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Abstract
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1 Introduction

The standard framework in most of the empirical and theoretical auction literatures has

been expected utility, often with risk neutral bidders. However, Kahneman and Tversky (1979)

criticized expected utility because they found that individuals derive their utility from gains and

losses relative to some reference point, rather than from absolute levels of wealth as perfectly

rational agents do under expect utility. They presented a new model of decision making under

risk known as "Prospect Theory", whose key feature -loss aversion- is that individuals are much

more sensitive to reductions than to increases in wealth. Given that bidders su¤er both losses

and gains in the auctions they participate, it is important to explore whether loss aversion might

better re�ect their bidding behavior.

In this paper, I propose a novel and tractable structural ascending auction model that re-

places risk neutrality with loss aversion in the well-known framework with symmetric bidders

in Milgrom and Weber (1982) and its asymmetric extension in Hong and Shum (2003). Like in

standard models, the utility of a bidder depends only on the di¤erence between his own valua-

tion of the object auctioned and his bid, but in this new speci�cation, a bidder is more sensitive

to reductions in wealth than to increases of the same magnitude (see Kahneman and Tversky

(1979)). In addition, my proposed model allows for both common and private value components

in the bidder�s valuations as well as heterogeneous bidder�s characteristics. Importantly, I �nd

that, ceteris paribus, loss averse bidders bid substantially lower than risk neutral ones.

To empirically assess the model, I focus on storage locker auctions, which have gained a

lot of popularity in recent years, with 155,000 of them taking place each year in the US alone

at an average price of $425.1 Speci�cally, I exploit a unique dataset of 254 actual auctions

from the �rst three seasons of the popular cable TV show Storage Wars, which follows a core

group of individual bidders who take part in storage locker auctions throughout the State of

California. As shown in numerous empirical studies (see List (2006), Post et al (2008), Belot et

al (2010) and van Dolder et al (2015) for examples), TV shows are an ideal setting to empirically

test economic theories because they provide an environment with substantially larger economic

incentives than lab experiments. Therefore, analyzing the behavior of bidders in these auctions

seems especially relevant.

An interesting unique feature that storage locker auctions have compared to other ascending

auctions, such as those run by eBay, Sotheby�s, etc., is that the contents of the locker are

unknown to both the auctioneer and potential buyers before and throughout the entire auction.

This situation has the ideal characteristics for bidders to exhibit loss aversion, a feature that often

1See <https://www.statisticbrain.com/self-storage-industry-statistics/> for more details.
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arises when comparing sure outcomes (not participating in the auction) with a risky prospect

(participating and making an uncertain positive or negative pro�t) (see Kahneman and Tversky

(1979) for more details).

Empirically, I �nd that most Storage Wars bidders are loss averse in a model in which bidder�s

characteristics are heterogeneous. However, the behavior of the most professional bidder is in

line with risk neutrality. Not surprisingly, he is the bidder who bids most aggressively.

I also consider a more general framework in which bidders incorporate into their strategies

the information of those bidders who are present but decide not to participate after inspecting

the item put up for auction. This results in bidders reducing the aggressiveness of their bids

even further as the number of non-bidding participants increases. Once again, I �nd that bidders

continue to be loss averse in this more general framework. In addition, my results con�rm the

empirical relevance of taking into account the presence of non-bidding participants in ascending

auctions.

Previous papers have provided experimental evidence of loss aversion in sealed-bid auctions

(see Lange and Ratan (2010), Banerji and Gupta (2014), Rosato and Tymula (2019) and Eisen-

huth and Grunewald (2020) for independent private values and Balzer and Rosato (2020) for

interdependent ones). In contrast, there is little work in ascending auctions. An exception is

von Wangenheim (2017), who theoretically showed that under independent private values the

second-price sealed-bid auction yields strictly higher revenues than the ascending auction when

bidders are expectation-based loss averse (see K½oszegi and Rabin (2006) for more details).

In this sense, this paper makes not only a methodological contribution by incorporating

loss aversion in a structural ascending auction model with both private and common value

components, but also a substantive one by documenting for the �rst time the presence of loss

aversion in actual ascending auctions.2

The rest of the paper is organized as follows. Section 2 describes the TV show in greater detail

and provides a summary of the dataset. In Section 3, I discuss my proposed structural model

of ascending auctions under loss aversion. Then, in Section 4 I discuss the empirical results.

Finally, in Section 5, I introduce a framework that incorporates the signals of the bidders present

at the auction who decided not to participate. This is followed by the conclusions and several

appendices where proofs and additional details can be found.

2Some previous papers have looked at other behavioral biases in ascending auctions. Speci�cally, Dodonova
and Khoroshilov (2005, 2009) argue that bidders with independent private values may feel a quasi-endowment
e¤ect toward the object for which they are bidding, so that after making an initial bid of $x followed by a
competitor�s bid of $(x+1), they prefer to pay $(x+2) to keep the object even though they would never buy the
auctioned object for this amount when facing a simple buying decision.
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2 Storage Wars

The TV show Storage Wars, developed by A&E cable network, �rst aired on December 2010

and soon became the most watched program in the network�s history. Each episode starts with

potential bidders gathering outside a storage facility in the State of California. These facilities

have the right to put up for auction the contents of a locker when its rent is not paid for three

consecutive months. Before bidders are allowed into the storage facility to see the lockers, the

auctioneer explains the rules. The auctions are cash only sales, with bidders only being able

to bid on the entire contents of the locker (not on an item-to-item basis), and the winner the

highest cash bidder.

The lock of the locker is then broken and bidders have exactly �ve minutes to look around

without stepping inside or opening any boxes. During that time, bidders e¤ectively receive

a private noisy signal of the unknown contents, and therefore of the valuation of the locker

put up for auction. After those �ve minutes, the auctioneer announces a suggested opening

bid for the locker on sale and starts accepting increasingly higher bids from the bidders in the

auction.3 Unlike sealed-bid auctions, there exists "information transparency", in the sense that

the identity of all the bidders and their bids are known during the entire auction. The highest

bidder at any given moment has the standing bid, which can only be displaced by a higher bid

from another bidder. Throughout the auction, every bidder is given the opportunity to outbid

the standing bid.4 Failure to do so results in the end of the auction, with the locker being sold

to the winner at a price equal to his bid.

After all the auctions of the day are completed, the winning bidders go through their lockers

sorting the "valuable" content from the rest. When they encounter an unusual, potentially very

valuable item, bidders consult with experts to �nd out the actual value of the item.

Although the private valuation might di¤er from bidder to bidder because they may have

di¤erent interests, such as collectibles or household items, there is also a clear common compo-

nent. For example, if a locker contained a standard but very valuable item such as a brand new

motorcycle, its value would be very much the same across bidders.

For all those reasons, a model which allows for both common and private values seems

adequate to capture the behavior of bidders in these auctions.

3 In storage locker auctions there are no reserve prices, i.e. the lowest price at which the seller is willing to sell
the item. So in principle, the locker could be sold for $1.

4There is no predetermined ending time as in eBay. As a consequence, the practice of sniping, i.e. bidding in
the very last seconds (see Roth and Ockenfels (2002)), is irrelevant in this auction.
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2.1 The main bidders and the auctioneers

The �rst three seasons of the show follows four main regular bidders throughout the auctions:

Dave Hester (a professional buyer who operates his own auction house), Darrell Sheets (a less

experienced storage auction bidder who makes his living by selling in swap meets and through

his online store), Jarrod Schulz (an even less experienced storage auction bidder who owns a

thrift store) and Barry Weiss (a lifelong antiques collector who had never participated in storage

auctions before). Additionally, there are other bidders present at the auctions whose identity

are not shown publicly, but whose bids are.5

The auctioneers on the show are Dan and Laura Dotson, who have run their own business

(American Auctioneers) since 1983. Their retribution scheme comes from a small percentage of

the locker sale they receive from the storage unit company. Therefore, it is in their interest that

the locker is sold at a high price.

One of their key roles is to engage bidders. To accomplish this, they have to start the

auction by announcing a suggested opening bid low enough to be immediately accepted by one

of the bidders. The regression results in Table 1 suggest that the opening bid is set taking into

account the location and size of the locker, which is not surprising since the value of the locker

is unknown to both the auctioneer and bidders before and throughout the entire auction.

(Table 1)

2.2 Description of the data

As explained in the introduction, I examine the bidding behavior of Storage Wars partici-

pants in 254 actual auctions, which covers seasons 1 (59), 2 (103) and 3 (92) of the TV show.6

The dataset contains the identity of the bidders, including the four main regular ones, the num-

ber of main bidders present at the auction, as well as the total number of bidders bidding per

auction (ranging from 2 to 7), the location of the auction, the size of the locker, whether the

main regular bidders decide in real time to bid or not after visually inspecting the locker, the

entire bid sequence and the ex-post value of the locker. I have also collected per capita income

data of the municipality where the locker is located as one would expect a priori that richer

neighborhoods have more valuable locker contents.

There are three types of lockers: small (10�10 ft.) �tting household items from 3 rooms,

medium (10�20 ft.) �tting items from 5 rooms and large (10�30 ft.) �tting items from 7 rooms.
5Given that there is no identifying information on those bidders, I treat them as homogeneous when estimating

the empirical model in section 4.
6Video clips of each episode are widely available on the Internet, for example, through the A&E website

<https://www.aetv.com/shows/storage-wars>.
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Table 2 o¤ers a basic description of the data.

(Table 2)

For each season, it shows the number of times a small, medium and large locker has been

auctioned, the average pro�t each bidder makes, the average ex-post value of the locker auc-

tioned, the average median household income of the municipalities where the lockers are located,

and the total number of bidders participating per auction.

The most frequent auctions involve 3, 4 and 5 active bidders, with 50, 72 and 63 auctions,

respectively. Additionally, there are many more small and medium size lockers auctioned than

large ones. After running a standard OLS regression, I �nd that the order in which the lockers

are put up for auction each day is independent of the ex-post value of the locker, which is again

not surprising because the contents of the locker are unknown.

Table 3 describes the participation rates of the main bidders in Storage Wars.

(Table 3)

As can be seen, none of the four main bidders has actually participated in all of the auc-

tions. Jarrod is the bidder who has participated the most, followed by Darrell, Dave and Barry.

However, all four of them only coincide 11.42% of the time. Given that the main regular bidders

often publicly indicate whether they will participate in the auction after looking at the locker

to be auctioned, I assess whether their actual participation is in line with their claims using a

standard independence test (see Sentana (2021) for more details). The results show that the

null hypothesis of independence between their actual participation and their claims is massively

rejected for all the main bidders (p-value of 0), con�rming that their participation decisions are

coherent with their announcements. This fact motivates the extension of the model in section

5, in which bidders incorporate into their strategies the information of those bidders who are

present but decide not to participate after inspecting the item put up for auction.

3 The Model with Loss Aversion

The theoretical auction model studied in this paper resembles the Japanese "button" auction

in Milgrom and Weber (1982), in which prices raise continuously, bidders keep pressing a button

to remain active, dropout prices are common knowledge, and once a bidder drops out, he cannot

reenter the auction at a higher price.7

7This standard model has been widley used by most of the subsequent literature (see Athey and Haile (2002),
Hong and Shum (2003) and Aradillas-Lopez et al (2013) for examples).
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More formally, consider an auction of a single item with N potentially heterogeneous bidders,

indexed i = 1; : : : ; N , for whom the value of the item auctioned is Vi. However, at the beginning

of the auction, they only observe a private noisy signal Xi of their own valuation Vi.

The auction proceeds in rounds, indexed k = 0; : : : ; N � 2, in which active bidders submit

bids. A new round starts whenever a bidder drops out and bidders are indexed by the round in

which they drop out: bidder N drops out in round 0 at price P0 and bidder N � k drops out in

round k at price Pk, with bidder 1 winning the auction at price PN�2.8

In ascending auctions, a Bayesian-Nash equilibrium consists of bid functions �ki (Xi; 
k)

for each bidder i and round k, where 
k is the available information set at the beginning

of round k containing the previously observed dropout prices. E¤ectively, the bidding func-

tion �ki (Xi; 
k) determines the price at which bidder i should quit the auction at round k

as a function of his signal and the available information set. The collection of bid functions

�0i (Xi; 
0); : : : ; �
N�2
i (Xi; 
N�2) are common knowledge, with 
0 = ;.

Like Milgrom and Weber (1982), I assume that the utility of bidder i depends only on the

di¤erence between his own valuation of the item put up for auction and his bid. More precisely,

let u[Vi��ki (Xi; 
k)] denote bidder i�s utility at round k, where u(�) is continuous, nondecreasing

in its argument and satis�es u(0) = 0. But instead of an expected utility framework, as in the

standard literature, I draw inspiration from the work in Kahneman and Tversky (1979) by

assuming the following functional form:

u
�
Vi � �ki (Xi; 
k)

�
=

�
Vi � �ki (Xi; 
k)

�i[Vi � �ki (Xi; 
k)]
for

Vi > �ki (Xi; 
k)

Vi � �ki (Xi; 
k)
; (1)

where �i � 1 captures loss aversion, i.e. the tendency of individuals to prefer avoiding reductions

in wealth than equivalent gains. This piecewise linear speci�cation, which has a kink at the

origin,9 has been used by many authors in a variety of economic situations (see Barberis et al

(2001), K½oszegi and Rabin (2006) and Sprenger (2015) for examples). The reason is that loss

aversion at the kink is very relevant for gambles that can lead to both gains and losses, such

as in single item auctions, where "gains" and "losses" correspond to the di¤erence between the

value of the item auctioned and the �nal price.10

(Figure 1)

8Given that continuous bidding does not take place in practice, I assign the dropout price of a bidder to the
bid of the next bidder who outbids him.

9As in Kahneman and Tversky (1979), the primary reference level is the status quo, which in this case is 0,
i.e. not participating in the auction.

10Kahneman and Tversky (1979) also propose that the utility function should be mildly concave over gains
and convex over losses. However, this is most relevant when choosing between prospects that involve only gains
or only losses (see Barberis et al (2001) for further discussion of this point).
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Figure 1 illustrates the e¤ects of varying the loss aversion parameter � on the underlying

utility function (1). As expected, � = 1 implies risk neutrality, i.e. same marginal utility for

both gains and losses (the standard model). However, for any other value of � > 1, bidders are

more sensitive to reductions in wealth than to increases of the same magnitude, preferring not

to lose $10 rather than to gain $10.

The structure of the Bayesian-Nash equilibrium under loss aversion in increasing bidding

strategies (i.e. �ki (Xi; 
k) is increasing in Xi for k = 0; : : : ; N � 2) extends the equilibrium

described in Milgrom and Weber (1982) and Hong and Shum (2003) as follows. For bidders

i = 1; : : : ; N active in round 0, the bid functions are implicitly de�ned by the equilibrium

condition

Efu[Vi � �0i (Xi; 
0)]j�0i g = u (0) = 0;

where �0i = fXi;Xj = '0j [�
0
i (Xi; 
0); 
0]g for j = 1; : : : ; N and j 6= i, with 'kj (:; 
k) be-

ing the inverse bid function at round k = 0; : : : ; N � 2 mapping prices into signals, so that

'ki [�
k
i (Xi; 
k); 
k] = Xi.

In turn, the analogous condition for bidders i = 1; : : : ; N�k active in round k = 1; : : : ; N�2

will be given by

Efu[Vi � �ki (Xi; 
k)]j�ki g = u (0) = 0; (2)

where �ki = fXi;Xj = 'kj [�
k
i (Xi; 
k); 
k]; Xh = 'N�hh (PN�h; 
N�h)g; for j = 1; : : : ; N � k;

j 6= i and h = N � k + 1; : : : N , with Xh denoting the signals of the bidders who have dropped

out prior to round k. Since the equilibrium bid functions are common knowledge, an active

bidder in round k can infer the private information possessed by the previous dropout bidders

by inverting their bid functions, so that Xh = 'N�hh (PN�h; 
N�h).11

3.1 The stochastic setup

Following Hong and Shum (2003), I use a parametric approach by assuming that bidder�s

signals and valuations (X1; ::::; XN ; V1; ::::; VN ) are log-normally distributed. This assumption

allows me to derive tractable closed-form formulas for the expectations in (2), from which I

can then obtain analytic expressions for the equilibrium bid functions �ki (Xi; 
k), which are

exponentially a¢ ne.12

11 It is worth mentioning that if several bidders were to quit simultaneously, the equilibrium conditions in (2)
would still hold (see Milgrom and Weber (1982) for more details).

12Two other empirical studies have previously used Hong and Shum�s (2003) auction model. Dionne et al
(2009) studied Mauritanian slave auctions in the 19th century, �nding evidence of heterogeneity in the quality of
the information between bidders, which in turn led to adverse selection. In turn, Koptyug (2016) found that in
online car auctions, resellers are better than consumers at appraising the value of the cars they are bidding on.
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Let Vi be de�ned as Vi = Ai � V; where Ai is a bidder-speci�c private value component and

V a common value component to all bidders in the auction. Although Ai and V; or indeed Vi;

are not directly observed by the bidders, they are assumed to be independently log-normally

distributed so that
lnV = v = m+ �v s N(m; r20);

lnAi = ai = �ai + �ai s N(�ai; t
2
i );

and

lnVi = vi = lnV + lnAi s N(m+ �ai; r
2
0 + t

2
i ):

In practice, bidder i only observes a private noisy signal Xi of his own valuation Vi, which

will be e¤ectively revealed to the other bidders after he drops out. Given the log-normality

assumption,

lnXi = xi = vi + �i s N(m+ �ai; r
2
0 + t

2
i + s

2
i );

where �i � N
�
0; s2i

�
, and s2i captures the amount of information any bidder has about the true

value of the item being auctioned (see Dionne et al (2009) and Koptyug (2016) for more details).

The common knowledge assumption implies that all the model parameters � � (�ai;m; t2i ; r20; s2i )

are known among the bidders.

In this log-normal setup, the conditional expected value of Vi can be written as:

E(VijX1; : : : ; XN ) = exp[E(vijx) +
1

2
V ar(vijx)];

where x = (x1; : : : ; xN ), and E(vijx) and V ar(vijx) denote the unconditional mean vector and

variance-covariance matrix of (vi; x) for bidder i, respectively (see Appendix A.2 for further

details).

The following proposition, which I prove in Appendix A.1, establishes su¢ cient conditions

to ensure the existence of an equilibrium under loss aversion in this stochastic framework.

Proposition 1 Let �i � 0 be the unique solution to

exp(�i)

"
(1� �i) erf

 !vijx
2 + �ip
2!vijx

!
+ (1 + �i)

#
=

"
(�i � 1) erf

 !vijx
2 � �ip
2!vijx

!
+ (�i + 1)

#
;

where erf(.) is the error function. Then

�ki (Xi; 
k) = exp(��i)E(Vij�ki ) (3)

is an increasing-strategy Bayesian-Nash equilibrium under loss aversion in the log-normal
stochastic setup.

(Figure 2)
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Figure 2 compares the equilibrium bidding function under risk neutrality (the standard

model) with loss aversion (� > 1). This graph shows that, ceteris paribus, loss aversion leads to

a substantial reduction in the bids as a function of the signal Xi. As a consequence, the expected

seller revenue will decrease relative to risk neutrality. However, the only di¤erence between an

equilibrium under risk neutrality and loss aversion is the multiplicative factor exp(��i) (see

Appendix A.3 for more details).

To de�ne the equilibrium log-bid functions for round k, I use the same notation as Hong and

Shum (2003). Let xkr = (x1; : : : ; xN�k)
0 denote the vector of (log) private noisy signals of the

bidders active in round k, and xkd = (xN�k+1; : : : ; xN )
0 the vector of (log) signals of the dropped

out bidders before round k. With this notation, the log-bidding function for the bidders active

in round k under loss aversion will be

bki (xi;x
k
d) = log[�

k
i (Xi; 
k)] =

1

Aki
(xi +Dki xkd + Cki )� �i; i = 1; : : : ; N � k; (4)

where �i captures the e¤ects of loss aversion in (3) (see Hong and Shum (2003) and Appendix

A.4 for detailed expressions for Ak, Ck and Dk). Note that (4) depends on a bidder�s own private

signal xi, as well as on the signals of those bidders who have dropped out prior to round k (xkd),

except for round 0, where D0 and x0d are obviously unde�ned (see again Appendix A.4).

Intuitively, by observing the dropout prices in previous rounds, the remaining active bidders

can make inferences about the private information possessed by the bidders who have dropped

out. In other words, they can obtain an unbiased estimate of bidder j�s (log) valuation from

observing his private signal xj . In common value auctions in which there is correlation across

bidders�valuations (Vi), this information allows the remaining active bidders to update their

beliefs about their own valuation, causing the prices at which bidders intend to exit to change

as the auction progresses. In contrast, Vickrey (1961) showed that in private value auctions

this updating does not occur, and each bidder has a weakly dominant strategy which is to bid

up to his valuation (see Athey and Haile (2002) and Online Appendix B.1 for a more detailed

discussion on the special cases of pure common value and independent private value auctions).

(Figure 3)

Figure 3 plots the equilibrium log-bid functions of a representative bidder in an auction with

5 loss averse bidders. The log-signal xi is plotted on the x axis, while the log-bid functions in

(4) for each round k = 0; : : : ; 3 are plotted on the y axis. As depicted in the �gure, the slope

of the log-bid function decreases for subsequent rounds, implying that, for a given realization of

xi, the targeted dropout price of the representative bidder decreases as the auction progresses.

This occurs because bidders can update their bidding functions accordingly after incorporating
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the private noisy signal of the bidders who have previously drop out, thereby mitigating the

chances of su¤ering the so-called winner�s curse (see Online Appendix B.2 for more details).

3.2 Econometric methodology

Even though the model parameters � � (�ai;m; t
2
i ; r

2
0; s

2
i ) are assumed to be known by the

bidders, their values are unknown from an econometrician�s point of view. To estimate �, Hong

and Shum (2003), Dionne et al (2009) and Koptyug (2016) employ the simulated non-linear

least squares (SNLS) estimator of La¤ont et al (1995), but with an independent probit kernel-

smoother as in McFadden (1996). In contrast, I use Maximum Likelihood (ML) because when

the structural auction model is correctly speci�ed, ML is more e¢ cient than SNLS, while when

it is misspeci�ed, SNLS is not more robust than ML given that one must draw prices from the

assumed model (see Dridi et al (2007) for more details). For example, suppose one estimates

an independent private value model when in fact the true model is a pure common value one.

In that case, both the log-bidding functions and the simulated drop out prices will be incorrect,

which a¤ects both ML and SNLS. In addition, SNLS does not always identify the parameters

of the model with a small number of bidders, while ML identi�es all the parameters even when

there are only two bidders.

In each auction, an econometrician only observes the vector of dropout prices for bidders

2; : : : ; N , the order in which bidders drop out and their identities. In this respect, Hong and

Shum (2003) make clear that one must condition on the observed dropout sequence to derive the

log-likelihood function. In practice, this means that the underlying log-signals (x1;. . . ; xN ) must

be constrained to some region T1(�) � RN , which I describe in Appendix A.5. Furthermore,

they also show that since the winner�s dropout bid is never observed in ascending auctions,

the winner�s log-signal x1 is constrained to some other region T2(x2;. . . ; xN j�) � R1, which

is consistent with bidder 1 winning the auction. Therefore, if P =(p0; : : : ; pN�2)0 denotes the

vector of log-dropout bids, the log-likelihood function for a given auction must be computed as:

L(Pj�) = log f(Pj�) + log Pr[T2(x2; : : : ; xN j�)]� log Pr[T1(�)j�]; (5)

which resembles the log-likelihood function of a truncated and censored multivariate normal,

with f(Pj�) re�ecting the continuous component corresponding to the likelihood of the observed

drop out prices, Pr[T2(x2;. . . ; xN j�)] the conditional probability associated to the censored win-

ning bid, and Pr[T1(�)j�] the truncation probability that re�ects the order in which the di¤erent

bidders drop out (see Hong and Shum (2003) and Appendix A.5 for more details).13

13Crucially, Hong and Shum (2003) prove that the support of x does not depend on � in the log-normal
stochastic setup in section 3.1, so the usual ML regularity conditions hold and standard asymptotic theory
applies.
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Since the auctions take place independently, the sample log-likelihood function is simply

the sum of the log-likelihood function of each auction. Thus, it is straightforward to combine

auctions with di¤erent number of bidders.

From the practical point of view, the main di¢ culty in computing the log-likelihood function

(5) is the multivariate integral Pr[T1(�)j�] (see again Appendix A.5 for details). Nevertheless,

this is certainly feasible with up to 7 active bidders, although it slows down the numerical

optimization. Still, given that the likelihood function is highly non-linear, it is convenient to

consider multiple initial values.

4 Empirical Application

Figure 4 displays the boxplot of the pro�t/losses in Storage Wars auctions without a few

extreme outliers.

(Figure 4)

The central mark in the box indicates the median pro�t ($890), and the bottom and top

edges indicate the 25th ($-47.5) and 75th ($2,412.5) percentiles, respectively, con�rming the

presence of losses in these auctions. As can be seen, the pro�t/losses values involved in these

auctions are relatively small. Therefore, the smooth utility functions with moderate risk aversion

commonly considered in the literature under expected utility imply that bidders would be close

to risk neutral when facing such modest stakes. In contrast, loss aversion may be present in

these auctions because the utility in (1) captures the well documented fact that over modest

gambles, individuals are noticeably more averse to losses relative to the status quo than they

are attracted by gains (see Barberis et al (2001) for more details).

4.1 Model speci�cation

Given that the common public information bidders have during the auction are the locker

characteristics and the municipality in which they are located, I have regressed the (log) ex-post

value of the locker on its size and the per capita income of the municipality. The results are

presented in Table 4.14

(Table 4)

Not surprisingly, the statistical signi�cance of the results con�rm that richer neighborhoods

and larger lockers have more valuable locker contents. Consequently, I specify the mean of the

14A more �exible non-linear speci�cation that allows for di¤erent coe¢ cients for each of the three locker sizes
does not o¤er any statistically signi�cant gains in �t, which is not surprinsing given that the sequence of locker
sizes corresponds to 3, 5 and 7 rooms (see section 2.2 for more details).
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common value component for a given auction as

m = �0 + �1SIZE + �2HHI;

where SIZE is a variable that measures the size of the locker (small (1), medium (2) or large

(3)) and HHI captures the median household income of the municipality where the locker is

located in the State of California.

In contrast, private valuations are usually associated with di¤erences in interests across

bidders, for which I do not observe any proxies. For that reason, I �exibly de�ne the mean of

the private value component of the four main bidders (Barry "Ba", Darrell "Dr", Dave "Dv"

and Jarrod "Jr"), as well as of the other active bidders whose identity is not shown publicly, as

�a = ( �0 + �1Ba �0 + �2Dr �0 + �3Dv �0 + �4Jr �0 � � � �0 );

where Ba, Dr, Dv and Jr are mutually exclusive dummy variables. For example, Ba takes the

value 1 if Barry is an active bidder in the auction and 0 otherwise. Note that �0 is the mean of

the private value component of those bidders whose identity is unknown.15

Furthermore, to guarantee positivity, the variance of the common value component, which is

obviously the same across bidders, is modelled as r20 = exp(�0), while the variance of the noise

for each of the bidder�s signals is �exibly de�ned as

s2 = exp( 0 + 1Ba 0 + 2Dr 0 + 3Dv 0 + 4Jr 0 � � � 0 );

so that 0 is the baseline variance of the anonymous bidders.

I also allow for unrestricted heterogeneity in the variance of the private value component as

follows

t2 = exp( �0 + �1Ba �0 + �2Dr �0 + �3Dv �0 + �4Jr �0 � � � �0 ):

Finally, I set the loss aversion parameter � to 2:25, a value initially proposed by Tversky

and Kahneman (1992) on the basis of experimental evidence which has been used by most of

the subsequent literature (see for example Barberis et al (2001), Barberis and Huang (2008) and

Post et al (2008)).

4.2 Results

The �rst thing I do is check whether Storage Wars bidders exhibit loss aversion. To do

so, I �t the model with � = 2:25 for all the bidders and compare it to a speci�cation with

15Given that in all the formulas all that matters is m+ �ai (see Appendix A.2 for further details), I set �0 = 0
without loss of generality because the constant terms of �a and m are not separately identi�ed.

12



risk neutrality (� = 1). Surprisingly, the likelihood is actually worse. However, given that the

model in section 3 explicitly allows for heterogeneous bidders�characteristics, this two extreme

speci�cations are not the only ones that one could consider. In fact, when I set � = 1 for Dave

and � = 2:25 for all the other bidders, I �nd that the di¤erence between the log-likelihoods of

the risk neutral model and this alternative speci�cation is 9.41, thus con�rming the empirical

relevance of loss aversion in ascending auctions. Reassuringly, this is the combination of � = 1

and � = 2:25 across bidders that provides the best log-likelihood �t.16

As I explained in section 2.1, Dave is the most professional bidder in Storage Wars. There-

fore, my �nding is not entirely surprising in view of the results in List (2004), who found that

professional traders did not exhibit loss aversion.17 In this respect, it is worth mentioning that

Dave su¤ers the smallest median loss when he losses and enjoys the largest median pro�t when

he wins, regardless of the size of the locker.

The maximum likelihood estimates of the model parameters for this speci�cation are shown

in Table 5.

(Table 5)

The results indicate that the coe¢ cients of the size of the locker (�1) and the per capita

income of the municipality (�2) are both positive and statistically signi�cant, which agrees with

the �ndings in Table 4 regarding the speci�cation of the mean of the common value component

(m). Additionally, there is strong evidence of asymmetry in terms of the mean of the private

value components (p-value of 0 for LR test of H0 : �1 = �2 = �3 = �4 = 0) and weaker evidence

of heterogeneity in the accuracy of the signals (p-value of 0.07 for LR test of H0 : 1 = 2 =

3 = 4 = 0). However, there is no evidence of heterogeneity in the importance of the private

value component when t2 is heterogeneously modelled as in section 5.1 (p-value of 0.43 for LR

test of H0 : �1 = �2 = �3 = �4 = 0).

The variance of the common value component (r20) explains 74% of the variance of the

valuation Vi (see section 3.1 and Appendix A.2), which re�ects that the model is neither a pure

common value nor an independent private value model, but a mixture of both. To con�rm this

claim, I formally compare the estimated model to those two extreme versions:

LR Test p-value
Independent Private Value 404.23 0
Pure Common Value 77.24 0

Although the pure common value model provides a better match of the results in Table 5, it is

16 In this respect, setting � to either 1 or 2.25 substantially decreases the number of parameters to estimate.
Nevertheless, allowing � to vary freely in this range yields similar results.

17 In contrast, Pope and Schweitzer (2011) found that even the best golfers seem loss averse in the non-pecuniary
context of golf putts.
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still rejected by a long margin.

(Figure 5)

Figure 5 plots the estimated equilibrium log-bidding functions at round 0 of Storage Wars

bidders, all of whom are loss averse except for Dave, who is risk neutral. As can be seen, Dave,

whose marginal utility is the same for both gains and losses, is the most aggressive bidder for

most signal values, although his bidding function has the lowest slope. At the opposite extreme,

Barry is the least aggressive bidder. As an illustration, suppose both of them had the same

log-signal xi = 8:5 ($4,914), which is approximately the average ex-post value of all the lockers

in Storage Wars. Then, we can read o¤ the graph that Dave�s targeted log-dropout price in

round 0 would be 8.48 ($4,821), while for Barry it would be 6.91 ($1,007).

5 The Information from Active Non-Bidding Participants

5.1 The model

A standard assumption in auction theory is that the bidders present at the auction coincide

with all the potential bidders willing to participate (see Paarsch (1997), Krasnokutskaya and

Seim (2011), Athey et al (2011) and Gentry and Li (2014) for examples).18 Nevertheless, not all

the bidders who are present in an ascending auction end up participating after inspecting the

item put up for auction. In fact, some bidders decide not to participate when the auctioneer

announces the opening bid. Therefore, it is important to distinguish between active bidders and

active non-bidding participants in the following sense: active bidders are the ones who bid in the

auction and either win or dropout at some point; in contrast, active non-bidding participants

are the ones who are present in the auction but e¤ectively drop out at the opening bid.

In storage locker auctions, all potential bidders observe each other when they assess the

valuation of the item before the auction starts. Therefore, it seems reasonable to assume that

at the beginning of the auction, active bidders can recover the private information active non-

bidding participants possess and update their bidding functions accordingly. As I mentioned

before, the main bidders in Storage Wars publicly indicate their willigness to participate after

oberving the locker to be auctioned.

To de�ne the equilibrium log-bid functions in this more general framework, let q denote the

number of active non-bidding participants and N the number of active bidders, with N+q being

the total number of potential bidders. With this notation, a result analogous to Proposition 1

18This assumption is not plausible in eBay auctions, as shown in Song (2004).
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shows that the log-bidding function in round �1, i.e. before the auction starts, will be given by

b�1i (xi) = log[�
�1
i (Xi;

_
�1)] =
1
_A�1i
(xi + _C�1i )� �i; i = 1; : : : ; N + q; (6)

which again re�ects loss aversion, captured by �i in expression (3), and depends only on bidder�s

i own private signal xi (see Appendix A.6 for detailed expressions for _A�1 and _C�1).19 In this

context, the active non-bidding participants will be the ones who on the basis of this log-bidding

function decide not to participate when the auctioneer announces the opening bid P�1.

Since the equilibrium bid functions are common knowledge, at round 0 active bidders can

infer the private signals the q active non-bidding participants by inverting their log-bid functions.

Thus,

xq = lnXq = b�1q (xq) _A�1q � _C�1q :

To understand the role of active non-bidding participants in the ascending auction game,

suppose that there are only 4 bidders present. Without loss of generality, imagine bidder 4 drops

out at the opening bid, so at round 0, only bidders 1, 2 and 3 remain active. These active bidders

can now infer the private signal of bidder 4, and update their bidding functions accordingly at

the beginning of the auction.

More generally, let �x0r = (x1;. . . ; xN )
0 denote the vector of private noisy signals of the active

bidders in round 0, and �x0d = (xN+1;. . . ; xN+q)
0 the vector of signals of the active non-bidding

participants who e¤ectively dropped out in round �1. With this notation, the log-bidding

function for the active bidders in round 0 under loss aversion will be

b0i (xi; �x
0
d) = log[�

0
i (Xi; �
0)] =

1
�A0i
(xi + �D0i �x0d + �C0i )� �i; i = 1; : : : ; N: (7)

(see again Appendix A.6 for detailed expressions for �A0, �C0and �D0). Compared to equation (4)

for k = 0, which only depends on a bidder�s own signal xi, now b0i (xi; �x
0
d) is also a function of

the signals of the active non-bidding participants �x0d.

For any subsequent round k = 1; :::; N � 2, the log-bidding function for the bidders active in

round k are entirely analogous to (4), and therefore depends on a bidder�s own private signal

xi, as well as the signals of those bidders who have dropped out prior to round k, including the

active non-bidding participants, i.e.

xkd = (xN�k+1; : : : ; xN| {z }
N�k

; xN+1; : : : ; xN+q| {z }
q

)0:

(Figure 6)

19Notice that b�1i (xi) is analogous to the log-bidding functions in round 0 without active non-bidding partici-
pants in (4).
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Figure 6 compares the equilibrium log-bidding function for a loss averse active bidder in

round 0 with 0, 1 and 2 active non-bidding participants. As expected, bidders reduce the ag-

gressiveness of their bids even further as the number of active non-bidding participants increases,

substantially reducing the chances of su¤ering the winner�s curse. Intuitively, this occurs be-

cause at round 0 active bidders recover the private information active non-bidding participants

possess, and they update their log-bidding functions accordingly.20

5.2 Econometric methodology

The structure of the log-likelihood function is similar to the one in section 3.2 once we

condition on the vector of active non-bidding participants� dropout bids. In particular, the

log-likelihood function for a given auction can be written as:

L(Pj�; _��1) = log f(Pj�; _��1) + log Pr[T2(xN�2d j�; _��1)]� log Pr[T1(�)j�; _��1];

where _��1 = [Xl = '�1l (P�1; 
�1)] for l = N + 1; : : : :; N + q, with '�1l (:; 
�1) being the

vector of inverse bid functions at round -1, Xl denoting the signals of the q active non-bidding

participants, f(Pj�; _��1) re�ecting the (conditional) continuous likelihood of the observed drop

out prices, Pr[T2(xN�2d j�; _��1)] the (conditional) probability associated to the censored winning

bid, and Pr[T1(�)j�; _��1] the (conditional) truncation probability that re�ects the order in which

the di¤erent bidders drop out (see Appendix A.7 for more details).

5.3 Empirical results

Based on the evidence in section 4.2, I continue to set � = 1 for Dave (the most professional

bidder in the sample) and � = 2:25 for all the other bidders. In this case, the improvement

in the log-likelihood function relative to the risk neutral model is 12.73, which is even greater

than in section 4.2. Therefore, loss aversion is again empirically relevant in this more general

framework.

The maximum likelihood estimates of the model parameters for this speci�cation are shown

in Table 6.

(Table 6)

The values of �1 and �2 (coe¢ cients for the size of the locker and the per capita income

of the municipality) are again statistically signi�cant. Additionally, I �nd that there is strong

evidence of heterogeneity in the precision of the signals (p-value of 0 for LR test of H0 : 1 =

2 = 3 = 4 = 0) and of asymmetry in the mean of the private value component (p-value of

20The log-bidding functions in Figure 6 are equivalent to the log-bidding functions in round 0, 1 and 2 without
active non-bidding participants in Figure 3.
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0 for LR test of H0 : �1 = �2 = �3 = �4 = 0). However, once more I �nd no evidence of

heterogeneity in the importance of the private value component t2 (p-value of 0.77 for LR test

of H0 : �1 = �2 = �3 = �4 = 0), as in Table 5.

(Figure 7)

Figure 7 illustrates the estimated equilibrium log-bidding functions of Storage Wars bidders

in round 0 with 1 active non-bidding participant, in this case Darrell. This graph shows that the

slope of the log-bidding functions for the remaining bidders decreases substantially compared

to their round 0 log-bidding functions in Figure 5. Intuitively, this re�ects the fact that bidders

e¤ectively take into account the private information of the bidder who decided not to participate

after inspecting the locker put up for auction, thereby con�rming the empirical relevance of active

non-bidding participants in ascending auctions.

6 Conclusions

In this paper I propose a novel and tractable structural model with both private and common

value components for ascending auctions in which heterogeneous bidders exhibit loss aversion.

Importantly, I �nd that, ceteris paribus, the bidding functions of a loss averse bidder are signif-

icantly lower than those of a risk neutral one.

To asses the empirical relevance of the model, I use data from the popular cable TV show

Storage Wars, which follows a core group of bidders who take part in storage locker auctions

throughout the State of California.

Empirically, I �nd that the behavior of most bidders is consistent with loss aversion in a

model in which there are heterogeneous bidders characteristics, thus documenting for the �rst

time the presence of loss aversion in actual ascending auctions. At the same time, I �nd that

the most professional bidder seems to be risk neutral.

Additionally, I consider a more general framework in which bidders incorporate into their

strategies the information of those bidders who are present but decide not to participate after

inspecting the item put up for auction. In this respect, bidders reduce the aggressiveness of

their bids even further as the number of non-bidding participants increases. Loss aversion also

persists in this general framework. Moreover, my �ndings con�rm the empirical relevance of

taking into account the presence of non-bidding participants in ascending auctions.

Although the empirical analysis of this paper provides reliable evidence of the importance of

loss aversion in ascending auctions, there is still much to learn about the behavioral biases that

arise in auctions from the �eld, lab and real life situations.
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Appendix

A Proofs and Auxiliary Results

A.1 Equilibrium proof

For notational simplicity, I suppress the arguments of the bid functions so that from now on

�ki (Xi; 
k) = �ki (�).

Following the discussion in (2), for any round k,

Efu[Vi � �ki (�)]j�ki g =
Z �ki (�)

0
f�i[Vi � �ki (�)]� f [Vi � �ki (�)j�ki ]gd[Vi � �ki (�)]

+

Z +1

�ki (�)
f[Vi � �ki (�)]� f [Vi � �ki (�)j�ki ]gd[Vi � �ki (�)]:

Since f [Vi � �ki (�)j�ki ] = f(Vij�ki ), then Efu[Vi � �ki (�)]j�ki g can be written as

Efu[Vi � �ki (�)]j�ki g =
Z �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi

+

Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi:

Given that Vi = exp(vi), where vi � N [E(vi); V ar(vi)], the density of Vi is

f(Vij�ki ) =
1

Vi
p
2�V ar(vi)

exp

�
� [log(Vi)� E(vi)]

2

2V ar(vi)

�
:

Moreover,Z �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi =

Z �ki (�)

0

Pr[0 < Vi < �ki (�)]
Pr[0 < Vi < �ki (�)]

f�i[Vi � �ki (�)]� f(Vij�ki )gdVi

or equivalentlyZ �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi = f�i[Pr 0 < Vi < �ki (�)g

�
"Z �ki (�)

0

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi � �ki (�)
Z �ki (�)

0

f(Vij�ki )
Pr[0 < Vi < �ki (�)]

dVi

#
;

with
R �ki (�)
0 ff(Vij�ki )=Pr[0 < Vi < �ki (�)]gdVi = 1.

Note that Pr[0 < Vi < �ki (�)] = Pr[ln(0) < vi < ln(�
k
i (�)], so

Pr[0 < Vi < �ki (�)] = �
 
ln[�ki (�)]� &vijxp

!vijx

!
=
1

2

 
erf

(
ln[�ki (�)]� &vijxp

2!vijx

)
+ 1

!
Therefore,Z �ki (�)

0
f�i[Vi� �ki (�)]� f(Vij�ki )gdVi = f�i Pr[0 < Vi < �ki (�)]g

(Z �ki (�)

0

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi

)
:
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Following Zaninetti (2017),Z �ki (�)

0

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi = ET1;

where

ET1 =
exp[12V ar(vi)] exp[E(vi)] [erf(a1) + erf(a2)]

[erf(a3) + erf(a4)]
;

with a1 = [�1� !vijx � &vijx]=
p
2!vijx; a2 = f!vijx + &vijx � ln[�

k
i (�)]g=

p
2!vijx;

a3 = [�1� &vijx]=
p
2!vijx and a4 = f&vijx � ln[�

k
i (�)]g=

p
2!vijx.

Hence,

ET1 =
exp

�
1
2!vijx

�
exp(&vijx) [erf(a2)� 1]
[erf(a4)� 1]

;

because erf(a1) = erf(a3) = �1.

Therefore,Z �ki (�)

0
f�i[Vi � �ki (�)]� f(Vij�ki )gdVi = f�i[Pr 0 < Vi < �ki (�)]g[ET1 � �ki (�)]:

Similarly,Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi = Pr[�ki (�) < Vi < +1]

�
(Z +1

�ki (�)

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi � �ki (�)
Z �ki (�)

0

f(Vij�ki )
Pr[0 < Vi < �ki (�)]

dVi

)
:

But since Pr[�ki (�) < Vi < +1] = Prfln[�ki (�)] < vi < +1g, then

Pr[�ki (�) < Vi < +1] =
1

2

 
1�

(
erf
ln[�ki (�)]� &vijxp

2!vijx

)!
:

Hence,Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi = Pr[�ki (�) < Vi < +1]

"Z +1

�ki (�)

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi

#
:

Again, following Zaninetti (2017),Z +1

�ki (�)

�
Vi � f(Vij�ki )

�
Pr[0 < Vi < �ki (�)]

dVi = ET2;

where

ET2 =
exp[12V ar(vi)] exp[E(vi)] [erf(b1) + erf(b2)]

[erf(b3) + erf(b4)]
;

with b1 = �a2; b2 = [!vijx + &vijx �1]=
p
2!vijx; b3 = �a4 and b4 = [&vijx �1]=

p
2!vijx.

Hence,

ET2 =
exp

�
1
2!vijx

�
exp(&vijx) [� erf(a2)� 1]
[� erf(a4)� 1]

;
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because erf(b2) = erf(b4) = �1.

Therefore,Z +1

�ki (�)
f[Vi � �ki (�)]� f(Vij�ki )gdVi = Pr[�ki (�) < Vi < +1][ET2 � �ki (�)];

so Efu[Vi � �ki (�)]j�ki g is then

Efu[Vi � �ki (�)]j�ki g = f�i Pr[0 < Vi < �ki (�)]g[ET1 � �ki (�)]

+ fPr[�ki (�) < Vi < +1g[ET2 � �ki (�)]:

In equilibrium,

f�i Pr[0 < Vi < �ki (�)]g[ET1 � �ki (�)] + fPr[�ki (�) < Vi < +1]g[ET2 � �ki (�)] = 0;

which simpli�es to

exp

�
1

2
!vijx

�
exp(&vijx)

"
(1� �i)

(
erf

!vijx + &vijx � ln[�
k
i (�)]p

2!vijx

)
+ (1 + �i)

#

� expfln[�ki (�)]g
"
(�i � 1) erf

"
ln(Pk)� &vijxp

2!vijx

#
+ (�i + 1)

#
= 0:

When �i > 1 and �i 6= 1, by "Guess and Verify", it is clear that the solution is:

&vijx = ln[�
k
i (�)]�

1

2
!vijx + �i;

with �i solving

exp(�i)

"
(1� �i) erf

 !vijx
2 + �ip
2!vijx

!
+ (1 + �i)

#
�
"
(�i � 1) erf

 !vijx
2 � �ip
2!vijx

!
+ (�i + 1)

#
= 0:

(A1)

If there exists an �i that solves (A1), then the above solution solves the original system.

To con�rm this claim, let

Y (�i) � exp(�i)
"
(1� �i) erf

 !vijx
2 + �ip
2!vijx

!
+ (1 + �i)

#

�
"
(�i � 1) erf

 !vijx
2 � �ip
2!vijx

!
+ (�i + 1)

#
= 0:

To check whether �i is a solution to Y (�i) = 0, one can exploit the fact that

1) lim�i!�1 Y (�i) < 0
2) lim�i!+1 Y (�i) > 0

�
Speci�cally, given that 0 < !vijx <1 and �i > 1, then

lim
�i!�1

Y (�i) = �2�i < 0 and lim
�i!+1

Y (�i) = +1 > 0:

23



As a special case,

lim
�i!0

Y (�i) = 2(1� �i) erf
 !vijx

2p
2!vijx

!
� 0:

The continuity of Y (�i) guarantees that there exists an �i that solves Y (�i) = 0.

If in addition @Y (�i)=@�i > 0 for any �1 < �i < 1, the solution will be unique. In

particular,

@Y (�i)=@�i=exp(�i)

8<:(1��i) erf
 !vijx

2 + �ip
2!vijx

!
+(1+�i)+

2(1��i)p
2�!vijx

exp

24� !vijx
2 + �ip
2!vijx

!2359=;
+

8<: 2(�i � 1)p
2�!vijx

exp

24� !vijx
2 � �ip
2!vijx

!2359=; > 0;

or equivalently
(1 + �i)

(�i � 1)
� erf

 !vijx
2 + �ip
2!vijx

!
> 0;

which is true for any value of �i and 0 < !vijx <1 because [(1+�i)=(�i�1)] > 1 for 1 < �i <1

and erf[(12!vijx + �i)=
p
2!vijx] 2 [�1; 1] : As an aside, it is worth mentioning that �i, despite

being heterogeneous, does not depend on the round of the auction or on the bidder�s own private

signal.

Therefore, given the existence and uniqueness of �i,

&vijx = (�i � �
0
�ix�

��1	) + �0�ix�
��1
k;1 x

k
r + �

0
�ix�

��1
k;2 x

k
d;

where ���1 = (���1k;1 ;�
��1
k;2 ). Solving for x

k
r yields:

xkr = (�
0
�ix�

��1
k;1 )

�1[&vijx + (�
0
�ix�

��1	� �i)� �0�ix�
��1
k;2 x

k
d]:

Given that in the log-normal setup !vijx is constant and &vijx is linear in the log of xi, then

E(VijX1; : : :; XN ) is monotonically increasing in Xi:

For a proof of the existence of an increasing-strategy Bayesian-Nash equilibrium see Milgrom

and Weber (1982) theorem 10 and Hong and Shum (2003, pp. 352). Speci�cally, they show that

if all bidders j 6= i follow their equilibrium strategies �kj (�), bidder i�s best response is to play

�ki (�) because this guarantees that bidder i will win the auction if and only if his expected net

payo¤ is positive conditional on winning.

A.2 Mean, variances and covariances of values and signals

As stated in section 3.1, the conditional expected value of Vi is given by

E(VijX1; : : : ; XN ) = exp[E(vijx) +
1

2
V ar(vijx)];
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where E(vijx) � &vijx = �i+ �
0
vix�

��1 (x�	) and V ar(vijx) � !vijx = �2vi � �
0
vix�

��1�vix with

�i = ( �i 	 ) and �i =

�
�2vi �

0
vix

�vix ��

�
Noting that �i = E(vi) = E(ai+v) = m+�ai, then � = (�1; : : : ; �N )0 = (m+�a1; : : : ;m+�aN )0.

Similarly, E(xi) = E(vi + si�i) = E(vi) = m+ �ai; so 	 = E(x) = (m+ �a1; : : : ;m+ �aN )
0. Also,

V ar(vi) = V ar(ai + v) = V ar(ai) + V ar(v) + 2Cov(ai; v) = r20 + t
2
i

and

Cov(vi; vj) = E(vivj)� E(vi)E(vj) = E(v2)� [E(v)]2 = V ar(v) = r20

for all i; j 2 N and i 6= j, so

�2� =

0B@ r20 + t
2
1 � � � r20

...
. . .

...
r20 � � � r20 + t

2
N

1CA :

In addition,

Cov(vi; xi) = E[vi(vi + si�i)]� E(vi)E(xi) = E(v2i )� [E(vi)]2 = V ar(vi)

and

Cov(vi; xj) = E[vi(vj + sj�j)]� E(vi)E(xj) = E(vivj)� E(vi)E(vj) = Cov(vi; vj)

for all i; j 2 N and i 6= j. As a consequence,

��i	 =

0B@ r20 + t
2
1 � � � r20

...
. . .

...
r20 � � � r20 + t

2
N

1CA :

Finally, since

V ar(xi) = V ar(vi + si�i) = V ar(vi) + s
2
iV ar(�i) + 2siCov(vi; �i) = r20 + t

2
i + s

2
i

and

Cov(xi; xj) = E(xixj)� E(xi)E(xj) = E(vivj)� E(vi)E(vj) = Cov(vi; vj)

for all i; j 2 N and i 6= j, we have that

�� =

0B@ r20 + t
2
1 + s

2
1 � � � r20

...
. . .

...
r20 � � � r20 + t

2
N + s

2
N

1CA :
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A.3 Di¤erence between loss aversion and expected utility

When �i = 1, one gets the standard risk neutral case (see Hong and Shum (2003)), so

exp[
1

2
V ar(vki j�ki )] exp[E(vki j�ki )] = exp[ln(�ki (�)]

or equivalently

E(vki j�ki ) = ln[�ki (�)]�
1

2
V ar(vki j�ki );

with xkr = (�
0
�ix�

��1
k;1 )

�1[E(vki j�ki ) + (�0�ix�
��1	� �i)� �0�ix�

��1
k;2 x

k
d].

Hence, the di¤erence between loss aversion (LA) and expected utility (EU) in this ascending

model is simply:

ELA(vki j�ki )� EEU (vki j�ki ) = �i:

Moreover, since xkr = (�0�ix�
��1
k;1 )

�1[E(vki j�ki ) + (�0�ix�
��1	 � �i) � �0�ix�

��1
k;2 x

k
d], then at

round 0,

x0;PRr � x0;EUr = (�0�ix�
��1
k;1 )

�1�i;

while in subsequent rounds,

xk;PRr � xk;EUr =
�
�0�ix�

��1
k;1

��1
(�i � �0�ix�

��1
k;2 x

k;PR
d + �0�ix�

��1
k;2 x

k;EU
d ):

A.4 Log-bidding functions

To de�ne the log-bid functions �rst partition the inverse of the variance-covariance matrix

of the private noisy signals as

���1 = ( ���1k;1 ���1k;2 );

where ���1k;1 is a (N � k)�N matrix corresponding to the remaining active bidders in round k,

and ���1k;2 is a k �N matrix corresponding to the bidders who have dropped out prior to round

k.

Moreover, let

�k = ( �2v1 � � � �2vN�k )
0;

�k = ( �v1x � � � �vN�kx )
0;

�k = ( �1 � � � �N�k )
0;

and `k a (N � k)� 1 vector of ones.

Additionally, let Ak and Ck be two (N � k)� 1 vectors, and Dk a (N � k)� k matrix, with

Ak = (�k�
��10
k;1 )

�1`k; (A2)

Ck =
1

2
(�k�

��10
k;1 )

�1[�k � diag(�k���1�0k) + 2�k � 2(�k���1	)]; (A3)

Dk = (�k�
��10
k;1 )

�1(�k�
��10
k;2 ); (A4)
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where diag (:) is a matrix whose entries outside the main diagonal are all zero.

Therefore, Aki and Cki in (4) denote the ith element of the vectors (A2) and (A3), and Dki
denotes the ith row of matrix (A4).

A.5 Calculating the likelihood of baseline model

A.5.1 Continuous component

Using the log-bidding function in section 3.2, the bid functions of bidders dropping out in

round k will be given by (4). Let

F =
�

C0N
A0N

� �N � � � CN�22

AN�22

� �2
�

be an (N � 1)� 1 vector,

Gi =
�
0; : : : ; 0| {z }
N�i�2

1=AiN�i DiN�i=AiN�i
�

a 1� (N � 1) vector and

G = ( G00 � � � G0N�2 )

an (N � 1)� (N � 1) matrix. Thus, the vector of dropout bids can be written as

P = G (x2; : : : ; xN )0 + F : (A5)

Let  2(�) be the N � 1 subvector of 	 and ��2(�) the (N � 1) � (N � 1) submatrix of ��

corresponding to bidders 2; : : : ; N . Then, equation (A5) implies that the mean and variance of

the vector of dropout bids will be

�p(�) = F(�) + G(�) 2(�)
�p(�) = G(�)��2(�)G(�)0

�
:

Therefore, the continuos part of the (N � 1)-variate normal log-likelihood function for a given

auction is

log f(P; �) = �1
2
(N � 1) log(2�)� 1

2
log(j�p(�)j)�

1

2

n
[P � �p(�)]

0
�p(�)

�1[P � �p(�)]
o
:

A.5.2 Characterization of T2(�) and its probability

In an ascending auction, one does not observe the winner�s dropout bid, only the price at

which the second highest bidder stops. As a result, the signal of the winning bidder is constrained

to a region T2(x2;. . . ; xN ; �) � R1. Hong and Shum (2003) show that the set T2[G�1(P � F); �]

consist of the following conditions:

fx1 : bl1(x1;xld; �) � pl; for all l = 0; : : : ; N � 2g:
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This implies that for any dropout order, the winning bidder will never regret having remained

active in all prior rounds. However, given the ascending nature of the auction, the only binding

constraint will be

bN�21 (x1;x
N�2
d ; �) � pN�2: (A6)

To illustrate the calculation, consider an auction with N = 3 bidders. Without loss of

generality, suppose bidder 3 had the lowest bid in round 0, so at round 1 only bidders 1 and 2

remain active. Then,

b11(x1;x3; �) � p1;

which can then be simpli�ed to

x1 � A11p1�C11 �D11x3 +A11�1:

Therefore,

PrfT2[G�1(P � F)j�]g = Pr
"
x1 � E(x1jx2; x3)p
V ar(x1jx2; x3)

� A11p1�C11 �D11x3 +A11�1 � E(x1jx2; x3)p
V ar(x1jx2; x3)

#

or equivalently

PrfT2[G�1(P � F)j�]g = �
"
E(x1jx2; x3) + C11 +D11x3 �A11p1 �A11�1p

V ar(x1jx2; x3)

#
:

Unfortunately, there is a mistake in the expression for the probability of T2 after the formula

(24) that Hong and Shum (2003) provide. Speci�cally, they seem to have used unconditional

moments when they should have used conditional ones instead because PrfT2[G�1(P � F); �]g

denotes the probability that x1 2 T2(�) conditional on P.

To obtain E(x1jxd) = �	 and V ar(x1jxd) = ���; �rst partition the vector x as

x= [x1 (x2; x3)| {z }
N�1

]0;

and then partition 	 and �� accordingly:

	 = [	1 	d|{z}
N�1

]0 and �� =

0BBB@ ��11

1�(N�1)z}|{
��1d

��d1|{z}
(N�1)�1

��dd|{z}
(N�1)�(N�1)

1CCCA :

Then, the distribution of x1 conditional on (x2; x3) is multivariate normal

x1jx2; x3 � N( �	; ���), where �	 = 	1 +��1d (�
�
dd)

�1 [(x2; : : : ; xN+q)�	d] and
��� = ��11 � ��1d (��dd)

�1��d1.
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A.5.3 Characterization of Pr[T1(�); �]

For the dropout to occur in the correct order (CO), it must be the case that

bki (xi;x
k
d; �) � bkN�k(xN�k;x

k
d; �) = pk; for all k and i = 0; : : : ; N � k � 1:

The truncation region T1(�) for a given value of � is de�ned as the values of the log-signals

such that CO is satis�ed. More formally,

T1(�) = fx1; : : :; xN : CO is satis�edj�g :

Given the ascending nature of the auction and that the log-bidding functions for rounds k

and k � 1 intersect when they are equal, Hong and Shum (2003) show that the CO condition

can be simpli�ed to the following N � 1 inequalities

bkN�k�1(xN�k�1;x
k
d; �) � bkN�k(xN�k;x

k
d; �); for all k = 0; : : : ; N � 2;

which implies that the log-bidding functions of the bidders remaining in round k have to be

greater than the log-bidding functions of all the ones who have dropped out.

To illustrate the calculations for Pr[T1(�); �], suppose that, for example, N = 3. The only

binding constraints are:
b02(x2; �) � b03(x3; �)
b11(x1; x3; �) � b12(x2; x3; �)

�
which can be written in matrix form as�

0
0

�
| {z }

Z

�

24 C03
A03
� C02

A02
+ (�2 � �3)

C12
A12
� C11

A11
+ (�1 � �2)

35
| {z }

h

+

"
0 � 1

A02

1
A03

� 1
A11

1
A12

�
D1
2

A12
� D1

1

A11

� #
| {z }

H

0@ x1
x2
x3

1A
| {z }

x

;

The probability that Z � 0 is simply a multivariate normal cdf with E(Z) = h +H	 and

V (Z) = H��H 0 because x � N (	;��). To calculate this multivariate normal cdf, I use a

numerical quadrature procedure for bivariate and trivariate distributions, and a quasi-Monte

Carlo integration algorithm for four or more dimensions (see Matlab (2019) mvncdf entry).

As an aside, it is worth mentioning that the CO condition in Pr[T1(�)j�] in the fully homo-

geneous case (see section Online Appendix B.1.4) implies that the log-signal of the winner has

to be greater than the log-signal of the second highest bidder, and similarly the log-signal of the

third highest bidder, etc. For example, when there are only three bidders,

Pr[T1(�)j�] = Pr(x1 � x2;x2 � x3j�) = Pr(z1 � 0; z2 � 0j�);

where z1 = x1 � x2 and z2 = x2 � x3. But notice that this is the probability that a bivariate

normal with zero means, unit variances and some correlation coe¢ cient between z1 and z2 (�z1z2)

29



lies in the �rst quadrant. In this case, it is easy to prove that

Pr[T1(�)j�] = 1=N !

because there are N ! possible orderings, which are all equally likely in the fully homogeneous

case. Consequently, Pr[T1(�)j�] does not depend on the model parameters.

A.6 Log-bidding functions with active non-bidding participants

To de�ne the log-bid functions in this more general framework ,let

_��1 = ( �2v1 � � � �2vN+q )
0;

_��1 = ( �v1x � � � �vN+qx )
0;

_��1 = ( �1 � � � �N+q )
0;

and _̀�1 a (N + q)� 1 vector of ones.

Additionally, let _A�1 and _C�1 be two (N + q)� 1 vectors, with

_A�1 = ( _��1�
��10)�1 _̀�1;

_C�1 =
1

2
( _��1�

��10)�1[ _��1 � diag( _��1���1 _�0�1) + 2 _��1 � 2( _��1���1	)]:

With this notation, the log-bidding functions are given by (6).

At round 0, partition the inverse of the variance-covariance matrix of the private noisy signals

as

���1 = ( ����10;1
����10;2 );

where ����10;1 is a N � (N + q) matrix corresponding to the active bidders in round 0, and ����10;2

is a q � (N + q) matrix corresponding to the active non-bidding participants who dropped out

in round -1. Moreover, let

��0 = ( �2v1 � � � �2vN )0;

��0 = ( �v1x � � � �vNx )
0;

��0 = ( �1 � � � �N )0;

and �̀0 a N � 1 vector of ones.

Finally, let �A0 and �C0 be two N � 1 vectors, and �D0 a N � k matrix, with

�A0 = (��0 ��
��10
0;1 )

�1 �̀
0;

�C0 =
1

2
(��0 ��

��10
0;1 )

�1[��0 � diag(��0���1��00) + 2��0 � 2(��0���1	)];

�D0 = (��0 ��
��10
0;1 )

�1(��0 ��
��10
0;2 ):

With this notation, the log-bidding functions are given by (7).
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A.7 Calculating the likelihood with active non-bidding participants

A.7.1 Continuous component

De�ne

~F =
�

C�1N+q
A�1N+q

� �N+q � � � C�1N+1
A�1N+1

� �N+1
C0N
A0N

� �N � � � CN�22

AN�22

� �2
�

as an (N + q � 1) � 1 vector, with q being the number of non-bidding participants and N the

number of active bidders. Similarly, let

~Gj =
�
0; : : : ; 0| {z }
N�j�2

1=A�1N�j 0; : : : ; 0| {z }
q+j

�
, for j = �q; : : : ;�1

~Gi =
 
0; : : : ; 0| {z }
N�i�2

1=AiN�i DiN�i=AiN�i| {z }
q+i

!
, for i = 0; : : : ; N � 2:

denote two 1� (N + q � 1) vectors and

~G = ( ~G0�q � � � ~G0�1 ~G00 � � � ~G0N�2 )

an (N + q � 1)� (N + q � 1) matrix. As before, the vector of dropout bids can be written as

~P = ~G (x2; : : : ;xN+q)0 + ~F : (A7)

This equation describes the mapping from the unobserved log-signals

xdr � (x2; : : : ;xN ; xN+1; : : : ; xN+q)0

to the observed log-bids ~P =(p�1; : : : ; p�1| {z }
q

; p0;. . . ; pN�2)0.

Let ~ 2(�) be the N+q�1 subvector of 	 and ~��2(�) the (N + q � 1)�(N + q � 1) submatrix

of �� corresponding to the signals of bidders 2; : : : ; N + q. Then, equation (A7) implies that the

mean and variance of the vector of dropout bids will be

~�p(�) = ~F(�) + ~G(�)~ 2(�)
~�p(�) = ~G(�)~��2(�) ~G(�)0

�
:

Similarly, partition the price vector ~P as:

~P = ((p�1; : : : ; p�1)| {z }
q

(p0; : : : ; pN�2)| {z }
N�1

)0

and then partition ~�p(�) and ~�p(�) accordingly:

~�p(�) = (~�p;1|{z}
q

~�p;2|{z}
N�1

)0 and ~�p(�) =

0BBB@
q�qz }| {
~�p;11

q�(N�1)z }| {
~�p;12

~�p;21| {z }
(N�1)�q

~�p;22| {z }
(N�1)�(N�1)

1CCCA :
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Then, the distribution of (p0; : : : ; pN�2) conditional on (p�1; : : :; p�1) is multivariate normal

[(p0; : : :; pN�2) j (p�1; : : :; p�1)] � N
�
��p; ��p

�
, where ��p = ~�p;2+ ~�p;21 ~�

�1
p;11

�
(p�1; : : :; p�1)� ~�p;1

�
and ��p = ~�p;22 � ~�p;21 ~��1p;11 ~�p;12.

Therefore, the continuos part of the (N � 1� q)-variate normal log-likelihood function for a

given auction conditional on the initial dropout bidders is

log f(PajP�1; �) = �
1

2
(N�1�q) log(2�)�1

2
log(j��p(�)j)�

1

2

n
[Pa � ��p(�)]

0 ��p(�)
�1[Pa � ��p(�)]

o
;

where Pa = (p0; : : :; pN�2)0.

A.7.2 Characterization of T2(�) and Pr[T1(�); �jP�1]

In this case, the probability of T2 will be the same as (A6). To illustrate how the Pr[T1(�); �]

looks like in this context suppose that, for example, N = 3 and q = 1. At round -1, bidder 4

drops out at price p�1. Therefore, the only binding constraints will be:

b�13 (x3jx4) � b�14 (x4jx4)
b02 (x2jx4) � b03 (x3jx4)
b11 (x1;xdjx4) � b12 (x2;xdjx4)

9=;
which can be written in matrix form as

0@ 0
0
0

1A
| {z }

Z

�

26664
C�14
A�14

� C�13
A�13

+ (�3 � �4)
C03
A03
� C02

A02
+ (�2 � �3)

C12
A12
� C11

A11
+ (�1 � �2)

37775+
266664

1=A�14�
D03;1
A03

� D02;1
A02

�
�
D12;2
A12

� D11;2
A11

�
377775 (x4)|{z}

xb| {z }
h

+

2664
0 0 �1=A�13
0 �1=A02 1=A03

�1=A11 1=A12
�
D12;1
A12

� D11;1
A11

�
3775

| {z }
H

0@ x1
x2
x3

1A
| {z }

xa

;

Then, partition the vector x as

x=
�
x0a; x

0
b

�0
= [(x1; : : : ; xN )| {z }

N

(xN+1; : : : ; xN+q)| {z }
q

]0;

and then partition 	 and �� accordingly:

	 = ( 	a|{z}
N

	b|{z}
q

)0 and �� =

0BBB@
N�Nz}|{
��aa

N�qz}|{
��ab

��ba|{z}
q�N

��bb|{z}
q�q

1CCCA :

The distribution of xa conditional on xb is multivariate normal xajxb � N(	̂; �̂�), where

	̂ = 	a +�
�
ab (�

�
bb)

�1 [(xN+1; : : : ; xN+q)�	b] and �̂� = ��aa � ��ab (��bb)
�1��ba.

The probability that Z � 0 conditional on xb is simply a multivariate normal cdf with

E[Zj (xN+1; : : : ; xN+q)] = h+H ~	 and V [Zj (xN+1; : : : ; xN+q)] = H ~��H 0.
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Tables

Table 1: Auctioneer Behavior
Estimate Std. Error

HHI�� 0.015 0.005
SIZE��� 0.548 0.106
Constant 2.879 0.350

Notes: Multiple regression of (log) opening bid. HHI captures the median household income of the
municipality where the locker is located in the State of California, SIZE is a variable that measures the
size of the locker (small (1), medium (2) or large (3)). Additionally, * indicates rejection of the null at
the 10% signi�cance level, ** 5% level, *** 1% level.

Table 2: Summary Statistics
Variable #Obs. Season 1 Season 2 Season 3

Auction characteristics
Small locker 100 23 37 40
Medium locker 117 27 54 36
Large locker 37 9 12 16
Average HHI 78 57641 61473 58750
Average Ex-post 250 4797 3954 6319
Average Pro�t 250 3949 2282 4821
Number of auctions 254 59 103 92

Number of bidders per auction
N = 2 14 3 6 5
N = 3 50 9 13 28
N = 4 72 20 29 23
N = 5 63 13 34 16
N = 6 36 8 16 12
N = 7 19 6 5 8

Notes: HHI denotes the median household income of the municipality where the locker is located in
the State of California, Ex-post denotes the ex-post value of the locker and pro�t denotes the di¤erence
between the ex-post value of the locker and the winner�s bid.
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Table 3: Bidder�s Frequency Participation
# Obs. First Bidder J Dr Dv J-Dr J-Dv Dr-Dv J-Dr-Dv

Barry 139 66 82 86 76 52 44 50 29

# Obs. First Bidder J B Dv J-B J-Dv B-Dv J-B-Dv
Darrell 161 25 96 86 98 52 57 50 29

# Obs. First Bidder J Dr B J-Dr J-B Dr-B J-Dr-B
Dave 151 10 99 98 76 57 44 50 29

# Obs. First Bidder B Dr Dv B-Dr B-Dv Dr-Dv B-Dr-Dv
Jarrod 165 31 82 96 99 52 44 57 29

Notes: The four main bidders are Barry "B", Darrell "Dr", Dave "Dv" and Jarrod "Jr". Additionally,
"J-Dv" means that Jarrod and Dave were the only two main bidders out of the four who were active
bidding participants, i.e. they participated in the auction.

Table 4: Mean Common Value
Estimate Std. Error

HHI�� 0.012 0.005
SIZE��� 0.368 0.123
Constant 6.242 0.408

Notes: Multiple regression of (log) Ex-post value. HHI captures the median household income of the
municipality where the locker is located in the State of California and SIZE is a variable that measures
the size of the locker (small (1), medium (2) or large (3)). Additionally, * indicates rejection of the null
at the 10% signi�cance level, ** 5% level, *** 1% level.
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Table 5: Maximum Likelihood Estimates Baseline Model
Estimate p-value

����1 0.381 0
���2 0.009 0.01
�0 0.014 -
�0 5.534 -
����1 -0.185 0
����2 0.198 0
��3 0.101 0.06
�4 0.039 0.51
�0 -1.081 -
0 0.371 -
1 -0.059 0.85
2 0.053 0.77
���3 0.923 0
�4 -0.717 0.09

Notes: The mean of the common value component for a given auction is m = �0 + �1SIZE + �2HHI,
where SIZE is a variable that measures the size of the locker (small (1), medium (2) or large (3)) and
HHI captures the median household income of the municipality where the locker is located in the State of
California. Additionally, the mean of the private value component of the four main bidders (Barry "Ba",
Darrell "Dr", Dave "Dv" and Jarrod "Jr"), as well as of the other active bidders whose identity is not
shown publicly, is �a = (�0 +�1Ba; �0 +�2Dr; �0 +�3Dv; �0 +�4Jr; �0;. . . ;�0), where Ba, Dr, Dv and
Jr are mutually exclusive dummy variables. Furthermore, the variance of the common and private value
component is modelled as r20 = exp(�0) and t

2 = exp(�0), respectively, while the variance of the noise for
each of the bidder�s signals is s2 = exp(0 + 1Ba; 0 + 2Dr; 0 + 3Dv; 0 + 4Jr; 0;. . . ;0). p-values
correspond to the likelihood ratio. Finally, * indicates rejection of the null at the 10% signi�cance level,
** 5% level, *** 1% level.
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Table 6: Maximum Likelihood Estimates With Active Non-Bidding Participants
Estimate p-value

����1 0.291 0
����2 0.009 0
�0 -0.002 -
�0 5.926 -
����1 -0.439 0
�2 -0.007 0.55
����3 -0.126 0
�4 0.001 0.59
�0 0.001 -
0 1.628 -
�1 -0.427 0.08
2 -0.022 0.79
���3 1.024 0
4 0.058 0.76

Notes: The mean of the common value component for a given auction is m = �0 + �1SIZE + �2HHI,
where SIZE is a variable that measures the size of the locker (small (1), medium (2) or large (3)) and
HHI captures the median household income of the municipality where the locker is located in the State of
California. Additionally, the mean of the private value component of the four main bidders (Barry "Ba",
Darrell "Dr", Dave "Dv" and Jarrod "Jr"), as well as of the other active bidders whose identity is not
shown publicly, is �a = (�0 +�1Ba; �0 +�2Dr; �0 +�3Dv; �0 +�4Jr; �0;. . . ;�0), where Ba, Dr, Dv and
Jr are mutually exclusive dummy variables. Furthermore, the variance of the common and private value
component is modelled as r20 = exp(�0) and t

2 = exp(�0), respectively, while the variance of the noise for
each of the bidder�s signals is s2 = exp(0 + 1Ba; 0 + 2Dr; 0 + 3Dv; 0 + 4Jr; 0;. . . ;0). p-values
correspond to the likelihood ratio. Finally, * indicates rejection of the null at the 10% signi�cance level,
** 5% level, *** 1% level.
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Figures

Figure 1: Loss Aversion Utility Function
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Notes: This graph displays the shape of the utility function (1) plotted against gains and losses for
� = 1 (risk neutrality) and � = 2:25 (loss aversion), with the marginal utility of losses being � times the
marginal utility of gains.
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Figure 2: Bidding Functions
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Notes: This graph displays the equilibrium bid functions for � = 1 (risk neutrality) and � = 2:25 (loss
aversion), with bidders bidding substantially lower under loss aversion.
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Figure 3: Log-Bid Functions in Multiple Rounds

0 1 2 3 4 5 6 7 8 9 10
LogSignal

2

3

4

5

6

7

8

9

10

11

Lo
g

Pr
ic

e

Round 0
Round 1
Round 2
Round 3

Notes: This graph displays the log-bid functions of a representative bidder for each round in an auction
with 5 loss averse bidders.
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Figure 4: Distribution of Storage Wars Pro�t/Losses
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Notes: This graph displays the boxplot of the pro�t/losses in storage locker auctions, with the outliers
being plotted using the + symbol.
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Figure 5: Log-Bid Functions of Storage Wars Bidders Baseline Model
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Notes: This graph displays the round 0 log-bid functions of Storage Wars bidders under loss aversion,
except for Dave who is risk neutral.
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Figure 6: Log-Bid Functions with Active Non-Bidding Participants
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Notes: This graph displays the log-bid function of a representative loss averse bidder when he takes into
account the private information active non-bidding participants have in round 0.
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Figure 7: Log-Bid Functions of Storage Wars Bidders With Active Non-Bidding Participants
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Notes: This graph displays the log-bid functions of Storage Wars bidders in round 0 with 1 active
non-bidding participant, which in this case is Darrell.
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