
Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

GRADO EN INGENIERÍA EN TECNOLOGÍAS
INDUSTRIALES

BACHELOR´S FINAL PROJECT

USING NEURAL NETWORKS TO
FORECAST THE ELECTRIC DEMAND

IN IBERIA

Author: Guillermo Varas Yuste

Director: Rosendo Castañón Naseiro

Madrid

1

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

2

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el

título Using Neural Networks to Forecast the Electric Demand in Iberia

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en

el curso académico 2021/22 es de mi autoría, original e inédito y no ha

sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la

información que ha sido tomada de otros documentos está debidamente

referenciada.

Fdo.: Guillermo Varas Yuste Fecha: 30/08/2022

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Rosendo Castañón Naseiro Fecha: 30/08/2022

3

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

4

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

GRADO EN INGENIERÍA EN TECNOLOGÍAS
INDUSTRIALES

BACHELOR´S FINAL PROJECT

USING NEURAL NETWORKS TO
FORECAST THE ELECTRIC DEMAND

IN IBERIA

Author: Guillermo Varas Yuste

Director: Rosendo Castañón Naseiro

Madrid

5

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

6

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

ABSTRACT

The electricity network sector is undoubtedly one of the most relevant and powerful

giants to be known of in the modern world. Moving billions of euros every year,

becomes of great interest to the general public and more specifically to companies such

as the investment type due to its increasing short-term volatility. Therefore, finding a

reliable way to forecast the demand prices considering a large variety of factors would

be very interesting both academic and economically. This is where neural networks

come into place, being an extensively used prediction method over the last few decades

in a wide range of fields, namely artificial intelligence, social trends detection, data

management, machine learning and even medicine.

A variety of input factors should be considered when applying the neural networks

methodology, the main ones being temperature, climatology and historic demand.

The two main items that will need deeper research are to be the peninsular electric

network operation and its intrinsic relationship with each one of the individual factors

that will be used to perform the calculations inside the neural network, and of course,

the operation method of the neural network, being the latter the main focus of the study

as not so much on how the electric system works.

Data both from Red Eléctrica Española S.A. and National Oceanic Atmospheric

Administration (USA) has been collected and used to train a pair of three-layered

feedforward neural networks using the backpropagation algorithm, modifying their

parameters to fulfill the objective of the project, which is a semi-accurate prediction on

the peninsular electric demand.

After studying and learning about the neural networks concept, we have successfully

been able to create said the two neural networks. One of them receiving 4 inputs, mean

temperature, type of day, month and season and the other network receiving a total of

27 different inputs, that correspond to month, season, type of day and 24-hourly mean

temperatures of the desired day for prediction.

7

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

These both networks behavior is determined by three different customizable parameters

which are the number of neurons in the hidden layer, a concept more deeply explained

later in the paper, the number of total iterations the networks do and finally the learning

factor, a parameter also explained later in detail.

Combining al these factors, both the training inputs (temperature and demand from

2020) and the network configuration we have successfully achieved peninsular electric

demand predictions with an overall mean absolute percentual error of just under 4%,

that as explained more in detail in the introduction, is more than enough to ensure the

efficacy and usefulness of the forecasted data.

An output example of the neural network prediction, being compared with real demand

can be seen in the following image.

We have studied how changing the different configuration parameters affect the total

overall output errors and also studied the output difference between the two distinct

neural networks and their precision depending on the day we have wanted to forecast.

Critically analyzing output data and finding out why on specific cases the predictions

where not as precise as ideally wanted.

Finally, new possible ideas have been brought into the table to further improve the

overall results on hypothetical future projects, like different input data consideration

such as regional temperatures, difference between workdays or national legislation due

to the COVID-19 pandemic effect, which has been highly impactful on industries not

only nationally but across the globe

8

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

RESUMEN

El sector de redes eléctricas es sin duda uno de los mayores y más relevantes gigantes

industriales conocidos en el mundo contemporáneo. Moviendo cantidades billonarias

de capital todos los años, resulta de gran interés al público general y más

específicamente a compañías inversoras debido a su volatilidad a corto plazo. Siendo

así muy interesante tanto académica como económicamente encontrar una forma

fehaciente de predecir la demanda eléctrica tomando y considerando múltiples factores.

Es aquí cuando toma lugar el uso de redes neuronales, un método ampliamente utilizado

durante las últimas décadas en variedad de campos de investigación como la

inteligencia artificial, la detección de patrones sociales, manejo de datos, machine

learning o incluso medicina.

Una gran variedad de factures de entrada deben ser considerados cuando se aplica el

método de las redes neuronales a nuestro problema, siendo unos de ellos, datos como

la temperatura, climatología o la demanda eléctrica histórica del país.

Los dos principales núcleos de estudio en este proyecto han sido el funcionamiento y

operación del sistema eléctrico español y su relación con los factores de entrada a tener

en cuenta sobre la variación de la demanda eléctrica y por supuesto y principalmente,

el funcionamiento y la operación de una red neuronal artificial multicapa, siendo este

el objeto de estudio mayoritario del trabajo.

Datos tanto de la Red Eléctrica Española S.A. como de la NOAA (National Oceanic

Atmospheric Administration (USA)) del 2020 han sido recolectados, tratados y usados

para entrenar no una, sino dos redes neuronales formadas por tres capas que usan los

algoritmos de feedforward y backpropagation para lograr cumplir el objetivo principal

del trabajo, lograr una predicción semi-precisa de la demanda eléctrica peninsular.

Después de estudiar y aprender sobre el concepto de las redes neuronales, hemos sido

capaces de crear ambas redes neuronales de forma exitosa.

9

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Una de ellas recibe 4 entradas, siendo estas la temperatura media del día a predecir, el

tipo de día que es según su laboralidad, el mes y la estación del año en que se encuentra,

mientras que la otra red neuronal es capaz de recibir 27 entradas distintas, siendo estas

el mes, estación y el tipo de día según su laboralidad y adicionalmente 24 datos de

temperatura de ese día, correspondientes a las temperaturas medias horarias a lo largo

del mismo.

El comportamiento y entrenamiento de las redes viene dado por la configuración que

apliquemos a las mismas, siendo esto un conjunto de tres parámetros personalizables.

Estos son el número de neuronas en la capa oculta, número de iteraciones máximas y

factor de aprendizaje, todos conceptos explicados en mayor detalle dentro de la

memoria.

Combinando todos estos factores, tanto los datos de aprendizaje (temperatura y

demanda del año 2020) y la propia configuración de la red hemos conseguido efectuar

de forma exitosa predicciones de demanda eléctrica con un valor de error medio

absoluto porcentual de entorno al 4%, que, como explicado en la introducción es más

que suficiente para considerar las predicciones como útiles a nivel estadístico y

económico.

Un ejemplo de salida de la predicción de un día del año 2021 se puede ver en la siguiente

imagen.

Se ha estudiado el efecto de la modificación de los diferentes parámetros en los errores

de las predicciones de salida y realizado una comparativa entre los diferentes resultados

ofrecidos por las dos redes neuronales confeccionadas. Analizando de forma crítica los

resultados y encontrando la razón por la cual las predicciones no han sido tan precisas

como deseado en ciertas fechas específicas.

10

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Finalmente, se ha reflexionado sobre posibles formas de mejorar o añadir entradas a la

red en hipotéticos futuros proyectos, como por ejemplo la separación de temperaturas

en distintos territorios según su temperatura media anual, discernir entre los mismos

días laborales según su proximidad a fines de semana o días festivos, o la gran

implicación que ha tenido la pandemia global del COVID-19 en el año de

entrenamiento de la red junto con los cambios de legislación debido a la misma.

11

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

INDEX

ABSTRACT .. 7
RESUMEN.. 9

INDEX ... 12

MEMORY DEVELOPMENT .. 13
1. Introduction ... 14

1.1. Overview on the Spanish electric system ... 14
1.1.1. The production and demand equilibrium... 15

1.1.2. Decisive factors of electric demand ... 18
1.2. Neural Networks .. 23

1.2.1. The neuron, biologic instrument ... 23
1.2.2. Multilayer Feedforward Networks ... 26

1.2.3. Backpropagation algorithm .. 29

2. Objectives... 32

3. Methodology .. 35

3.1. Data gathering and treatment .. 35

3.2. Neural network operation ... 39

3.3. Results analysis indicators .. 43

4. Results analysis.. 44

4.1. 4-Input Neural Network results ... 44

4.2. 27-Input Neural Network results ... 50

5. General discussion .. 55

5.1. Improvement proposals .. 56
6. Conclusion ... 57

BIBLIOGRAPHY .. 58

ANNEX – CODE .. 59
Demand data treatment code .. 59

Temperature data treatment code .. 61
Neural network code .. 65

ANNEX: Project Alignment with the United Nations Sustainable Development
Goals (SDG) .. 72
LIST OF FIGURES ... 73

LIST OF TABLES ... 74

12

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

MEMORY DEVELOPMENT

13

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

1. Introduction
1.1. Overview on the Spanish electric system

Even though the deep comprehension of the electric Spanish system is not the main

objective of the paper, a shallow introductory knowledge is much needed in order to

apply the neural network method, using its context and characteristics to create the best

possible outcome. The Spanish electric network is composed of three distinct networks

on its own, the Peninsular, Balear and Canary, the latter one being independent of the

other two due to the geographical distance. The Peninsular network is connected to

neighbor countries as Portugal, France and Morocco and it is linked to the Balear

network through an underground submarine connection known as Project Rómulo

being able to transfer up to 400 MW of electrical power. Since this paper will focus on

the Peninsular network, it is important to acknowledge its most important features,

summarized on the following table of contents.

Total Power Installed 115608 MW

Electric Lines Installed 44687 km

Transformation Capacity 93871 MVA

Absolute Maximum Power 45450 MW

Maximum power in 2021 37171 MW

Renewable energy percentage 46.7 %

Table 1: Peninsular Network Characteristics

The Red Eléctrica Española S.A. (REE) [1], where all the electrical data for this project

has been collected, is the exclusive operator and manager of the electric transportation

network, including both big Spanish island groups, Balear and Canary. One, if not the

biggest challenge they face is maintaining the balance between electric generation and

demand. Following, we expose the principal motives of this statement.

14

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

1.1.1. The production and demand equilibrium

When transporting electricity using power lines to deliver it all over the country it is

crucial that the voltage value stays the way we want, and that is constant, on whatever

value we are using, high or low voltage, but another critical value that must stay

constant is the electrical frequency, the latter highly related to the balance between

electric generation and demand. Frequency dependent machines are everywhere, from

clocks and timers to industrial motors. A slight chance or imbalance on the input

frequency would cause problems and malfunctions on these devices, leading into a

catastrophic economic loss overall. To further understand the importance if this

concept, we may present a classical generation and consumption example between

hydroelectric turbines generating power using the potential energy from a waterfall and

industrial charges consuming the generated power.

In an equilibrium state, the same amount of energy produced by the turbines is

consumed by the charges, but if the said charges were to consume a larger amount of

energy without changing the produced quantity, the remaining amount of energy

necessary would be taken from somewhere else, in this particular case, most probably

from the kinetic energy in the electric machines rotor, thus producing a greater

resistance and slowing the turning speed down, consequently resulting in a lower

frequency value to the originally desired one. To make this example even more

illustrative, on a regular production scale (10000 MW) if the demand variation where

to be upped by a slight 1%, the changes in frequency would constitute on a 1.5 Hz/min

fall, which on a European 50 Hz network would be highly impactful, economically

speaking.

The reverse situation may also be possible, as climate dependent energy sources are not

able to constantly output the required amount of power. As seen in the previous table,

in 2022, renewable energy sources constitute a total amount of 46.7 % of Spain’s

energetic production, the two main methods being solar and aeolic. And because energy

storage is still a very upcoming but underdeveloped technology, energy produced in

these both ways is instantly utilized. Therefore, being highly dependent on climatologic

conditions to output a large part of the total Spanish energy production. This concept

can be better perceived in the following graphs, gotten from the REE official webpage.

15

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 1: 2022-08-26 Aeolic generation

Figure 2: 2022-08-26 Solar generation

16

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

On both graphs we observe a 24-hour period of energy production, both from the 25th

and 26th of August 2022.The difference being the green representing aeolic and the red,

solar energy. It is clearly visible that the two principal sources of renewable energy

operate in a particular way, peaking in particular periods in time during the day, thus

not being able to produce a constant amount of energy all day long. This is one of the

main reasons why being able to predict demand is a very interesting capability.

Although his imbalance possibility is at first scary, there is no need to succumb to panic,

because the Spanish electric network is equipped with different firewalls to prevent the

frequency from changing downstream.

In brief summary these services are regulation and interruptibility. Regulation being

separated into three different parts, primary, secondary and tertiary. Primary regulation

is a mandatory service, which artificially modifies the rotatory speed of the generators

in order to maintain electrical frequency. Secondary regulation is no longer a mandatory

service but a voluntary paid one, consists of having a power reserve capable of

responding in less than 20 seconds and maintaining energetic balance for a minimum

of 15 minutes, the cost varies on availability and the amount of megawatts required.

Finally, tertiary regulation is also mandatory and serves the purpose of restituting

secondary regulation by modifying the generator programs. It must respond on a limit

time of 20 minutes and last for at least 2 hours.

The second service provided to ensure power stability is the interruptibily service,

which au contraire to the previously explained services, modifies demand, lowering it

so the production amount is capable of meeting the demand needs. The power provider

demands big industrial companies attached to the system to lower their energy demand,

for this such industries receive double remuneration.

Even though energy balance regulation processes are able to respond between minutes

to hours, hourly energy prices are set one day before by OMIE (electric market

operator), consulting various commercial companies to set up the next day’s price

program during that day’s market operation horizon.

17

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

This whole process must be done before 2 o’clock in the afternoon on the day before

the electric market opens again. Then REE will set calculate and set up previously

mentioned regulation prices in case they were needed.

Taking all these factors into consideration, we arrive at the conclusion that making short

term demand predictions is both necessary and highly valuable, not only for economic

purposes, but also for environmental ones, as a better energetic prediction would cut on

renewable energy energetic waste taking further advantage of energy peaks.

Furthermore, a question strikes. How precise would our prediction have to be to be

impactful. The answer may seem obvious, as precise as possible of course, but as seen

in [2], a numeric study taken in the state of Arizona (USA) using the Monte Carlo

methods, an energetic forecast with a precision of 5% is enough to deliver significant

results, being that predictions with lower error percentage would almost not affect

significantly the overall benefits, as long as demand peaks are well adjusted.

1.1.2. Decisive factors of electric demand

To study and model an electric demand forecast calculation, the first step is to determine

what inputs are going to be used to achieve the goal. These will be the most determining

factors that will be considered on our neural network model. The first factor that comes

to mind is the economic wealth of the country of study. This is measured by the GDP

(gross domestic product). It is an important factor as with a higher GDP the electric

demand tends to also become higher.

On the order end, this pattern has been recently changing since the year 2015 at that is

the main reason REE does not include GDP comparison graphs in their webpage since.

Other consideration would be that the goal of this project is to make short term demand

predictions, so since the GDP varies very little on a short time spectrum, it will not be

taken into account as a determining factor.

18

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

The next factor that will be considered to bring or not into the inputs table will be the

type of day, divided in weekdays, Saturdays or Sundays (this is mainly because most

of the population works on weekdays and some on Saturdays, but a very small portion

actually work on Sundays). In this specific case we can simply compare data from a

workday and a weekend day to see that this factor is decisive. These next figures have

been taken from the REE real-time datasets [3].

Figure 3: Electric demand 2022-03-15 (Tuesday)

19

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 4: Electric demand 2022-03-20 (Saturday)

As observed in both graphs there is a notable difference between both day’s maximum

and average energetic demand, being one on a workday and other on a Saturday.

The final factor that will be considered is temperature. This is probably what most

people think when it comes to energetic consumption variables, and it is in fact a huge

factor. To prove this, we just need to compare the demand graphs on weekdays with

similar characteristics other than the temperature, for this we have chosen two different

Wednesdays on opposite seasons, winter and summer. Figures 5 and have also been

collected from the REE website, real-time demand datasets.

20

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 5: Electric demand 2022-01-13 (Wednesday)

21

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 6: Electric demand 2022-6-09 (Wednesday)

We observe a notorious change in between seasons with different temperatures,

specifically in these days the mean temperature in Spain was 2.7ºC for January 13th

(Figure 5) and 21.9ºC for June 9th (Figure 6). At first 21.9ºC may not seem like a very

high temperature for a summer day, but we need to consider this is the mean

temperature of all the Spanish Peninsula, considering both day and night and also colder

regions. To have a better standpoint, the hottest day of the year 2022 has been August

the 13rd with the highest mean temperature of 27ºC. All this temperature data has been

taken from the National Centers for Environmental Information, on the NOAA

(National Oceanic and Atmospheric Administration) subsection [4], later down the

paper will be explained how the data has been treated to collect the important and

interesting data.

22

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

To further emphasize the temperature factor consideration, the study from [5] has also

been taken into account, getting from it the following figure, which shows the direct

relation between energy consumption and temperature.

Figure 7: Relation between energy consumption and temperature in Spain

1.2. Neural Networks
1.2.1. The neuron, biologic instrument

The neural part of our program model comes exactly from the biological meaning. The

neuron is the cell capable of transmitting electrical impulses in our brain with the

purpose to make us understand, develop, learn and function. there is an approximate

number of 86 billion neurons in the brain on the average human body. In figure number

8 we can observe the basic structure of a neuron.

23

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 8: Biologic neuron representation

The neuron is constituted of a main part called body or soma; in which interior the

nucleus of the cell is found. From the soma, is born the axon, an elongated part of the

cell that branches out similarly to a tree into hundreds of terminals, which help connect

the neuron to the rest of the biological neural network. Closest to the body, the neuron

has several inputs called dendrites, which are used to get signals from other neighbor

neurons.

In a simplified way, the way a neuron works is getting electric signals from other

neurons from the dendrites which can be activators or inhibitors, in a way that several

impulses can be cancelled partial or totally. The reception of these impulses triggers the

raise or lower the membranes voltage, which in doss mode is usually about -70mV.

When such impulses accumulate a threshold voltage of about -55mV, the neuron

activates sending an electric pulse of its own through the axon, this pulse is known as

action voltage, and it is transmitted through the axon terminals to the following neurons

from the network. Summarizing, we could say the neuron adds up the pulses received

from the dendrites and if the total voltage reaches an established limit, the neuron

activates sending a signal to other neurons.

24

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

This same principle is applied when creating an artificial neural network. In figure 9 an

artificial neuron from a perceptron network has been illustrated. This specific type of

networks were the first studied ones by Rosenblatt in 1958 [6] and are made from only

two layers, and input layer that receives output data and an output layer that sends data

to the exterior of the network (Figure 10).

Figure 9: Artificial neuron

Figure 10: Two-layered perceptron type neural network

The artificial neuron is divided into several parts, which are:

• Inputs, yj0: input values that the neuron i receives from neuron j, similarly to

how dendrites work.

• Weights, ωij: represent the connection strength between neuron i and neuron j,

indicating how important is the input.

• Sum, σi: a weighted sum considering the weights ωij from m input neurons (see

eq. (2)).

• Activation function, f(σi): in a perceptron type network the activation function

is a classic step function, with θ as the threshold value. When σ is above this

threshold value, the function outputs a 1, on the opposite case, it outputs a 0.

• Outputs: signal or signals outputted by the neuron, the equivalent to the axon

biological output signal.

25

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Following the previous explanation, it is clearly seen how the artificial neuron works,

getting input values, adding them considering each of their weights and comparing it to

a threshold value to decide if it produces an output or not.

The problem with this first method is that the output can only be a discrete value (0 or

1) and in our neural networks we want to be able to compute continuous values. This is

where the sigmoid function comes into play as a way to change values between 0 and

1 continuously.

𝑓𝑓 (𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥

(1)

Figure 11: Sigmoid function graph

The hyperbolic tangent function is sometimes also used, when it is convenient to change

between the values -1 and 1 instead of and 1, this being useful when working with

negative output values.

1.2.2. Multilayer Feedforward Networks

Taking a perceptron type network and expanding it creates a multilayer feedforward

network. This network will have at least an input layer and an output layer, with

whatever number of neurons each, depending on our specific problem. Apart from the

input and output layer we may add how many additional layers we consider necessary,

which will be part of an internal structure called hidden layer. In a feedforward network,

26

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

neurons of each layer can only be connected to those neurons from the previous layer

or the next one, no connection between neurons of the same layer exist, as well as there

are not any connections between a neuron and itself (self-recurrence). On the following

figure we observe a multilayer feedforward neural network formed by N layers marked

by the letter p. From p = 2 to p = N – 1 is what are considered the hidden layers.

Figure 12: N layered feedforward neural network

Following figure 12, we can determine any output of any neuron i from layer p. This

will be the weighted sum of all previously connected neurons, expressed as:

𝜎𝜎𝑖𝑖
𝑝𝑝 = � 𝜔𝜔𝑖𝑖𝑖𝑖

𝑝𝑝
𝑚𝑚𝑝𝑝−1

𝑖𝑖=1
𝑦𝑦𝑖𝑖
𝑝𝑝−1

(2)

𝑦𝑦𝑖𝑖
𝑝𝑝 = 𝑓𝑓 (𝜎𝜎𝑖𝑖

𝑝𝑝)

(3)

Successively applying this expression to each neuron on each layer, we propagate the

inputs signal until the output layer, achieving what is called feedforward propagation.

Let’s apply these concepts to a simple three-layered feedforward neural network to

further understand the behavior of the network.

27

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 13: Three-layered feedforward network

Applying the previous expression to neuron i = 1 from p = 2 we obtain the second

layer’s output:

𝜎𝜎12 = �𝜔𝜔1𝑖𝑖2 𝑦𝑦𝑖𝑖1
3

𝑖𝑖=1

⇒ 𝑦𝑦12 = 𝑓𝑓(𝜎𝜎12)

(4)

𝜎𝜎22 = �𝜔𝜔2𝑖𝑖
2 𝑦𝑦𝑖𝑖1

3

𝑖𝑖=1

⇒ 𝑦𝑦22 = 𝑓𝑓(𝜎𝜎22)

(5)
Reapplying again the previous expression but with the newly calculated outputs we

finally arrive the neural network’s final output:

𝜎𝜎13 = �𝜔𝜔1𝑖𝑖3 𝑦𝑦𝑖𝑖2
2

𝑖𝑖=1

 ⇒ 𝑦𝑦13 = 𝑓𝑓 (𝜎𝜎13)

(6)

We have seen how signals propagate through the system, but without the correct

weights, the output of the network will be completely random. To achieve the desired

outputs, we need to find the adequate weights for each individual connection.

28

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

This could be done by hand if we had a very reduced number of neurons, but since that

will almost never be the case, we need to figure out a way for the neural network to

‘learn’ and change its own weights slowly finding the appropriate ones.

1.2.3. Backpropagation algorithm

When we input a series of values in a neural network, we end up with a number of

values as outputs, these can be expressed as an array yN = (y1N, y2N,…, ymN). Suppose

we know the desired output values beforehand, values we will call pattern and be

expressed also as an array Y = (Y1, Y2,…, Ym). With both these vectors we are able to

compute the error between the current output and the desired one using the error

function E(ω).

𝐸𝐸(𝜔𝜔) =
1
2
�(𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑁𝑁)2
𝑚𝑚𝑁𝑁

𝑖𝑖=1

(7)

Where w represents the whole group of network weights, which will be represented as

a matrix. The main goal here is to find and use the weights with the minimum error,

arriving at them with the gradient descent method.

If we represent the error function E(w) as a surface (Figure 14) we find the minim value

when traveling the surface in the direction of the descending gradient, finally finding

the error function minim which will be used to correctly modify our weights.

Figure 14: Surface given by representing the linear error function

29

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

The exact amount the weights need to be shifted is given by the following expression:

∆𝜔𝜔𝑖𝑖𝑖𝑖
𝑝𝑝 = −𝜂𝜂

𝜕𝜕𝐸𝐸(𝜔𝜔)
𝜕𝜕𝜔𝜔𝑖𝑖𝑖𝑖

𝑝𝑝

(8)

Where η is called self-training rate, a factor that determines how much we descend on

the surface in each of the process’s steps. For this technique we start with the weights

connecting the output layer and the one immediately before, being those, layer N and

layer N – 1.

Applying the previous expression, we arrive at:

∆𝜔𝜔𝑖𝑖𝑖𝑖
𝑁𝑁 = −𝜂𝜂

𝜕𝜕𝐸𝐸(𝜔𝜔)
𝜕𝜕𝜔𝜔𝑖𝑖𝑖𝑖

𝑁𝑁 = −𝜂𝜂
𝜕𝜕𝐸𝐸(𝜔𝜔)
𝜕𝜕𝜎𝜎𝑖𝑖𝑁𝑁

𝜕𝜕𝜎𝜎𝑖𝑖𝑁𝑁

𝜕𝜕𝜔𝜔𝑖𝑖𝑖𝑖
𝑁𝑁

(9)

Which can be separate in two different parts for clarity purposes, ending up with this

expression:

𝜕𝜕𝜎𝜎𝑖𝑖𝑁𝑁

𝜕𝜕𝜔𝜔𝑖𝑖𝑖𝑖
𝑁𝑁 =

𝜕𝜕
𝜕𝜕𝜔𝜔𝑖𝑖𝑖𝑖

𝑁𝑁 �� 𝜔𝜔𝑖𝑖𝑖𝑖
𝑁𝑁

𝑚𝑚𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑁𝑁−1� = � 𝛿𝛿𝑖𝑖𝑖𝑖
𝑚𝑚𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑁𝑁−1 = 𝑦𝑦𝑖𝑖𝑁𝑁−1

(10)

And this other one:

𝜕𝜕𝐸𝐸(𝜔𝜔)
𝜕𝜕𝜎𝜎𝑖𝑖𝑁𝑁

=
𝜕𝜕𝐸𝐸(𝜔𝜔)
𝜕𝜕𝑦𝑦𝑖𝑖𝑁𝑁

𝜕𝜕𝑦𝑦𝑖𝑖𝑁𝑁

𝜕𝜕𝜎𝜎𝑖𝑖𝑁𝑁
=

𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖𝑁𝑁

�
1
2
�(𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑁𝑁)2
𝑚𝑚𝑁𝑁

𝑖𝑖=1

�
𝜕𝜕
𝜕𝜕𝜎𝜎𝑖𝑖𝑁𝑁

𝑓𝑓(𝜎𝜎𝑖𝑖𝑁𝑁)

(11)

Combining the two previous equations we obtain:

∆𝜔𝜔𝑖𝑖𝑖𝑖
𝑁𝑁 = 𝜂𝜂(𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑁𝑁)𝑓𝑓´(𝜎𝜎𝑖𝑖𝑁𝑁)𝑦𝑦𝑖𝑖𝑁𝑁−1 = 𝜂𝜂𝛿𝛿𝑖𝑖𝑁𝑁𝑦𝑦𝑖𝑖𝑁𝑁−1

(12)

30

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

From where we determine N layer’s delta as:

𝛿𝛿𝑖𝑖𝑁𝑁 = (𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑁𝑁)𝑓𝑓´(𝜎𝜎𝑖𝑖𝑁𝑁)

(13)

The activation function’s derivative appears in the delta expression, and this is the

reason a continuous and derivable function as the sigmoid or the hyperbolic tangent is

needed. This last expression can be equally obtained for any desired layer of the

network applying the exact same steps but for p instead of N. The only problem we find

is that E(ω) is dependent on yjN, thus needing to apply the method in the correct order.

Calculating delta for each neuron and layer depending on the next layers error (p + 1)

until the N layer as follows:

𝛿𝛿𝑖𝑖𝑁𝑁 = 𝑓𝑓´(𝜎𝜎𝑖𝑖𝑁𝑁) � 𝛿𝛿𝑖𝑖
𝑝𝑝+1

𝑚𝑚𝑝𝑝+1

𝑖𝑖=1

 �𝜔𝜔𝑖𝑖𝑗𝑗
𝑝𝑝+1𝛿𝛿𝑖𝑖𝑗𝑗 = 𝑓𝑓´(

𝑚𝑚𝑝𝑝

𝑗𝑗=1

𝜎𝜎𝑖𝑖
𝑝𝑝) � 𝛿𝛿𝑖𝑖

𝑝𝑝+1

𝑚𝑚𝑝𝑝+1

𝑖𝑖=1

 𝜔𝜔𝑖𝑖𝑖𝑖
𝑝𝑝+1

(12)

Once we have found every Δωijp, we will be able to shift all weights between neurons,

lowering the output error. Repeating this process over an over we finally arrive to the

error function’s minimum, getting the desired output and having trained the network

for future different inputs.

This is the whole backpropagation process summarized step by step:

1. We assign random weights and get the current outputs for those specific weights

and the initial inputs.

2. All output layer neuron deltas are calculated

3. The previous layers deltas are calculated, going back from the N – 1 layer until

arriving at p = 1

4. Weight shifting corrections are calculated for the whole network.

5. Weights are actualized by adding the just calculated weight shifting values.

31

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

6. Repeat process until the output error is the minim or de desired one (finding the

exact minimum could take too many iterations, consuming time and resources).

2. Objectives

The main goal of this project is designing an electric demand short term forecast model

using the technology explained in the previous introductory sections. Only the

peninsular data will be considered. And as said before, the input factors will be type of

day, season and temperature. Since the objective of this paper is not to predict

temperature but electric demand, the temperature data that will be used to predict the

demand will be taken from real data, while on a real-world application we would have

to be given a short-term approximate weather forecast of the designated day which

electric demand wants to be predicted.

To further experiment with different networks, two feedforward backpropagation-

trained neural networks have been designed. Both with three layers: inputs, outputs and

a hidden layer formed by a customizable number of neurons. The difference between

the two networks will be the number of inputs that enter the network. In the first one,

this number will be 4, on the other network, 27 inputs will be implemented. In the four-

input network, the entrance factors will be day type (discerning between working days,

Saturdays and, Sundays and festivities, which will be in the same group), month, season

(Spring, Summer, Autumn or Winter), and mean temperature of the desired day. On the

other hand, the second network will have the same first three inputs, that is day type,

month and season, but 24 additional inputs referring to the mean temperature of each

hour of the day (hopefully achieving more precision, as more factors are considered).

Both networks have been represented in the following figures.

32

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 15: 4 Input neural network

Figure 16: 27 Input neural network

For both network’s training we have used real data from the year 2021, both electric

demand and temperatures. While for the prediction real temperature from 2022 has been

used, as explained before since the main goal of the project is not to predict temperature,

but electric demand. Also, demand data from 2022 will be used to check and validate

our predictions. The energy datasets have been gathered from REE public information

publisher, accessing by the API (application program interface) through the ESIOS

python app [7] made by Santiago Peñate Vera, special thanks to him, who has been

33

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

very accessible and helpful with a specific problem that appeared along the way.

Specifically, if anyone trying to run the program encounters an encoding error, the

solution we found was to change the client.py source code from the http python internal

library, from latin-1 encoding to utf-8 encoding.

After training the network and checking predictions, we have experimented with

different types of configurations to examine the behavior of the network under different

inputs, number of neurons in the hidden layer, number of iterations and learning factor

η. To compare different results, several parameters have been considered, such as MAE

(mean absolute error), relative errors, MAPE (mean absolute percentual error) and

standard deviation.

34

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

3. Methodology

The process that has been implemented to do the project can be separated into three

different phases. These being pre-network, network, and post-network or result

understanding. For the pre-network phase, there are two main sub-parts, data gathering

and treatment. In the network phase we separate between training the neural networks

and making forecast calculations. Finally, the last phase is just analyzing the data using

the statistic parameters mentioned earlier.

The methodology used in this project has been inspired by [8], [9] and [10], but

optimizing running time from the python modules, actualizing modern usage of data

analysis for current temperature and demand data and minimizing output error for post-

pandemic predictions.

3.1. Data gathering and treatment

With the treated data gathered from 2021 we have trained the network, while with the

data from 2022 we have checked and compared the forecast results.

In the gathering and treatment process we have ended up with three different data

tables:

• Annual Summary Table: in this table, named ‘Table_2020’ and ‘Table_2021’

in the code we have a data summary of each day of the year, including the date

(yyyy-mm-dd), the mean temperature, the type of day (0 for workdays, 5 for

Saturdays and 0 for Sundays and festivities), and the season (1 for Spring, 2 for

Summer, 3 for Autumn and 4 for Winter).

35

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Date Mean_Temperature Day_Type Season
2020-01-01 5,5 10 4
2020-01-02 5,7 0 4
2020-01-03 6,2 0 4
2020-01-04 6,4 5 4
2020-01-05 6,2 10 4
2020-01-06 5,5 10 4
2020-01-07 5,9 0 4
2020-01-08 7,1 0 4

… … … …
2020-12-24 8,5 0 4
2020-12-25 6 10 4
2020-12-26 4,1 5 4
2020-12-27 4,5 10 4
2020-12-28 7,2 0 4
2020-12-29 5,6 0 4
2020-12-30 4,8 0 4
2020-12-31 5,3 0 4

Table 2: Annual summary table - 2020 (compressed)

• Annual Temperature Table: in this table, named ‘Temperratures-2020’ and

‘Temperatures-2021’ in the code, we have the hourly mean temperature data for

each day of the year. As mentioned before this data has been gathered from the

National Oceanic and Atmospheric Administration (NOAA) [4] Filtering in the

webpage by country and then selecting stations from up to 40 different pages of

data for each of the 12 moths of the year we obtain individual cvs files with up

to 120 000 rows of hourly temperature data. From these raw files and using the

python Temperature data management code shown in the annex, we are able to

clean the files and create new monthly cvs files with just the data we find useful.

36

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

This being the columns Name (‘Weather station’, SP), Date (‘yyyy-mm-

ddTHH:MM:SS’), Report_Type (‘FM-15’ for 30-minute measurements or

‘FM-12’ for hourly ones), and TMP (t, dc) t being the temperature in degrees

Celsius multiplied by 10 and dc being a factor that indicates if the value is

correct with a 1.

hour 2020-01-
01

2020-01-
02

2020-01-
03

2020-
01-04 … 2020-12-

28
2020-12-

29
2020-
12-30

2020-
12-31

0 3.9 3.3 4.6 4.9 … 6.6 5.3 3.5 3.5
1 3.5 3.1 4.8 4.5 … 6.3 5.0 3.3 3.0
2 3.2 2.8 4.2 4.5 … 6.4 4.9 3.2 3.0
3 2.7 2.2 3.8 4.5 … 6.2 4.7 3.0 2.9
4 2.7 2.6 4.0 3.6 … 6.4 4.5 2.7 2.6
5 2.5 2.3 3.9 4.0 … 6.3 4.4 2.6 2.3
6 2.4 2.1 3.8 3.9 … 6.3 4.1 2.4 2.3
7 2.1 2.1 3.6 3.6 … 6.2 3.9 2.1 2.3
8 2.7 2.3 3.8 3.2 … 5.4 3.4 1.8 2.1
9 3.1 3.4 4.7 5.2 … 6.9 4.9 3.7 4.3
10 5.5 5.6 6.2 6.7 … 7.6 6.3 5.4 5.9
11 7.7 7.4 7.6 8.4 … 8.5 7.4 6.6 7.3
12 9.0 9.9 8.7 9.5 … 9.0 8.3 7.5 8.4
13 10.1 10.2 9.7 10.3 … 9.1 8.5 8.0 9.0
14 10.6 10.9 10.1 10.9 … 9.6 8.5 8.5 9.1
15 11.3 11.1 10.2 10.9 … 9.8 8.6 8.7 9.1
16 9.9 10.4 9.5 10.3 … 8.9 7.6 8.0 8.1
17 8.8 8.8 8.5 8.9 … 8.1 6.6 6.9 7.2
18 7.1 7.5 7.5 7.7 … 7.4 5.8 5.9 6.6
19 5.9 6.5 6.8 6.8 … 7.1 5.2 5.3 6.1
20 5.1 5.9 5.9 6.2 … 6.5 4.7 4.7 5.8
21 4.3 5.4 6.0 5.7 … 6.4 4.4 4.5 5.5
22 4.2 5.1 5.4 5.4 … 6.0 4.0 4.0 5.3
23 3.9 4.8 5.0 5.0 … 5.7 3.7 3.7 5.0

Table 3: Annual Temperature Table - 2020 (compressed)

37

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

• Annual Electric Demand Table: in this table, named ‘Production-2020’ and

‘Production-2021’ in the code, we have the same data structure as in the Annual

Temperature table, but exchanging mean temperatures with electric demand. As

said before, this data has been downloaded using the ESIOS online app provided

by Santiago Peñate Vera on his GitHub account. It has also been treated via

python coding until arriving to table 4. Pruning the original table was necessary

because from the ESIOS app we would get the demand values for every 10-

minute period.

hour 2020-01-01 2020-01-02 2020-01-03 2020-01-04 … 2020-12-28 2020-12-29 2020-12-30 2020-12-31

00:00:00+00:00 23039 23441 27094 27483 … 25499 26341 26524 27143
01:00:00+00:00 22695 21245 24668 25378 … 22989 23856 23990 24115
02:00:00+00:00 21567 19731 22988 23362 … 21325 22065 22144 22024
03:00:00+00:00 20284 18892 22070 22072 … 20662 21115 21276 20961
04:00:00+00:00 19265 18726 21331 21903 … 20091 20863 21082 20404
05:00:00+00:00 18742 18986 21737 21757 … 20440 21135 21221 20510
06:00:00+00:00 18679 20434 22843 21752 … 21449 21959 22241 21238
07:00:00+00:00 19095 23671 25736 22904 … 24254 24593 24840 23081
08:00:00+00:00 19444 27406 29084 24571 … 27256 27796 28149 25434
09:00:00+00:00 19281 30101 31625 26506 … 29944 30481 30624 27577
10:00:00+00:00 20831 32677 33909 29051 … 32337 32600 32622 30271
11:00:00+00:00 22587 33477 34717 30281 … 33177 33325 33372 31178
12:00:00+00:00 23562 33704 34573 30198 … 33412 33033 33040 30996
13:00:00+00:00 24049 33427 34045 30002 … 33471 33032 32710 30231
14:00:00+00:00 24531 33401 33972 30024 … 33814 33333 32860 30057
15:00:00+00:00 23711 32188 32557 29429 … 32157 32135 31507 29147
16:00:00+00:00 22593 31337 31869 28382 … 31267 31402 30978 28583
17:00:00+00:00 22544 31241 31190 27866 … 31140 31075 30647 28400
18:00:00+00:00 23983 32191 32281 28641 … 32416 32279 32017 29939
19:00:00+00:00 26187 33589 33305 30489 … 33594 33606 33605 31994
20:00:00+00:00 27061 3373 33647 30968 … 33887 33936 34041 31574
21:00:00+00:00 27870 34132 33565 31507 … 34012 34172 34134 30863
22:00:00+00:00 27458 32507 32142 30733 … 32031 32572 32730 28528
23:00:00+00:00 26039 30313 30127 29102 … 29500 29814 30177 26538

Table 4: Annual demand table - 2020 (compressed)

38

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

3.2. Neural network operation

As mentioned before, both networks that we will be training and using are built with

three neuron layers: input layer, hidden layer and output layer. The hidden layer is

formed by an arbitrary N number of neurons. This, together with the number of

iterations (that is the number of times the learning process is repeated until finding

adequate weights) and the learning factor η are the parameters we, as builders of the

network have control over. The configuration array is composed by these customizable

parameters, in that order. For example, if we were to choose a configuration with 25

hidden layer neurons, 2000 iterations and a learning factor of 0.1, our configuration

array would look like this: conf = [25, 2000, 0.1].

There are two main functions in the neural network script. Training(conf, typ) and

ForecastCalculation(date_str, conf, typ). The parameter conf is the configuration array

we just have talked bout, while typ would indicate the type of network we wish to train

or use for the calculations, the 4-input one (typ = 1) or the 27-input one (typ = 0). Once

the training is complete, the achieved weights matrices are saved in a text document

that can be used afterwards in case we want to use once again a past configuration

without the need to train again the network.

Let’s settle an example of what lines of code we would need to input through the python

console or simply write in an alternative script in which we have previously imported

the neural network script, again, shown in the annex.

39

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

In this particular example, we are using a secondary script to facilitate the writing and

reading of the different instructions. First, we import the neural network python file

with all the necessary code, we then set up a configuration array with the values shown:

30 number of neurons in the hidden layer, 7000 maximum iterations and a learning

factor of 0.1. In addition, we pass the input number 0 to determine that we will be using

the 27-input neural network. We will later experiment with different parameters to

compare results.

After running this script, the console output shows:

This meaning the network has successfully been trained. Now we can check our project

folder to find two different text files containing the weight matrices that our program

has achieved with this particular configuration.

Now, in order to make a prediction for any particular day in this case of the year 2021,

we just need to call the function ForecastCalculation() as follows:

40

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Just making sure the configuration and network type are the same ones as we introduced

in the training function. Otherwise, the ForecastCalculation() function will train a new

network with the newly introduced configuration. Running this new command will

output the following:

Showing us the specific data from the day we have chosen as well as some statistic

parameters we have chosen to value the precision of our forecast. In this case, we obtain

a Mean Absolute Percentual Error (MAPE) of 4.36%, which is under the 5% error that

was mentioned in the introduction. The program will also plot three graphs, to help

visualizing the prediction:

41

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 17: Electric demand prediction 2021-02-21 (27-input network)

In addition, we also get a cvs file with a detailed table with the prediction data for the

specified day.

Importing them to excel is a great way to clearly see the data:

Date Power (GW)
21/02/2021 0:00 252.510
21/02/2021 1:00 235.740
21/02/2021 2:00 221.670
21/02/2021 3:00 215.970
21/02/2021 4:00 208.040
21/02/2021 5:00 207.030
21/02/2021 6:00 204.580
21/02/2021 7:00 205.830
21/02/2021 8:00 213.190
21/02/2021 9:00 231.130

21/02/2021 10:00 253.910
21/02/2021 11:00 257.620
21/02/2021 12:00 264.900
21/02/2021 13:00 268.150
21/02/2021 14:00 267.920
21/02/2021 15:00 255.820
21/02/2021 16:00 241.560
21/02/2021 17:00 243.760
21/02/2021 18:00 245.010
21/02/2021 19:00 257.370
21/02/2021 20:00 275.270
21/02/2021 21:00 287.300
21/02/2021 22:00 283.960
21/02/2021 23:00 269.320

Table 5: Electric demand prediction hourly data 2021-02-21 (27-input network)

42

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

3.3. Results analysis indicators

To evaluate the operation of the network comparing real demand data from 2021 and

the predicted one, we will be using various indicators. When comparing hourly data,

the absolute error will be used, which is the direct difference between the real electric

demand and the value predicted by the neural network:

𝜀𝜀ℎ = 𝑃𝑃𝑉𝑉,ℎ − 𝑃𝑃𝑁𝑁𝑁𝑁,ℎ

(13)

The relative hourly error will also be used, it is defined as:

𝜀𝜀𝑟𝑟,ℎ = �
𝜀𝜀ℎ
𝑃𝑃𝑉𝑉
� ∙ 100%

(14)

To evaluate the general daily resemblance between the prediction and reality, the

parameter that we will be using will be the Mean Absolute Error (MAE):

𝐸𝐸ℎ =
1

24
 �|𝜀𝜀ℎ|
23

ℎ=0

(15)

Very useful in demand prediction studies is also the Mean Absolute Percentual Error

(MAPE), making the previous indicator easier to understand and compare:

𝐸𝐸𝑟𝑟 =
1

24
 �

|𝜀𝜀ℎ|
𝑃𝑃𝑉𝑉

 ∙ 100%
23

ℎ=0

(16)

Finally, we will also be using the absolute error’s standard deviation indicator:

𝜎𝜎 = �
1

24
�(𝜀𝜀ℎ − 𝐸𝐸ℎ)2
23

ℎ=0

(17)

43

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

4. Results analysis

We will be checking and comparing predictions made by both neural networks for

several days of the year 2021 (remember that the network has been trained using data

from 2020). Since it would be almost impossible and very time and space-consuming

showing predictions for every day of the year, we will be choosing a specific list of

days that we believe help represent almost every situation (different seasons, different

types of day, different months…). For workdays, we have chosen several days, always

close to the 15th day of the month and Wednesdays, to ensure the minimum influence

from neighbor weekends, same goes for the Saturdays and Sundays chosen, close to the

center mark of the month and as far aways as possible from festivity days. The list of

days which predictions have been calculated are the following:

• Workdays: 2021-01-13, 2021-03-17, 2021-08-18, 2021-10-20

• Saturdays: 2021-07-17, 2021-12-18

• Sundays: 2021-02-14, 2021-05-16

• Festivities: 2021-11-01

4.1. 4-Input Neural Network results

We will initially use a configuration with 20 neurons in the hidden layer, 1500 iterations

and a learning factor η of 0.1. We will later vary these parameters to observe how the

network reacts to such changes.

In the following table we can appreciate all the errors from the days list predictions:

44

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Date Day Type MAE
(MW)

Eh,max
(MW)

Eh,min
(MW) σ (MW) MAPE

(%)
2021-01-13 Workday 2188 3073 1169 563.6 6.54
2021-03-17 Workday 448 1220 51 392.4 1.57
2021-08-18 Workday 1105 2044 87 1128.2 3.89
2021-10-20 Workday 535 1076 74 626.2 1.99
2021-07-17 Saturday 799 1462 50 688.3 2.94
2021-12-18 Saturday 1118 2097 235 1266.2 4.17
2021-02-14 Sunday 326 880 14 414.3 1.33
2021-05-16 Sunday 1471 2374 538 486 6.5
2021-11-01 Festivity 813 1503 176 419.9 3.55

Table 6: 4-Input neural network error list for the chosen day group

The prediction graphs can be seen as follows, divided into workdays and non-working

days.

Workdays:

Figure 18: 4-Input network prediction for 2021-01-13

Figure 19: 4-Input network prediction for 2021-03-17

45

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 20: 4-Input network prediction for 2021-08-18

Figure 21: 4-Input network prediction for 2021-10-20

Non-working days:

Figure 22: 4-Input network prediction for 2021-07-17

46

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 23: 4-Input network prediction for 2021-12-18

Figure 24: 4-Input network prediction for 2021-02-14

Figure 25: 4-Input network prediction for 2021-05-16

Figure 26: 4-Input network prediction for 2021-11-01

47

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Most predictions are very accurate, with a mean absolute percentual error between 1 to

6 % Now we will proceed to change some configuration parameters to see if we can

obtain even better predictions for both days with MAPE superior to 6%.

After numerous changes and variations, we have arrived at the optimal error values the

neural network can accomplish for these two days. In both cases the optimal number of

iterations has been 2000, and the optimal number of neurons has resulted to be the one

we already had, 20.

The main difference has been given by the training factor, which for the date 2021-01-

13 has been η = 0.3 and for 2021-05-16, as been η = 0.2.

Optimal calculations of both days are as follow:

2021-01-13

Figure 27: Optimal forecast for date 2021-01-13 on the 4-input neural network

48

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

2021-05-16

Figure 28: Optimal forecast for date 2021-05-16 on the 4-input neural network

We observe a slight upgrade compared to the previous results, in the last case being

able to lower the MAPE below 6%. All other possible combinations of number of

neurons, number of iterations or learning factor, lead us to slightly worse results, up to

an error of 8% for some extreme simulations. This goes to show that a higher number

of neurons or learning factor does not always mean a better performance.

49

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

4.2. 27-Input Neural Network results

Now we proceed to test the second neural network with the same initial configuration

and days list from the previous section, to be able to directly compare results and see if

a 27-input network makes better predictions compared to the 4-input one.

Again, for a 20-neuron hidden layer, with 1500 iterations and a learning factor of 0.1,

the 27-input network error results are:

Date Day Type MAE
(MW)

Eh,max
(MW)

Eh,min
(MW) σ (MW) MAPE

(%)
2021-01-13 Workday 3080 3779 2296 396.9 8,93
2021-03-17 Workday 532 15 13 589,5 1,84
2021-08-18 Workday 1445 2734 73 1279 4,94
2021-10-20 Workday 825 1581 71 624,5 2,96
2021-07-17 Saturday 546 1054 2 620,7 1,93
2021-12-18 Saturday 737 1874 38 855,7 2,81
2021-02-14 Sunday 499 1444 1 480,8 2,04
2021-05-16 Sunday 1097 2281 65 513.3 4,79
2021-11-01 Festivity 665 1369 66 635,2 3,01

These are the prediction graphs associated with the training and predictions just

mentioned, divided into workdays and non-working days.

Workdays:

Figure 29: 27-Input network prediction for 2021-01-13

50

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 30: 27-Input network prediction for 2021-03-17

Figure 31: 27-Input network prediction for 2021-08-18

Figure 32: 27-Input network prediction for 2021-10-20

51

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Non-working days:

Figure 33: 27-Input network prediction for 2021-07-17

Figure 34: 27-Input network prediction for 2021-12-18

Figure 35: 27-Input network prediction for 2021-02-14

52

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 36: 27-Input network prediction for 2021-05-16

Figure 37: 27-Input network prediction for 2021-11-01

Something interesting happens when comparing these new results with the previous 4-

input network ones, we generally get better results, almost all of them are below the 5%

MAPE threshold, with one exception, January the 13th. In some other days, as October

21st even though we are way below 5% MAPE, we are getting a slightly worse

prediction when comparing mean absolute percentual errors. This is due to a higher

variation between hourly temperature on comparison with a more stable mean

temperature. Even then, we can confirm, that as expected, in general the 27-input neural

network operates under a lower error threshold, thus being more competent.

Now, same as in the previous section, we will modify the initial configuration to find

the optimal parameter values for the worst prediction of the group, in this case, January

the 13th.

Iterating through a wide range of different combination of configuration parameters,

we have arrived at the conclusion that the best configuration to get the minimum error

possible on January the 13th 2021, according to our 27-input neural network is N = 10

(hidden layer neurons), 1000 iterations and a learning factor of 0.1 getting the following

results.

53

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 38: Optimal forecast for date 2021-01-13 on the 27-input neural network

This result is still over the 5% MAPE, and a worse prediction than the 4-input neural

network. This is due to the high volatility of hourly temperatures on this exact date. It

is also interesting noting that in this case, the best result has appeared after converging

27 inputs into 10 neurons, which at first may seem contradictory, but if there is an

overload of input variations, condensing them into a lower number of nodes has

appeared to be the best choice.

On both neural network results, we haven’t noticed a specific generally known

distribution for the error functions. What we have noticed is that error peaks always

match up the demand peaks of real data, this gives us a hint that an additional possible

input tracking other factors may have helped both networks learn more about demand

peaks. We discuss later what these possible new input additions could have been.

54

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

5. General discussion

Firstly, note that except for a couple of cases, the neural network has been able to

accomplish very detailed and precise electric demand predictions, adjusting

accordingly depending on the type of day, season, temperature and date. In general,

from results we are able to determine that we have gotten better results from the 27-

input neural network with overall better MAPE values, which is what should be

expected as more input values are considered. We have also observed how different

network configurations affect the overall output when iterating trying to find the

optimal value for the specific dates that were over the error margin. Not always

maximizing parameters has been useful, as like seen in previous examples, the optimal

number of iterations and/or hidden layer neurons is sometimes on the lower scale. A

pattern has emerged when looking through different configurations, as it seemed the

higher iterations benefited colder weather liked results. On the same page, a higher

learning factor value has often not help with the error management, as on most cases a

learning factor of 0.1 to 0.3 has been the best option. Centering our focus now on the

number of neurons in the hidden layer, we have discovered that usually, the sweet spot

stands around 10 to 25 neurons, usually at N = 20.

The execution time is an interesting factor to take into account. As the number of

iterations have gone up, the time to run the program has been substantially increased.

Not presenting a problem in this particular project since the number of layers, neurons

and iterations have not been very large compared to a hypothetical industrial program,

with these values on a much higher scale, which in that case time optimization could

be consider a valuable asset.

Lastly, we believe the years of study, both the network training year (2020) and the

predicted year (2021) have been fairly irregular to one another and to the previous years

due to the global COVID-19 pandemic and its strong impact on both the economy and

industries. Quarantine regulations have highly affected the electricity market, affecting

both demand and prices.

55

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Regulations have very quickly changed between both years, so it is understandable that

not having considered them as an input to the network (would have been a total

overcomplication of the issue), has sacrificed predictions accuracy as they have not

been as accurate as they would have been considering this political and infrastructure

considerations.

5.1. Improvement proposals

A few ideas come into mind when thinking on how to improve the network. In this

study we have not considered the slight difference between each individual working

day, as Mondays or Fridays tend to have a clear influence from weekends electrical

demand. We have also worked with the mean temperature of the whole peninsula, while

maybe treating the landscape as different regions depending on their own temperature

as different network inputs may have affected positively the output of the experiment.

Finally, as mentioned before, using COVID-19 local regulations as inputs would have

definitely improved the forecast calculations, although we believe this would have been

an arduous challenge.

56

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

6. Conclusion

The main goal of the study was to learn about both electricity system and neural

networks, getting to create our own neural network capable of predicting electric

demand on a short-term horizon. It has been proved that making this network was

completely plausible even with a fairly, at first glance, simple structure of three layers,

obtaining great results considering the number of factors computed. We have learnt that

the network configuration is key to obtaining valuable predictions, and that changing

each individual parameter of the configuration leads to widely different results

depending on the moment in time the prediction is made, considering season, month,

temperature and type of day.

We have observed that were predictions are most distant from real values is in electric

demand peaks, learning different lessons on how every condition affects the final output

and keeping them in mind for future projects or studies.

Finally, we have compared and analyzed results leading to ways of improving the

already precise methodology by considering new altering factors or different ways of

treating and using the inputs we have already used.

57

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

BIBLIOGRAPHY

[1] Red Eléctrica Española, https://www.ree.es/es

[2] Kanaweera, D. K., Karady, G. G., Farmer, R. G., “Economic impact analysis

of load forecasting”, IEEE Trans. PWRS, vol 12 núm. 3 (1997), 1388-1392.

[3] Red Eléctrica Española – Seguimiento de la demanda eléctrica,

https://demanda.ree.es/visiona/seleccionar-fecha

[4] National Oceanic and Atmospheric Administration (NOAA), Dataset

global-hourly download, https://www.ncei.noaa.gov/access/search/data-

search/global-hourly?pageNum=22&startDate=2021-06-

01T00:00:00&endDate=2021-06-

30T23:59:59&dataTypes=TMP&bbox=44.151,-13.306,34.549,4.740

[5] Pardo, A., Meneu, V., Valor, E. “Temperature and seasonality influences on

Spanish electricity load. Energy Economics”, Energy Economics, 24 (1), pp.

55-70.

[6] Rosenblatt, F., “The perceptron: A probabilistic model for information

storage and organization in the brain”, Psychological Review 56, 386-408,

1958.

[7] Santiago Peñate Vera, ESIOS Python data download API program,

https://github.com/SanPen/ESIOS

[8] Carlos Mallo González, “Predicción de la demanda eléctrica horaria

mediante redes neuronales artificiales”, Universidad de Oviedo, 2004

[9] Abraham Rubio Ortega, “Previsión de la demanda eléctrica peninsular

mediante redes neuronales”, Universidad Nacional de Educación a Distancia,

2018

[10] David Díaz Vico, José Dorronsoro, “Deep Neural Networks for Wind and

Solar Energy Prediction”, UAM, 2022

58

https://www.ree.es/es
https://demanda.ree.es/visiona/seleccionar-fecha
https://www.ncei.noaa.gov/access/search/data-search/global-hourly?pageNum=22&startDate=2021-06-01T00:00:00&endDate=2021-06-30T23:59:59&dataTypes=TMP&bbox=44.151,-13.306,34.549,4.740
https://www.ncei.noaa.gov/access/search/data-search/global-hourly?pageNum=22&startDate=2021-06-01T00:00:00&endDate=2021-06-30T23:59:59&dataTypes=TMP&bbox=44.151,-13.306,34.549,4.740
https://www.ncei.noaa.gov/access/search/data-search/global-hourly?pageNum=22&startDate=2021-06-01T00:00:00&endDate=2021-06-30T23:59:59&dataTypes=TMP&bbox=44.151,-13.306,34.549,4.740
https://www.ncei.noaa.gov/access/search/data-search/global-hourly?pageNum=22&startDate=2021-06-01T00:00:00&endDate=2021-06-30T23:59:59&dataTypes=TMP&bbox=44.151,-13.306,34.549,4.740
https://github.com/SanPen/ESIOS

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

ANNEX – CODE

Demand data treatment code

import pandas as pd
import numpy as np
from datetime import timedelta
from ESIOS import *
import urllib.request

"""
 Production_Summary_Table()
 Function: generates a cvs file with hourly production data from all years days
 Inputs: REE data from the ldpREEAnnual() function
 Outputs: cvs summary table and dataframe with all production data
"""

def Production_Summary_Table(year):

 df = pd.read_csv('D:/ICAI/Cuarto/TFG/Data/Annual-Production-'+str(year)+'.csv',
names=['f', 'production'], skiprows=1)
 df = df.join(df['f'].str.split(' ', expand=True).rename(columns={0: 'date', 1:
'hour'}))
 df = df.drop(columns=['f'])
 df = df[['date', 'hour', 'production']]

 days_list = df['date'].unique()
 hours_list = df['hour'].unique()
 df.set_index(['date'], inplace=True)

 Summary_Table = pd.DataFrame(index=hours_list[::6], columns=days_list) # [::6] is
needed because from ESIOS we receive data every 10 minutes

 for n in days_list:
 df_tmp = df.loc[n]
 df_tmp = np.rint(df_tmp.loc[:, 'production'])
 Summary_Table.loc[:, n] = df_tmp.values[::6] # Sames as above

 Summary_Table.index.name = 'hour'
 Summary_Table.to_csv('D:/ICAI/Cuarto/TFG/Datasets/Production-'+str(year)+'.csv')

 return Summary_Table

"""
 ldpAnnualREE()
 Function: downloads yearly data from the ESIOS online application
 Inputs: year
 Outputs: csv file and dataframe with yearly production data with the REE format
"""

def ldpAnnualREE(year):

 token = 'token is private and has been purposely removed to avoid problems'

 indicators_ = [1293] # Production indicator code
 esios = ESIOS(token)
 names = esios.get_names(indicators_)

 start_ = '01-01-'+str(year)+'T00:00:00'
 end_ = '31-12-'+str(year)+'T23:59:59'
 df_list, names = esios.get_multiple_series(indicators_, start_, end_)
 df_merged = esios.merge_series(df_list, names) # merge the DataFrames into a
single one

59

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 df = df_merged[names]
 df.index = df.index+timedelta(hours=1)
 df.columns = ['Production(MW)']

 df.to_csv('D:/ICAI/Cuarto/TFG/Data/Annual-Production-'+str(year)+'.csv')

 return df

60

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Temperature data treatment code

import calendar
from datetime import timedelta
from datetime import datetime
import pandas as pd
import numpy as np
from pandas.io.parsers.readers import read_csv
"""
 Here are included all the necessary programms for the temperature data analysis
 - Ready_Temperatures(): cleans all the NOAA files and creates clean ones and
a table with all the years temperatures
 - Annual_Summary_Table(): generates a summary table with all the data from
each day (month, mean_t, day_type, etc.)
"""

"""
 Ready_Temperatures():
 Function: cleans the csv files from NOAA, stores them and generates a summary
table
 Input: csv file from NOAA
 Output: summary_df: dataframe with the annual summary
 Summary_Table()
 - File: summary_df
 - File: temperatures_df, format used in Calc_Mean_Temp(df, m)
"""

def Ready_Temperatures(year):

 # List useful columns from NOAAs files
 col_list = ['NAME', 'DATE', 'REPORT_TYPE', 'TMP']

 # List of out-of-peninsula locations
 P_insular = ['CEUTA', 'IBIZA', 'MELILLA', 'MENORCA', 'PALMA DE MALLORCA CMT',
'PALMA DE MALLORCA']

 summary_df = Annual_Summary_Table(year)
 summary_df.set_index('Date', inplace=True)
 for m in range(1, 13, 1):
 full_df =
pd.read_csv('D:/ICAI/Cuarto/TFG/Temperature/'+str(year)+'/'+str(year)+'-
'+str(m).zfill(2)+'.csv', usecols=col_list)
 df = full_df[full_df['REPORT_TYPE'] == 'FM-12']
 df = df.reset_index(drop=True)
 df = df.join(df['NAME'].str.split(',', expand=True).rename(columns={0:
'Location', 1: 'Country'}))
 df = df.join(df['TMP'].str.split(',', expand=True).rename(columns={0: 'Temp',
1: 'Quality'}))

 # Formating date and time
 df['DATE'] = pd.to_datetime(df['DATE'])
 df = df.drop(columns=['Country', 'Quality', 'TMP', 'NAME', 'REPORT_TYPE'])

 # We obtein each hours temperature
 df['Temp'] = (pd.to_numeric(df['Temp']))/10

 # We substitute the measure error code (999.9) with a nan
 df.loc[df['Temp'] == 999.9, 'Temp'] = np.nan

 for i in range(len(P_insular)):
 df = df[df['Location'] != P_insular[i]]

 # We save the clean data
 df.to_csv('D:/ICAI/Cuarto/TFG/Temperature/'+str(year)+'/Clean/'+str(year)+'-
'+str(m).zfill(2)+'-clean.csv')

 # We calculate each days mean temperature
 df_temperatures = Calc_Mean_Temp(df, m, year)

61

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 # We fill the summary table
 for c in range(df_temperatures.shape[1]):
 N_Column = df_temperatures.columns[c]
 mean = df_temperatures.iloc[:, c].mean()
 summary_df.loc[N_Column, 'Mean_Temperature'] = np.around(mean, 1)

 summary_df.to_csv('D:/ICAI/Cuarto/TFG/Datasets/Table_'+str(year)+'.csv')
 return summary_df

"""
 Calc_Mean_Temp(df, m):
 Function: calculates the mean temperature of each day
 Inputs:
 - df: dataframe, with monthly data from month 'm'
 - m: month
 Outputs:
 - df_temperatures: dataframe with hourly temperatures of each month with
the following format:
 hour | date | date | date ... (hour: 0,1,2,...,23)
(year-month-day)
 - file: file the the previous dataframe
"""

def Calc_Mean_Temp(df, m, year):

 cols_list = []
 df_temperatures = np.zeros((24, calendar.monthrange(year, m)[1]), dtype=float)

 for d in range(calendar.monthrange(year, m)[1]):
 for h in range(24):
 date_hour = datetime(year, m, d+1, h, 0, 0)
 df_tmp = df[df['DATE'] == date_hour.strftime('%Y-%m-%d %H:00:00')]
 mean_h = df_tmp['Temp'].mean()
 if (np.isnan(mean_h)):
 mean_h = 0
 df_temperatures[h, d] = np.around(mean_h, 1)

 cols_list.append(date_hour.strftime('%Y-%m-%d'))
 df_temperatures = pd.DataFrame(df_temperatures)
 df_temperatures.columns = cols_list

df_temperatures.to_csv('D:/ICAI/Cuarto/TFG/Temperature/'+str(year)+'/Clean/'+str(year)
+'-'+str(m).zfill(2)+'-Temperatures.csv')

 return df_temperatures

"""
 Annual_Summary_Table():
 Function: makes a summary yearly table with the following format:
 Date | Mean_Temperature | Day_Type | Season
 - Date: year-month-day
 - Mean_Temperature: mean temperature of the specific day
 - Day_Type: working day (0), Saturday (5), Sunday (6)
 - Season
 Output: summary table to add the temperatures
"""

def Annual_Summary_Table(year):

 cols_list = ['Date', 'Mean_Temperature', 'Day_Type', 'Season']
 summary_df = pd.DataFrame(np.zeros((365, 4)))

 # National festivity days list
 # festivity_list = ['2020-01-01', '2020-01-06', '2020-04-10','2020-05-01', '2020-
08-15','2020-10-12', '2020-12-08', '2020-12-25']
 festivity_list = ['2021-01-01', '2021-01-06', '2021-02-10', '2021-05-01', '2020-
10-12', '2021-11-01', '2021-12-06', '2021-12-08', '2021-12-25']

 date = datetime(year, 1, 1)
 for d in range(0, 365, 1):
 date_str = date.strftime('%Y-%m-%d')
 summary_df.iloc[[d], [0]] = date_str

62

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 day_type = datetime.weekday(date)
 if (day_type < 5):
 day_type = 0
 elif (day_type == 5):
 day_type = 5
 elif (day_type == 6):
 day_type = 10
 summary_df.iloc[[d], [2]] = day_type

 if date_str in festivity_list:
 summary_df.iloc[[d], [2]] = 10 # We will treat festivities as Sundays
 summary_df.iloc[[d], [3]] = season(date)
 date = date + timedelta(days=1)

 summary_df.columns = cols_list
 return summary_df

"""
 temperature_data(date_str):
 Function: gets the temperature data for the input date, used to train the
network
 Inputs: Date
 Outputs: table with the temperature date of the chosen day
"""

def temperature_data(date_str):
 temp_data = np.zeros((24), dtype=float)
 date_dt = datetime.strptime(date_str, '%Y-%m-%d')
 year = date_dt.year
 path_file =
'D:/ICAI/Cuarto/TFG/Temperature'+str(year)+'/Clean/'+date_dt.strftime('%Y-%m')+'-
Temperatures.csv'
 df = pd.read_csv(path_file)
 temp_data = df[date_str].values.T

 return temp_data

"""
 Temp_Summary_Table()
 Function: generates a csv file with the hourly temperature data of every day of
the year
 Inputs: NOAA clean files
 Outputs: Summary_table.csv
"""

def Temp_Summary_Table(year):
 df =
pd.read_csv('D:/ICAI/Cuarto/TFG/Temperature/'+str(year)+'/Clean/'+str(year)+'-01-
Temperatures.csv', index_col=0)

 for m in range(2, 13, 1):
 df_tmp =
pd.read_csv('D:/ICAI/Cuarto/TFG/Temperature/'+str(year)+'/Clean/'+str(year)+'-
'+str(m).zfill(2)+'-Temperatures.csv', index_col=0)
 df = df.join(df_tmp)

 # Now we have to eliminate the nan:
 # For complete day missing, we copy the day before
 # For a missing hour, we copy the same hour from the day before

 for c in range(df.shape[1]):
 if (all(np.isnan(df.iloc[:, c])) or (all(df.iloc[:, c]) == 0)):
 df.iloc[:, c] = df.iloc[:, c-1]
 elif (any(np.isnan(df.iloc[:, c])) or (any(df.iloc[:, c] == 0))):
 for f in range(df.shape[0]):
 if (np.isnan(df.iloc[f, c])):
 df.iloc[f, c] = df.iloc[f, c-1]

 df.index.name = 'hour'
 df.to_csv('D:/ICAI/Cuarto/TFG/Datasets/Temperatures-'+str(year)+'.csv')

63

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 return df

"""
 season(date):
 Function: determines what is the current season depending on the date
 Input: Date (year-month-day)
 Output: Season (spring (1), summer (2), autumn (3), winter (4))
"""

def season(date):
 day = date.timetuple().tm_yday

 if day in range(80, 172):
 return 1 # Spring
 elif day in range(172, 264):
 return 2 # Summer
 elif day in range(264, 355):
 return 3 # Autumn
 else:
 return 4 # Winter

64

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Neural network code

import numpy as np
import pandas as pd
import time
import random
import os
from datetime import datetime
from datetime import timedelta
import matplotlib.pyplot as plt

class Neural_Network (object):
 def __init__(self, N_Inputs, conf, weightload, typ):
 self.N_Input = N_Inputs
 self.N_Hidden_Layer = conf[0]
 self.N_Output = 24
 self.eta = conf[2]

 # Initialize seed to compare results
 np.random.seed(20)

 if (weightload):
 self.LoadWeights(conf, typ)
 else:
 # Declare weight matrixes randomly
 self.W1 = np.array(np.random.randn(self.N_Hidden_Layer, self.N_Input),
ndmin=2)
 self.W2 = np.array(np.random.randn(self.N_Output, self.N_Hidden_Layer),
ndmin=2)

 def sigmoid(self, x): # Activation function
 return 1/(1+np.exp(-x))

 def primesigmoid(self, x): # First derivative of sigmoid function
 return x*(1-x)

 def FF(self, input): # Feedfordward

 input = np.array(input, ndmin=2).T
 # First layer:
 output_array = np.dot(self.W1, input)
 output_array = self.sigmoid(output_array)
 # Second layer:
 output_array = np.dot(self.W2, output_array)
 output_array = self.sigmoid(output_array)

 return output_array

 def SaveWeights(self, conf, typ):
 if (typ == 0):
 np.savetxt('D:/ICAI/Cuarto/TFG/Data/Weights/W1-'+str(conf[0])+'-
'+str(conf[1])+'-'+str(conf[2])+'.txt', self.W1, delimiter=',')
 np.savetxt('D:/ICAI/Cuarto/TFG/Data/Weights/W2-'+str(conf[0])+'-
'+str(conf[1])+'-'+str(conf[2])+'.txt', self.W2, delimiter=',')
 else:
 np.savetxt('D:/ICAI/Cuarto/TFG/Data/Weights/W1-TM-'+str(conf[0])+'-
'+str(conf[1])+'-'+str(conf[2])+'.txt', self.W1, delimiter=',')
 np.savetxt('D:/ICAI/Cuarto/TFG/Data/Weights/W2-TM-'+str(conf[0])+'-
'+str(conf[1])+'-'+str(conf[2])+'.txt', self.W2, delimiter=',')

 def LoadWeights(self, conf, typ):
 # If typ is 0 is hourly network
 # If typ is 1 is daily network
 if (typ == 0): # 24 temperatures
 self.W1 = np.loadtxt('D:/ICAI/Cuarto/TFG/Data/Weights/W1-'+str(conf[0])+'-
'+str(conf[1])+'-'+str(conf[2])+'.txt', delimiter=',')
 self.W2 = np.loadtxt('D:/ICAI/Cuarto/TFG/Data/Weights/W2-'+str(conf[0])+'-
'+str(conf[1])+'-'+str(conf[2])+'.txt', delimiter=',')
 else: # 1 temperature

65

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 self.W1 = np.loadtxt('D:/ICAI/Cuarto/TFG/Data/Weights/W1-TM-
'+str(conf[0])+'-'+str(conf[1])+'-'+str(conf[2])+'.txt', delimiter=',')
 self.W2 = np.loadtxt('D:/ICAI/Cuarto/TFG/Data/Weights/W2-TM-
'+str(conf[0])+'-'+str(conf[1])+'-'+str(conf[2])+'.txt', delimiter=',')

 def training(self, input, output):

 Input_array = np.array(input, ndmin=2).T

 Goal_array = np.array(output, ndmin=2).T

 Output_array_1 = np.dot(self.W1, Input_array)
 Output_array_layer1 = self.sigmoid(Output_array_1)

 Output_array_2 = np.dot(self.W2, Output_array_layer1)
 Output_array_RN = self.sigmoid(Output_array_2)

 Output_errors = Goal_array - Output_array_RN

 # Correction of output weights

 delta = Output_errors * self.primesigmoid(Output_array_RN)
 delta = self.eta * np.dot(delta, Output_array_layer1.T)
 self.W2 = self.W2 + delta

 # Correction of input weights

 Hidden_layer_error = np.dot(self.W2.T, Output_errors)
 delta = Hidden_layer_error * self.primesigmoid(Output_array_layer1)
 self.W1 = self.W1 + (self.eta * np.dot(delta, Input_array.T))

"""
 Training24T (conf)
 Function: Trains the network with the 'conf' configuration with the 24
temperature input network
 Inputs: Network configuration [N_Hidden_Layer, Max_iter, eta]
 - N_Hidden_Layer: Number of neurons in the hidden layer
 - Max_iter: number of iterations for training
 - eta: learning factor
 Outputs:
 - Two text files with training weights (RN)
"""

def Training(conf, typ):
 Start_time = time.perf_counter()

 # N_Inputs = 27

 if (typ == 0):
 N_Inputs = 27
 else:
 N_Inputs = 4
 inputs = np.zeros((N_Inputs), dtype=float)
 max_iter = conf[1]
 columns = ['Date', 'Mean_Temperature', 'Day_Type', 'Season']

 # Initializing neural network

 NN = Neural_Network(N_Inputs, conf, False, typ)

 # Clean and filtered data tables

 production_table = pd.read_csv('D:/ICAI/Cuarto/TFG/Datasets/Production-2020.csv',
index_col=0)
 temperature_table = pd.read_csv('D:/ICAI/Cuarto/TFG/Datasets/Temperatures-
2020.csv', index_col=0)
 summary_table = pd.read_csv('D:/ICAI/Cuarto/TFG/Datasets/Table_2020.csv',
usecols=columns)

 max_t = np.max(summary_table.loc[:, 'Mean_Temperature'])

 min_t = np.min(summary_table.loc[:, 'Mean_Temperature'])

 max_t_27 = temperature_table.max().max()

66

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 min_t_27 = temperature_table.min().min()

 ndays = np.arange(temperature_table.shape[1])
 random.seed(10)
 random.shuffle(ndays)

 print('###')
 print('Training network with configuration: ' + str(conf))
 if (typ == 0):
 print('Network Imputs: 27')
 else:
 print('Network Imputs: 4')

 errors = []

 for i in range(max_iter):
 for n in ndays:
 date_str_temp = summary_table.loc[n, 'Date']

 date_dt_temp = datetime.strptime(date_str_temp, '%Y-%m-%d')
 inputs[0] = summary_table.loc[n, 'Day_Type'] # Type of day
 inputs[1] = date_dt_temp.month # Month
 inputs[2] = summary_table.loc[n, 'Season'] # Season

 if (typ == 0):
 inputs[3:] = temperature_table.loc[:, date_str_temp].values #
Temperatures
 inputs = normalize_inputs(inputs, min_t_27, max_t_27)

 else:
 inputs[3] = summary_table.loc[n, 'Mean_Temperature']
 inputs = normalize_inputsMeanT(inputs, min_t, max_t)

 pattern = production_table.loc[:, date_str_temp].values

 pattern = normalize_power(pattern)

 NN.training(inputs, pattern)

 NN.SaveWeights(conf, typ) # We save the weights with the specific configuration
 print('Training completed')
 print('Execution time: ' + str(round(time.perf_counter() - Start_time, 2)) + 's')
 print('###')

 return errors

"""
 ForecastCalculation24T(date_str, conf)
 Function: calculates the forecast for day 'date_str' with the 'conf'
configuration
 Inputs:
 - date_str: date on 'year-month-day' format
 - conf: see previous function
 Outputs:
 - Graph with the forecast, absolute and percentual errors per hour
 - .csv file with the forecast result
"""

def ForecastCalculation(date_str, conf, typ):
 Start_time = time.perf_counter()

 path_root = "D:/ICAI/Cuarto/TFG/Output Data/"
 if (typ == 0):
 N_Inputs = 27
 else:
 N_Inputs = 4
 inputs = np.zeros((N_Inputs), dtype=float)
 date_dt = datetime.strptime(date_str, '%Y-%m-%d')
 year = date_dt.year
 columns = ['Date', 'Mean_Temperature', 'Day_Type', 'Season']

 # Initializing neural network

 NN = Neural_Network(N_Inputs, conf, True, typ)

67

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 production_table = pd.read_csv('D:/ICAI/Cuarto/TFG/Datasets/Production-' +
str(year) + '.csv', index_col=0)
 temperature_table = pd.read_csv('D:/ICAI/Cuarto/TFG/Datasets/Temperatures-' +
str(year) + '.csv', index_col=0)
 summary_table = pd.read_csv('D:/ICAI/Cuarto/TFG/Datasets/Table_' + str(year) +
'.csv', usecols=columns, index_col=0)

 max_t = np.max(summary_table.loc[:, 'Mean_Temperature'])
 min_t = np.min(summary_table.loc[:, 'Mean_Temperature'])

 inputs[0] = summary_table.loc[date_str, 'Day_Type']
 inputs[1] = date_dt.month
 inputs[2] = summary_table.loc[date_str, 'Season']

 max_t_27 = np.max(np.max(temperature_table))
 min_t_27 = np.min(np.min(temperature_table))

 print('###')
 if (typ == 0):
 print('Inputs to network: 27')
 else:
 print('Inputs to network: 4')

 print('Forecast Date: ' + date_str)
 print('Day: ' + str(inputs[0]))
 print('Season: ' + str(inputs[2]))
 print('Neurons in hidden layer: ' + str(conf[0]))
 print('Iterations: ' + str(conf[1]))
 print('Learning factor: ' + str(conf[2]))
 print('###')

 if (typ == 0):
 inputs[3:] = temperature_table.loc[:, date_str].values # Temperatures
 inputs = normalize_inputs(inputs, min_t_27, max_t_27)
 else:
 inputs[3] = summary_table.loc[date_str, 'Mean_Temperature']
 inputs = normalize_inputsMeanT(inputs, min_t, max_t)

 real_production = production_table.loc[:, date_str].values

 # Calculating the forecast
 forecast = NN.FF(inputs)[:, 0]
 forecast = np.rint(renormalize_power(forecast))

 # Calculating errors and showing results
 Err_Array = Error_Calc(forecast, real_production)
 plot(forecast, real_production, date_str, path_root, Err_Array, conf, typ)

 # Preparing a Data Frame with the forecast data

 df = pd.DataFrame(forecast.T)
 index_list = [date_dt + timedelta(hours=x) for x in range(24)]
 df.index = index_list
 df.index.name = 'Date'
 df.columns = ['Power (MW)']

 # Saving the output data

 df.to_csv(path_root + 'Forecast-NN-' + date_str + '.csv')
 print('Execution time: ' + str(round(time.perf_counter() - Start_time, 2)) + 's')
 return [Err_Array, forecast]

"""
 test(date_str, conf, typ, file_name)
 Function: Lets tets the operation point of the network changing parameters as
eta, max_iter and N_Hidden_Layer
 Inputs:
 - Date
 - Conf: net configuration on the same format as the neural netowork, the
values must be in array format, for example:
 conf = [['2020-02-15', '2020-03-15'],[[30],[1000, 3000, 5000], [0.1,
0.2]]]
 -file_name: name of the file, default will be test.csv

68

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 Outputs:
 - File with the forecast results for all possible combinations, first 24
rows are the forecast while the latter ones are the errors
 MAE, E_Max, E_Min, MAPE, Std_Dev

"""

def test(date_str, conf, typ, file_name=0):

 Start_time_iter = time.perf_counter()
 path_out = 'D:/ICAI/Cuarto/TFG/Output Data/'
 path_weights = 'D:/ICAI/Cuarto/TFG/Data/Weights/'

 # Net configuration

 N_Hidden_Layer, max_iter, eta = conf

 n_columns = []
 results_table = pd.DataFrame(np.zeros((29,
len(max_iter)*len(N_Hidden_Layer)*len(eta)), dtype=float))
 results_table.rename(index={24: 'MAE', 25: 'E_Max', 26: 'E_Min', 27: 'Std_Dev',
28: 'MAPE'}, inplace=True)

 c = 0 # With this c we control the column in the summary table

 for k in date_str: # Date
 for e in eta: # Learning factor
 for i in max_iter: # Number of iterations
 for n in N_Hidden_Layer:
 if (typ == 0):
 file_W1 = path_weights + 'W1-' + str(n) + '-' + str(i) + '-' +
str(e) + '.txt'
 file_W2 = path_weights + 'W2-' + str(n) + '-' + str(i) + '-' +
str(e) + '.txt'

 else:
 file_W1 = path_weights + 'W1-TM-' + str(n) + '-' + str(i) + '-
' + str(e) + '.txt'
 file_W2 = path_weights + 'W2-TM-' + str(n) + '-' + str(i) + '-
' + str(e) + '.txt'

 if((os.path.isfile(file_W1)) and (os.path.isfile(file_W2))):
 forecast = ForecastCalculation(k, [n, i, e], typ)
 else:
 Training([n, i, e], typ)
 forecast = ForecastCalculation(k, [n, i, e], typ)

 abs_error, rel_error, std_error = forecast[0]
 forecast = np.around(forecast[1], 0)

 # Preparing column names
 n_columns.append(k+','+str(n)+','+str(i)+','+str(e))

 # Error calculation

 results_table.loc['MAE', c] = round(np.mean(abs(abs_error)), 2)
 results_table.loc['E_Max', c] = round(np.max(abs(abs_error)), 2)
 results_table.loc['E_Min', c] = round(np.min(abs(abs_error)), 2)
 results_table.loc['MAPE', c] = round(np.mean(rel_error), 2)
 results_table.loc['Std_Dev', c] = round(std_error, 2)

 for f in range(24):
 results_table.iloc[f, c] = forecast[f]
 c += 1

 # Changing the columns names (Date, Neurons, Eta, Iterations) and saving the file

 results_table.columns = n_columns
 results_table.index.name = 'Hour'
 if (file_name == 0):
 results_table.to_csv(path_out+'Test.csv')
 else:
 results_table.to_csv(path_out+str(file_name)+'.csv')

69

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 print('\t Test completed in ' + str(round(time.perf_counter()-Start_time_iter,
2))+'s')
 return results_table

"""
 Error_Calc(forecast, real_production)
 Funtion: calculates the error on the prediction
 Inputs:
 - Forecast obtained by the neural network
 - Real production of the electrical network
 Outputs:
 - Error array
 * Absolute errors per hour
 * Relative errors per hour
 * Standard deviation
 - Prompted output
 * Mean absolute error (MAE)
 * Maximum and minimum absolute error
 * Standard deviation
 * Mean percentual absolute error (MAPE)
"""

def Error_Calc(forecast, real_production):

 abs_error = forecast-real_production
 rel_error = (np.abs(abs_error)/real_production)*100
 std_error = np.std(abs_error)

 print('Mean absolute error (MAE): '+str(round(np.mean(abs(abs_error))))+' MW')
 print('Maximum absolute error: '+str(round(np.max(abs(abs_error)), 2))+' MW')
 print('Minimum absolute error: '+str(round(np.min(abs(abs_error)), 2))+' MW')
 print('Standard deviation: '+str(round(std_error, 2))+'MW')
 print('Mean absolute percentual error (MAPE): '+str(round(np.mean(rel_error),
2))+' %')

 return [abs_error, rel_error, std_error]

"""
 plot(forecast, real_production, date_str, path, Array_Error)
 Function: plots the forecast and error graphs
 Inputs:
 - Neural network forecast
 - Real production of the electrical network to compare the results
 - date_str
 - path
 - Array_Error
 Outputs:
 - Forecast vs Real graph
 - Absolute error per hour graph
 - Relative error per hour graph
"""

def plot(forecast, real_production, date_str, path, Array_Error, conf, typ):

 hours = np.arange(0, 24)
 abs_error, rel_error, std_error = Array_Error

 fig = plt.figure(figsize=(12, 3))

 ax = fig.add_subplot(131)
 ax.set(ylabel='Electric demand (MW)', xlabel='Hour', title='Forecast ' +
str(date_str))
 ax.plot(hours, real_production)
 ax.plot(hours, forecast)
 ax.grid(visible=True, which='major', axis='both')
 ax.legend(('Real production', 'NN Forecast'), loc='best')

 # Plotting the absolute errors per hour
 bx = fig.add_subplot(132)
 bx.set(ylabel='Absolute Error (MW)', xlabel='Hour', title='Absolute errors
'+str(date_str))
 bx.bar(hours, abs_error)

70

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

 # Plotting the realative errors per hour
 cx = fig.add_subplot(133)
 cx.set(ylabel='Relative Error (%)', xlabel='Hour', title='Relative errors
'+str(date_str))
 cx.bar(hours, rel_error)

 fig.tight_layout()
 plt.savefig(path+'graph_forecast'+str(date_str)+'-'+str(conf[0])+'-
'+str(conf[1])+'-'+str(conf[2])+'-red-'+str(typ)+'.pdf', format='pdf')
 plt.show()

"""
 normalize_power(pattern)
 Function: normalizes the pattern to be able to compare with the output of the
network
 Inputs: non normalized pattern
 Outputs: normalized pattern between 0 and 1
"""

def normalize_power(pattern):
 p_max = 45000
 p_min = 15000
 return (pattern-p_min)/(p_max-p_min)

"""
 renormalize_power(output)
 Function: renormalizes network outputs
 Inputs: normalized pattern between 0 and 1
 Outputs: non normalized pattern
"""

def renormalize_power(output):
 p_max = 45000
 p_min = 15000
 return (output*(p_max-p_min)) + p_min

"""
 normalize_inputs(inputs)
 Function: normalizes inputs before getting them into the network
 Inputs: non normalized inputs for the neural network
 Outputs: normalized inputs
"""

def normalize_inputs(inputs, min_t_27, max_t_27):
 inputs[0] = (inputs[0])/10 # Normalize the day
 inputs[1] = (inputs[1]-1)/11 # Normalize the month
 inputs[2] = (inputs[2]-1)/4 # Normalize the season
 inputs[3:] = (inputs[3:27]-min_t_27)/(max_t_27-min_t_27) # Normalize the inputs
 return inputs

"""
 normalize_inputsMeanT(inputs)
 Function: normalizes inputs before getting them into the network
 Inputs: non normalized inputs for the neural network
 Outputs: normalized inputs (0 to 1)
"""

def normalize_inputsMeanT(inputs, min_t, max_t):
 inputs[0] = (inputs[0])/10 # Normalize the day
 inputs[1] = (inputs[1]-1)/11 # Normalize the month
 inputs[2] = (inputs[2]-1)/4 # Normalize the season
 inputs[3:] = (inputs[3]-min_t)/(max_t-min_t) # Normalize the inputs
 return inputs

71

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

ANNEX: Project Alignment with the United Nations

Sustainable Development Goals (SDG)

This project is mostly aligned with the sustainable development goal of the millennium

number seven, as being able to predict electric demand and energy consumption is an

enormous step towards achieving environmental sustainability, as optimal energy usage

is far more likely when knowing beforehand the demand peaks and general forecast.

Renewable energetic sources can be much more optimally used, as like explained in

detail previously in the paper, these kind of energy sources spike on certain times of the

day or the year.

According to the more in-depth list from the United Nations sustainable development

goals, this project clearly aligns with the goals number seven and eight, for the same

reasons mentioned above. Number eight specifically thanks to the economic upper hand

that knowing the electric demand and acting in consequence brings to the table. Greater

resources can be spent on clean energy sources if the ultimate usage to the fullest extent

can be given to these utterly vital assets to the planet.

72

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

LIST OF FIGURES

Figure 1: 2022-08-26 Aeolic generation

Figure 2: 2022-08-26 Solar generation

Figure 3: Electric demand 2022-03-15 (Tuesday)

Figure 4: Electric demand 2022-03-20 (Saturday)

Figure 5: Electric demand 2022-01-13 (Wednesday)

Figure 6: Electric demand 2022-6-09 (Wednesday)

Figure 7: Relation between energy consumption and temperature in Spain

Figure 8: Biologic neuron representation

Figure 9: Artificial neuron

Figure 10: Two-layered perceptron type neural network

Figure 11: Sigmoid function graph

Figure 12: N layered feedforward neural network

Figure 13: Three-layered feedforward network

Figure 14: Surface given by representing the linear error function

Figure 15: 4 Input neural network

Figure 16: 27 Input neural network

Figure 17: Electric demand prediction 2021-02-21 (27-input network)

Figure 18: 4-Input network prediction for 2021-01-13

Figure 19: 4-Input network prediction for 2021-03-17

Figure 20: 4-Input network prediction for 2021-08-18

Figure 21: 4-Input network prediction for 2021-10-20

Figure 22: 4-Input network prediction for 2021-07-17

Figure 23: 4-Input network prediction for 2021-12-18

Figure 24: 4-Input network prediction for 2021-02-14

Figure 25: 4-Input network prediction for 2021-05-16

Figure 26: 4-Input network prediction for 2021-11-01

73

Bachelor´s Final Project Guillermo Varas Yuste
Year 2021 - 2022

Figure 27: Optimal forecast for date 2021-01-13 on the 4-input neural
network

Figure 28: Optimal forecast for date 2021-05-16 on the 4-input neural
network

Figure 29: 27-Input network prediction for 2021-01-13

Figure 30: 27-Input network prediction for 2021-03-17

Figure 31: 27-Input network prediction for 2021-08-18

Figure 32: 27-Input network prediction for 2021-10-20

Figure 33: 27-Input network prediction for 2021-07-17

Figure 34: 27-Input network prediction for 2021-12-18

Figure 35: 27-Input network prediction for 2021-02-14

Figure 36: 27-Input network prediction for 2021-05-16

Figure 37: 27-Input network prediction for 2021-11-01

Figure 38: Optimal forecast for date 2021-01-13 on the 27-input neural
network

LIST OF TABLES

Table 1: Peninsular Network Characteristics

Table 2: Annual summary table - 2020 (compressed)

Table 3: Annual Temperature Table - 2020 (compressed)

Table 4: Annual demand table - 2020 (compressed)

Table 5: Electric demand prediction hourly data 2021-02-21 (27-input
network)

Table 6: 4-Input neural network error list for the chosen day group

74

	ABSTRACT
	RESUMEN
	INDEX
	MEMORY DEVELOPMENT
	1. Introduction
	1.1. Overview on the Spanish electric system
	1.1.1. The production and demand equilibrium
	1.1.2. Decisive factors of electric demand

	1.2. Neural Networks
	1.2.1. The neuron, biologic instrument
	1.2.2. Multilayer Feedforward Networks
	1.2.3. Backpropagation algorithm

	2. Objectives
	3. Methodology
	3.1. Data gathering and treatment
	3.2. Neural network operation
	3.3. Results analysis indicators

	4. Results analysis
	4.1. 4-Input Neural Network results
	4.2. 27-Input Neural Network results

	5. General discussion
	5.1. Improvement proposals

	6. Conclusion

	BIBLIOGRAPHY
	ANNEX – CODE
	Demand data treatment code
	Temperature data treatment code
	Neural network code

	ANNEX: Project Alignment with the United Nations Sustainable Development Goals (SDG)
	LIST OF FIGURES
	LIST OF TABLES

		2022-09-13T16:01:10+0200
	GUILLERMO VARAS YUSTE

		2022-09-13T16:41:21+0200
	Rosendo Castañón Naseiro

