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Abstract. Recent developments in machine learning have pushed the
tasks that machines can do outside the boundaries of what was thought to
be possible years ago. Methodologies such as deep learning or generative
models have achieved complex tasks such as generating art pictures or
literature automatically. Machine Consciousness is a field that has been
deeply studied and several theories based in the functionalism philosoph-
ical theory like the global workspace theory have been proposed. In this
work, we propose an architecture that may arise consciousness in a ma-
chine based in the global workspace theory and in the assumption that
consciousness appear in machines that have cognitive processes and ex-
hibit conscious behaviour. This architecture is based in processes that
use the recent Deep Learning and generative process models. For ev-
ery module of this architecture, we provide detailed explanations of the
models involved and how they communicate with each other to create
the cognitive architecture. We illustrate how we can optimize the archi-
tecture to generate social interactions between robots and genuine pieces
of art, both features correlated with machine consciousness. As far as we
know, this is the first machine consciousness architecture that use gen-
erative models and deep learning to exhibit conscious social behaviour
and to retrieve pictures and other subjective content made by robots.

Keywords: Machine Consciousness · Machine Learning · Deep Learning
· Gaussian Processes · Artificial Intelligence

1 Introduction

Several reviews have been written about machine consciousness [24] [50] [25]
that try to sum up all the ideas that literature has proposed about the potential
arisal of consciousness in machines [14]. These ideas come from different areas
such as artificial intelligence [13], neuroscience [46] or philosophy [53]. Although
consciousness can not be measured directly, there exist approaches that have
provided potential measures of consciousness in machines [4] [49].

Although the field generates controversy [16] as it lies in the margin of the
scientific method, it has recently attracted the attention of relevant researchers
of computer science such as Yoshua Bengio, who has provided an approach for
how machine consciousness may arise with deep learning [10]. As deep learning
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[40] has generated machines that implement attention mechanisms [32], a new
focus have emerged with the field of machine consciousness based in the aston-
ishing hypothesis [16] that our intelligence and consciousness may arise from
very simple principles.

Computational approaches for machine consciousness are based in the func-
tionalism theory of consciousness [50]. This theory claims that while mental
states correspond to brain states, they are mental states due to their function-
ality, not due to their physical composition. Hence, consciousness may appear
in machines that implement behaviors observed in humans that are correlated
with consciousness.

Throughout the recent years, there has been amazing advances in the arti-
ficial intelligence and machine learning community [45] that does not only in-
clude deep learning models. In the machine consciousness literature, it has been
hypothesized that consciousness, or phenomenal states [41], may arise from ma-
chines that are able to perform tasks that humans are able to do when they are
conscious [17] [25]. This is based in the hypothesis that if humans are conscious
when producing complex behaviours, then, machines may be conscious when
they produce them too [23].

We know, and have measured, that humans are conscious when performing
these behaviours thanks to functional magnetic resonance imaging (fMRI) and
related techniques [34] [36]. These behaviours can include imagination [59], emo-
tions [55], language communication and social relations [54] or awareness of the
environment [37].

Machine learning recent models are able to generate art [21] that deviate
from what they are fed to learn, are able to learn how to learn [60], learn from
a few examples [56] and are able to transfer knowledge from a different task to
behave better in a new one [35]. The applications of these abilities include natural
language generation [20], understanding emotions [11] or generating videos [65].
We believe that if the philosophical theory that consciousness arises as a flux
of information in any machine [52] is true, if we create a cognitive architecture
[12] that is able to produce as many behaviours as possible that are correlated
with consciousness in humans, then, the machine may as well arise, up to some
extent, consciousness or phenomenal states.

We attempt to provide a bridge between the machine learning and the ma-
chine consciousness communities by providing the design of a cognitive architec-
ture with machine consciousness behaviours through machine learning models.
Several architectures have been proposed before [18] but none of them include
both deep learning, generative processes and gaussian processes to generate in-
terior cognitive processes and exterior behaviour and content. Section 2 will
discuss related work. Then, in Section 3, we provide a detailed explanation of
the modules of our architecture. Section 4 then provides the architecture that
unifies these modules. We conclude our work with a section of conclusions and
further work.
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2 Related Work

Due to different theories explaining the origin of consciousness, several ap-
proaches have been proposed to tackle this problem. We first discuss the different
processes involving machine consciousness [24] and then, the different approaches
that have tackled machine consciousness [50].

Machine consciousness processes involve mainly four categories ordered from
1 to 4 in function of how close to generating real awareness they are [25].

Level 1 includes machines that implements external behaviour associated
with consciousness. Some of the described behaviours in the introduction section
like social interactions implemented in machines would be level 1 and the field
of artificial general intelligence [30] lies in this level. Several authors [33] [43]
argue that machines implementing these behaviours may produce consciousness,
but there is controversy. Machines that implement cognitive characteristics like
imagination [3], attention, emotion, depiction and planning are level 2 machines.
When an architecture involving all these process exists, we are talking about level
3 machines, that is, machines with an architecture that is claimed to be a cause
or correlate of human consciousness. Lastly, phenomenally conscious machines
are level 4 machines based in the hypothesis that several level 2-3 design could
emerge phenomenal states [2].

Several approaches have tackled the previous categories of machine conscious-
ness. A classification of them all [50] includes five categories: First one are meth-
ods based in the global workspace theory [5]. According to this theory, con-
sciousness emerges from a system, like the brain, with a collection of distributed
specialized networks with a fleeting memory capacity whose focal contents are
widely distributed to many unconscious specialized networks, called contexts.
These contexts work together to jointly constrain conscious events and to shape
conscious contents [6]. These theory has support of the neuroscience community
[7] and the computer science community [10]. We are also inspired by this the-
ory to provide a cognitive architecture [12] with machine learning techniques.
Other categories include methods that suggest that consciousness emerges from
a certain amount of information processing and integration [9], from creating
an internal self-model [47], from generating higher-level representations [1] and
from attention mechanisms [38].

Machine consciousness has risen as a research topic for the deep learning
literature [10], where the interest resides in learning representations of high-level
concepts of the kind humans manipulate with language. We suggest that machine
learning and related techniques [8] are able to work as a global workspace, process
a high amount of information, can generate internal self-models and higher level
representations and have attention mechanisms. Hence, machine learning and
generative processes should be explored in this field.

3 Machine Consciousness Correlated Processes

We now provide the module design that implement cognitive processes and ex-
hibit external behaviour that is correlated with consciousness [25]. In the se-
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lection of the cognitive processes to be simulated, we consider behaviors that
can make an autonomous agent evolve to adapt to an unknown environment
through observation and social interaction. These behaviours are also affected
by processes that establish emotional connections between observed and imag-
ined content (e.g., images generated by simulated dreams, emotion simulation,
depiction of the environment) and that can be supported by novel techniques
such as deep learning and generative methods.

3.1 Simulating dreams

In order to simulate dreams, we first have to record photos Pi when being
awake and store them in a semantic network [58]. Then, dreams will use that
information P : Pi ∈ P to generate a sequence of images Di ∈ D. We define a
dream as a function d that converts a subset of a sequence of images P ∈ P and
a subset of a sequence of style images S ∈ S in a new set of images D, that is
D = d(P,S). In order to generate this procedure, we propose two processes for
this simulator:

First, we classify images P into a semantic network R. We assume that a
previous categorized semantic network R exists and that a robot has already
learned to classify images P into that network R. An implementation of this
process can have ImageNet [19] as semantic network. ImageNet is a resource
with more than 14.000.000 images D(X) and more than 21.000 categories y.
ImageNet uses the hierarchy of WordNet [22] to classify photos, having each
category yi a semantic meaning and being organized as a graph G = V,E that
can be traversed, where v ∈ V is the node representing category yi. Convolutional
neural networks [39] or advanced neural models as Efficient Net L2 [64] or ResNet
[63] neural models can classify photos into ImageNet. Let NN be the neural
model that implements the robot, the robot will classify each input image P to
category yi, inserting it in the graph G through the NN trained on the ImageNet
dataset D(X,y), that is: yi = NN(P |D(X,y)).

To feed images in the neural model NN to be classified in the graph G,
we need a robot with an integrated camara to take the photos P and define a
period of being awake Ta and asleep Ts. These parameters can be configured
differently for every robot. We suggest to save additional images S that will
represent different styles seen like for example dark places or broad landscapes
in a different semantic network Rs.

Second, we need to define the dreaming state given by time Ts. We suggest
to use a random walk [51] like the one performed in the Metropolis Hastings
algorithm [15] to simulate movement into the semantic networks of images R
and styles Rs that are related by semantic distance ds(yi, yj) in their graphs
G,Gs given by the number of edges that connect each category. At each step, we
select two images Pi,P

s
i and invoke Deep Style neural networks [44] to generate

a new image with the selected photo and an style applied Di = DSnn(Pi,P
i
s).

Models such as a Generative Adversarial Network [48] can be used. The robot
will then attend the photo and save it. We can observe examples of generated
photos using the Deep Dream Generator by this procedure in Figure 1.
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Fig. 1. Generated photos representing dreams by the Deep Dream Generator models
(http://deepdreamgenerator.com/)

Initial categories yinit, y
s
init are chosen randomly. To select the new cate-

gories, we perform a random walk in the graph G and Gs given by some uniform
distribution with a lower ll and upper ul limit, whose sampled value we will call
step size ω. If we set those parameters to a high number, dreams will contain
different concepts and viceversa. We repeat the mentioned process by perform-
ing an iteration of the random walk. We store each generated image Di. The
sequence of recreated images D recreates the dream. After dreaming, the robot
will be awake, iterating both processes.

3.2 Depiction. Being aware of the environment

We suggest to implement a robot that moves autonomously in a given environ-
ment E. For the sake of simplicity we are going to assume that E is 2-dimensional
E ∈ R2. This robot will remember the images D that has previously dreamed as
described in the previous module. The robot, when awake, will try to return to
the location or neighbourhood N ∈ E where the images that has dreamed are
located.

We will generate a 2-dimensional function of location importance with a sam-
ple from a Gaussian Process [62] frl ∼ GP(0, k(x,x′)) ∈ R2 over the environment
E , discretized by a grid, for each robot r with interesting places to visit. We
can observe examples of such functions at Figure 2 The resolution of the grid
rg can set the size of the environment E. Gaussian Processes models are flexible
priors or distributions over functions where inference takes place directly in the
functional space F . This functional space contains every possible environment
that can be created E ∈ F . The generated environment by the GP fl ∈ R2will contain high-valued locations of interest to take photos from and viceversa.
When the robot reaches these places, it will take photos of the environment and
save them for the dream module. Once visited, these places will be penalized by
a local penalization procedure [31]. These kind of procedures get a neighbour-
hood N ∈ fl centered in the place of interest r ∈ N and penalizes this zone by,
for example, a multivariate gaussian distribution fl(N) = fl(N)−MVG(r, I).

The robot will end navigation when it is exhausted after its time awake Ta.
We can simulate fatigue through a non deterministic function p(r, t) ∈ [0, 1] of
time since it has last slept. Each time that the robot takes a photo, fatigue will
be incremented or decremented depending on the reward given by the photo.

http://deepdreamgenerator.com/)
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Fig. 2. Sampled functions from a 2-dimensional GP representing the importance value
of each location of the environment for the robots.

We can assign a threshold φ ∈ [0, 1] for fatigue. When the robot is awake the
threshold takes value 0 and it is incremented as a function of time or by ε when
taking a photo. The robot will fall asleep after the maximum time awake or if the
non deterministic function samples a value higher than the threshold p(r, t) > φ.
The action of taking or not the photo tp in each place g of the grid will be non
deterministic and dependant on the value of fl, that is tp(fl, g). The robot can
take a photo my sampling tp periodically after an amount of steps s in fl Specific
parametric functions can be configured for each robot.

The Gaussian process sample fl will be contaminated by i.i.d. gaussian noise
ε ∼ N (0, σgj) in each position of the grid g and dimension j in the period
of being awake to favour exploration. Higher values of σ will enforce explo-
ration. The robot will navigate through the environment with a metaheuristic
[61] (exploration-exploitation) or by the gradients of the Gaussian process [57]
(exploitation). Random rewards will be put in the scenario.

3.3 Emotion simulation

In this section, we define a process that models emotions through objective
functions e(t) ∈ [0, 1] of time. The main reason why we implement emotions in
these robots is because they are going to influence the Gaussian Process prior
fl of the environment E. If the robots feels confident and happy eh(t) ≈ 1,
unknown near areas of E to the position of the robot g will be rewarded to
be explored. If R is a neighbourhood of fl containing a reward, we can reward
its value by sampling from a multivariate gaussian distribution centered in the
reward fl(R) = fl(R)−MVG(r, I). By doing this process, the robot will enter a
positive cycle and take photos of interesting places. By performing this action, we
increment eh(t) by a uniform distribution which limits [l, u] can be parametrized.
If, in contrast, the robot feels sad and fear eh(t) ≈ 0, movement across the grid
will be penalized by incrementing fatigue and decrementing the step size ω of
the random walk, entering a negative loop.

These cognitive processes will exhibit external behaviour that will show if
a robot is happy or sad by its activity on the grid. We provide an exit of the
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cycles by images of dreams D. Dreams can also influence emotions e(t) and
make the robot behave differently. If an image resembles a visited area that
had got high value of fl, happiness will be incremented by a parametrizable
amount e(t) = e(t− 1) + δ ∼ U [l, u], where t represents time. If images of places
with low value of fl are displayed, the opposite operation will be performed
e(t) = e(t− 1)− δ ∼ U [l, u]. Happiness could also affect the fatigue function, by
alleviating it if the robot is happy or increasing it in the other case.

Other emotions that may be optimized are curiosity and boredom ec(t) ∈
[0, 1], that would affect the Gaussian Process sampled function fl by penalizing
already saw places by an MVG(0, I) and rewarding unknown places also by
an MVG(0, I). A last example can be friendship and solitude ef (t), based in
relations with other robots that are going to be described further or courage
and fear ec(t) that will condition the movements across the environment by
incrementing the step size ω of the random walk. The described fatigue function
can also be seen as an emotion. Particular parametric forms of the functions are
open for the robot developer to be implemented.

3.4 Social relationships with other robots

If we want to simulate emotions e(t) like the ones felt with humans to show
behaviour correlated with consciousness, we need to model these emotions to be
not only a function of the environment interaction fl but also of relationships
with other robots. For this reason, we consider that an essential component for
the cognitive processes of the robots must be the interaction with other robots
to share experiences, in the form of photos P in this setting, and influence the
emotions e(t).

Emotions like friendship or solitude es(t) are dependant on social interac-
tions. We define here a social interaction α(βx, βy) as the change of a photo Px

of a robot βx with a photo Py of a robot βy when both robots share the same
location g in the environment E.

Each robot βi has a different function sampled from the GP prior f il ∼
GP(0, k(x,x′)) ∈ R2 of the environment E. As each photo Pi related to a position
of the grid gi, it will have, for every robot βi a different value f il (gi), conditioning
the rest of the emotions. If the photo refers to a location that the robot likes
according to its prior f il , emotions will make the robot more active. Although,
if this is not the case, the robot may enter a negative cycle.

By interacting with each other, robots β will share images P or dreamed
images D of the environment E that will modify their Gaussian Process sampled
function f il and the other emotions of the robot. Specific parametric forms are
again free for the programmer of the robot to be set.

4 An Unified Architecture for the Models

In the previous section, we have described how can we implement behaviours
correlated with consciousness in machines. All the described processes can be
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implemented in a certain amount of robots β with an environment E that they
can traverse and get photos P from. In this section, we provide a diagram with all
the modules described to illustrate how the information flows in our architecture.

Besides the processes described in the previous section and in order to be
more general, the proposed architecture uses multimodal information (e.g., am-
bient music and texts in form of recipes, besides images). These processes would
generate subjective creations, which can be correlated with their communication
to processes generated in conscious states, such as recipe suggestions [26] where
in each position modelled by the GP the robot would find, with a probability
sampled from a random variable, a suggestion of a recipe and generate in base of
the recipe a degree of tastiness. Another alternative is to include ambient music
simulations [42], where in each position in the input space we would have an
ambient noise sample, also with a probability distribution given by the sampling
of a random variable, and the robot would have a ambient music simulator, that
uses these samples to generate music, simulating imagination and conditioning
the emotion simulator.

All these processes generate the architecture that we can see in Figure 3.
We can observe how robots share images and other information showing so-

Fig. 3. Architecture of the proposed robots with behaviours correlated with conscious-
ness. External processes that interact with the environment involve the depiction engine
and the interface that collects data. Internal processes involve the dream, music and
recipe generators and the emotion simulator, that condition the external behaviour.
The hyperparameters of the robots models can be jointly optimized by a metaheuristic.

cial behaviour. These interactions affect their emotions and incur in a differ-
ent movement across the environment, reflecting emotions, commonly correlated
with consciousness. Cognitive interior processes include dreaming images that
are function of the perceived images and simulating music and cooking recipes,
affecting emotions. These behaviours could, according to the cited theories, be
a correlation of consciousness in robots.
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Lastly, we propose the optimization of the different parametric forms e(t) of
the emotion engine and the parameters of the deep neural network for the dream
simulation and the gaussian process for the environment in several simulations
of the robots with a metaheuristic such as a genetic algorithm with the fitness
being a function of the maximum number of interactions possible of the robots
constrained to the maximum movement of the robots. By performing this opti-
mization, we would end up having the optimum configuration for the robots to
exhibit social behaviour, typically correlated with consciousness.

If the hyperparameters of the models are correctly optimized in future ex-
periments, the outputs of these robots are hypothesized to be beautiful pieces
of art in the form of pictures, music songs and cooking recipes, as all the envi-
ronment can be seen as a reinforcement learning optimization technique to cre-
ate subjective content and social interactions with conscious behaviours. Other
architectures for machine consciousness just focus in cognitive processes and
implementation of cited machine consciousness theories.

5 Conclusions and further work

We have described an architecture of processes that, if implemented in robots, ex-
hibit external behaviour in the form of genuine art content and social behaviour.
According to machine consciousness theory [25], both characteristics could be
correlated with machine consciousness in robots [24]. A significant novelty of
this approach is the use of generative models based on the latest techniques of
machine learning and deep learning to simulate processes such as imagination
or depiction, where gaussian processes are flexible models that create functional
spaces that contains lots of different environments.

The presented architecture is a theoretical proposal that should be validated
with practical tests. For this reason, we plan to implement all the processes in
robots to get empirical evidence about the behaviour associated with conscious-
ness and execute machine consciousness tests with natural language processing
modules to verify if the robots are able to pass them. Further work will also
include optimizing the emotions by some mechanism such as constrained Multi-
objective Bayesian Optimization [27] in order to create a global and dynamical
policy for the behaviour of the robots and including a weighted causal graph
[29] as knowledge base to generate more complex social relationships where even
fake information could be shared or detected [28].
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