DEVELOPMENT AND EXECUTION OF
ARTIFICIAL TRAJECTORIES OF INDUSTRIAL
ROBOTS INTEGRATING RL ALGORITHMS

Author: Giménez Sudrez, Pablo Santiago
Directors: Lopez Lépez, Alvaro Jests and Tobias, Ignacio de Rodrigo

Abstract—Due to the increased flexibility demanded on pro-
duction systems, new technologies have become necessary to allow
machines to adapt their behavior to each situation. This is where
artificial intelligence and reinforcement learning come into play.
The objective of the project is to develop a flexible tool compatible
with the most widespread libraries in the sector to allow the
addition and training of robots with a view to a future application
in the factory.

Index Terms—Artificial Intelligence, Reinforcement Learning,
Pick & Place, Gym, Baselines, Computer generated trajectories.

I. INTRODUCTION

RTIFICIAL Intelligence as a discipline began to de-

velop in 1950 with Alan Turing’s article ”Computing
Machinery and Intelligence”, in which he developed a way
of assessing whether a machine was capable of thinking
and which was later called the "Turing Test”. Alan Turing
played a major role in the Second World War, providing
an unprecedented technical advantage by allowing German
communications to be deciphered by brute force calculation.
He is rightly considered one of the fathers of automatic
computing. However, it was not until six years later with John
McCarty, Marvin Miskey and Claude Shannon, the fathers of
modern artificial intelligence, that the term was coined at a
conference in Darmouth, USA. [1]

One of the most important applications of artificial in-
telligence is robotics. It is in this speciality where Al can
shine the most, providing these algorithms made up of ones
and zeros with a physical body that allows them to interact
with the environment, opening up a range of possibilities in
industry. One of the most important references in this field
is undoubtedly Isaac Asimov, the father of robotics, who
proposed his three fundamental laws:

e ”A robot shall neither harm a human being nor, by

inaction, allow a human being to be harmed.”

¢ ”A robot shall comply with commands given by human

beings, except for those that conflict with the first law.”

o ”A robot shall protect its own existence to the extent

that this protection does not conflict with the first or the
second law.”

II. STATE OF THE ART

Nowadays, the simplest way to explain artificial intelligence
is that it is the ability of machines, computers and systems

to have behaviors or skills that require a certain level of
understanding. Expressed in more technical terms, this means
that artificial intelligence is considered to be the ability to use
algorithms, process data and learn from them. [2]

A. Types of learning

There are three types of learning in the world of artificial
intelligence: [3]]

o Supervised learning.

o Non-supervised learning.

o Reinforcement learning.

Supervised learning is based on the use of known input and
output data in order to train a capable algorithm. In this case
all the data are known. Some of the most commonly used
algorithms would be those of Linear Regression, Decision
Trees, Neural Networks or K-NN Models and a practical
application would be, for example, the classification of patients
in a hospital according to whether they were readmitted or not,
knowing in advance whether they were readmitted or not. [4]]

In unsupervised learning the operation is very similar,
except for the fact that the trained model only takes into
account the input data, the output data being totally unknown.
Based on the previous example of patients, the objective would
be to group them but without knowing beforehand to which
group they belong or whether there are differentiable groups
to begin with.

Finally, reinforcement learning differs from the other mod-
els in that it seeks to maximize or minimize a measure of
reward as a function of the actions taken, which makes learn-
ing an optimization problem. This type of learning benefits
greatly from the use of a memory that functions on the basis
of experience. A basic example would be the case of having
an inverted and unstable pendulum where the agent’s objective
is to prevent it from falling, being able only to move the base
of the pendulum to the right or left.

B. Industrial robotics

Today, industrial robots are being widely used in almost
all production lines. The two main virtues that separate them
from typical industrial manipulators are that they are multi-
functional and reprogrammable, allowing them to adapt to the
process. Because of this, a number of characteristics have been
identified to differentiate between the different types of robot:

o Degrees of freedom. This determines the level of com-
plexity of the robot’s movement.

« Working area. Some robots have a large range and others
have a limited range and is generally determined by the
size of the links and the number of DoF (Degrees of
freedom).

o Load to be supported. Both the volume and weight of the
objects to be lifted have a direct impact on the size and
robustness of the robot used.

o Programmability level. Not all robots have high process-
ing capacity.

C. Types of industrial robot

The main types of robots in industry would therefore be:

o Cartesian robot.

o Scara Robot.

e Cyclic Robot.

o Six-axis robot/PUMA.
e Double arm robot.

Furthermore, in recent years, so-called collaborative robots
have been gaining momentum, which are specifically designed
to work in the same environment as people, with reduced
speeds and lower torque in the motors. Some examples of
this technology have been mentioned in the such as
the Swifty, GoFa or the YuMi.

III. PROJECT DEFINITION

The objectives and scope of the project are developed along
three main points:

o Development of a battery of modular training environ-
ments for different robot models for Reach or Pick&Place
type tasks.

o Training and comparison of different learning algorithms
and the resulting agents.

o Extraction of the trajectories obtained for the requested
cases in excel files with a known and easy to interpret
format.

The need to generate a battery of environments and not
to modify a basic one during the execution for the different
situations is that the physics simulator to be used (Mujoco)
does not allow the modification on the fly of the parameters
of the xml file.

IV. SYSTEM DESCRIPTION

The program to be developed consists of 3 main elements.
A library of training environments developed in Python and
based on Open Al Gym and a training framework based on
RL-Baselines-Zoo. [5].

The environment library consists of a series of simulation
frames created in Mujoco through xml/ files. The idea is to
implement the different codes needed to define the general
movement of the robots and to customize the behavior of the
robots in each environment. On the other hand, the training
Jframework will allow us to select the algorithm and policy used

in the agent. In addition to the different parameters related to
it, it will also allow us to store all the relevant information of
the learning process and to optimize the hyperparameters of
the system.

Finally, it is intended to generate an execution function that
allows the use of an agent trained in its corresponding envi-
ronment for specific conditions, so that a particular trajectory
can be obtained.

S

Modular
Environtment
Library

Trayectory
Storage

Framework

Fig. 1. Schematic of the system architecture.

V. ADD ROBOT TO ROBOT-GYM LIBRARY

When adding a robot to the library, a series of clearly
defined steps must be followed, however, it is recommended
to have experience with 3D model management and robotic
dynamics to avoid getting stuck, especially in the first steps
that may not be very intuitive.

o The CAD files are downloaded from the respective web

or official repository.

+ (OPTIONAL) The downloaded files, either the assembly

or the different elements of the robot separately, have to
be opened in Autodeks Fusion 360 to:

— Verify the integrity of the meshes.

— Verify the layout of the different elements.

— Verify the physical properties designated to each
component.

e From Autodesk Fusion 360 we move to SOLIDWORKS
which is the main tool for CAD processing.

— Install the SW2URDF add-in.

— We add coordinate axes in those points of the robot
that we are going to use as joints. The logical thing
to do is to follow the rules proposed by Denavit
Hartenberg [6], but it is not essential in this case.

— We initialize the complement and configure it by
providing all the information requested regarding the
axes, the solids to be used and their relationships.

o After following the steps of the SOLIDWORS add-in
we will obtain several files including the .stls and the
.urdf file of the robot. Of all these folders, we are only
interested in the meshes and urdf folders.

o Next in the terminal, we go to the location of the
binary files folder according to the proposed mujoco file
structure with the following command:
cd $SHOME/.mujoco/mujoco210/bin

o With these files and Mujoco installed in our system, we
can export the format to xml with the help of the compile
function contained in Mujoco.

Fig. 2. Example of a robot with added axes and relevant points

Simply copy all .s#/ files and the corresponding .urdf file
into the same directory and execute the command:
Jcompile ’Source urdf file location’. ’Location and
name of output xml file’

An example would be: ./compile $SHOME/UR3e.urdf
$HOME/UR3e.xml

From here on all that is necessary is to insert the
files in the appropriate location and maintain the format
presented in the library.

The .stl files are located in the subdirectory .../robot-
gym/robot-gym/envs/assets/stls and are saved in a
folder with the name of the robot. It is recommended
to copy the arrow.stl file present in other robots
to be able to visualize the target orientation in the
corresponding learning environments.

As for the .xml file, it should be saved in the
subfolder .../robot-gym/robot-gym/envs/assets/ in a
folder with the name of the robot, just like the mesh
files. It is strongly recommended to take a look at
how the files have been structured to other robots
and replicate the format. This will be done in the
future automatically with an add-on.

Then, go back to the subfolder .../robot-gym/robot-
gym/envs/ add another folder with the name of
the robot and add the Python files that define the
operation of the robot’s environment inheriting from
the base class.

Finally, it remains to include these resources in the
corresponding __init__.py files, add the configura-

@ BRSNS ET

URDF Exporter @

v X

Configure and Organize Links ~

link_0

Global Origin Coordinate Systemn
Qrigin v

link_C-1@URZe

Load
Configuration..,

Preview and
Expiott...

= link_0
- link_1
& link_2
- link_3
- link_4
B link_5
L link_B

Fig. 3. Example of use of the SW2URDF add-on - 1

2 SolidWorks Assembly to URDF Exporter ~ o x

<

ot

g o
Kporiin
Koy |

] Minic Other Joint

Blark vill nt be witen to URDF. Newt
ed

Fig. 4. Example of use of the SW2URDF add-on - 2

tion of the robot and register it.

VI. OPERATING DYNAMICS

This section will explain the dynamics of the environments
that make up the library when they are used.

All the implemented environments use the bases of rein-
forcement learning with the extended environment-agent cycle.

Mombre

config
launch
meshes
urdf
|=| CMakeLists.txt

@ packagexml

Fig. 5. Output of the SW2URDF add-on

/

~

Reinforcement
learning cycle

Action

/

Reward

Fig. 6. Reinforcement learning cycleo

Observation/State

This cycle is repeated throughout the learning process in
what are called steps. The illustrates this cycle and
the internal processes performed by the environment in each
of them.

Environment
Step

Acti Modify range and Set

(Forwards

Mujoco

simulation model
Get

observation

Agent Step

Agent

Store data

Observation <— (if requested)

| | Compute
reward

Reward <

Fig. 7. Steps of the environment and the agent

These steps are limited within an episode. An episode
comprises the number of steps between which the environment
is initialized and the target is reached or a limit is reached.
The steps limit is configured in the environment registry along

with the Env-ID. The summarizes a training episode.

=)

Set Robot Pos | |g-------------

Mujoco model

Episode

Env
Reset

Y
Environment
Step
A

Yes [success? § €—

No

Yes— Step limit? J

Fig. 8. Summary diagram of a training episode

VII. RESULTS

To verify the functionality of the development environments
a short code has been made. It simply loads the environment
and executes random actions on it to verify that the resetting of
the environment and the application of the actions is consistent
with what is expected.

re step [right arfow]

Fig. 9. Example of environment validation

Once this was done, different learning tests were run on the
environments. In the following sections we will go into detail
on three of them.

During the learning process the user can monitor the
progress with the help of tensorboard and with the information
presented in the command line:

As for the hyperparameters used during training, they vary
depending on the algorithm used. In general, the ones proposed
by rl-baselines3-zoo [5]] in other environments and those
obtained in the optimization of the same with the optuna tool

Fig. 10. Information presented to the user when initializing learning

Fig. 11. Information presented to the user during training

implemented in this library. It is important to highlight the
wrappers used, which include a wrapper by execution time
limit of sb3-contrib and a wrapper called ’DoneOnSuccess’
that allows to finish the episode once the objective has been
reached.

To validate the trained agents, they were executed with the
help of another of the functions of rl-baselines3-zoo (S]] which

allows to run them with generation seeds other than training.
Once it is verified that in these tests the robot is able to reach
the objectives, generated with the same rules as in the training,
the agent is considered to be validated.

Once the trained agents were validated, we proceeded to
implement them in real robots. For the tests we used the
Irb14000 present in the laboratory and the agent explained
in the [subsection VII-Al The results were almost optimal.
Unfortunately, due to the use of an intermediate library it was
not possible to realize the smooth trajectory but at intervals.
This should be solved in the future.

A. IRBI4000 - Target reach

In this first trial we trained the environment aiming only for
the target position without restricting the orientation.

A sparse type reward has been used which implies that it
increases only when the goal is reached (the episode is good or
bad depending on whether it has reached the goal regardless of
the actions performed or if it is more or less close to the goal).
In addition, the DDPG algorithm has been used with support
from HER, short for Deep Deterministic Policy Gradient and
Hindsight Experience Replay.

Fig. 12. IRB14000 - Reach - DDPG - SPARSE - Training

The reason for choosing the sparse reward type is that it
generally presents better results in less training time. As we

can see in the in just ten thousand episodes we
have achieved a hit rate of 100%.

B. IRBI14000 - Target reach with orientation

In the last two tests, the advanced environment of irb14000
has been used, which aims not only to reach the target, but
also with a specific orientation.

A first training has been performed with DDPG and sparse
repeating the methodology used in the simple environment.
However in the it can be observed that a hit rate
of 100% is not achieved at any time and that the limit value
oscillates around 65%.

Fig. 13. IRB14000 - ReachVec - DDPG - SPARSE - Training

Finally, training with the experimental algorithm 7QC and
the reward type dense have been tried to test the differences.

Fig. 14. IRB14000 - ReachVec - TQC - DENSE - Training

VIII. CONCLUSIONS

As it can be seen at a glance, the curves of the two learning
approaches show different behavior, but neither achieves a
maximum hit rate. In both cases the first few thousand episodes
are performed without allowing the algorithm to learn. What
is especially remarkable is that the 7QC algorithm is more
stable (has less noise) when it reaches its maximum capacity,
while in the case of the DDPG algorithm, we can see a strong
oscillation when it reaches its maximum learning point, even
peaks where it loses considerably its hit capacity.

It is important to note that the results with the TQC
algorithm may be biased by the small number of episodes
compared to the 2 million performed with DDPG, but being a
heavier algorithm, the time taken to perform such a task would
have been disproportionate to the available resources.

Finally, it is critical to note that the results obtained are
clearly biased by the configuration of the environment, which
includes, among others, the volume of target generation and
the hardware used. It is possible that the computing power
required to solve the proposed environment is higher than that
available during the development of this project.

IX. FUTURE PROJECTS

Since the project is presented as the skeleton of a future
more advanced tool, the idea is to develop the following points
in the future:

o Hardware addition of CADs/robots to the library.

« Finalize the implementation of the U3Re robot.

e Store in the own library different trained agents for the
different programmed environments.

o Implement a connection between the simulated robot and
real robots in such a way that they allow the execution
of the calculated trajectories in a fluent way.

REFERENCES

[1] E. Trillas, LA INTELIGENCIA ARTIFICIAL : MAQUINAS Y PERSONAS,
ser. Temas de Debate Series. DEBATE, 1998. [Online]. Available:
https://books.google.es/books?id=0igNAAAACAAJ

[2] L. e. 1. Wikipedia. (2022) Aprendizaje por refuerzo. [Online]. Available:
https://es.wikipedia.org/wiki/Aprendizaje_por_refuerzo

[3] 1. L. Gonzalez. (2022) Tipos de aprendizaje
automatico. [Online]. Available: https://medium.com/soldai/
tipos-de-aprendizaje-automtico-6413e3c615e2

[4] J. F. V. Rueda. (2022) Aprendizaje supervisado y no super-
visado. [Online]. Available: https://healthdataminer.com/data-mining/
aprendizaje-supervisado-y-no-supervisado/

[5] A. Raffin, “Rl baselines3 zoo,” |https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

[6] L. e. 1. Wikipedia. (2022) Denavit-hartenberg parameters. [Online].
Available: https://en.wikipedia.org/wiki/DenavitHartenberg_parameters

Pablo Santiago Giménez Suirez

https://books.google.es/books?id=0igNAAAACAAJ
https://es.wikipedia.org/wiki/Aprendizaje_por_refuerzo
https://medium.com/soldai/tipos-de-aprendizaje-automático-6413e3c615e2
https://medium.com/soldai/tipos-de-aprendizaje-automático-6413e3c615e2
https://healthdataminer.com/data-mining/aprendizaje-supervisado-y-no-supervisado/
https://healthdataminer.com/data-mining/aprendizaje-supervisado-y-no-supervisado/
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://en.wikipedia.org/wiki/Denavit–Hartenberg_parameters

	Introduction
	State of the Art
	Types of learning
	Industrial robotics
	Types of industrial robot

	Project definition
	System description
	Add robot to robot-gym library
	Operating dynamics
	Results
	IRB14000 - Target reach
	IRB14000 - Target reach with orientation

	Conclusions
	Future projects
	References
	Biographies
	Pablo Santiago Giménez Suárez

