 0)) { 

        aux1 = sum_in; 

        flag1 = 1; 

    } 

  

    if ((ID_in == 2) && (flag2 == 0)) { 

        aux2 = sum_in; 

        flag2 = 1; 

    } 

  

    if ((ID_in == 3) && (flag3 == 0)) { 

        aux3 = sum_in; 

        flag3 = 1; 

    } 

  

    if ((ID_in == 4) && (flag4 == 0)) { 

        aux4 = sum_in; 

        flag4 = 1; 

    } 

} 

  

else { 

    flag1 = 0; 

    flag2 = 0; 
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    flag3 = 0; 

    flag4 = 0; 

  

    t = timer; 

} 

  

if(timer>10000) { 

    timer = 0; 

    t = timer; 

} 
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Appendix B: Communication Protocols 

We include here the Arduino scripts utilized for the CAN Bus and CAN Bus – XBee communication tests 

to define pins, fix baud rates, coordinate the microcontroller incoming and outcoming information display 

the received data and, in the case of the CAN Bus – XBee, declare the neighboring agents for each local 

controller. 

B.1. CAN Bus Communication 

// demo: CAN-BUS Shield, receive data with check mode, send data 

  

#include <SPI.h> 

  

#define CAN_2515     // #define CAN_2518FD 

  

// Set SPI CS Pin according to your hardware 

  

#if defined(SEEED_WIO_TERMINAL) && defined(CAN_2518FD) 

// For Wio Terminal w/ MCP2518FD RPi Hat: 

// Channel 0 SPI_CS Pin: BCM 8 

// Channel 1 SPI_CS Pin: BCM 7 

// Interupt Pin: BCM25 

const int SPI_CS_PIN  = BCM8; 

const int CAN_INT_PIN = BCM25; 

  

#else 

// For Arduino MCP2515 Hat: 

// the cs pin of the version after v1.1 is default to D9 

// v0.9b and v1.0 is default D10 

const int SPI_CS_PIN = 9; 

const int CAN_INT_PIN = 2; 

#endif 

  

#ifdef CAN_2518FD 

#include "mcp2518fd_can.h" 

mcp2518fd CAN(SPI_CS_PIN); // Set CS pin 

#endif 

  

#ifdef CAN_2515 

#include "mcp2515_can.h" 

mcp2515_can CAN(SPI_CS_PIN); // Set CS pin 

#endif 
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union { 

    byte b[8];    //Convert floating variables to bytes and vice-versa 

    float f; 

} data; 

  

float CanID; 

unsigned char len = 0; 

unsigned char info[4], sum_lambda_d[4], sum_v_d[4], sum_y_d[4], ID[4]; 

float sum_lambda_d_in=1,  sum_v_d_in=2, sum_y_d_in=3, ID_in=0; 

     

  

void setup() { 

    SERIAL_PORT_MONITOR.begin(115200); 

  

    while (CAN_OK != CAN.begin(CAN_500KBPS)) { // init can bus : 

baudrate = 500k 

        SERIAL_PORT_MONITOR.println("CAN init fail, retry..."); 

        delay(100); 

    } 

    SERIAL_PORT_MONITOR.println("CAN init ok!"); 

} 

 

 

void loop() { 

     

    //RECEIVE DATA 

  

    if (CAN_MSGAVAIL == CAN.checkReceive()) {         

  

        SERIAL_PORT_MONITOR.println("-----------------------------"); 

  

        CAN.readMsgBuf(&len, info); 

        CanID = CAN.getCanId(); 

         

        if (CanID == 0) { 

 

          for (int i = 0; i < 4; i++) {         

            sum_lambda_d[i] = info[i]; 

          } 

          SERIAL_PORT_MONITOR.print("CanID "); 

          SERIAL_PORT_MONITOR.print(CanID,1); 

          SERIAL_PORT_MONITOR.print(": "); 

          for (int i = 0; i < len; i++) {         

            data.b[i] = sum_lambda_d[i]; 

          } 
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          SERIAL_PORT_MONITOR.println(data.f,3); 

        } 

  

        if (CanID == 1) { 

 

          for (int i = 0; i < 4; i++) {         

            sum_v_d[i] = info[i]; 

          } 

          SERIAL_PORT_MONITOR.print("CanID "); 

          SERIAL_PORT_MONITOR.print(CanID,1); 

          SERIAL_PORT_MONITOR.print(": ");       

          for (int i = 0; i < len; i++) {         

            data.b[i] = sum_v_d[i]; 

          } 

          SERIAL_PORT_MONITOR.println(data.f,3); 

        } 

         

        if (CanID == 2) { 

 

          for (int i = 0; i < 4; i++) {         

            sum_y_d[i] = info[i]; 

          }  

          SERIAL_PORT_MONITOR.print("CanID "); 

          SERIAL_PORT_MONITOR.print(CanID,1); 

          SERIAL_PORT_MONITOR.print(": "); 

          for (int i = 0; i < len; i++) {         

            data.b[i] = sum_y_d[i]; 

          } 

          SERIAL_PORT_MONITOR.println(data.f,3); 

        } 

         

        if (CanID == 3) { 

 

          for (int i = 0; i < 4; i++) {         

            ID[i] = info[i]; 

          } 

          SERIAL_PORT_MONITOR.print("CanID "); 

          SERIAL_PORT_MONITOR.print(CanID,1); 

          SERIAL_PORT_MONITOR.print(": "); 

          for (int i = 0; i < len; i++) {         

            data.b[i] = ID[i]; 

          } 

          SERIAL_PORT_MONITOR.println(data.f,3);           

        } 

    } 
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    // SEND DATA   

  

    sum_lambda_d_in+=0.1,sum_v_d_in+=0.1,sum_y_d_in+=0.1,ID_in+=0.1; 

     

    data.f = sum_lambda_d_in;  

    CAN.sendMsgBuf(100, 0, 4, data.b); 

    delay(100); 

 

    data.f = sum_v_d_in;  

    CAN.sendMsgBuf(101, 0, 4, data.b); 

    delay(100); 

 

    data.f = sum_y_d_in;  

    CAN.sendMsgBuf(102, 0, 4, data.b); 

    delay(100); 

 

    data.f = ID_in;  

    CAN.sendMsgBuf(103, 0, 4, data.b); 

    delay(100); 

     

    SERIAL_PORT_MONITOR.println("CAN BUS sendMsgBuf ok!");    

} 

 

// END FILE 

 

B.2. CAN Bus – XBee Communication 

#include <Streaming.h> 

#include <XBee.h> 

#include <mcp2515_can.h> 

#include <CANBUS_XBEE.h> 

  

// For Arduino MCP2515 Hat: 

// the cs pin of the version after v1.1 is default to D9 

// v0.9b and v1.0 is default D10 

const int SPI_CS_PIN = 9; 

const int CAN_INT_PIN = 2; 

uint8_t sPin = 7; 

uint8_t cPin = 48; 

  

// OBJECTS FOR USER DEFINED LIBRARIES: canbus, xBee, and canbusxbee 

mcp2515_can CAN(SPI_CS_PIN); // Set CS pinModBus 

XBee xbee = XBee(); 

ZBRxResponse rx = ZBRxResponse(); 
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CANBUS_XBEE cx = CANBUS_XBEE(&CAN,&xbee,&rx,1); 

  

void setup() { 

 

  // SERIAL PORTS 

  Serial.begin(38400); 

  Serial3.begin(38400); 

  pinMode(cPin, OUTPUT); 

  pinMode(sPin, OUTPUT); 

  digitalWrite(cPin,HIGH); 

  digitalWrite(sPin,HIGH); 

  

  // ASSIGN SERIAL PORTS TO xBee AND task PROPERTIES 

  xbee.setSerial(Serial3); //Specify the serial port for xbee 

  

  // DECLARE NEIGHBORING AGENTS: must be specified by the user for every 

microcontroller participating in the CAN Bus – XBee communication                                                                         

  cx.addInNeighbor(2); 

  cx.addInNeighbor(3); 

   

  while (CAN_OK != CAN.begin(CAN_500KBPS)) { // init can bus: 

baudrate = 500k 

      Serial.println("CAN init fail, retry..."); 

      delay(100); 

  } 

  Serial.println("CAN init ok!"); 

  

  // TURN OFF ARDUINO PINS 

  digitalWrite(cPin,LOW); 

  digitalWrite(sPin,LOW); 

} 

  

void loop() { 

 

  //CANBUS to XBEE 

  cx.canbus2xbee(4); 

   

  delay(1000); 

   

  //XBEE TO CANBUS 

  cx.xbee2canbus(4); 

} 

 

// END FILE  
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Appendix C: Sustainable Development Goals (SDGs) 

Established by the United Nations in 2015, the Sustainable Development Goals (SGDs) were meant to 

be an appeal to end poverty, inequality, war and violence, injustice, and to fight climate change and the 

degradation of the planet.  These 17 principles lead the way to face the main global challenges and move 

towards a sustainable prosperity [14].  

Even though the work that has been presented above cannot be clearly framed within a specific 

Sustainable Development Goal, it has been deemed consistent with the following SDGs and specific goals:  

SDG DIMENSION SDG IDENTIFIED ROLE GOAL 

Biosphere 

SGD13: Take urgent 

action to combat climate 

change and its effects.  

Secondary 

13.2 Incorporate climate change 

measures into national policies, 

strategies, and plans. 

Society  

SDG7: Ensure access to 

an affordable, reliable, 

sustainable, and modern 

energy.   

 

Primary 

 

7.1 By 2030, ensure universal access to 

affordable, reliable, and modern 

energy services. 

7.2 By 2030, significantly increase the 

share of renewable energy in the global 

energy mix. 

Economy 

SDG9: Build resilient 

infrastructures, promote 

sustainable 

industrialization, and 

foster innovation 

Secondary 

9.4 By 2030, upgrade infrastructure 

and convert industries to make them 

sustainable, using resources more 

efficiently and promoting the adoption 

of clean and environmentally rational 

technologies and industrial processes. 

Table 1. Project alignment with the Sustainable Development Goals (SDGs) [14] 

Table 1 shows the identified SDGs -in this case, each one of them corresponding to each of the three 

dimensions of sustainability-, the primary or secondary role of each SGD, and the specific goal mostly 
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affected by the work developed throughout this document. We proceed now to suggest how the project 

interacts with these concrete objectives.  

Regarding SDG 13: Climate Action, the incorporation of climate change measures must be undoubtedly 

made through the electricity field. Over the last decades, national policies and plans have been adopted 

to move towards the fossil-electricity retirement. Microgrids’ inherit characteristics, with smaller power 

ratings and capacities and a decentralized structure, offer a great opportunity to easily integrate 

renewable-based generation technologies into the utility grid [10].  

It has been considered that the SDG 9: Industry, Innovation, and Infrastructure could be also aligned 

with this project. In fact, microgrids could also help in the upgrade of electricity infrastructure to make it 

more sustainable, efficient, clean, and environmentally rational. In this respect, the distributed generation 

control architecture that has been worked on, could contribute to the renewal of the electricity grid with 

less resource-consuming and more renewable-based networks [3].  

The seventh Sustainable Development Goal, i.e., Affordable and Clean Energy, has been estimated to 

be the most closely related to this project. The decarbonization of the electricity grid has become a priority 

within the global goals for a prosperous and sustainable future. It is key for fighting climate change and 

for keeping it under safe levels. In particular, the energy production is the cause of 60% of greenhouse 

emissions and, consequently, the main contributor to global warming. Moreover, it has become critical to 

facilitate the access to energy and electricity in the developing countries. United Nations has estimated 

that 13% of global population still do not have access to modern electricity services, and that 3000 million 

people still depend on wood, charcoal, or animal waste for cooking [14]. In this regard, we must take 

urgent action to bring a clean and efficient electrification to these developing regions.  

Table 1 identifies to specific goals within this SDG. As it has been mentioned, the structural 

characteristics of microgrids make them particularly suitable for integrating of renewable-based 

generation. Besides, distributed control architectures could favor the participation of inverter-interfaced 

generators in generation control functions (note that, throughout this document, the term DGR has 

referred to both synchronous generators and their inverter-interfaced counterparts). Finally, recall that 

the main objective of this distributed architecture was to increase the grid efficiency by optimizing the 

generation control functions. In comparison with the traditional centralized approach, the distributed 

implementation would increase the adaptability of the system to add or remove generating units without 

affecting the rest of the network, while avoiding the need for resource-consuming central processor [3]. 
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