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Abstract: In this work, we analyze the asymptotic behavior of the solutions for a thermosyphon
model where a binary fluid is considered, a fluid containing a soluble substance, and the Reynold’s
number is large. The presented results are a generalization, in some sense, of the results for a
fluid with only one component provided in Velázquez 1994 and RodrÍguez-Bernal and Van Vleck
1998. We characterize the conditions under which a fast time-dependent solution exits and it is
attracted towards a fast stationary solution as the Reynold’s number tends to infinity. Numerical
experiments were performed in order to illustrate the theoretical results. Using numerical simulations,
we found fast time-dependent solutions close enough to the fast stationary one for certain values of
the parameters.
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1. Introduction

In this work, thermosyphon refers to a family of devices formed by a vertical closed-
loop pipe where an incompressible fluid circulates thanks to the differences of the tempera-
ture from one side of the loop to the other. The flow inside the loop is generated by gravity
and thermal conduction. Then, natural convective movements occur.

There is a vast literature concerning different thermosyphon models; for instance,
see [1–6] and the references therein. After the pioneering works of Keller and Hurle
(see [7,8], respectively), many authors have paid attention to these kinds of models due
to their applications to many industrial fields such as refrigeration and air conditioning,
electronic cooling, nuclear reactors, geothermal heat extraction, etc. We refer to the recent
works [9–11] for some particular applications.

The thermosyphon model allows us to observe many involved behaviors in a phys-
ically simple system. In fact, the problem of convection in a closed-loop thermosyphon
has important implications for the performance of other heating or cooling systems; see,
for instance [12–14], where the boundary layer problem and the impact of the flow of
nanoparticles in nanofluids were studied.

In this work, we were interested in analyzing the thermosyphon model for large
values of the Reynold’s number where a binary fluid is considered, that is we considered
a solute in a fluid, such as water and antifreeze. In this case, we studied also the solute
concentration together with the velocity and the temperature of the fluid. We would like
to refer to [15,16], where a rigorous analysis of the motion of a one-component fluid was
performed for large values of the Reynold’s number. It was shown in [15] that, as Re→ ∞,
the stationary solutions could be classified into two different classes: “fast solutions” for
which the velocity of the fluid is independent of Re as Re >> 1 and “slow solutions” for
which the velocity of the fluid at equilibrium depends on the Reynold’s number as |v| ≈ 1

Re .
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Therefore, we focused on analyzing, for the first time in the literature, fast solutions
for binary fluids, generalizing in some sense the results obtained in [15,16]. This is the main
goal of the present work. We considered the distribution equation of the solute of the loop
as in [8], which is generated by Soret diffusion and reduced by molecular diffusion. Notice
that the Soret effect has a significant impact in the thermosyphon model [1,4]. In fact, inside
a thermosyphon, because of the temperature gradients, the Soret effect induces the solute
concentration gradients significantly, thus initiating a natural convection inside the loop.

In these thermosyphon models, it can be assumed that the cross-sectional area of
the device is constant and smaller than the dimensions of the physical device. Then, the
circuit can be reduced to a closed curve in the space. Therefore, the position in the circuit is
determined by a uni-dimensional variable (x), which is the arc length of the previously
mentioned curve. Moreover, as is common in the literature, the velocity of the fluid is
assumed to be a scalar quantity depending only on time, v(t), instead of the temperature
and solute concentration, which depend on time, as well as on the position of the loop
T(t, x) and S(t, x), respectively; see [1,3,7,8,17].

Our main contributions in this paper are as follows:

• To prove some results about the asymptotic behavior of this thermosyphon model
for a large time, depending on the relevant parameters. In particular, we studied in
detail the behavior of “fast solutions” for large Reynold’s numbers. In Section 3.3,
we generalize for a binary fluid the results obtained in [15,16] considering a one-
component fluid. Moreover, in Corollary 3, a criterion for the nonexistence of “fast
solutions” is shown;

• To provide a numerical analysis of the behavior of “fast solutions” for different values
of the Reynold’s number.

2. Notations and Previous Results

We considered a Newtonian binary fluid (with solute), and we prove some result about
the solutions of (1), which are a generalization of some results ([16]) where the authors
considered a Newtonian fluid with only one component (without a solute).

The evolution of the velocity, temperature, and solute concentration is given by the
following coupled ODE/PDE system when a binary Newtonian fluid and the Soret effect
are considered [1,2,7,8,17–20]; see [4] for details.

ε
dv
dt

+ G(v)v =
∮
(T(t, x)− S(t, x)) f (x)dx, v(0) = v0

∂T
∂t

+ v
∂T
∂x

= H(v)(Ta − T), T(0, x) = T0(x)

∂S
∂t

+ v
∂S
∂x

= c
∂2S
∂x2 − b

∂2T
∂x2 , S(0, x) = S0(x)

(1)

The parameter ε is a positive scalar. x ∈ (0, 1) is the arc length.
∮

=
∫ 1

0 dx denotes
integration along the closed path of the circuit. The function f = dz

dx represents the variation
in height along the circuit, so f describes the geometry of the loop and the distribution
of gravitational forces. Note that

∮
f = 0. The function H(v)(Ta − T) represents the heat

transfer law across the loop wall and is Newton’s linear cooling law, where Ta is the (given)
ambient temperature distribution.

The function G specifies the friction law at the inner wall of the loop. It is usually
taken to be a positive constant for the linear friction case or G(v) = |v| for the quadratic
law [15,16] or even a rather general function given by G(v) = g(Re|v|)|v|, where Re is
a Reynold’s-like number, that is assumed to be large, and g is a smooth strictly positive
function defined on (0, ∞) such that g(s) ≈ A

s as s→ 0 where A is a positive constant and
g(s) ≈ 1 as s → ∞ [15]. Note that if we formally set Re = ∞ in the function G above, we
recover the quadratic law G(v) = |v|, as in this work.
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The functions G, f , and H incorporate relevant physical constants of the model, such as
the cross-sectional area, D, the length of the loop, L, de Prandtl’s, Rayleigh’s, or Reynold’s
numbers, etc.

Finally, ε = D
Lλ∞

where λ∞ is an asymptotic value for the viscous drag force of the
fluid at the wall for large Reynold’s numbers [15]. Note that all functions that depend on
the position x, f , Ta, T0, T, S0, S must be one-periodic functions of x.

The results about the well-posedness and the existence of the global attractor and the
inertial manifold for the solutions of System (1) were given in [4,5,21] (see Proposition A1
in the Appendix A).

Assume that T, f , Ta ∈ Ḣ1
per(0, 1) andS ∈ L̇2

per(0, 1) are given by the following Fourier
series expansions:

Ta(x) = ∑
k∈IZ∗

bke2πkix and f (x) = ∑
k∈IZ∗

cke2πkix withIZ∗ = IZ \ {0} (2)

T(t, x) = ∑
k∈IZ∗

ak(t)e2πkix and S(t, x) = ∑
k∈IZ∗

dk(t)e2πkix (3)

with the initial data T0 ∈ Ḣ1
per(0, 1) given by T0(x) = ∑k∈IZ∗ ak0e2πkix and S0 ∈ L̇2

per(0, 1)
given by S0(x) = ∑k∈IZ∗ dk0e2πkix. Observe that since all functions involved are real, one
has a−k = āk, b−k = b̄k, c−k = c̄k, and d−k = d̄k.

It is important to note that we considered all functions with a zero average. Namely,
integrating the third equation of (1) with respect to x, since T and S are periodic functions,
we have: ∮

∂S
∂t

= −v
∮

∂S
∂x
− b

∮
∂2T
∂x2 + c

∮
∂2S
∂x2 = 0

this is d
dt [
∮

Sdx] = 0 and
∮

S is constant with respect to t, i.e.,
∮

S =
∮

S0 = m0.
From this, we note that the semigroup defined by (1) in IR× H2

per(0, 1)× L2
per(0, 1)

is not a global attractor in this space. However, integrating with respect to x, the second
equation of (1), and taking into account again the periodicity of T, we have that d

dt (
∮

Tdx) =
H(v)(

∮
Tadx−

∮
Tdx). Therefore, if we consider now τ = T −

∮
T and σ = S−

∮
S0, then

from the second and third equation of system (1), we obtain τ and σ and verify the same
equations with τ(0) = T0 −

∮
T0, σ(0) = S0 −

∮
S0 = 0, and τa = Ta −

∮
Ta. Finally, since∮

f = 0, in the equations for v, we have
∮
(T − S) f =

∮
(τ − σ) f . Thus, (v, τ, σ) verifies

System (1) with
∮

τ =
∮

σ =
∮

τa =
∮

σ0 =
∮

τ0 = 0, and the dynamics is essentially
independent of m0. Therefore, in this work, we considered all functions depending on x
to have a zero average in order to prove the existence of the global attractor in the phase
space IR× Ḣ2

per(0, 1)× L̇2
per(0, 1).

Moreover, we would like to point out that the dynamics of the full system (1) are given
by the reduced subsystem for the relevant modes ak(t), dk(t), k ∈ K ∩ J, where Ta (ambient
temperature) and f (the function associated with the geometry of the loop) are given by
the following Fourier expansions:

Ta(x) = ∑
k∈K

bke2πkix, f (x) = ∑
k∈J

cke2πkix, (4)

with K = {k ∈ IZ∗/bk 6= 0}, J = {k ∈ IZ∗/ck 6= 0} and IZ∗ = IZ− {0}.
This important result about the asymptotic behavior was proven in [4,5,21] with

G(v) ≥ G0 > 0, H(v) ≥ H0 > 0 satisfying the hypotheses of Proposition A1 in the
Appendix A. First, we prove that the asymptotic behavior is given by the coefficients of the
set K (associated with Ta) thanks to the inertial manifold of this system, and after, we can
consider a reduced subsystem using the set J (associated with f ).
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The key of this result is in the expression of the right-hand side of the first equation of
the velocity in the system (1), that is:∮

(T − S) f = ∑
k∈K

(ak(t)− dk(t))c̄k = ∑
k∈K∩J

(ak(t)− dk(t))c̄k. (5)

Thus, we have reduced the asymptotic behavior of the initial system (1) to the dynam-
ics of the reduced explicit system (6). It is worth noting that, from the above analysis, it
is possible to design the geometry of the circuit and/or the external heating source, by
properly choosing the functions f and/or the ambient temperature, Ta, so that the resulting
system has an arbitrary number of equations depending on the cardinal of the set K ∩ J.

Therefore, if the set K ∩ J to be finite, we obtain the finite dynamical system, which
describe the dynamics of the system (1).

ε dv
dt + G(v)v = ∑k∈K∩J(ak(t)− dk(t))c̄k

d(ak)
dt + (2πkvi + H(v))ak(t) = H(v)bk, k ∈ K ∩ J

d(dk)
dt + (2πkvi + 4cπ2k2)dk(t) = 4bπ2k2ak(t), k ∈ K ∩ J

(6)

Note that K and J may be infinite sets, but their intersection is finite. For instance, for a
circular circuit, we have f (x) ∼ a sin(x) + b cos(x), i.e., J = {±1}, and then, K ∩ J is either
{±1} or the empty set.

3. Asymptotic Behavior for Large Reynold’s Numbers

In order to study the asymptotic behavior of solutions of System (1) for large Reynold’s
numbers, we considered the function H = Gε(v) =

G(v)
ε and the friction function G(v) =

g(Re|v|)|v|, Re >> 0, which is exactly the model considered in [15,16] for fluids with only
one component. We proceeded in three steps:

• First, in Section 3.1, we prove that the velocity is bounded for every function H(s) ≥
H0 > 0, G(v) ≥ G0 > 0 satisfying the hypothesis of Proposition A1; see Proposition 1.
We also obtain that this bounded is independent of G when we consider the particular
case G(v) = g(Re|v|)|v|; see Proposition 2;

• Next, in Section 3.2, we study the asymptotic behavior for the velocity when we
consider the case H = Hε(v), as in [15,16] for the model with only one component.
We generalize in some sense several results for a binary fluid;

• Finally, in Section 3.3, we consider the particular case for the function H = Gε(v) =
G(v)

ε , and G(v) = g(Re|v|)|v|, Re >> 0 in order to study the existence of the fast
solutions.

3.1. Estimates of the Velocity for G(s) ≥ G0 > 0 and H(s) ≥ H0 > 0

In the next section, we recall some asymptotic bounds on the temperature and the
solute concentration, as time goes to ∞, in terms of bounds on the functions ak(t) and dk(t),
respectively. As in previous works, in order to translate these estimates to the velocity, we
made use of the version of L’Hôpital’s lemma (see Corollary A1 in the Appendix A).

We assumed that H(s) ≥ H0 > 0, G(v) ≥ G0 > 0 satisfies the hypothesis of
Proposition A1.

Proposition 1. For every solution of (6), we have:

lim sup
t→∞

|ak(t)| ≤ |bk|, lim sup
t→∞

|dk(t)| ≤
b
c
|bk| (7)

and:
lim sup

t→∞
|v(t)| ≤ I0(1 +

b
c
) lim sup

t→∞

1
G(v(t))

(8)
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with I0 = ∑
k∈K∩J

|bk||ck|.

Proof. First, from (6), we obtain:

ak(t) = ak(0)e−
∫ t

0 [2πkvi+H(v)] + bk

∫ t

0
H(v(s))e−

∫ t
s [2πkvi+H(v)]drds (9)

dk(t) = dk(t0)e−4cπ2k2(t−t0)e−
∫ t

0 [2πkvi]+

+ 4bπ2k2
∫ t

t0

ak(s)e−4cπ2k2(t−s)e−
∫ t

s [2πkvi]drds. (10)

Now, taking into account that
∣∣e− ∫ t

0 [2πkvi]∣∣ = 1, from (9), we have:

|ak(t)| ≤ |ak(0)|e−
∫ t

0 H(v) + |bk|(1− e−
∫ t

0 H(v))

and we obtain lim supt→∞ |ak(t)| ≤ |bk|. Moreover, using this together with (10) and
working as before, we obtain that lim supt→∞ |dk(t)| ≤ b

c |bk|.
Next, reading the equation for v as:

ε
dv
dt

+ G(v)v = ∑
k∈K∩J

(ak(t)− dk(t))c−k = I(t),

we have:

v(t) = v(t0)e
−
∫ t

t0
Gε +

1
ε

∫ t

t0

I(r)e−
∫ t

r Gε dr;

and denoting by Fε = 1
ε

∫ t
t0

e−
∫ t

r Gε dr = 1
ε

∫ t
t0

e
∫ r

0 Gε

e
∫ t

0 Gε
and using L’Hôpital’s lemma, that is

0 < lim inft→∞
1

G(v) ≤ lim inft→∞ Fε ≤ lim supt→∞ Fε ≤ lim supt→∞
1

G(v) < ∞, we obtain:

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

|I(t)| lim sup
t→∞

1
G(v)

.

Finally, taking into account that:

lim sup
t→∞

|I(t)| ≤ lim sup
t→∞

∑
k∈K∩J

|ak(t)||c−k|+ lim sup
t→∞

∑
k∈K∩J

|dk(t)||c−k|

we obtain:
lim sup

t→∞
|I(t)| ≤ (1 +

b
c
) ∑

k∈K∩J
|bk||c−k|,

and we conclude.

Note that the previous bound on the velocity (as in previous works) is not well suited
for the case in which G(v) = g(Re|v|)|v| since in this case, the lower bound on G (and
therefore, the upper bound on v) may depend on Re, for example in the particular case
g(s) = 1 + A

s for which G(v) = |v| + A
Re ≥

A
Re > 0. To cover this case, we have the

following result.

Proposition 2. For any solutions of (6) and I0 = ∑
k∈K∩J

|bk||ck|, we have:

lim sup
t→∞

|v(t)|2 ≤ I0(1 +
b
c
) lim sup

t→∞

|v(t)|
G(v(t))

.

In particular, if G(v) = g(Re|v|)|v|, then:
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lim sup
t→∞

|v(t)|2 ≤ I0(1 +
b
c
) lim sup

t→∞

1
g(Re|v(t)|) ≤ (1 +

b
c
)

I0

g0

where g0 = in fs{g(s)}, that is the bound of the velocity is independent of Re, depending only on
the function g.

Proof. First, we multiply the equation for the velocity by v(t), and we have:

ε

2
d(v2)

dt
+ G(v)v2 = v ∑

k∈K∩J
(ak(t)− dk(t))c−k = vI(t).

Therefore,

v2(t) = v2(t0)e
−2
∫ t

t0
Gε +

2
ε

∫ t

t0

v(r)I(r)e−2
∫ t

r Gε dr,

and using again L’Hôpital’s lemma together with lim supt→∞ |I(t)| ≤ (1 + b
c )I0, we obtain:

lim sup
t→∞

v(t)2 ≤ 2
ε

lim sup
t→∞

∫ t
t0

v(r)I(r)e−2
∫ r

t0
Gε dr

e−2
∫ t

t0
Gε dr

≤ I0(1 +
b
c
) lim sup

t→∞

|v(t)|
G(v(t)

.

Finally, if G(v) = g(Re|v|)|v|, then lim supt→∞ v(t)2 ≤ (1 + b
c )

I0
g0

, and we con-
clude.

3.2. Estimates of the Velocity Depending on ε, for G ≥ G0 > 0 and
H = Hε(v) =

H0(v)
ε ≥ H0 > 0

In this section, we consider H = Hε(v) =
H0(v)

ε , and we study the asymptotic behavior
when the time goes to ∞, for the dynamical system. We prove that the solutions when ε is
small behave the same as the stationary one.

First, we note that the equilibria points with nonzero velocity are given by:

ak =
H0(v)bk

H0(v) + ε2πkiv

dk =
4bπ2k2ak

2πkiv + 4cπ2k2

G(v)v = ∑
k∈K∩J

(ak − dk)c̄k (11)

Proposition 3. We considered the general friction case, i.e., Gε(v) = G(v)
ε > 0 and H(v) =

H0(v)
ε > 0 such that lim supt→∞

|v(t)|
H0(v)

≤ L, and we assumed that K ∩ J is a finite set. Then, we
obtain:
(i)

lim sup
t→∞

|ak(t)− bk| ≤ ε2π|k||bk| lim sup
t→∞

|v(t)|
H0(v)

; (12)

(ii)

lim sup
t→∞

|dk(t)−
b
c

bk| ≤ ε
b
c

2π|k||bk| lim sup
t→∞

|v(t)|
H0(v)

; (13)

(iii) If I1 = ∑k∈K∩J bkc−k = 0 or b = c, then:

lim sup
t→∞

|v(t)| ≤ ε(1 +
b
c
)2πL ∑

k∈K∩J
|k||bk||c−k| lim sup

t→∞

1
G(v(t))

; (14)
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(iv) If I1 = ∑k∈K∩J bkc−k 6= 0 and b 6= c, then:

lim sup
t→∞

|v(t)| ≤
[
ε(1 +

b
c
)2πL ∑

k∈K∩J
|k||bk||c−k|+ |(1−

b
c
)||I0|

]
lim sup

t→∞

1
G(v(t))

(15)

and:
lim inf

t→∞
|v(t)| ≥ |(1− b

c
)||I1| lim inf

t→∞

1
G(v(t))

−

− ε(1 +
b
c
)2πL ∑

k∈K∩J
|k||bk||c−k| lim sup

t→∞

1
G(v(t))

(16)

which is positive for sufficiently small ε and, in this case, sig(v(t)) = sig[(1− b
c )I1] for large

enough t;
(v) If G is not constant, let v∗ ∈ IR be a solution of:

G(v∗)v∗ = (1− b
c
)I1 = (1− b

c
) ∑

k∈K∩J
bkc−k 6= 0

and assume G(v)v is monotonically increasing in an interval containing v∗.
If v(t) reaches such an interval for sufficiently large t and ε is sufficiently small, then it

remains in this interval and:
lim sup

t→∞
|v(t)− v ∗ | ≤ O(ε).

In particular, if G(v)v is increasing everywhere, then v∗ is unique, and the above holds for
any solutions of the system.

Proof. (i) We note that:

ak(t) = ak(0)e[−
∫ t

0 2πkiv+Hε(v)] + bk

∫ t

0
Hε(v)e[−

∫ t
s 2πkiv+Hε(v)],

with:

âk(t) = bk

∫ t

0
Hε(v)e[−

∫ t
s Hε(v)] = bk(1− e−

∫ t
0 Hε)→ bk ift→ ∞.

Let now τk(t) = ak(t)− âk(t), that is:

τk(t) = ak(0)e[−
∫ t

0 2πkiv+Hε(v)] + bk

∫ t

0
Hε(v(s))e−

∫ t
s Hε(v)(e−

∫ t
s 2πkiv − 1)ds,

and using now that |e−
∫ t

s 2π|k|iv − 1| ≤ 2πk
∫ t

s
|v|, we have that:

lim sup
t→∞

|τk(t)| ≤ 2π|k||bk| lim sup
t→∞

∫ t
0 Hεe

∫ s
0 Hε

∫ t
s |v|ds

e
∫ t

0 Hε

.

Thus, using again L’Hôpital’s lemma, we obtain:

lim sup
t→∞

|τk(t)| ≤ 2π|k||bk| lim sup
t→∞

|v|
Hε(v)

= ε2π|k||bk| lim sup
t→∞

|v|
H0(v)

,

since:

lim sup
t→∞

|v|
∫ t

0 Hεe
∫ s

0 Hε

Hεe
∫ t

0 Hε

≤ lim sup
t→∞

|v|
Hε

lim sup
t→∞

∫ t
0 Hεe

∫ s
0 Hε

e
∫ t

0 Hε
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with:

lim sup
t→∞

∫ t
0 Hεe

∫ s
0 Hε

e
∫ t

0 Hε

≤ lim sup
t→∞

Hε(t)
∫ t

0 e
∫ s

0 Hε

Hε(t)e
∫ t

0 Hε

≤ 1,

and we conclude (i);
(ii) Next, we note that:

dk(t) = ak(0)e−4cπ2k2te−
∫ t

0 2πkiv + 4bπ2k2
∫ t

0
ak(r)e−4cπ2k2(t−r)e−

∫ t
r 2πkvi,

with:

d̂k(t) = 4bπ2k2bk

∫ t

0
e−
∫ t

r [2πkvi+4cπ2k2]dr.

Then, we have that:

lim sup
t→∞

|dk(t)− d̂k(t)| ≤
4bπ2|k|2

|2πkvi + 4cπ2k2| lim sup
t→∞

|ak(t)− bk| ≤
b
c

lim sup
t→∞

|ak(t)− bk|.

since, using again L’Hôpital’s lemma, we obtain:

lim sup
t→∞

∫ t
0 e
∫ r

0 2πkvi+4cπ2k2

e
∫ t

0 2πkvi+4cπ2k2
≤ lim sup

t→∞

e
∫ t

0 2πkvi+4cπ2k2

(2πkvi + 4cπ2k2)e
∫ t

0 2πkvi+4cπ2k2
,

and lim sup d̂k(t) ≤ b
c bk; we conclude (ii);

(iii)–(iv) Reading the equations for v as:

ε
dv
dt

+ G(v)v = ∑
k∈K∩J

(ak(t)− dk(t))c−k = I(t) + (1− b
c
)I1 (17)

with:
I(t) = ∑

k∈K∩J
(ak(t)− bk)c−k − ∑

k∈K∩J
(dk(t)−

b
c

bk)c−k (18)

and I1 = ∑k∈K∩J bkc−k, we have that:

v(t) = v(t0)e
−
∫ t

t0
Gε +

1
ε

∫ t

t0

I(r)e−
∫ t

r Gε dr +
1
ε
(1− b

c
)I1

∫ t

t0

e−
∫ t

r Gε dr, (19)

and denoting by Fε(t) = 1
ε

∫ t
t0

e−
∫ t

r Gεdr and taking into account again that:

0 < lim inf
t→∞

1
Gε(v)

≤ lim inf
t→∞

Fε(t) ≤ lim sup
t→∞

Fε(t) ≤ lim sup
t→∞

1
Gε(v)

< ∞,

we obtain that:
If I1 = 0 or b = c, then:

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

|I(t)|
εGε(t)

≤ lim sup
t→∞

|I(t)|. lim sup
t→∞

1
G(v)

.

and if I1 6= 0 and b 6= c, then:

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

(|I(t)|+ |1− b
c
||I1|). lim sup

t→∞

1
G(v)

and:
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lim inf
t→∞

|v(t)| ≥ |(1− b
c
)||I1|] lim inf

t→∞

1
G(v(t))

− lim sup
t→∞

|I(t)|. lim sup
t→∞

1
G(v)

.

Finally, from (18) using the above parts (i) and (ii), we have that:

lim sup
t→∞

|I(t)| ≤ εM(1 +
b
c
), (20)

with M = 2πL ∑k∈K∩J |k||bk||c−k|, and we conclude (iii) and (iv).
(v) From (20), for any δ > 0, there exists t0 such that for every t ≥ t0:

|I(t)− (1− b
c
)I1| ≤ εN + δ

with N = (1 + b
c )M and M = 2πL ∑k∈K∩J |k||bk||c−k|.

On the other hand, we find that for t ≥ t0, while the solution remains in the interval
where G(v)v is increasing, we obtain that the function u(t) = v(t)− v∗ satisfies:

ε
du
dt

+ G(v)v− G(v∗)v∗ = I(t)

where v∗ satisfies that G(v∗)v∗ = (1− b
c )I1, and then, after multiplying by u(t), we obtain:

du2

dt
+

2L∗

ε
u2 =

2
ε
(εN + δ|u|),

where L∗ is a lower bound on the derivative of G(r)r on the interval. Moreover, if ε is
sufficiently small, from the properties of the solution of the differential inequality ẏ +

a(t)y ≤ by
1
2 , we find the invariance property of the interval, and we conclude that:

lim sup
t→∞

|v(t)− v ∗ | ≤ O(ε).

Moreover, from Proposition 3, we obtain directly the following corollaries.

Corollary 1. If (1− b
c )I1 := (1− b

c )∑k∈K∩J bkc−k = 0 and for some solution of (1), we have
limt→∞v(t) = 0, then:

ak(t)→ bk, dk(t)→
b
c

bk ast→ ∞ for every k ∈ IZ,

that is T(t)→ Ta and S(t)→ b
c Ta.

On the other hand, if (1− b
c )I1 6= 0, then no solution satisfies limt→∞v(t) = 0.

Therefore, if ε → 0 with (1− b
c )I1 = 0 or G(v)v is increasing everywhere, then the

attractor of System (6) is reduced to a point. Moreover, if ε is small, we have:

Corollary 2. Any stationary solutions {v, ak, dk, k ∈ K ∩ J} of System (6) satisfy:

G(v)|v| ≤ (1 +
b
c
)I1, |G(v)v− (1− b

c
)I1| ≤ (1 +

b
c
)ε2π ∑

k∈K∩J
|k||bk||c−k|

and:

|ak| ≤ |bk|; |ak − bk| ≤ ε2π ∑
k∈K∩J

|k||bk||c−k|
|v|

H0(v)
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|dk| ≤
b
c
|bk|; |dk −

b
c

bk| ≤ ε
b
c

2π ∑
k∈K∩J

|k||bk||c−k|
|v|

H0(v)
.

In particular, as ε→ 0, all equilibria collapse to the set points {v∗, bk, b
c bk, k ∈ K ∩ J} where

v∗ range over the solution set of the equations:

G(v)v = (1− b
c
)I1.

Furthermore, if (1 − b
c )I1 = 0 or G(v)v is increasing everywhere, then the attractor of

System (6) collapses respectively to the point {0, bk, b
c bk, k ∈ K ∩ J} or the point {v∗, bk, b

c bk, k ∈
K ∩ J}, where v∗ is the unique solution of G(v)v = (1− b

c )I1.

Remark 1. Recall that functions associated with the circuit geometry, f , and to a prescribed ambient
temperature, Ta, are given by f (x) = ∑k∈J cke2πkix and Ta(x) = ∑k∈K bke2πkix, respectively.

In previous work as [4], using the operator abstract theory, it was proven that if K ∩ J = ∅,
then the global attractor for system Equation (1) in IR × Ḣ1

per(0, 1) × L̇2
per(0, 1) is reduced to

a point.
In this sense, Corollaries 1 and 2 offer the possibility to obtain the same asymptotic behavior

for the dynamics with small ε, i.e., the attractor is also reduced to a point taking functions f and Ta
without this condition, that is with K ∩ J 6= ∅, but on the finite set K ∩ J 6= ∅, this function f and
Ta satisfy the orthogonality conditions, i.e.,

(1− b
c
) ∑

k∈K∩J
bkc−k = 0.

Next, we also note if the function Ta is constant in this case for every f geometry of the loop,
we have the set K ∩ J = ∅, that is, the global attractor for System Equation (1) in IR× Ḣ1

per(0, 1)×
L̇2

per(0, 1) is reduced to a point.
Finally, we note that Proposition 3 implies that when ε is sufficiently small and (1− b

c )I1 6= 0,
although there may be small oscillations of the velocity around some fixed value, the sign of the
velocity is determined by that of (1− b

c )I1, and therefore, the fluid motion inside the circuit is
always clockwise or always counterclockwise. As in viscoelastic fluids, even with a constant G
(see [22]), when we have the orthogonality condition (1− b

c )I1 = 0, the velocity oscillates around
zero, changing sign an infinite number of times, producing complex behavior in the physical device
(see Figure 1).

Figure 1. Example of velocity under the assumption of the orthogonality condition b = c.

3.3. Fast Solutions in the Case of H = Gε(v) =
G(v)

ε and G(v) = g(Re|v|)|v|

Hereafter, we consider H = Gε(v) =
G(v)

ε and the friction function G(v) = g(Re|v|)|v|
in order to study the asymptotic behavior of solutions of System (1) for large Reynold’s
numbers. Hereafter, we consider H = Gε(v) = G(v)

ε and the friction function G(v) =
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g(Re|v|)|v| in order to study the asymptotic behavior of solutions of System (1) for large
Reynold’s numbers.

From the properties of g, it turns out that for nonzero v, G(v) ∼ |v| if the Reynold’s
number is large, but if Re|v| is sufficiently small, then G(v) ∼ A/Re. Therefore, we cannot
expect that the formal limit obtained by setting Re = ∞ in (6) (and then G(v) = |v| for all
v ∈ R) will describe in a faithful manner the dynamics of the system for large Re.

However, we show in this section that it is possible to prove some results about the
asymptotic behavior of solutions that retain the velocity bounded away from zero.

First, we considered the stationary solutions with nonzero velocity for large Reynold’s
numbers. According to Velázquez (1994), taking G(v) = |v| in (11), we obtain the class of
stationary solutions denoted by fast stationary solutions.

Note that the set of equilibria with nonzero velocity, (v f , a f
k , d f

k ) fast stationary solu-
tions, with Re→ ∞, i.e., with G(v) = |v|, are given by:

a f
k =

G(v)bk
G(v) + ε2πkiv

=
bk

1± 2πkεi
with G(v) = |v| (21)

d f
k =

4bπ2k2ak
2πkiv + 4cπ2k2 =

b
c

2πk

2πk + i v f

c

a f
k witha f

k =
bk

1± 2πkεi
(22)

G(v f )v f = ∑
k∈K∩J

(a f
k − d f

k )c−k = I± with G(v) = |v| (23)

plus the compatibility conditions sig(I±) = ±, where ± denotes the sign of v f .
In these cases, if sig(I+) = +, then (v f

+, a f
k , d f

k ), k ∈ K ∩ J is the positive fast stationary

solution, and if sig(I−) = −, then (v f
−, a f

k , d f
k ), k ∈ K ∩ J is the negative fast stationary

solution.
Now, we study the existence of fast time-dependent solutions, that is the solutions

depending on time, such that the velocity does not go to zero when the time goes to ∞, for
large Reynold’s numbers.

Now, we assumed that (1− b
c )I1 6= 0 with I1 = ∑k∈K∩J bkc−k as in the above section,

and we considered the solutions of System (6) such that lim inft→∞ |v(t)| is bounded away
from zero as Re→ ∞, i.e., the sign of v(t) is fixed for t large enough. This kind of solutions
is called a positive fast time solution if v(t) > 0 or a negative fast time solution if v(t) < 0
for t and Re large enough.

We show below that the fast stationary solutions such that I± = (1− b
c )∑k∈K∩J bkc−k

attract the dynamics of fast time-dependent solutions.

Proposition 4. We assumed there exists a solution of (6) such that v(t) is bounded away from zero
for t > t0 > 0, and thus, the sign of v(t) is constant for large enough t.

Then, for every k we have:
(i)

lim sup
t→∞

|ak(t)− a f
k | ≤ ε2π|k||bk| lim sup

t→∞

∣∣∣ |v(t)|
G(v)

− 1
∣∣∣ =

= ε2π|k||bk| lim sup
t→∞

∣∣∣ 1
g(Re|v(t)|)

− 1
∣∣∣; (24)

(ii)

lim sup
t→∞

|dk(t)−
b
c

a f
k | ≤ ε2π|k||bk|

b
c

lim sup
t→∞

∣∣∣ |v(t)|
G(v)

− 1
∣∣∣ =

= ε2π|k| b
c
|bk| lim sup

t→∞

∣∣∣ 1
g(Re|v(t)|)

− 1
∣∣∣ (25)
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with a f
k given by (21), and we also have:

lim sup
t→∞

|dk(t)−
b
c

a f
k

2πk

πk + i v(t)
c

| ≤ ε2π|k||bk|
b
c

lim sup
t→∞

∣∣∣ |v(t)|
G(v)

− 1
∣∣∣ =

= ε2π|k| b
c
|bk| lim sup

t→∞

∣∣∣ 1
g(Re|v(t)|)

− 1
∣∣∣ (26)

Moreover, we have that:
(iii)

lim sup
t→∞

|dk(t)− d f
k | ≤ ε2π|k||bk|

b
c

lim sup
t→∞

∣∣∣ |v(t)|
G(v)

− 1
∣∣∣+ 2π|k||d f

k | lim sup
t→∞

|v(t)− v f | =

= ε2π|k| b
c
|bk| lim sup

t→∞

∣∣∣ 1
g(Re|v(t)|)

− 1
∣∣∣+ 2π|k||d f

k | lim sup
t→∞

|v(t)− v f | (27)

with a f
k and d f

k given by (21) and (22), respectively, as well as with G(v) = g(Re|v|)|v|.

Proof. (i) We note that:

ak(t) = ak(t0)e
[−
∫ t

t0
2πkiv+Gε(v)] + bk

∫ t

t0

Gε(v)e[−
∫ t

s 2πkiv+Gε(v)], (28)

with:

â±k (t) = bk

∫ t

t0

Gε(v)e−
∫ t

s [Gε(v)±2πkiG]ds.

Changing variables r =
∫ t

s Gε, we obtain:

â±k (t) = bk

∫ ∫ t
t0

Gε

0
e−(1±2πkiε)rdr =

bk
1± 2πkiε

(1− e−(1±2πkiε)
∫ t

0 Gε) and

â±k (t)→
bk

1± 2πkiε
= a f

k (given by (21)) ast→ ∞.

Let now τ±k (t) = ak(t)− â±k (t); from (28), we have:

lim sup
t→∞

|τ±k (t)| ≤ |bk| lim sup
t→∞

∫ t

t0

Gεe−
∫ t

s Gε |e−
∫ t

s 2πkiv − e−
∫ t

s ±2πkiG|ds.

Using now that |e−
∫ t

s 2πki(v∓G) − 1| ≤ 2π|k|
∫ t

s
|v∓ G|, we have that:

lim sup
t→∞

|τ±k (t)| ≤ 2π|k||bk| lim sup
t→∞

∫ t

t0

Gεe
∫ t

s Gε

∫ t

s
|v∓ G|ds.

Next, using again L’Hôpital’s lemma, we obtain:

lim sup
t→∞

∫ t

t0

Gεe
∫ t

s Gε

∫ t

s
|v∓ G|ds =

= lim sup
t→∞

∫ t
t0

Gεe
∫ s

t0
Gε(
∫ t

t0
|v∓ G|ds−

∫ s
t0
|v∓ G|ds)

e
∫ t

t0
Gε

≤

≤ lim sup
t→∞

|v∓ G|
∫ t

t0
Gεe

∫ s
t0

Gε

Gεe
∫ t

t0
Gε

≤ lim sup
t→∞

|v∓ G|
Gε

≤ ε lim sup
t→∞

|±v
G
− 1|,
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since:

lim sup
t→∞

∫ t
t0

Gεe
∫ s

t0
Gε

e
∫ t

t0
Gε

≤ 1.

Thus, we obtain:

lim sup
t→∞

|τ±k (t)| ≤ ε2π|k||bk| lim sup
t→∞

∣∣∣∣∣ |v|G(v)
− 1

∣∣∣∣∣
and we conclude (i);

(ii) Next, we note that:

dk(t) = dk(t0)e−4cπ2k2te−
∫ t

t0
2πkiv

+ 4bπ2k2
∫ t

t0

ak(s)e−4cπ2k2(t−s)e−
∫ t

s 2πkvi,

and if we denote by:

d̂k(t) = 4bπ2k2a f
k

∫ t

t0

e[−
∫ t

s 2πkvi+4cπ2k2]ds = 4bπ2k2a f
k

∫ t
t0

e
∫ s

t0
[2πkvi+4cπ2k2]ds

e
∫ t

t0
[2πkvi+4cπ2k2]ds

;

then working as before and applying L’Hôpital’s lemma, we have that:

lim inf
t→∞

d̂k(t) ≤ lim sup
t→∞

d̂k(t) ≤
b
c

a f
k lim sup

t→∞

2πk
2πk + i v

c
≤ b

c
a f

k ,

since:

lim sup
t→∞

∫ t
t0

e
∫ s

t0
2πkvi+4cπ2k2

e
∫ t

t0
2πkvi+4cπ2k2

≤ lim sup
t→∞

1
2πkvi + 4cπ2k2 .

Moreover, we also obtain:

lim sup
t→∞

|dk(t)− d̂k(t)| ≤ lim sup
t→∞

4bπ2k2

|2πkvi + 4cπ2k2| lim sup
t→∞

|ak(t)− a f
k |

with 4π2k2

|2πk v
c i+4π2k2| ≤ 1, that is:

lim sup
t→∞

|dk(t)− d̂k(t)| ≤
b
c

lim sup
t→∞

|ak(t)− a f
k |,

and we conclude (ii).
Finally, we note that:

d∗k (t) = 4bπ2k2a f
k

∫ t

t0

e[−[2πkv f i+4cπ2k2](t−s)ds→ d f
k ( given by(22)) ast→ ∞

and:
dk(t)− d∗k (t) = dk(t0)e−4cπ2k2te−

∫ t
t0

2πkiv
+ 4bπ2k2(l1(t) + l2(t))

with:

l1(t) =
∫ t

t0

(ak(s)− a f
k )e
−4cπ2k2(t−s)e−

∫ t
s 2πkvi,

l2(t) = a f
k

∫ t

t0

e−(4cπ2k2+2πkiv f )(t−s)
(

e−
∫ t

s 2πki(v−v f ) − 1)
)

where
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∣∣∣e− ∫ t
s 2πki(v−v f )− 1)

∣∣∣ ≤ 2π|k|
∫ t

s |v− v f |; and proceeding as before and applying L’Hôpital’s
lemma, we obtain:

4bπ2k2 lim sup
t→∞

l1(t) ≤
b
c

lim sup
t→∞

|ak(t)− a f
k | and

lim sup
t→∞

l2(t) ≤ 2π|k|a f
k lim sup

t→∞

∫ t
t0

eαks
( ∫ t

t0
|v− v f | −

∫ s
t0
|v− v f |

)
eαkt ≤

≤
2π|k|a f

k
αk

lim sup
t→∞

|v(t)− v f |

with αk = 4cπ2k2 + 2πkiv f ; we conclude.

Note that, from the above subsection that we can take ε0 small enough such that
lim inft→∞ |v(t)| > 0, and then, Re|v(t)| → ∞ as Re → ∞. Now, we considered g(s) ∼
1 + B∗

sm + o(s−m) as s → ∞ (an assumption that was made in Velázquez, 1994), and then,

with m = 1 and s = Re|v(t)|, we obtain
∣∣∣ 1

g(Re |v(t)|) − 1
∣∣∣ ≤ B∗( 1

Re )
1
|v(t)| = B∗( 1

Re )δ(t) with

lim supt→∞ B∗( 1
Re )δ(t) ≤ B ∗ ( 1

Re ) = o(1) as Re→ ∞.

Now, we can prove the following corollary, which precisely states that the dynamics
of fast time-dependent solutions is attracted towards fast stationary solutions.

Corollary 3. Under the above notations and hypotheses, we can prove that as Re→ ∞, there exists
a positive fast time-dependent solution such that if sign(I+) = + with I+ = (1− b

c )∑k∈K∩J bkc−k,
then:

lim sup
t→∞

|ak(t)− a f
k | = lim sup

t→∞
|ak(t)−

bk
1 + ε2πki

| ≤ B(
1

Re
) = o(1),

lim sup
t→∞

|dk(t)−
b
c

a f
k | ≤

b
c

B(
1

Re
) = o(1)

lim sup
t→∞

|dk(t)− d f
k | = lim sup

t→∞
|dk(t)−

b
c

2πk

2πk v f

c i
ak| ≤ D(

1
Re

) = o(1)

lim sup
t→∞

|v(t)− v f
+| ≤ E(

1
Re

) = o(1) asRe→ ∞.

where v f
+ is the solution of |v|v = I+ and B, D, E are positive constants independent of Re. On the

other hand, is sign(I+) = −, so no fast time-dependent solutions exist.
The same holds for negative fast time-dependent solutions by changing + to −.

Proof. From Proposition 4, we can take ε0 small enough such that |v(t)| ≥ 0 for t large
enough, and we have that:

lim sup
t→∞

|ak(t)− a f
k | = o(1) and lim sup

t→∞
|dk(t)−

b
c

a f
k | = o(1) asRe→ ∞.

Now, let I2(t) = ∑
k∈K∩J

(ak(t) − a f
k )c−k and I3(t) = ∑

k∈K∩J
(dk(t) −

b
c

a f
k )c−k, so there

exits a positive constant F independent of Re, such that:

lim sup
t→∞

(|I2(t)− I3(t)|) = F(
1

Re
) and lim sup

t→∞
(|I2(t)|+ |I3(t)|) = F(

1
Re

)

with F( 1
Re
) = o( 1

Re
) = o(1) asRe → ∞.
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Next, we considered the equations for the velocity v(t):

ε
dv
dt

+ G(v)v = ∑
k∈K∩J

(ak(t)− dk(t))c−k = I2(t)− I3(t) + (1− b
c
) ∑

k∈K∩J
a f

k c−k

and taking into account that a f
k → bk as ε → 0, given δ > 0, there exists ε0 such that

(1− b
c ) ∑

k∈K∩J
a f

k c−k ≤ (1− b
c
) ∑

k∈K∩J
b f

k c−k + δ, and we note that the stationary velocity v f
+

satisfies that:
|v f

+|v
f
+ = ∑

k∈K∩J
(a f

k − d f
k )c−k = (1− b

c
) ∑

k∈K∩J
b f

k c−k.

That is
ε dv

dt + G(v)v− |v f
+|v

f
+ = I2(t)− I3(t) + δ = δ1(t) + δ and lim supt→∞ |δ1(t)| = o(1) +

δ asRe → ∞. Furthermore, it is important to note that δ2(t) = G(v)v− |v|v satisfies that
lim supt→∞ (G(v)v − |v|v) = o(1) since if Re → ∞, then G(v) ∼ |v|. Then, read the
equations for v as:

ε
d(v− v f

+)

dt
+ |v|v− |v f

+|v
f
+ ≤ δ1(t)− δ2(t) + δ = δ(t) + δ,

with lim supt→∞ δ(t) = o(1) asRe → ∞, that is δ(t) = o(1) for large enough t. If we

multiply by (v− v f
+) and use the function |s|s, which monotonically increasing, working

as the above section, from Gronwall’s lemma, we obtain lim supt→∞ |v− v f
+| ≤ o(1) as

Re→ ∞.
Finally, using this together with (27), we also obtain lim supt→∞ |dk(t)− d f

k | ≤ 0(1) as
Re→ ∞, and we conclude.

Remark 2. Note that for a thermosyphon model where the fluid has only one component (see [15]),
the condition sig(I+) = + implies the existence of a unique positive fast stationary solution, which
is moreover stable.

Therefore, fast time-dependent solutions must exist in its basin of attraction. The corollary
above states then that all positive fast time-dependent solutions must be close enough to the stationary
one. The same remark applies for negative fast solutions.

On the other hand, the corollary contains a criterion for the nonexistence of fast time-dependent
solutions. Furthermore, note that the velocity for all other solutions must change sign an infinite
number of times.

4. Numerical Results

In this section, we analyze several numerical experiments in order to illustrate the
theoretical results. In particular, these experiments show the asymptotic behavior of the
dynamics of fast time-dependent solutions for large Reynold’s numbers.

We solved the system of ordinary differential equations (6) using the solvers of MAT-
LAB for stiffness equations. Our experiments were performed using ODE15s with a local
error tolerance of 10−9 except for the first one (see Figure 1), where we considered a local
error tolerance of 10−10. Moreover, except the case where b = c, we could obtain very
similar results using the ODE45 solver. The simulations were performed in double precision
with machine epsilon εM ≈ 2.2× 10−16.

We plot some interesting situations that reflect in a good way the previous results. As
the system is multidimensional, we present the results in temporal graphs (a given variable
versus time) and phase space graphs (two physical variables plotted against each other).

Throughout this section, we consider the friction law represented by G of the form
G(v) = |v|+ AG

Re . Note that G(v) ≈ |v| if Re goes to infinity.
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Note that we deal with the positive fast stationary solutions. Since we considered a
circular geometry, we have J = {±1} and K ∩ J = {±1}. Then, we took k = 1 and omitted
the equation for −k, the conjugate of k. Therefore, from (21)–(23), we have the following
system of equations:

a f
1 =

b1

1 + 2πεi
(29)

d f
1 =

b
c

2πi

2π + i v f

c

a f
1 (30)

(v f )2 = 2<(a f
1 c−1)− 2<(d f

1 c−1) (31)

where the unknowns are a f
1 , the Fourier mode of the temperature, d f

1 , the Fourier mode of
the solute concentration, and v f , the velocity of the fluid.

In order to reduce the number of free parameters, we made a change to variables
a1c−1 → a1 y d1c−1 → d1, and we denote the real and imaginary part of b1c−1 by A + Bi.
For the Soret effect diffusion coefficients b and c, we assumed the values calculated by Hart
in [1], which consider a thermosyphon of circular geometry of radius R0 (for the loop) and
Rp (for the pipe). Hart took the values for a mixture of alcohol and water, borrowed from
Hurle and Jakeman [7]. This reference settles down that c = Ds

VR0
is the number of Lewis,

where Ds is the diffusivity of the solute that has a value for such a mixture of 10−5 cm2s−1

and V is the scale of the velocity, with a value of 10−2 cms−1 for a circular thermosyphon
whose loop-to-pipe-radius ratio is 10. Therefore, we took c = 10−3. Moreover, as Hart
indicated in [1], b (Soret diffusion coefficient) is a parameter that determines the qualitative
behavior of the variable. Finally, A and B refer in this model to the position-dependent (x)
heat flux inside the loop.

Then, since we want to guarantee that:

sign(I+) = + withI+ = (1− b
c
) ∑

k∈±1
bkc−k,

we took b = 10−4 and A = B = 30. In fact, taking A = 0, B = 30 and c = b = 10−2,
we obtained a velocity oscillating close to zero. Therefore, according to Proposition 3, we
cannot guarantee that the velocity keeps the same sign; see Figure 1. This example reflects
very well how, even for a small epsilon, there may be solutions for which the velocity
changes sign an infinite number of times and whose dynamics may be very involved. This
produces complex behavior in the physical device.

First of all, we kept fixed ε = 10−2, and we varied the Reynold’s number in order to
analyze the asymptotic behavior of the solutions of (6). For this particular case, the fast
stationary solution is given by:

a f
1 =31.7595738203323 + 28.004487124098i

d f
1 =0.002209826274535− 0.00250215970862028i

v f =7.9696127878408

The numerical experiments were carried out for Re = 10 to Re = 105, and we took as
initial values the following ones:

a0 = 25 + 20 ∗ i, d0 = 0.02− 0.002i v0 = 9.

We show that the dynamics of fast time-dependent solutions are attracted towards fast
stationary solutions. After some more or less complicated transitions, fast time-dependent
solutions are close to the stationary one; see Figures 2–4 Note that although there are small
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oscillations of the velocity, it maintains a constant sign for a large time, and therefore, the
fluid undergoes a sustained motion.

Figure 2. Concentration–velocity phase diagram (Real(d), Im(d), v) for a Reynold’s number of 10.

Moreover, we observed that if Re is increasing, then the fast time-dependent solutions
are closer to the fast stationary solution considering the same time; see Figures 5 and 6.

Figure 3. |v− v f | for a Reynold’s number of 10.
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Figure 4. Velocity evolution for a Reynold’s number of 10.

Figure 5. Velocity evolution for a Reynold’s number of 104.

Figure 6. |v− v f | for a Reynold’s number of 104.



Mathematics 2022, 10, 1098 19 of 23

Note that the numerical results were in good agreement with the estimates obtained in
Corollary 3. For instance, if Re = 104 from the numerical results, we obtain |v− v f | < 10−5.

Note that these numerical experiments show the important fact that, as we stated
in previous sections, for some values of the parameters, a fast time-dependent solution
must exist in the basin of attraction of the fast stationary solution. This is very relevant
from a practical point of view because it allows us to distinguish in which situations the
device with a binary fluid works effectively, and velocity is not oscillating around zero, or
by contrast, it presents complicated regimes where irregular or chaotic behaviors appear.
In this sense, we would like to highlight the importance of taking ε small enough. Observe
that for ε = 10−2 and Re = 10, the velocity of the system tends to v f , even considering
an initial velocity close to zero; see Figure 7. However, increasing ε, the behavior of the
velocity becomes involved. For instance, for ε = 103 (see Figure 8), we illustrate a scenario
where the velocity does not stabilize and it is oscillating around zero.

Figure 7. v evolution taking v0 = 0.01.

Figure 8. v evolution taking v0 = 0.01.

5. Conclusions

The aim of this work was to obtain a criterion about the existence and asymptotic
behavior of fast solutions for this thermosyphon model as Re tends to ∞. Notice that
determining conditions in which the thermosyphon functions effectively or, by contrast,
knowing when it presents chaotic behaviors is of great interest from a practical point
of view.

In this respect, we obtained the following results:

• If (1− b
c )∑k∈K∩J bkc−k 6= 0, then no solutions satisfies limitt→∞v(t) = 0;

• Let (v f
+, a f

k , d f
k ) be a positive fast stationary solutions, i.e., v f

+|v
f
+| = (1− b

c )∑k∈K∩J bk
c−k > 0, and ε small enough such that lim in ft→∞|v(t)| > 0, i.e., the sign of v(t) is
constant for large enough t. Then, Corollary 3 precisely states in which conditions
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the fast stationary solution attracts the dynamics of fast time-dependent solutions. In
particular, we proved the following:

(i) If v(t) > 0 for large enough t, there exists a positive fast time-dependent solution
(v(t), ak(t), dk(t)) as Re→ ∞, i.e.,:

lim sup
t→∞

|ak(t)− a f
k | ≤ B(

1
Re

) = o(1) asRe→ ∞.

lim sup
t→∞

|dk(t)− d f
k | ≤ D(

1
Re

) = o(1) asRe→ ∞.

lim sup
t→∞

|v(t)− v f
+| ≤ E(

1
Re

) = o(1) asRe→ ∞.

B, D, E are positive constants independent of Re;
(ii) If, v(t) < 0 for large enough t, no fast time-dependent solutions exist;

• The same holds for negative fast time-dependent solutions by changing + to −;
• We showed numerically that the characterization of the existence of fast time-dependent

solution that is attracted to the fast stationary one works. In particular, we gave ex-
amples where fast solutions exists, and we also chose other values of the parameters
where the velocity changes sign an infinite number of times without preserving the
sign for a large time.
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Appendix A. Global Existence and Asymptotic Behavior for a Large Time

We rewrite here the results about the well-posedness of the existence of the global
attractor and the inertial manifold for the solutions of our model; for the proof, see Theorems
3.3, 4.1, and 4.2 together with Corollary 4.1 in [4].

Proposition A1. Under the above notation, we suppose that rG(r) is locally Lipschitz, H ∈ C1,
with G(s) ≥ G0 > 0, H(s) ≥ H0 > 0, Ta ∈ Ḣ2

per(0, 1), f ∈ L̇2
per(0, 1) given by (2), the

initial data T0 ∈ Ḣ2
per(0, 1) given by T0(x) = ∑k∈IZ∗ ak0e2πkix, and S0 ∈ L̇2

per(0, 1) given by
S0(x) = ∑k∈IZ∗ dk0e2πkix. Recalling the expansions:

Ta(x) = ∑
k∈IZ∗

bke2πkix and f (x) = ∑
k∈IZ∗

cke2πkix withIZ∗ = IZ \ {0}

T(t, x) = ∑
k∈IZ∗

ak(t)e2πkix and S(t, x) = ∑
k∈IZ∗

dk(t)e2πkix

then the global solution (v, T, S) of the system (1) satisfies the following:
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(i)

ε
dv
dt

+ G(v)v = ∑
k∈IZ∗

(ak(t)− dk(t))c̄k

where the coefficients ak(t) and dk(t) satisfy the equations:
d(ak)

dt
+
(

2kπvi + H(v)
)

ak(t) = H(v)bk, ak(0) = ak0, k ∈ IZ∗

d(dk)
dt +

(
2kπvi + 4ck2π2

)
dk(t) = 4bπ2k2ak(t), dk(0) = dk0, k ∈ IZ∗.

(A1)

(ii) There exists a compact and connected global attractor A in IR× Ḣ2
per(0, 1)× L̇2

per(0, 1)
for the flow of the system (1). In particular, if Ta ∈ Ḣm

per(0, 1) with m ≥ 2, we have that the global
attractor A ⊂ IR× Ḣm

per(0, 1)× Ḣm
per(0, 1) and is compact in this space;

(iii) Inertial manifold associated with Ta:
We have that there exists an inertial manifoldM (see the definition in References [23–25]) for

the semigroup S∗(t) in the phase space Y = IR× Ḣm
per(0, 1)× Ḣm−2

per (0, 1), i.e., a submanifold of
Y such that:

• S∗(t)M⊂M for every t ≥ 0, with A ⊂M;
• There exists δ > 0 satisfying that for every bounded set B ⊂ Y , there exists C(B) ≥ 0 such

that dist(S∗(t),M) ≤ C(B)e−δt, t ≥ 0 (see, for example, [23–25]).

Assume that Ta ∈ Ḣm
per(0, 1) and f ∈ L̇2

per(0, 1), with:

Ta = ∑
k∈K

bke2πkix

where bk 6= 0 for every k ∈ K ⊂ IZ∗ with 0 /∈ K, since
∮

Ta(x)dx = 0. We denote by Vm the
closure of the subspace of Ḣm

per(0, 1) generated by {e2πkix, k ∈ K}.
Then, the setM = IR×Vm×Vm−2 is an inertial manifold for the flow of S∗(t)(v0, T0, S0) =

(v(t), T(t), S(t)) in the space Y = IR× Ḣm
per(0, 1)× Ḣm

per(0, 1). Moreover, if K is a finite set,
the dimension ofM is 2|K|+ 1, where |K| is the number of elements in K, and the flow onM is
given by: 

ε dv
dt + G(v)v = ∑k∈K(ak(t)− dk(t))c̄k

d(ak)

dt
+
(

2kπvi + H(v)
)

ak(t) = H(v)bk, k ∈ K,
d(dk)

dt +
(

2kπvi + 4ck2π2
)

dk(t) = 4bπ2k2ak(t), k ∈ K,

ak = dk = 0, k /∈ K;

(A2)

(iv) The reduced system of ODE’s with the relevant Modes k ∈ K ∩ J (involving
Ta and f ):

Moreover, if we suppose that f ∈ L̇2
per(0, 1) is given by:

f (x) = ∑
k∈J

cke2πkix,

where J = {k ∈ IZ∗/ck 6= 0}, IZ∗ = IZ − {0}, since
∮

f (x)dx = 0, then, on the inertial
manifold, we have

∮
(T − S) f = ∑k∈K(ak(t) − dk(t))c−k = ∑k∈∩J(ak(t) − dk(t))c−k, and

regarding the right-hand side of the first equation of (A2), we can observe that the velocity of the
fluid is independent of the coefficients for temperature ak(t), dk(t) for every k ∈ IZ∗ − (K ∩ J).

Note that in (A2), the set of equations for ak(t), dk(t) with k ∈ K ∩ J (the relevant modes),
together with the equation for v are a subsystem of coupled equations, which describe the dynamics
of the original system.

Moreover, the equations for a−k, d−k are conjugates of the equations for ak(t), dk(t); therefore,
sumk∈K∩5J ak(t)c−k = 2Real(sumk∈(K∩J)+ ak(t)c−k), and analogously, sumk∈K∩Jdk(t)c−k =
2Real(sumk∈(K∩J)+dk(t)c−k).
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We note that 0 /∈ K ∩ J, and since K = −K and J = −J, then the set K ∩ J has an even
number of elements, which we denote by 2n0. Therefore, the number of elements in the set of positive
elements of inK ∩ J, (K ∩ J)+ is n0.

Therefore, the asymptotic behavior of the system is described by a system of N = 4n0 + 1
coupled equations in IRN , which determine (v, ak, dk), k ∈ K ∩ J.

After solving this, we must solve the equations for k /∈ K ∩ J, which are linear autonomous
equations.

Finally, we note that to obtain the estimates of the velocity, we made use of the
following version of L’Hôpital’s lemma; see [16] for the details.

Lemma A1. L’Hôpital’s Lemma. Assume f and g are real differentiable functions on (a, b), b ≤ ∞,
g′(x) 6= 0 on (a, b), and limx→b g(x) = ∞:

(i) If lim supx→b
f ′(x)
g′(x) = L, then lim supx→b

f (x)
g(x) ≤ L;

(ii) If lim infx→b
f ′(x)
g′(x) = L, then lim infx→b

f (x)
g(x) ≥ L.
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