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Author: Albendea López, Paula. 

Director: Díaz Aguiluz, Elena María 

Collaborating Entity: Universidad Pontificia Comillas 

EXECUTIVE SUMMARY 

1. INTRODUCTION 

Natural gas is a hydrocarbon composed of several light gases found in 

nature. This gas was formed millions of years ago deep beneath the ground from 

the remains of plants and animals that built up in thick layers on the earth’s 

surface and ocean floors [11].  

Nowadays, this gas is used as a fossil energy fuel, and it has become an 

essential means of energy in today’s world. Natural gas is used mainly to generate 

electricity, to run heating systems, as a fuel for vehicles, and for industrial 

production. The electric power sector, the industrial sector, the residential sector, 

the commercial sector, and the transportation sector are the ones that use this 

fuel the most [13]. 

Demand for natural gas is increasing due to its price-calorific value ratio. 

According to the U.S. Energy Information Association (EIA), the United States 

used about 31.5 quadrillion British thermal units (Btu) in 2020 which makes 34% 

of U.S. total energy consumption [13].  

After a 4% drop in 2020 due to COVID-19 crisis, natural gas demand 

progressively recovered in 2021 as consumption returned near to its pre-crisis 

levels in mature markets. An average growth rate of 1.5% of demand per year is 

expected for the period of 2019-2025. Half of this growth in consumption is 



 

attributable to the Asia Pacific region, due mainly by the raise of gas usage in 

China and India [31]. 

On the production side, North America and the Middle East are expected 

to contribute to half of the net increase in natural gas supply. Russia is the second 

largest producer and one of the biggest exporters of natural gas. On February 

24th, 2022, Russia decided to launch an offensive to Ukraine after a long escalation 

of tension between the two countries. The sanctions imposed on Russia by the 

European Union and the United States, caused price of gas to rocket in EU 

territories, where almost 40% of the gas supply comes from Russia [32]. 

 

Figure 1. Natural gas prices in USD/MMBtu from February 24th 2022 to June 27th 

2022 [33]. 

On top of all the crisis caused by the war in Ukraine, the Freeport LNG 

terminal in Texas was closed on June 9th, 2022, due to a fire. The shutdown was 

initially scheduled to last three weeks, but the authorities later announced that 

it would be extended until the end of 2022 [33]. 

Given all these events, price per megawatt-hour for July contracts in 

Europe, traded on the Netherlands-based virtual natural gas trading point (TTF), 

rose to EUR 127.17 (USD 133.49) on June 22nd, 2022, up 60% from EUR 79.40 



(USD 83.35) on June 8th, which was the lowest closing level in the last four months 

since the start of the Russia-Ukraine war on February 24th [33].  

 

Figure 2. Price in €/MWh for July contracts traded in Dutch TTF Gas Futures 

(February 21st, 2022 - June 27th, 2022) [34]. 

All of these events made the price of natural gas to be one of the topics of 

interest in the past few months. This paper tries to find a technique that can 

forecast the price of natural gas in the most accurate way possible. 

2. METHODOLOGY 

The study is divided into 8 chapters. The first chapter is dedicated to 

studying general information about natural gas, such as its formation, different 

techniques to extract it from the ground, transform it into an energy fuel and 

transport it to the end-user. Then, global supply, the biggest producers, storers, 

and exporters are identified. The same is applied with global demand, studying 

how this demand is distributed across sectors. Finally, environmental implications 

of extracting, producing, and burning natural gas are flagged out. 

Secondly, a chapter is dedicated to compilate the variables that affect 

natural gas prices and describe how the indicators used in the model are built. 

These variables were identified in a previous study (TFG: Modelling the Natural 

Gas Market) and more detailed research can be there found.  



 

Before building the ARX model, a benchmark model is constructed to 

measure the forecasting performance of this ARX model. This benchmark model 

consists of a first order autoregressive model, in which the price of natural gas for 

a period ahead is dependent on an independent term (alpha) and the price for 

natural gas in the current period multiplied by a scaling parameter (beta). The 

model is noted as AR(1) and defined by the following equation: 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 1. Benchmark Model [1]. 

where 𝜀𝑡+1 is white noise, 𝛼 is a constant, and 𝛽1 is the parameter of the 

model (1). 

After estimating the parameters of the model using a regression, the 

natural gas price forecast for the following month is calculated for each of the 

months of the period September 2010-January 2022. The forecasting performance 

of this benchmark model will then be compared to the ARX model. 

 In the ARX model, the price of natural gas in the following period (𝑦𝑡+1) 

depends on the price of natural gas a period before the prediction (𝑦𝑡), and the 

year-to-year or month-to-month variation of other variables (see Chapter 2) also 

a month before the prediction (∆𝑓1𝑡 … ∆𝑓8𝑡). 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝛽2∆𝑓1𝑡 +⋯+ 𝛽8∆𝑓7𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 2. ARX Model [1]. 

The forecasting performance of each model is evaluated by the out-of-

sample R2 statistic, suggested by Campbell and Thompson [4] to compare the 

�̂�𝑡+1 and �̅�𝑡+1 forecasts at a 1-month horizon. �̂�𝑡+1 is the forecast using the ARX 

model and �̅�𝑡+1 is the forecast based on the benchmark model. This 𝑅𝑂𝑆
2  statistic 

is given by: 



𝑅𝑂𝑆
2 = 1 −

∑ (𝑦𝑡+1 − �̂�𝑡+1)
2𝑇−1

𝑡=𝑡0−1

∑ (𝑦𝑡+1 − �̅�𝑡+1)2
𝑇−1
𝑡=𝑡0−1

 

Equation 3. R2 out of sample [1]. 

where 𝑦𝑡+1 is the realized and real value of the price of natural gas, 𝑡0 is 

the start of the forecasting sample (September 2010) and 𝑇 is the end of the 

sample (December 2021). If 𝑅𝑂𝑆
2 > 0, the predictive model forecasts (�̂�𝑡+1) 

outperform the benchmark forecasts (�̅�𝑡+1). 

We then examine whether the results are statistically significant by 

estimating the MSPE-adjusted statistic developed by Clark and West (2007).  

We first define 

𝜀𝑡+1 = (𝑦𝑡+1 − �̅�𝑡+1)
2 − [(𝑦𝑡+1 − �̂�𝑡+1)

2 − (�̂�𝑡+1 − �̅�𝑡+1)
2] 

Equation 4. MSPE-adjusted statistic [1]. 

and then regress {𝜀𝑡+1}𝑠=𝑡0
𝑇−1  on a constant and calculate the t-statistic under the 

null hypothesis that the constant is zero. The p-value is obtained with a standard 

normal distribution, for a one-tailed test.  

 After building a complete ARX model using all the variables mentioned in 

TFG: Modelling the Natural Gas Market, we also build different ARX models 

including in each of them only some and not all of the nine variables and measure 

and compare their performance. 

Finally, the concept of “machine learning” is described as well as the 

different techniques within this field to forecast the behavior of any variable. 

Using Time Series with Long short-term memory (LSTM) Neural Networks, we 

predict Natural Gas price for the period of September 2010 to January 2022, 

similarly to what we do with the Autoregressive model, and compare the 

predictions with the real values obtained at EIA’s website. We use Natural Gas 



 

historical monthly price downloaded from EIA’s website (51) from September 

2000 to December 2021. As software frameworks, we use TensorFlow and Keras. 

The parameters of the model are summarized in the following table: 

• Stochastic gradient descent with backpropagation error ✓ 

• Test vs. Training Set 20% vs. 80% 

• Time-lags 6 months 

• Number of hidden layers 4 

• Number of neurons per layer 200 

• Optimizer Adam 

• Activation Function ReLu 

• Output layer Dense 

• Number of epochs 50 

• Loss function MSE 

• Dropout Regularization Technique ✓ 

Table 1. Summary of Machine Learning Model Parameters. 

For training the model, a model.fit() training loop checks at the end of 

every epoch whether the loss is no longer decreasing, considering the minimum 

delta and patience (16 in our model). Once the loss is found no longer decreasing 

the training terminates. Next, we compute two performance metrics: R2 (variance 

score) and Mean Squared Error (RMSE, test score).  

The last step in the study is to compare the results obtained with the 

autoregressive models and the LSTM model. 

3. RESULTS AND CONCLUSIONS 

As mentioned above, after building both the benchmark autoregressive 

model and the ARX model, the forecasting performance and statistical 



significance of each model is evaluated by the out-of-sample R2 statistic (𝑅𝑂𝑆
2 ) 

suggested by Campbell and Thompson [4] and the MSPE-adjusted statistic 

developed by Clark and West (2007), respectively. 

In the case of the model that uses eight variables, the 𝑅𝑂𝑆
2  is -0.0315, which 

means that the predictive model forecasts (�̂�𝑡+1) do not outperform the 

benchmark forecasts (�̅�𝑡+1). In light of these results, we build different models 

using different combinations of variables.  

In Table 2 we summarize the 𝑅𝑂𝑆
2  and Clark and West statistics for each 

model built and rank them according to its forecasting performance compared to 

the benchmark model and statistical significance. Highlighted in bold, there are 

the models that both outperform the benchmark model and are statistically 

significant (90% significance or above). 

Rank REDTI 
Drilling 

Activity 
Production 

World 

Industrial 

Production 

Electricity 

Consump. 
Inventories 

Monetary 

Policy 
𝑅𝑂𝑆
2  

Clark & 

West 

Model 1 x  x  x x  0.0348 7.894·10-5 

Model 2 x       0.0389 2.827·10-5 

Model 3 x x x  x x  0.0311 2.687·10-4 

Model 4 x  x   x  0.0300 0.0010 

Model 5 x  x x x x  -0.0076 3.147·10-4 

Model 6 x x x x x x  -0.0155 0.0020 

Model 7 x  x   x x -0.0181 0.0168 

Model 8 x x x x x x x -0.0315 0.0512 

Table 2 . Summary of R2OS and MPSE obtained for each of the ARX models built. 

Natural gas prices are also predicted from September 2010 to January 2022 

using machine learning, as mentioned above. Figure 3 shows the comparison of 

the predicted values to de actual Natural Gas Henry Hub spot prices.  



 

In order to compare the performance of the Machine Learning model to 

the autoregressive models, the R2 (variance score) and Root Mean Squared Error 

(RMSE, test score) is calculated for the benchmark autoregressive model and the 

ARX Model 1. Model 1 is used because it is the one with the best performance 

metrics. 

 

Figure 3. September 2010 – January 2022 Natural Gas Price Prediction using LSTM 

Model vs. Actual Natural Gas Price 

The following values for all three models are obtained: 

 Machine Learning BM AR Model ARX Model 1 

R2 0.64 (64%) 0.32 (32%) 0.34 (34%) 

RMSE 0.52€ 0.51€ 0.50€ 

Table 3. Performance metrics of the three different models 

 In terms of the variance explained by the model, the machine learning 

model is way superior to the autoregressive model, explaining approximately 30% 

more variance than the other two models. However, in terms of RMSE, all models 

perform a very similar error in average when predicting natural gas, around +/- 

0.50€.  

 Taking these performance metrics, the ARX model that includes, apart 

from the historical natural gas price, the variations in residential demand due to 

weather conditions, in natural gas production, in natural gas inventories and in 



electricity consumption, performs slightly better than the benchmark model that 

includes only historical natural gas prices to predict future prices. 

 

Figure 4. Machine Learning vs AR Model predictions vs Actual Price. 
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RESUMEN DEL PROYECTO 

1. INTRODUCCIÓN 

El gas natural es un hidrocarburo compuesto de varios gases ligeros que se 

encuentran en la naturaleza. Este gas se formó hace millones de años en las 

profundidades de los suelos a partir de los restos de plantas y animales que se 

acumularon en gruesas capas en la superficie de la tierra y los fondos oceánicos 

[11]. 

Hoy en día, este gas se utiliza como combustible fósil, y se ha convertido 

en un medio esencial de energía. El gas natural se utiliza principalmente para 

generar electricidad, para hacer funcionar los sistemas de calefacción, como 

combustible para vehículos y para la producción industrial. El sector eléctrico, el 

sector industrial, el sector residencial, el sector comercial y el sector del transporte 

son los que más utilizan este combustible [13]. 

La demanda de gas natural está aumentando debido a su relación precio-

poder calorífico.  Según la Asociación de Información de Energía de los Estados 

Unidos (EIA), los Estados Unidos utilizaron alrededor de 31,5 cuatrillones de 

unidades térmicas británicas (Btu) en 2020, lo que representa el 34% del consumo 

total de energía de los Estados Unidos [13]. 

Después de una caída del 4% en 2020 debido a la crisis de COVID-19, la 

demanda de gas natural se recuperó progresivamente en 2021 a medida que el 



consumo regresó, en los mercados maduros, a un nivel próximo al de antes de la 

crisis sanitaria. Para el periodo 2019-2025, se espera una tasa de crecimiento 

promedio de la demanda del 1,5% anual. La mayor parte de este crecimiento es 

atribuible a la región de Asia Pacífico, debido principalmente al aumento del 

consumo de gas en China y la India [31]. 

En el lado de la producción, se espera que América del Norte y Oriente 

Medio contribuyan a la mitad del aumento neto en el suministro de gas natural. 

Rusia es el segundo mayor productor y uno de los mayores exportadores de gas 

natural. El 24 de febrero de 2022, Rusia decidió lanzar una ofensiva a Ucrania 

después de una larga escalada de tensión entre los dos países. Las sanciones 

impuestas a Rusia por la Unión Europea y los Estados Unidos provocaron que el 

precio del gas se disparara en los territorios de la UE, donde casi el 40% del 

suministro de gas proviene de Rusia [32]. 

 

Figura 1. Precios del gas natural en USD/MMBtu del 24 de febrero de 2022 al 27 de 

junio de 2022 [33]. 

Además de la crisis causada por la guerra en Ucrania, la terminal de 

Freeport LNG en Texas se cerró el 9 de junio de 2022, debido a un incendio. El 

cierre estaba programado inicialmente para durar tres semanas, pero, más tarde, 

las autoridades anunciaron que se extendería hasta finales de 2022 [33]. 



 

Dados todos estos eventos, el precio por megavatio-hora para los contratos 

de julio en Europa, negociados en el punto de comercio virtual de gas natural 

(TTF) con sede en los Países Bajos, aumentó a EUR 127.17 (USD 133.49) el 22 

de junio de 2022, un 60% más que EUR 79.40 (USD 83.35) el 8 de junio, que fue 

el nivel de cierre más bajo en los últimos cuatro meses desde el inicio de la guerra 

Rusia-Ucrania el 24 de febrero [33]. 

 

Figura 2. Precio en €/MWh para contratos de julio negociados en futuros de gas TTF 

holandeses (21 de febrero de 2022 - 27 de junio de 2022) [34]. 

Todos estos eventos han hecho que el precio del gas natural haya sido uno 

de los temas más comentados en los últimos meses. Este documento trata de 

encontrar una técnica que pueda predecir el precio del gas natural de la manera 

más precisa posible. 

2. METODOLOGÍA 

El estudio se divide en 8 capítulos. Un primer capítulo está dedicado a 

estudiar información general sobre el gas natural, como su formación, diferentes 

técnicas para su extracción, para su transformación en combustible energético y 

para su transporte hasta el usuario final. Luego, se identifica la oferta global, los 

mayores productores, almacenistas y exportadores. Lo mismo se realiza con la 

demanda global, estudiando cómo se distribuye esta demanda entre los diferentes 



sectores. Finalmente, se señalan las implicaciones ambientales de la extracción, 

producción y quema de gas natural. 

En segundo lugar, se dedica un capítulo a recopilar las variables que afectan 

a los precios del gas natural y describir cómo se construyen los indicadores 

utilizados en el modelo. Estas variables fueron identificadas en un estudio previo 

(TFG: Modelling the Natural Gas Market), donde se puede encontrar una 

investigación más detallada.  

Antes de construir el modelo ARX, se construye un modelo de referencia 

para evaluar el rendimiento de este modelo ARX. Este modelo de referencia 

consiste en un modelo autorregresivo de primer orden, en el que el precio del gas 

natural para el período siguiente depende de un término independiente (alfa) y el 

precio del gas natural en el período actual multiplicado por un parámetro de 

escala (beta). El modelo se define como AR(1) y mediante la siguiente ecuación: 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Ecuación 3. Modelo de referencia [1]. 

donde 𝜀𝑡+1 es ruido blanco, 𝛼 es una constante, y 𝛽1 es el parámetro del 

modelo [1]. 

Después de estimar los parámetros del modelo mediante una regresión, se 

calcula el pronóstico del precio del gas natural para el mes siguiente para cada 

uno de los meses del período septiembre 2010-enero 2022. El rendimiento del 

modelo de referencia se comparará con el modelo ARX. 

En el modelo ARX, el precio del gas natural en el siguiente período (𝑦𝑡+1) 

depende del precio del gas natural un período anterior a la predicción (𝑦𝑡), y de 

la variación interanual o mensual de otras variables (véase el Capítulo 2) también 

un mes antes de la predicción (∆𝑓1𝑡… ∆𝑓8𝑡). 

 



 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝛽2∆𝑓1𝑡 +⋯+ 𝛽8∆𝑓7𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Ecuación 2. Modelo ARX [1]. 

El rendimiento de cada modelo se evalúa mediante el estadístico R2 fuera 

de la muestra, sugerida por Campbell y Thompson [4] para comparar los 

pronósticos en un horizonte de 1 mes.  �̂�𝑡+1 es el valor predicho del precio del gas 

natural utilizando el modelo ARX y �̅�𝑡+1 es la predicción basada en el modelo de 

referencia. El estadístico 𝑅𝑂𝑆
2  viene dado por: 

𝑅𝑂𝑆
2 = 1 −

∑ (𝑦𝑡+1 − �̂�𝑡+1)
2𝑇−1

𝑡=𝑡0−1

∑ (𝑦𝑡+1 − �̅�𝑡+1)2
𝑇−1
𝑡=𝑡0−1

 

Ecuación 3. Estadístico R2-OS [1]. 

donde es el 𝑦𝑡+1 valor registrado y real del precio del gas natural, 𝑡0 es el 

inicio de la muestra de predicción (septiembre de 2010) y 𝑇 es el final de la 

muestra (diciembre de 2021). Si 𝑅𝑂𝑆
2 > 0, las predicciones del modelo ARX (�̂�𝑡+1) 

superan a las predicciones del modelo de referencia (�̅�𝑡+1).  

A continuación, examinamos si los resultados son estadísticamente 

significativos mediante la estimación del estadístico MSPE ajustado, propuesto 

por Clark y West (2007).  

Primero definimos: 

𝜀𝑡+1 = (𝑦𝑡+1 − �̅�𝑡+1)
2 − [(𝑦𝑡+1 − �̂�𝑡+1)

2 − (�̂�𝑡+1 − �̅�𝑡+1)
2] 

figura4. Estadístico MPSE ajustado [1]. 

y luego se calcula la regresión {𝜀𝑡+1}𝑠=𝑡0
𝑇−1  mediante una constante y se calcula el 

estadístico t bajo la hipótesis nula de que la constante es cero. El p-value se 

obtiene con una distribución normal estándar, para una prueba de una cola. 

 Después de construir el modelo ARX utilizando todas las variables 

mencionadas en el TFG: Modelando el Mercado del Gas Natural, también 



construimos diferentes modelos ARX que combinan algunas de estas variables y 

medimos y comparamos el rendimiento de todos ellos. 

Finalmente, se describe el concepto de "machine learning" así como las 

diferentes técnicas dentro de este campo para pronosticar el comportamiento de 

cualquier variable. Utilizando Series Temporales con Redes Neuronales de 

Memoria de Largo a Corto Plazo (LSTM), predecimos el precio del gas natural 

para el período de septiembre de 2010 a enero de 2022, de manera similar a lo que 

hacemos con el modelo autorregresivo, y comparamos las predicciones con los 

valores reales obtenidos en el sitio web de la EIA. Pare ello, utilizamos el precio 

mensual histórico de Gas Natural descargado del sitio web de EIA (51) desde 

septiembre de 2000 hasta diciembre de 2021. Como marcos de software, utilizamos 

TensorFlow y Keras. 

Los parámetros del modelo se resumen en la siguiente tabla: 

• Descenso de gradiente estocástico con error de 

retropropagación 
✓ 

• Set de test vs. Set de entrenamiento 20% vs. 80% 

• Retrasos 6 meses 

• Número de capas ocultas 4 

• Número de neuronas por capa 200 

• Optimizador Adam 

• Función de activación ReLu 

• Capa de salida Densa 

• Número de epochs 50 

• Función de pérdida ECM 

• Técnica de regularización (Dropout) ✓ 

Tabla 1. Resumen de los parámetros del modelo de aprendizaje automático. 



 

Para entrenar el modelo, un bucle de entrenamiento model.fit() verifica al  

final de cada epoch si el error deja de disminuir, considerando el delta mínimo y 

la paciencia (16 en nuestro modelo). Una vez que se verifica que el error ya no 

disminuye, el entrenamiento termina. A continuación, calculamos dos métricas de 

rendimiento: R2 (puntuación de varianza) y el Error Cuadrático Medio (RMSE, 

puntuación de la prueba).  

El último paso de este estudio es comparar los resultados obtenidos con los 

modelos autorregresivos y el modelo LSTM. 

3. RESULTADOS Y CONCLUSIONES 

Como se mencionó anteriormente, después de construir tanto el modelo 

autorregresivo de referencia como el modelo ARX, el rendimiento de la predicción 

y la significación estadística de cada modelo se evalúan, respectivamente, 

mediante el estadístico R2 fuera de la muestra (𝑅𝑂𝑆
2 ) sugerida por Campbell y 

Thompson [4] y el estadístico MSPE ajustado, desarrollado por Clark y West 

(2007). 

En el caso del modelo que utiliza ocho variables, el 𝑅𝑂𝑆
2  es -0.0315, lo que 

significa que la precisión en la predicción del modelo ARX (�̂�𝑡+1) no superan a la 

precisión de las predicciones del modelo de referencia AR(1) (�̅�𝑡+1). A la luz de 

estos resultados, construimos diferentes modelos utilizando diferentes 

combinaciones de variables.  

En la Tabla 2 resumimos los 𝑅𝑂𝑆
2  y los estadísticos de Clark y West para 

cada modelo y clasificamos estos modelos de acuerdo con su rendimiento de 

predicción en comparación con el modelo de referencia y su significación 

estadística. Resaltados en negrita, están los modelos que superan al modelo de 

referencia y son estadísticamente significativos (90% de significación o superior). 



Rank REDTI 
Actividad 

perforación 
Producción 

Producción 

Industrial 

Mundial 

Consumo 

Eléctrico 
Inventario 

Política 

Monetaria 
𝑅𝑂𝑆
2  

Clark & 

West 

Modelo 1 x  x  x x  0.0348 7.894·10-5 

Modelo 2 x       0.0389 2.827·10-5 

Modelo 3 x x x  x x  0.0311 2.687·10-4 

Modelo 4 x  x   x  0.0300 0.0010 

Modelo 5 x  x x x x  -0.0076 3.147·10-4 

Modelo 6 x x x x x x  -0.0155 0.0020 

Modelo 7 x  x   x x -0.0181 0.0168 

Modelo 8 x x x x x x x -0.0315 0.0512 

Tabla 2. R2-OS y estadístico de Clark & West obtenidos para cada uno de los modelos 

ARX construidos. 

El precio del gas natural también se predice desde septiembre de 2010 hasta 

enero de 2022 utilizando el aprendizaje automático o “machine learning”, como 

se mencionó anteriormente. La Figura 3 muestra la comparativa entre los valores 

predichos mediante redes neuronales LSTM y los precios reales del Gas Natural 

en el Henry Hub. 

 

Figura 3.  Comparativa gráfica del precio del gas natural predicho por el modelo de 

aprendizaje automático y el precio real (septiembre 2010 - enero 2022) 

Para comparar el rendimiento del modelo que usa “machine learning” con 

los modelos autorregresivos, se calcula el R2 (puntuación de varianza) y el error 

cuadrático medio raíz (RMSE, puntuación de prueba) para el modelo 



 

autorregresivo de referencia y el modelo 1 ARX. Se utiliza el modelo 1 porque es 

el que tiene las mejores métricas de rendimiento. 

 Se obtienen los siguientes valores para los tres modelos: 

 Machine Learning Modelo Ref AR Modelo 1 ARX 

R2 0.64 (64%) 0.32 (32%) 0.34 (34%) 

RMSE 0.52€ 0.51€ 0.50€ 

Tabla 3. Resumen de los R2 y RMSE obtenidos para cada uno de los tres modelos. 

En términos de la varianza explicada por el modelo, el modelo que usa 

aprendizaje automático es muy superior a los modelos autorregresivos, explicando 

aproximadamente un 30% más de varianza que los otros dos modelos. Sin 

embargo, en términos de RMSE, todos los modelos realizan un error promedio 

muy similar al predecir el precio del gas natural, alrededor de +/- 0.50 €.  

 Tomando estas métricas, el modelo ARX que incluye, aparte del precio 

histórico del gas natural, las variaciones en la demanda residencial debido a las 

condiciones climáticas, los niveles de producción de gas natural, los niveles de 

inventario de gas natural y el consumo de electricidad, tiene un comportamiento 

ligeramente mejor que el modelo de referencia que incluye solo los precios 

históricos del gas natural para predecir los precios futuros. 

 

Figura 4. Predicciones usando Aprendizaje Automático vs usando Modelo 

Autorregresivo vs Precio real registrado en EIA. 

1.50

2.50

3.50

4.50

5.50

Henry Hub Spot Price Machine Learning Predicted Price

BM AR Model Predicted Price ARX Model 1 Predicted Price



 



 

 

Máster de Ingeniería Industrial 

 

Trabajo de Fin de Máster 

Forecasting natural gas prices 

 

 

 

 

Author 

Paula Albendea López 

Director 

Elena María Díaz Aguiluz 

 

 

 

 

 

 

 

 

Madrid  

January 2023 

 

 



Acknowledgements 

To my project director, Elena María Díaz Aguiluz, for her dedication and 

closeness and for letting me work at my own pace while helping me in all I needed. 

I will always be grateful for her advice, patience and help in this project. 

To my friends and partner, for always supporting me through the most 

difficult times and for always pushing me to continue. 

To all the professors who, throughout my studies, have taught me 

everything I know today. 

To my family, for the support they have always given me and the patience 

they have. Especially to my parents for all the efforts they make to always give 

me the best. 

 

THANK YOU 

 

 

  



 

 

 

Table of Contents 

INTRODUCTION .......................................................................................... 28 

1.1. Motivation ........................................................................................................ 28 

1.2. Objectives......................................................................................................... 32 

1.3. Methodology ..................................................................................................... 34 

AN OVERVIEW OF NATURAL GAS ........................................................... 41 

2.1. Definition ......................................................................................................... 41 

2.2. Supply .............................................................................................................. 43 

2.3. Demand ............................................................................................................ 47 

2.4. Environmental Implications .............................................................................. 50 

VARIABLE SELECTION .............................................................................. 52 

3.1. Indicators of supply .......................................................................................... 53 

3.2. Indicators of demand ........................................................................................ 56 

3.3. Natural Gas Historical Price ............................................................................. 63 

METHODOLOGY I: AUTOREGRESSIVE MODEL ...................................... 66 

4.1. Benchmark Model ............................................................................................ 66 

4.2. ARX ................................................................................................................. 69 

4.3. Forecasting Statistics ....................................................................................... 71 

METHODOLOGY II: MACHINE LEARNING ............................................... 74 

5.1. The prediction problem .................................................................................... 76 



5.2.Dimensionality reduction: regression with regularization and Support Vector 

Machine ……………………………………………………………………………………………………………………………………77 

5.3. Decision trees ................................................................................................... 79 

5.4. Artificial Neural Networks ................................................................................ 81 

5.5. Tensor Flow and Keras .................................................................................... 86 

5.6. Forecasting Natural Gas Prices with Machine Learning ................................... 88 

SUMMARY OF EMPIRICAL RESULTS ....................................................... 94 

6.1. Natural Gas Price Forecasts with Autoregressive Model .................................. 94 

6.2. Natural Gas Price Forecasts with Machine Learning ........................................ 98 

6.1. Results Comparison: AR Model vs. Machine Learning ..................................... 99 

CONCLUSIONS ........................................................................................... 102 

FUTURE LINES OF INVESTIGATION ...................................................... 107 

ANNEXES ................................................................................................... 109 

Sustainable Development Goals ................................................................................. 110 

MATLAB Code ......................................................................................................... 114 

Variables Matrix ........................................................................................................ 117 

Python Code .............................................................................................................. 132 

Predicted vs. Actual Prices ........................................................................................ 138 

BIBLIOGRAPHY ........................................................................................ 142 

 

  



 

 

List of Figures 

 

Figure 1.1. US 2020 Natural Gas Consumption by sector [26]. .......................... 29 

Figure 1.2. Natural gas prices in USD/MMBtu from February 24th 2022 to 

June 27th 2022 [33]. ........................................................................................... 30 

Figure 1.3. Price in €/MWh for July contracts traded in Dutch TTF Gas 

Futures (February 21st, 2022 - June 27th, 2022) [34]. ....................................... 31 

Figure 2.1. Petroleum and natural gas formation [12]. ...................................... 42 

Figure 2.2. Schematic geology of natural gas resources [12]. .............................. 42 

Figure 2.3. Distribution of proved reserves by geographical area in 2000, 2010 

and 2020 in percentages [19]. ............................................................................. 45 

Figure 2.4. World's natural gas supply by country. Source: own elaboration 

using data from NS Energy [44]. ........................................................................ 46 

Figure 2.5. Major natural gas trade movements in 2020 (Bcm) [19]. ................. 47 

Figure 2.6. US 2020 Natural Gas Consumption by sector [14]. .......................... 48 

Figure 3.1. Year-to-year percent change of U.S. Natural Gas Gross 

Withdrawals. Source: own elaboration with data from EIA [6]. ........................ 54 

Figure 3.2. Percentage change month-to-month of the number of rotary rigs in 

operation in the U.S. Source: own elaboration with data from EIA [6]. ............ 55 

Figure 3.3. Percentage change year-to-year of U.S. Natural Gas underground 

storage volume. Source: own elaboration with data from EIA [6]. ..................... 56 

Figure 3.4. Residential Energy Demand Temperature Index 1990-2021. Source: 

own elaboration with data from NOAA [47]. ..................................................... 58 

Figure 3.5. Electricity End Use 1990-2021. Source: own elaboration with data 

from EIA [6]. ..................................................................................................... 59 

Figure 3.6. Year-to-year percent change of World Industrial Production levels. 

Source: own elaboration with data from OECD data [11]. ................................ 61 

Figure 3.7. Wu-Xia Shadow Rate 1990-2021. Source: own elaboration with data 

from Federal Reserve Bank of Atlanta [8]. ........................................................ 62 

Figure 3.8. Historical nominal prices of natural gas (2001-2021) [25]. ............... 64 

Figure 3.9. Historical real prices of natural gas (2001-2021). Deflated with US 

CPI [25],[26]. ...................................................................................................... 64 

Figure 5.1. ML Prediction Procedures [36]. ....................................................... 77 



Figure 5.2. Decision Trees Selection Procedure through Random Forest [36]. ... 81 

Figure 5.3. Neural Network with 4 lags and one layer with 2 nodes .................. 83 

Figure 5.4. Example of RNN [41] ....................................................................... 85 

Figure 5.5. Example of LSTM cell [41] .............................................................. 86 

Figure 5.6. Historic price of natural gas since 2000. .......................................... 90 

Figure 5.7. Test set vs. training set data split. .................................................. 90 

Figure 5.8. September 2010 – January 2022 Natural Gas Price Prediction using 

LSTM Model vs. Actual Natural Gas Price ....................................................... 93 

Figure 6.1. Figure 6.1. September 2010 – January 2022 Natural Gas Price 

Prediction using LSTM Model vs. Actual Natural Gas Price ............................ 99 

Figure 6.2. Machine Learning vs AR Model predictions vs Actual Price ......... 101 

Figure A1.1. 17 ODSs. Fuente: Sustainable Development Goals. United Nations 

[20]. .................................................................................................................. 111 

 

 

List of Tables 

Table 1. Summary of R2Os and Clark & West for various models including 

different combinations of variable. ..................................................................... 73 

Table 2. Keras Functions................................................................................... 88 

Table 3. Summary of R2Os and Clark & West for various models including 

different combinations of variables. ................................................................... 97 

Table 4. Summary of Machine Learning Model Parameters. ............................. 98 

Table 5. Summary of the Machine Learning model's performance metrics. ....... 99 

Table 6. Performance metrics of the three different models ............................ 100 

Table 7. Performance metrics of the three different models ............................ 106 

  



28 
 

 

 

Chapter 1 

Introduction 
 

1.1. Motivation 

Natural gas is a hydrocarbon composed of several light gases found in 

nature. This gas was formed millions of years ago deep beneath the ground from 

the remains of plants and animals that built up in thick layers on the earth’s 

surface and ocean floors [11].  

Nowadays, this gas is used as a fossil energy fuel, and it has become an 

essential means of energy in today’s world. Natural gas is used mainly to generate 

electricity, to run heating systems, as a fuel for vehicles, and for industrial 

production. The electric power sector, the industrial sector, the residential sector, 

the commercial sector, and the transportation sector are the ones that use this 

fuel the most [13]. 

Demand for natural gas is increasing due to its price-calorific value ratio. 

According to the U.S. Energy Information Association (EIA), the United States 

used about 31.5 quadrillion British thermal units (Btu) in 2020 which makes 34% 

of U.S. total energy consumption [13].  

After a 4% drop in 2020 due to COVID-19 crisis, natural gas demand 

progressively recovered in 2021 as consumption returned near to its pre-crisis 

levels in mature markets. An average growth rate of 1.5% of demand per year is 
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expected for the period of 2019-2025. Half of this growth in consumption is 

attributable to the Asia Pacific region, due mainly by the raise of gas usage in 

China and India. Despite the current economic uncertainty, both countries still 

support reforms to increase the role of gas in the energy mix [31]. 

 

Figure 1.1. US 2020 Natural Gas Consumption by sector [26]. 

On the production side, North America and the Middle East are expected 

to contribute to half of the net increase in natural gas supply. In the US, however, 

¡ spending on shale tight oil and gas declined almost by 50% y-o-y in 2020 due to 

the pandemics. In the Middle East, production growth will be driven by large 

conventional projects in Saudi Arabia, Iran, Israel, Iraq and Qatar [31].  

Russia is the second largest producer and one of the biggest exporters of 

natural gas. On February 24th, 2022, Russia decided to launch an offensive to 

Ukraine after a long escalation of tension between the two countries. The 

sanctions imposed on Russia by the European Union and the United States, 

caused a rise in gas prices due to a decrease in Russian gas exports [32].  

The Nord Stream 2 gas pipeline was closed as a result of a sanction imposed 

by Germany to Russia. This pipeline, which runs along the bottom of the Baltic 

Sea from Russia to Germany, supplies gas to many parts of Europe. However, 

after Putin's decision to recognize the territories of Donetsk and Lugansk as 
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independent from Ukraine, German Chancellor Olaf Scholz announced the 

cancelation of the certification that would give green light to the project [32]. 

U.S. President Joe Biden joined Germany on this initiative and sanctioned 

the companies involved in the project, including the Russian state-owned 

Gazprom, Shell and Engie. These sanctions caused the price of gas to rocket in 

EU territories, where almost 40% of the gas supply comes from Russia [32]. 

 

Figure 1.2. Natural gas prices in USD/MMBtu from February 24th 2022 to June 27th 

2022 [33]. 

 Russian energy company Gazprom announced on June 16 that daily gas 

shipments to Europe via the Nord Streamline will be reduced by 60%. The Yamal-

Europe line stopped shipping gas to Europe, and exports through Ukraine were 

cut by about half. 

On top of all the crisis caused by the war in Ukraine, the Freeport LNG 

terminal in Texas was closed on June 9th, 2022, due to a fire. The shutdown was 

initially scheduled to last three weeks, but the authorities later announced that 

it would be extended until the end of 2022 [33]. 
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Given all these events, price per megawatt-hour for July contracts in 

Europe, traded on the Netherlands-based virtual natural gas trading point (TTF), 

rose to EUR 127.17 (USD 133.49) on June 22nd, 2022, up 60% from EUR 79.40 

(USD 83.35) on June 8th, which was the lowest closing level in the last four months 

since the start of the Russia-Ukraine war on February 24th [33].  

 

Figure 1.3. Price in €/MWh for July contracts traded in Dutch TTF Gas Futures 

(February 21st, 2022 - June 27th, 2022) [34]. 

 Regarding environmental implications and the sustainability of this energy 

source in the long term, even though natural gas is considered the cleanest option 

among the fossil fuels due to its cleaner burning properties, there are some 

environmental implications attached to its drilling and extraction, transportation, 

burning and consumption [17]. Natural gas is mainly methane, which is a strong 

greenhouse gas, since its ability to trap heat is higher than that of carbon dioxide 

[18]. However, carbon dioxide stays longer in the atmosphere than methane 

molecules. When burned, natural gas emits lower levels of nearly all types of 

pollutants, including NOx, PM particles, and CO2, but it emits methane. 

Drilling the wells from which natural gas is extracted can affect wildlife 

and land use, and radioactive materials, methane, and other underground gases 
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can leak into drinking water supplies. Moreover, hydraulic fracturing or fracking 

requires large quantities of water, which raises water-availability concerns in some 

communities. 

Natural gas is not renewable, and, according to Worldometers, only 52 

years of natural gas reserves are left to extract [21]. Yet, the natural gas resource 

base is more widely geographically dispersed than oil, which makes it a more 

reliable source of energy. This, along with its cleaner burning properties than 

other fossil fuels, makes natural gas a popular option to back up the transition to 

cleaner and renewable energy sources, such as solar or wind power, until the 

technology to store energy obtained from these sources is developed in order to 

meet demand even when there is no sun or wind. 

1.2. Objectives 

The main objective of this project is to forecast the price of natural gas, 

first by using an autoregressive model that takes into consideration a series of 

variables that affect demand and supply of natural gas and the price of natural 

gas itself in previous periods, and secondly, using machine learning techniques. 

As it has been mentioned in the previous subchapter, natural gas has 

become an essential energy fossil fuel due to its cleaner burning capacities and a 

more even distribution of reserves across the globe. Many countries, with the aim 

of becoming more energy independent and looking to obtain energy in a cleaner 

way than with other fossil fuels such as petroleum or carbon, rely on natural gas, 

while they work on developing the technology to generate and store energy from 

renewable sources. This way, it is important to understand how the market for 

this commodity works and what might drive its price in the future. 

Before venturing in developing a forecast model, it is fundamental to 

understand what natural gas is, how it is obtained, transformed into the final 
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product used as a source of energy, transported, distributed, the location of the 

reserves of this fuel and its environmental implications. All this information will 

help to understand what are the factors that affect the price of this commodity. 

Natural gas price has a direct relationship with demand levels, while it has 

an inverse one with supply levels. The higher the demand, the higher the price, 

the lower the supply, the higher the price. The main forces affecting supply and 

demand for natural gas were studied in TFG: Modelling the Natural Gas Market 

[2]. Supply is affected by weather conditions, levels of storage and production, 

political relations and civil unrest, availability of workers and equipment, capacity 

of the pipeline system, access to natural gas deposits, and the financial 

environment. On the demand side, the cyclicality of demand, weather, fuel 

switching, and the economic environment are the main factors to consider. The 

impact of each of these factors on the price of natural gas can be quantified using 

indicators related to each of these factors. These indicators were also identified in 

the TFG: Modelling the Natural Gas Market and are described and used in this 

study.  

Once these indicators have been identified, the goal is to build a forecasting 

model that predicts the price of natural gas in one period using the price of the 

commodity in the previous one and the seven other variables described above and 

evaluate its forecasting performance.  

In order to measure the model’s performance, a benchmark model is first 

defined. This benchmark model is a first order autoregressive model in which the 

price of natural gas for a period is predicted using only the price for natural gas 

in the previous period. The forecasting performance of this model is then 

compared to the model that uses the other seven variables.  
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The next objective is to determine the forecasting model, which is an 

autoregressive model that uses exogenous inputs (ARX). The exogenous inputs 

are the seven variables described above. These variables appear in the model 

multiplied by a constant (beta) that needs to be calculated, as well as the 

independent term (alpha). 

Then the goal is to evaluate the forecasting performance of these models. 

This is done by calculating the out-of-sample R2 statistic, which compares the 

error made in each of the forecasts using the benchmark model and the ARX 

model, by comparing the forecast and the actual historical price given by the EIA. 

After this, it is essential to determine if the models are statistically significant. 

 The next step is to study and describe machine learning techniques that 

would be useful in forecasting natural gas prices. Then, one of these techniques 

will be used to forecast the price of natural gas for the following year.  

Finally, the autoregressive model and the machine learning techniques 

forecasting performance are compared.  

1.3. Methodology 

In order to achieve the objectives described above, a first chapter is 

dedicated to giving general information about natural gas. Firstly, the formation 

of natural gas is studied, as well as the different techniques to extract it from the 

ground, transform it into an energy fuel and transport it to the end-user. Then, 

global supply, the biggest producers, storers, and exporters are identified. Then 

the same is performed with global demand, studying how this demand is 

distributed across sectors. Finally, environmental implications of extracting, 

producing, and burning natural gas are flagged out. 
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Secondly, a chapter is dedicated to compilate the variables that affect 

natural gas prices and describe how the indicators used in the model are built. 

These variables were identified in a previous study (TFG: Modelling the Natural 

Gas Market) and more detailed research can be there found.  

Before building the ARX model, a benchmark model was constructed to 

measure the forecasting performance of this ARX model. This benchmark model 

consists of a first order autoregressive model, in which the price of natural gas for 

a period ahead is dependent on an independent term (alpha) and the price for 

natural gas in the current period multiplied by a scaling parameter (beta). The 

model is noted as AR(1) and defined by the following equation: 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 4. Benchmark Model [1]. 

where 𝜀𝑡+1 is white noise, 𝛼 is a constant, and 𝛽1 is the parameter of the 

model (1). 

To estimate the alpha and beta of the model, the relation between natural 

gas observed price and the one observed the periods before is calculated from 

August 2010 to December 2021.  For this, data of natural gas prices retrieved 

from the Energy Information Administration (EIA) website during the period of 

September 2000 to December 2021 is used. This way, y(t+1) and y(t) are known, 

and after performing a regression, the values for alpha and beta for each period 

are obtained.  

This is performed with MATLAB and the function used is regress(Y, X), 

where Y is a vector that takes for each month, starting August 2010, the monthly 

natural gas prices recorded until the moment of the calculation (since September 

2000). X is a matrix that contains a first column of ones and a second column 

that, starting September 2010, takes monthly natural gas prices recorded until a 
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month before the moment of the calculation, also since September 2000. This 

means that X takes the lag of the observed data.  

The regression is calculated for each month beginning in September 2010 

and ending in December 2021 (135 times). For each of these calculations, the 

alphas and betas obtained are stored in a matrix called BM_Parameters with size 

135x2. Finally, taking the alpha, beta, and natural gas observed price for each 

period from September 2010 to December 2021, we calculate the natural gas price 

forecast for the following month. This way, a vector under the name of 

BM_Forecast is created to store the forecasts for each of the periods calculated 

(September 2010-January 2022). The forecasting performance of this benchmark 

model will then be compared to the ARX model. 

 In the ARX model, the price of natural gas in the following period (𝑦𝑡+1) 

depends on the price of natural gas a period before the prediction (𝑦𝑡), and the 

year-to-year or month-to-month variation of seven other variables (see Chapter 

2) also a month before the prediction (∆𝑓1𝑡… ∆𝑓8𝑡). 

 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝛽2∆𝑓1𝑡 +⋯+ 𝛽8∆𝑓7𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 5. ARX Model [1]. 

The parameters of the model, the alpha and the eight betas, are determined 

the same way as in the benchmark model, with the difference that the matrix X 

now contains seven extra columns that gather the month-to-month or year-to-

year variations of the other seven variables (REDTI, drilling activity, natural gas 

production, industrial production, electricity consumption, natural gas 

inventories, and monetary policy shadow rate) since September 2000 until the 

moment of the calculation.  
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The parameters obtained are stored in a 135x9 matrix called 

ARX_Parameters. The natural gas price forecasts for September 2010-January 

2022 are stored in a vector under the name of ARX_Forecast. 

The forecasting performance of each model is evaluated by the out-of-

sample R2 statistic, suggested by Campbell and Thompson [4] to compare the 

�̂�𝑡+1 and �̅�𝑡+1 forecasts at a 1-month horizon. �̂�𝑡+1 is the forecast using the 

predictive model described by Equation 2 and �̅�𝑡+1 is the forecast based on the 

benchmark model in Equation 1. This 𝑅𝑂𝑆
2  statistic is given by: 

𝑅𝑂𝑆
2 = 1 −

∑ (𝑦𝑡+1 − �̂�𝑡+1)
2𝑇−1

𝑡=𝑡0−1

∑ (𝑦𝑡+1 − �̅�𝑡+1)2
𝑇−1
𝑡=𝑡0−1

 

Equation 3. R2 out of sample [1]. 

where 𝑦𝑡+1 is the realized and real value of the price of natural gas, 𝑡0 is 

the start of the forecasting sample (September 2010) and 𝑇 is the end of the 

sample (December 2021). The 𝑅𝑂𝑆
2  measures the reduction in Mean Squared 

Prediction Error (MSPE) for the predictive regression model relative to the 

benchmark model, in percentage terms. Therefore, if 𝑅𝑂𝑆
2 > 0, the predictive model 

forecasts (�̂�𝑡+1) outperform the benchmark forecasts (�̅�𝑡+1). 

We then examine whether the results are statistically significant by testing 

against the null hypothesis of equal MSPE between the two models. The 

benchmark model, however, is nested in the predictive regression model, which 

makes the parameter 𝛽2 in Equation 2 is zero in the population under the null. 

This produces an upward bias in the estimation of the MSPE of the predictive 

regression model produced by such parameter. Therefore, we estimate the MSPE-

adjusted statistic developed by Clark and West (2007). This statistic adjusts for 

the bias by deducting the square difference in the point predictions generated by 

each model. 
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We first define 

𝜀𝑡+1 = (𝑦𝑡+1 − �̅�𝑡+1)
2 − [(𝑦𝑡+1 − �̂�𝑡+1)

2 − (�̂�𝑡+1 − �̅�𝑡+1)
2] 

Equation 4. MSPE-adjusted statistic [1]. 

and then regress {𝜀𝑡+1}𝑠=𝑡0
𝑇−1  on a constant and calculate the t-statistic under the 

null hypothesis that the constant is zero. The p-value is obtained with a standard 

normal distribution, for a one-tailed test.  

 After building a complete ARX model using all the variables mentioned 

above, we also build different ARX models including in each of them only some 

and not all of the nine variables and measure and compare their performance. 

Finally, the concept of “machine learning” is described as well as the 

different techniques within this field to forecast the behavior of any variable. We 

will use machine learning algorithms to train the machine on historical price 

records and predict the expected future natural gas price. We use the environment 

of Anaconda distribution, an open-source Python distribution platform. We will 

predict the Natural Gas price for the period of September 2010 – January 2022 

and compare our predictions to the real values recorded at EIA’s website (51). 

This prediction will be done using Time Series with Long short-term memory 

(LSTM) Neural Networks. We use the Henry Hub natural gas spot price from 

September 2000 to December 2021 recorded at EIA’s website, monthly. As 

software frameworks, we will use TensorFlow and Keras. Throughout this 

application, stochastic gradient descent with backpropagation of errors to train 

deep neural networks will be used.  

First, we extract historical natural gas prices from EIA’s website. Then we 

train the LSTM model, separating the data sample into a training set and a test 

set. We use 20% of the data for the test set and 80% for the training set. We then 
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define to get natural gas price 6 months back and predict the following month’s 

price, this defines our number of time-steps to use in the LSTM models. 

Next, we build an LSTM model with four hidden layers and an output 

layer, with 200 neurons. As activation function, we use the rectified linear 

activation function (ReLU), a dense layer with one neuron is used as output layer, 

the number of epochs is set to 50, as optimizer we use Adam and as loss function, 

we use the mean squared error (MSE).  

 Once the model is fit, we can estimate the performance of the model on 

the train and test datasets. As performance metrics we use R2 and MSE. 

The last step in the study is to compare the results obtained with the 

autoregressive models and the LSTM model. 

 This project consists of six chapters that include the collection of the 

information obtained on natural gas, an explanation of the process followed to 

achieve the objectives described above, a description of the results obtained, and 

a chapter dedicated to conclusions and possible future lines of research (Chapter 

8). Each chapter includes: 

• Chapter 2. General description of natural gas, how it is obtained, 

transformed, and transported, as well as how reserves, production, and 

demand are distributed around the globe, and what natural gas is used for. 

• Chapter 3. Recompilation of the variables that affect the price of natural 

gas, both on the supply and demand side, and explanation of the indicators 

used in the autoregressive model. 

• Chapter 4. Construction of an autoregressive model to forecast natural gas 

prices, and evaluation of the performance of this model compared to a 

benchmark model.  
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• Chapter 5. Study of different machine learning techniques that can be used 

to forecast prices of the commodity. Application of one of these techniques 

to the forecasting of natural gas prices. 

• Chapter 6. Summary of all the results obtained in the previous chapter, as 

well as a comparison between the forecasting performance of each of the 

techniques used throughout the document. 

• Chapter 7. Compilation of the main conclusions of each chapter as well as 

the presentation of the results. 

• Chapter 8. Proposal of several possible future lines of research.  
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Chapter 2 

An Overview of Natural Gas 
 

 In this chapter, the composition of natural gas, how it is extracted from 

the ground, treated, transported, stored, and distributed is briefly described, as 

well as the main uses the world gives to this commodity. 

2.1. Definition 

Natural gas is a fossil fuel that forms deep beneath the earth's surface 

and is composed mainly of methane (CH4), although it also contains smaller 

amounts of natural gas liquids (NGL) and nonhydrocarbon gases, such as carbon 

dioxide and water vapor [12]. 

The formation of natural gas took place millions to hundreds of millions of 

years ago when the remains of plants and animals built up in thick layers on the 

earth’s surface and ocean floors, sometimes mixed with sand, silt, and calcium 

carbonate. These layers were then buried under sand and rock and pressure and 

heat transformed this material into coal, oil, and natural gas [12]. 
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Figure 2.1. Petroleum and natural gas formation [12]. 

Depending on where natural gas is found, it receives a different name. The 

natural gas found in cracks and spaces between layers of rock is called 

conventional natural gas. The one that occurs in tiny pores within sedimentary 

rock is referred to as shale gas or tight gas, and it is sometimes called 

unconventional natural gas. Finally, the natural gas that occurs with deposits of 

crude oil is called associated natural gas and the one that is found in coal deposits 

is called coalbed methane [12]. 

 

Figure 2.2. Schematic geology of natural gas resources [12]. 
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There are two different ways to extract the natural gas contained in the 

rock depending on the permeability of the soil. If this permeability is high, the 

fuel can easily be extracted through wells since it flows up to the surface. However, 

if the permeability is low, natural gas is extracted by drilling both vertically and 

horizontally and forcing water, chemicals, and sand down the wells under high 

pressure. This high pressure breaks up the formation, releases the natural gas 

from the rock, and allows it to flow to and up wells to the surface. This technique 

is known as hydraulic fracturing or fracking [12]. 

Once the natural gas reaches the surface, there are two ways to transport 

it. If the distance it must travel is small and there is a pipeline network available, 

the gas is gathered into pipelines and sent to natural gas processing plants, where 

water vapor and nonhydrocarbon compounds found in the natural gas extracted 

from the ground are removed. This gas is often transported and stored at very 

high pressures to save space. If transporting it through pipelines is not feasible 

due to long distances or lack of infrastructure, the gas is liquified and transported 

in containers, at very low temperatures (-162ºC), by boat. This type of gas is 

referred to as Liquified Natural gas (LNG) [2]. 

Natural gas is then sent through pipelines to underground storage fields 

or to distribution companies and then to consumers [12]. 

2.2. Supply 

Natural gas must go through a series of treatments after extracting it from 

the well to remove impurities and obtain the final product, which is almost 100% 

methane. The main steps of this treatment process include oil and condensates 

removal, carbon dioxide and hydrogen sulfide removal, dehydration, and Natural 

Gas Liquids (NGL) recovery [13].  



CHAPTER 2. AN OVERVIEW OF NATURAL GAS 

44  
 

When this final product is achieved, some of this natural gas produced 

from a particular well might need to travel a great distance to reach its point of 

use. As explained in the subchapter above, this final product can be transported 

in its gaseous state at high pressures through pipelines or in its liquified state at 

very low temperatures on cargo ships. 

There are three major types of pipelines depending on their function: the 

gathering system, the international pipeline system, and the distribution system. 

The gathering system consists of low pressure, small diameter pipelines that 

transport raw natural gas from the wellhead to the processing plant. Natural gas 

that is needed to travel long distances is transported through international 

pipelines, with the biggest diameter, high pressures, which reduces the volume of 

the natural gas by up to 600 times [25]. Once the raw natural gas has been 

processed, the final product is delivered to the end user through the distribution 

system. 

Along the transportation route, to monitor malfunctions, leaks, or any 

other unusual activity along the pipeline, there are a series of equipment. 

Compressor stations along the network ensure that the fuel travels at the right 

pressure, while meter stations determine the conditions of the fuel being 

transported (flow rate, temperature, pressure, etc.). Finally, sophisticated control 

systems, such as Control and Data Acquisition (SCADA) systems, are used to 

monitor the gas as it travels through the lengthy pipeline network. These systems 

collect, assimilate, and manage data received from the metering stations, 

compressor stations and valves, and might even be able to remotely operate 

certain equipment, including compressor stations, giving the opportunity to 

adjust flow rates immediately and easily from the centralized control station [2]. 
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 According to the International Energy Agency (IEA), natural gas supplies 

approximately 23% of the world’s primary energy demand. Global production has 

risen since the 2008 financial crisis, boosted by the development of unconventional 

shale fracking technologies. According to the BP Statistical Review of World 

Energy 2021, natural gas production totaled to 3.85 trillion cubic meters (Tcm) 

in 2020, decreasing by 122 Bcm (-3.3%) with respect to 2019’s production [20]. 

 

Figure 2.3. Distribution of proved reserves by geographical area in 2000, 2010 and 2020 

in percentages [19]. 

 According to the BP Statistical Review of World Energy 2020, the world’s 

total proved reserves of natural gas decreased by 2.2 Tcm to 188.1 Tcm in 2020, 

while in 2000 these proved reserves only amounted to 138.0 Tcm. Algeria (2.3 

Tcm) provided the largest fall in reserves of 2 Tcm. Russia (37.4 Tcm), Iran (32.1 

Tcm) and Qatar (24.7 Tcm) are the countries with the largest reserves. The 

current global R/P ratio shows that gas reserves in 2020 accounted for 48.8 years 

of current production. The Middle East (110.4 years) and CIS (70.5 years) are 

the regions with the highest R/P ratio [19]. 

 The US accounted for 23.7% of the world’s natural gas production in 2020, 

with 914.6 Bcm, being the biggest natural gas producer in the world, followed by 
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Russia, supplying 638.5 Bcm in 2019, 16.6% of the global total. Russia is also the 

country that has the largest-known reserves of the fuel (est. 37.4 Tcm), most of 

which is located in Siberia.  

 

Figure 2.4. World's natural gas supply by country. Source: own elaboration using data 

from NS Energy [44]. 

 The third biggest producer after the U.S.A and Russia was Iran, producing 

6.5% of the world’s natural gas in 2020, 250.8 Bcm [19]. Iran also has the second-

biggest reserves globally, which means that even if as of today its production is 

not even close to that of the U.S., it is probably going to be a key player in the 

natural gas market in the near future [2].  

 The rest of the production is mainly attributable to China, accounting for 

a 5.0% of the global natural gas share in 2020 (194.0 Bcm), Qatar, with a 4.4% 

(171.3 Bcm), and Canada, with 4.3% of the global supply (165.2 Bcm).  

Qatar is the world’s biggest producer of liquefied natural gas (LNG), and 

was the second biggest LNG exporter in 2020, only after Australia. The country 

is working on the North Field East expansion project, to develop what will become 

the largest LNG project in the world with a capacity of 33 million tons per year 

[19]. 
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Figure 2.5. Major natural gas trade movements in 2020 (Bcm) [19]. 

2.3. Demand 

Demand for natural gas has increased in recent years due to its price-

calorific value ratio and the fact that is considered to be a “greener” option than 

other fossil fuels. According to the U.S. Energy Information Association (EIA), 

the United States used about 31.5 quadrillion British thermal units (Btu) in 2020, 

34% of U.S. total energy consumption [14].  

            The most common uses of natural gas are electricity, heating, 

transportation, and production. The sectors that use this fossil fuel the most are 

the electric power, industrial, residential, commercial, and transportation sectors 

[14]. 

The electric power sector uses natural gas to generate electricity. Natural 

gas power plants usually generate electricity in gas turbines, directly using the 

hot gases of fuel combustion. “Combined-cycle” (NGCC) plants, with two 

turbines, a gas turbine operated with combustion gases, and a steam turbine 
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operated with the steam from boiling water that has been heated up with the hot 

gases from the first turbine. Natural gas-fired plants are among the cheapest 

power plants to build and have greater operational flexibility than coal plants 

because they can be fired up and turned down rapidly [16]. In 2020, the electric 

power sector accounted for about 38% of total U.S. natural gas consumption, 

according to the EIA, and natural gas was the source of about 33% of the U.S. 

electric power sector's primary energy consumption. It accounted for 40% of total 

utility-scale U.S. electricity generation by all sectors in 2020 [14]. 

 

Figure 2.6. US 2020 Natural Gas Consumption by sector [14]. 

The industrial sector uses natural gas as a fuel for process heating, and as 

a raw material to produce chemicals, fertilizers, and hydrogen. One of the most 

important industrial products derived from natural gas is ammonia, used for 

fertilizer, which is produced by making high temperature water vapor react with 

methane. In 2020, the industrial sector accounted for about 33% of total U.S. 

natural gas consumption, and natural gas was the source of about 34% of the U.S. 

industrial sector's total energy consumption [14]. 
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The residential sector uses natural gas to heat buildings and water, to cook, 

and to dry clothes. According to the EIA, around 50% of the homes in the United 

States use natural gas for heating. Natural gas heating is more effective than 

electric heating pumps, since heat from natural gas is delivered from forced-air 

systems at temperatures between 50-60ºC, whereas the air from an electric heat 

pump is typically delivered at 30-35ºC [15]. In 2020, the residential sector 

accounted for about 15% of total U.S. natural gas consumption, and natural gas 

was the source of about 23% of the U.S. residential sector's total energy 

consumption [14]. 

The commercial sector uses natural gas to heat buildings and water, to 

operate refrigeration and cooling equipment, to cook, to dry clothes, to provide 

outdoor lighting, and as a fuel in combined heat and power systems. In 2020, the 

commercial sector accounted for about 10% of total U.S. natural gas consumption, 

and natural gas was the source of about 19% of the U.S. commercial sector's total 

energy consumption [14]. 

The transportation sector uses natural gas as a vehicle fuel (in the form of 

CNG and LNG) and to operate compressors that move natural gas through 

pipelines, as mentioned in the last chapter. In 2020, the transportation sector 

accounted for about 3% of total U.S. natural gas consumption and natural gas 

was the source of about 4% of the U.S. transportation sector's total energy 

consumption, of which 94% was for natural gas transportation and distribution 

[14]. 

Another increasing use of natural gas is cogeneration and trigeneration. 

Cogeneration is the simultaneous generation of electricity and heat, while 

trigeneration is the simultaneous generation of electricity, heat and cooling. These 

forms of generation greatly increase the efficiencies of natural gas [16]. 
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2.4. Environmental Implications 

Natural gas is considered the cleanest option among fossil fuels, due to its 

clean burning properties. The process of burning natural gas to obtain energy 

results in fewer emissions of nearly all types of air pollutants, including NOx, PM 

particles, and CO2 than burning coal or petroleum to produce an equal amount 

of energy. Around 117 pounds of carbon dioxide are produced per MMBtu 

equivalent of natural gas compared to more than 200 pounds of CO2 per MMBtu 

of coal and more than 160 pounds per MMBtu of fuel oil [20]. 

However, there are some environmental implications attached to natural 

gas drilling and extraction, transportation, burning and consumption [20]. Drilling 

the wells from which natural gas is extracted can affect wildlife and land use, as 

clearing and leveling of the area is required. To make transportation feasible, 

some pipelines are buried in the land, affecting the ecosystem around them, 

breaking migration patterns, and causing pollution of dirt and pollutants [22]. 

Moreover, hydraulic fracturing or fracking requires large quantities of 

water, that cannot be then returned to rivers or lakes. It has been estimated that 

a typical well may require 2–10 million gallons of water for fracking, although this 

amount may vary depending on the quality of the water and the shale formation 

[24]. This water also poses health risks to nearby communities, since more than 

1,000 chemical additives are used in fracking fluids, and radioactive materials, 

methane, and other underground gases have sometimes leaked into drinking water 

supplies from improperly cased wells. In Ohio and Pennsylvania, for example, 

there have been documented cases of groundwater near oil and gas wells being 

contaminated with fracking fluids as well as with gases [2].  

Natural gas is mainly methane, which is a strong greenhouse gas that leaks 

to the atmosphere in big amounts. The U.S. EPA estimates that in 2018, methane 
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emissions from natural gas and petroleum systems and from abandoned oil and 

natural gas wells were the source of about 29% of total U.S. methane emissions 

and about 3% of total U.S. greenhouse gas emissions [23]. A methane molecule is 

approximately 90 times more effective at trapping heat in the atmosphere than a 

molecule of carbon dioxide, although methane disintegrates faster. According to 

energy experts, CO2 emissions need to be eliminated because they stay longer in 

the atmosphere, but to keep air temperatures from raising more than 2 degrees 

Celsius by 2050 it is also essential to keep any extra methane from leaking into 

the atmosphere [24].  

Natural gas is flared at well sites in areas where it is not economical to 

transport the fuel for sale or when it contains high concentrations of hydrogen 

sulfide. This process of burning natural gas produces CO2, carbon monoxide, 

sulfur dioxide, nitrogen oxides, and many other compounds [22].  

This commodity is also not renewable. According to Worldometers, only 

52 years of natural gas reserves are left to extract [21]. Yet, the natural gas 

resource base is more widely geographically dispersed than oil, which makes it a 

more reliable source of energy. This, along with its cleaner burning properties 

than other fossil fuels, makes natural gas a popular option to back up the 

transition to cleaner and renewable energy sources, such as solar or wind power, 

until we develop the technology to store energy obtained from these sources in 

order to meet demand even when there is no sun or wind.
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Chapter 3 

Variable Selection 
 

In order to model the market for natural gas and forecast natural gas 

prices, we gathered a few indicators or variables which could explain the 

variations in the price of this fuel. This selection is based on thorough research 

performed for the elaboration of the TFG – Modelling the natural gas market [2]. 

In the mentioned document, a description of the natural gas supply and demand 

process is exposed, which justifies the selection of these variables, and the natural 

gas market is modelled based on historic natural prices and the variation of these 

variables.  

We divided these indicators into two groups: indicators of supply and 

indicators of demand. In this chapter, we define each of these indicators and 

explain how they are constructed.  

In the TFG – Modelling the natural gas market [2], it was found out that 

the variables that could explain the most part of natural gas price fluctuations 

were the residential demand due to change in temperatures, the levels of natural 

gas production and inventories held, and the amount of electricity consumed.  
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 Using an autoregressive model (ARX), we forecast the price of natural gas 

one period ahead (t+1). We first include all eight variables in the model and 

measure its forecasting performance, then we include different combinations of 

the eight variables based on the results we obtained in the TFG – Modelling the 

natural gas market [2] and measure the forecasting performance of the model each 

time, to try to reach the most significant and most accurate forecasting model. 

3.1. Indicators of supply 

Increases in natural gas supply normally result in lower prices of this 

resource, while decreases in supply generally lead to higher prices. The amount of 

natural gas supplied depends on a series of external factors, among which weather 

conditions, levels of storage and production, political relations and civil unrest, 

availability of workers and equipment, capacity of the pipeline system, access to 

natural gas deposits, and the financial environment, might be the most influential 

ones [17]. All these factors are considered in the forecasting model through some 

indicators described below. 

U.S. Natural Gas Gross Withdrawals 

 The level of production is the most direct factor affecting supply. Normally, 

production tends to increase when demand is high, or reserves are low [17]. When 

production is disrupted due to several factors, supply is interrupted or lowered, 

depending on the amount of natural gas held in storage. 

U.S. Natural Gas Gross Withdrawals is an indicator is used to determine 

the amount of natural gas produced each month in the U.S. This amount is 

measured in MMcf and the information is available at the EIA website beginning 

1980 [2]. 
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 Then, year-to-year percent change of the amount of natural gas that was 

withdrew each year in the U.S. is computed to include the impact of the change 

on production levels on the fluctuations of the price of natural gas. 

 

Figure 3.1. Year-to-year percent change of U.S. Natural Gas Gross Withdrawals. 

Source: own elaboration with data from EIA [6]. 

U.S. Natural Gas Rotary Rigs in Operation 

 A rotary rig is the equipment used for drilling in most wells, which includes 

an engine and a hoisting, rotating and mud circulating system [2]. This indicator 

counts the number of rotary rigs being operated in the U.S. and it is used to 

determine the level of drilling activity in the U.S. The historical information of 

the number of rigs in operation is available at the EIA website since 1987. 

In the model, the percentage change month-to-month of the number of rigs 

in operation is used to include the impact of the change in the level of drilling 

activity on the price of natural gas. 
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Figure 3.2. Percentage change month-to-month of the number of rotary rigs in 

operation in the U.S. Source: own elaboration with data from EIA [6]. 

U.S. Natural Gas Underground Storage Volume 

 The level of natural gas in underground storage fields has a large influence 

on overall supply. When demand is higher than production, natural gas held in 

storage is used to satisfy the needs for this fuel. On the other hand, when supply 

is higher than demand, storage serves to absorb this excess in production and 

saves it for when it is needed. If there is a shortage in production and storage 

levels are not high enough, supply might fall, failing to meet demand [2]. 

 To determine the levels of inventories of natural gas, the US Natural Gas 

underground storage volume is the measure used. This information can be found 

at the EIA website and is updated every month since 1979. The volume of 

underground storage is measured in MMcf.  

 In the forecast model, the change year-to-year of this volume is used, in 

order to include the effect of the change of this variable on the price of natural 

gas. 
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Figure 3.3. Percentage change year-to-year of U.S. Natural Gas underground storage 

volume. Source: own elaboration with data from EIA [6]. 

3.2. Indicators of demand 

 Natural gas is believed to be a key fuel for the transition to a zero-emission 

world. Natural gas, therefore, is expected to play an increasingly important role 

in meeting demand for energy [2]. 

Demand for natural gas depends highly on the time of year, and changes 

from season to season. The highest demand has traditionally been registered for 

the coldest months (January and February) while the lowest demand has been 

associated with the warmest months of summer (July and August). The main 

driver for this primary cycle of natural gas demand is the need for residential and 

commercial heating [18]. 

Even if normally the peak demand for natural gas is registered in the winter 

during the cold months, untypical weather conditions might reverse the cycle. An 

extremely hot summer, for example, can result in a rise in natural gas demand 

during the summer months, while a warmer winter might decrease the needs for 

this fuel [2]. 
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Demand for natural gas is also affected by the price of natural gas versus 

other fuels, such as coal. Consumers tend to choose the cheapest fuels. While most 

residential and commercial customers can only rely on natural gas to meet many 

of their energy requirements, some industrial and electric generation consumers 

have the capacity to switch between fuels [18]. 

Another factor that might affect natural gas demand is the state of the 

global economy. When the economy is expanding, output from industrial sectors 

generally increases at a similar rate, and when the economy is in recession, output 

from industrial sectors drops. The amount of output coming out from industries 

determines the energy needed by these industrial users, and therefore affects 

demand for natural gas [2]. For instance, during the economic downturn of 2008, 

industrial natural gas consumption fell by over 7% [18]. 

 Five variables were considered in this study to consider the impact of the 

change on the demand of natural gas in its price. These variables include the 

effects on the demand of natural gas of weather conditions, electricity 

consumption, world industrial production, and monetary policy. 

REDTI 

 The Residential Energy Demand Temperature Index (REDTI) is based on 

population weighted heating and cooling degree days. This index is a relevant 

tool for explaining year-to-year fluctuations in energy demand for residential 

heating and cooling. Residential energy consumption is greatly correlated to the 

number of heating and cooling degree days (HDD’s and CDD’s). Diaz and Quayle 

(1980) found this correlation between energy use and heating degree days to be 

as high as 0.97 at the household level. Because of this strong relationship, seasonal 

changes in the REDTI can provide a good indication of the fluctuating energy 

demands [7]. 
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 The REDTI is calculated on a seasonal basis, using the sum of population 

weighted HDD's and CDD's (base 65), to provide retrospective information on 

the impact of seasonal temperatures on residential energy demand from 1895 to 

present. To simplify year-to-year comparisons, the index is scaled from 0 to 100. 

An index of 100 is assigned to the year with the greatest population weighted 

degree day average while the year with the smallest degree day average receives 

an index of 0 [7]. 

 The winter season index, for example, is created by calculating the 

population weighted degree day totals for each winter season. From this series, 

the maximum and minimum yearly degree day totals are identified. The minimum 

value is then subtracted from all years in the series so that a new series of values 

is created which ranges from zero to a value equal to the arithmetic difference 

between the maximum and minimum. This new series is then scaled to have a 

range of 0 to 100 using a common scaling factor [7]. 

 

Figure 3.4. Residential Energy Demand Temperature Index 1990-2021. Source: own 

elaboration with data from NOAA [47]. 
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Electricity End Use 

 In order to take into consideration how the variations in electricity demand 

affect the price of natural gas, we included in the model the amount of electricity 

used historically in the U.S., measured in millions of kilowatts per hour. 

 This data was obtained from the Monthly Energy Review published by the 

U.S. Energy Information Administration (EIA). This publication includes total 

energy production, consumption, stocks, and trade; energy prices; overviews of 

petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and 

carbon dioxide emissions; and data unit conversions values [6]. 

 The percent change year to year is then computed, obtaining the 

transformed data shown in Figure 3.5. 

 

Figure 3.5. Electricity End Use 1990-2021. Source: own elaboration with data from EIA 

[6]. 

World Industrial Production 

 The Baumeister’s World Industrial Production index is an indicator of the 

world’s economic activity.  For empirical analysis of the determinants of variables 

like commodity prices researchers often use a monthly measure of economic 
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activity. This global economic activity can be measured either using a market 

price such as the cost of shipping as a proxy (Kilian, 2009) or an index of global 

industrial. OECD Main Economic Indicators published an estimate of monthly 

industrial production for the OECD plus 6 other major countries (Brazil, China, 

India, Indonesia, the Russian Federation and South Africa). The OECD series 

begins in January 1958 and ends in October 2011. Baumeister and Hamilton 

(2019) reproduced the methodology by which the original index was constructed 

to extend the series up to July 2018 [10]. Although shipping costs offer a plausible 

option for measuring the level of real economic activity, in practice they do not 

work nearly as well as estimates of global industrial production, particularly after 

2015. 

 The world industrial production index measures levels of production in the 

manufacturing, mining, oil and gas field drilling services, and electrical and gas 

utilities sectors. It also measures capacity, which is an estimate of the production 

levels that could be sustainably maintained, and capacity utilization, which is the 

ratio of actual output to capacity. Industrial production and capacity levels are 

expressed as an index level relative to a base year. 

 The year-to-year percent change in this index of world industrial 

production is used in our forecast model to take into account the impact global 

economic activity has on the demand and therefore on the price of natural gas. 
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Figure 3.6. Year-to-year percent change of World Industrial Production levels. Source: 

own elaboration with data from OECD data [11]. 

Wu-Xia Shadow Federal Funds Rate 

 After the 2007-2010 financial crisis, a tool was proposed, a “shadow rate,” 

that can be used in established economic models to measure the economic effects 

of unconventional monetary policies, such as the Federal Reserve’s quantitative-

easing program. Traditional economic models used for research do not capture 

these effects when key interest rates sit at or near zero, as they do in much of the 

developed world today [9].   

 In normal economic times, economists use the federal funds rate, which is 

the interest rate banks use to lend to each other overnight, in many economic 

models. But in 2009, the fed funds rate hit zero, and monetary policy entered the 

zone termed the “zero lower bound”, and the fed funds rate stopped working in 

models [9]. 

 Chicago Booth’s Jing Cynthia Wu and Fan Dora Xia, who now work at 

the Bank of International Settlements, proposed an alternate shadow fed funds 

rate that can be negative, reflecting the Fed’s additional easing through 

unconventional policies [9]. 
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 The model of Cynthia Wu and Fan Dora Xia uses one-month forward rates 

beginning in years hence. Wu and Xia use forward rates corresponding to n = 

1/4, 1/2, 1, 2, 5, 7, and 10 years. These forward rates are constructed with end-

of-month Nelson-Siegel-Svensson yield curve parameters from the Gurkaynak, 

Sack, and Wright (2006) dataset. The shadow rate is assumed to be a linear 

function of three latent variables called factors, which follow a VAR process. The 

latent factors and the shadow rate are estimated with the extended Kalman filter 

[8]. 

 By plugging the shadow rate into a vector autoregression model (VAR), 

the effects of quantitative easing on economic aggregates such as the 

unemployment rate, industrial production, and housing starts, can be measured 

[9]. 

 Shadow rate models are used by many researchers to characterize the term 

structure of interest rates (Kim and Singleton [2012] and Bauer and Rudebusch 

[2013]) or quantify the stance of monetary policy (Bullard [2012] and Krippner 

[2013]) [8]. In this model estimates from the Wu and Xia (2016) model of the 

shadow rate are used. 

 

Figure 3.7. Wu-Xia Shadow Rate 1990-2021. Source: own elaboration with data from 

Federal Reserve Bank of Atlanta [8]. 
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3.3. Natural Gas Historical Price 

There are three main natural gas trading markets, the European average 

import border price, the Henry Hub spot price of the US, and the imported 

liquefied natural gas (LNG) price of Japan [2]. In this study, however, the Henry 

Hub spot price of natural gas of the US for the period of September 2000-

December 2021 was the one used. 

These markets trade based on contracts of various lengths (spot, short-

term, medium-term, and long-term contracts). U.S. natural gas prices tend to be 

set by reference to the price of natural gas at the Henry Hub (HH), European 

natural gas prices are usually set by reference to the price of natural gas at either 

the National Balancing Point (NBP) in the UK or the Title Transfer Facility 

(TTF) in the Netherlands and Asian LNG prices are typically set by reference to 

the price of the Japan Customs-cleared Crude (known as the ‘Japanese Crude 

Cocktail’ or JCC) [27]. 

The differences between these reference prices have always existed, but 

they became greater with the increase in global spot natural gas trading activity. 

This trading activity takes place when the buyer agrees to pay a negotiated price 

for the natural gas to be delivered by the seller at a specified delivery point [27]. 

Natural gas spot prices reflect daily supply and demand balances and can 

be volatile. Over the past 12 months, for example, there have been sharp 

fluctuations, with all natural gas markets hitting record lows. The drop in the 

prices was due to the slump in demand, as a result of the Covid-19 crisis, as well 

as to the abundant supplies of LNG. However, as it can be appreciated in Figure 

3.8 and Figure 3.9, all prices recovered when the economic activity resurged [28]. 
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Figure 3.8. Historical nominal prices of natural gas (2001-2021) [25]. 

 

Figure 3.9. Historical real prices of natural gas (2001-2021). Deflated with US CPI 

[25],[26]. 

As mentioned above, for this study, the Henry Hub reference was used. 

Henry Hub is a pipeline that transports natural in Erath, Louisiana and serves as 

the official delivery location for futures contracts on the New York Mercantile 

Exchange (NYMEX), because of its central location and its high degree of 

interconnectedness. Sabine Pipeline LLC is the proprietary of the hub which has 

access to many of the major gas markets in the United States and is 

interconnected with 13 different intra and interstate pipelines [29]. 
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The NYMEX contract for deliveries at Henry Hub began trading in 1990 

and is deliverable 18 months in the future. The settlement price at Henry Hub 

constitutes a benchmark for North American natural gas market and part of the 

global LNG market [29]. 

The Henry Hub spot prices were retrieved from the U.S. Energy 

Information Administration (EIA) website. The historic price of natural gas is 

then used to build the forecast model along with the changes of other seven factors 

that we considered have affected the price of natural gas historically.  
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Chapter 4 

Methodology I: Autoregressive Model 

 To forecast natural gas prices, we first use an autoregressive model (ARX), 

that includes initially the eight variables described in the previous chapter and 

forecasts the price of natural gas one period ahead (t+1).  

 In this chapter, the methodology followed to obtain the parameters needed 

to construct the model and the forecasting techniques used in this study are 

described. 

4.1. Benchmark Model 

In order to determine if including the variables that might affect to natural 

gas prices in the forecasting exercise delivers a better prediction of natural gas 

prices than when taking into account only the price for the commodity in previous 

periods, a benchmark model is used. This benchmark model consists of a first 

order autoregressive model, in which the price of natural gas for a period ahead 

is dependent on an independent term (alpha) and the price for natural gas in the 

current period multiplied by a scaling parameter (beta).  

An autoregressive model relates a time series variable to its past values 

and predicts future behavior based on past behavior. This model specifies that 

the output variable depends linearly on its own previous values and on a 

stochastic term which is imperfectly predictable. The simplest autoregressive 
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model (first order) uses only the most recent outcome of the time series observed 

to predict future values. The model is noted as AR(1) and defined by the following 

equation: 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 5. Benchmark Model (1) 

where 𝜀𝑡+1 is white noise, 𝛼 is a constant, and 𝛽1 is the parameter of the 

model (1). 

There are three main natural gas trading markets, the European average 

import border price, the Henry Hub spot price of the US, and the imported 

liquefied natural gas (LNG) price of Japan. In this model, however, the Henry 

Hub spot price of natural gas of the US was the one used (2). 

To estimate the alpha and beta of the model, the relation between natural 

gas observed price in a period and the ones observed before is calculated from 

September 2010 to December 2021. For this, data of natural gas prices retrieved 

from the Energy Information Administration (EIA) website during the period of 

September 2000 to December 2021 is used. This way, y(t+1) and y(t) are known, 

and after performing a regression, the values for alpha and beta for each period 

are obtained.  

The exercise is carried out for the sample spanned from September 2010 to 

December 2021, using the natural gas price since September 2000. To simulate 

the situation of a real forecaster, only data available before September 2010 is 

used for an in-sample estimation of parameters, which is then updated recursively 

each period as new information is obtained for an out-of-sample estimation [1]. 

The recursive regression is performed with MATLAB and the function used 

is regress(Y,X), where Y is a vector that takes for each month, starting August 

2010, the monthly natural gas prices recorded until the moment of the calculation 
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(since September 2000). X is a matrix that contains a first column of ones and a 

second column that, starting September 2010, takes monthly natural gas prices 

recorded until a month before the moment of the calculation, also since September 

2000. This means that X takes the lag of the observed data.  

The regression is calculated for each month beginning in September 2010 

and ending in December 2021 (135 times). For each of these calculations, the 

alphas and betas obtained are stored in a matrix called BM_Parameters with size 

135x2. Finally, taking the alpha, beta, and natural gas observed price for each 

period from September 2010 to December 2021, we calculate the natural gas price 

forecast for the following month. This way, a vector under the name of 

BM_Forecast is created to store the forecasts for each of the periods calculated 

(September 2010-January 2022). The forecasting performance of this benchmark 

model will then be compared to the ARX model. 

For September 2021, for example, we obtain a beta of 0.9347 and an alpha 

of 0.2838. Therefore, the equation of the benchmark model to forecast the price 

of natural gas for October 2021, results in the following: 

𝑦𝑡+1 = 0.2838 + 0.9347 𝑦𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 6. Benchmark Model with estimated alpha and beta. 

Using this equation and the observed price for natural gas in September 

2021 (5.1111), the price of natural gas for October 2021, would be: 

𝑦𝑡+1 = 0.2838 + 0.9347 ∗ 5.1111 + 𝜀𝑡+1 = 5.0611 + 𝜀𝑡+1 

and, considering that the recorded price of natural gas for October 2021 

on the EIA website is 5.4780, the stochastic term in this example would be 0.4169. 

In subchapter Forecasting Statistics, the forecasting performance of this 

model will be evaluated and compared to the ARX model by the calculation of 
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the out-of-sample R2 statistic, which compares the error made in each of the 

forecasts using this model and the ARX model, by comparing the forecast and 

the actual historical price given by the EIA. 

4.2. ARX 

An Autoregressive Exogenous model (ARX) is an autoregressive model 

which has exogenous inputs. This means that the model relates the current value 

of a time series to both past values of the same series, and current and past values 

of the driving (exogenous) series, which are externally determined series that 

influences the series of interest. In addition, the model contains an error (𝜀𝑡+1) 

term which depicts that the current value of the time series cannot be predicted 

exactly, even if the other terms are known with precision (3).  

In our first model, the times series being predicted is the price of natural 

gas (𝑦𝑡+1), and this prediction depends on the price of natural gas a period before 

the prediction (𝑦𝑡), and the year-to-year or month-to-month variation of seven 

other variables (see Chapter 2) also a month before the prediction (∆𝑓1𝑡 … ∆𝑓8𝑡). 

 

𝑦𝑡+1 = 𝛼 + 𝛽1𝑦𝑡 + 𝛽2∆𝑓1𝑡 +⋯+ 𝛽8∆𝑓7𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 7. ARX Model (1). 

To estimate the parameters of the model, the alpha and the eight betas, 

similarly as with the benchmark model, the data of natural gas prices retrieved 

from the Energy Information Administration (EIA) website during the period of 

September 2000 to December 2021 is used, and also the monthly or yearly 

variation of the other seven variables with the corrections explained in Chapter 

2, for the same period of time. This way, 𝑦𝑡+1, 𝑦𝑡, and ∆𝑓1𝑡… ∆𝑓8𝑡 are known, and 

after performing a regression, the values for alpha and the eight betas for each of 

the periods between September 2010 and January 2022 are obtained.  
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Like the benchmark model, the exercise is carried out for the sample 

spanned from September 2010 to December 2021, using the data available for the 

price of natural gas and the variation of the other seven variables since September 

2000. To simulate the situation of a real forecaster, only data available before 

September 2010 is used for an in-sample estimation of parameters, which is then 

updated recursively each period as new information is obtained for an out-of-

sample estimation [1]. 

As explained in the subchapter Benchmark Model, this is performed with 

a MATLAB function called regress(Y,X), where Y is a vector that takes for each 

month, starting September 2010, the monthly natural gas prices recorded until 

the moment of the calculation (since September 2000). X in this model is a matrix 

that contains a first column of ones, a second column that, starting September 

2010, takes monthly natural gas prices recorded until a month before the moment 

of the calculation, also since September 2000, and seven other columns that gather 

the month-to-month or year-to-year variations of the other seven variables 

(REDTI, drilling activity, natural gas production, industrial production, 

electricity consumption, natural gas inventories, and monetary policy shadow 

rate) during that same period.  

The regression is calculated for each month beginning in September 2010 

and ending in December 2021 (135 times). For each of these calculations, the 

alpha and betas obtained for each of the variables are stored in a matrix called 

ARX_Parameters with size 135x9. Finally, taking the alpha, eight betas, and 

natural gas observed price for each period from September 2010 to December 

2021, we calculate the natural gas price forecast for the following month. This 

way, a vector under the name of ARX_Forecast is created to store the forecasts 

for each of the periods calculated (September 2010-January 2022).  
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For September 2021, for example, we obtain the following alpha and betas: 

𝛼 =  0.2178; 𝛽1 =  0.9481; 𝛽2 = −0.0011; 𝛽3 = −0.1841 ;  

𝛽4 = −0.0088; 𝛽5 = 8.0844; 𝛽6 = 1.3883; 𝛽7 = −0.0778; 𝛽8 = −0.0057  

The model, therefore, can be re-defined with the following equation: 

𝑦𝑡+1 = 0.2178 + 0.9481𝑦𝑡 − 0.0011∆𝑓1𝑡 − 0.1841∆𝑓2𝑡 − 0.0088∆𝑓3𝑡 + 8.0844∆𝑓4𝑡

+ 1.3883∆𝑓5𝑡 − 0.0778∆𝑓6𝑡 − 0.0057∆𝑓7𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 8. ARX model with estimated alpha and betas. 

This is not the only ARX model we built. After comparing the ARX model 

performance to the benchmark model and determining the significance of the 

forecasts, various models with different combinations of variables are built and 

their forecasting performance is compared to determine how the model improves 

depending on the variables used to forecast the natural gas price. 

4.3. Forecasting Statistics 

The forecasting performance of each model is evaluated by the out-of-

sample R2 statistic, suggested by Campbell and Thompson [4] to compare the 

�̂�𝑡+1 and �̅�𝑡+1 forecasts at a 1-month horizon. �̂�𝑡+1 is the forecast using the 

predictive model described by Equation 5 and �̅�𝑡+1 is the forecast based on the 

benchmark model in Equation 4. This 𝑅𝑂𝑆
2  statistic is given by: 

𝑅𝑂𝑆
2 = 1 −

∑ (𝑦𝑡+1 − �̂�𝑡+1)
2𝑇−1

𝑡=𝑡0−1

∑ (𝑦𝑡+1 − �̅�𝑡+1)2
𝑇−1
𝑡=𝑡0−1

 

where 𝑦𝑡+1 is the realized and real value of the price of natural gas, 𝑡0 is 

the start of the forecasting sample (September 2010) and 𝑇 is the end of the 

sample (December 2021). The 𝑅𝑂𝑆
2  measures the reduction in Mean Squared 

Prediction Error (MSPE) for the predictive regression model relative to the 
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benchmark model, in percentage terms. Therefore, if 𝑅𝑂𝑆
2 > 0, the predictive model 

forecasts (�̂�𝑡+1) outperform the benchmark forecasts (�̅�𝑡+1). 

After performing this calculation in Matlab, we obtain a value of 𝑅𝑂𝑆
2 , 

which for the model that contains all eight variables is -0.0315. Therefore, the 

predictive model forecasts (�̂�𝑡+1) do not outperform the benchmark forecasts 

(�̅�𝑡+1) for this model. This is why we build other models using only some of the 

variables. If we use the variables that we found out to be most significant in the 

TFG – Modelling the natural gas market [2], which are REDTI, natural gas gross 

withdrawals, natural gas storage levels and electricity end-use, we obtain a 𝑅𝑂𝑆
2  

of +0.0348. In the table below we summarize all the models tested and the 𝑅𝑂𝑆
2  

obtained for each of them. 

We then examine whether the results are statistically significant by testing 

against the null hypothesis of equal MSPE between the two models. The 

benchmark model, however, is nested in the predictive regression model, which 

makes the parameter 𝛽2 in Equation 5 zero in the population under the null. This 

produces an upward bias in the estimation of the MSPE of the predictive 

regression model produced by such parameter. Therefore, we estimate the MSPE-

adjusted statistic developed by Clark and West (2007). This statistic adjusts for 

the bias by deducting the square difference in the point predictions generated by 

each model. 

We first define 

𝜀𝑡+1 = (𝑦𝑡+1 − �̅�𝑡+1)
2 − [(𝑦𝑡+1 − �̂�𝑡+1)

2 − (�̂�𝑡+1 − �̅�𝑡+1)
2] 

and then regress {𝜀𝑡+1}𝑠=𝑡0
𝑇−1  on a constant and calculate the t-statistic under the 

null hypothesis that the constant is zero. The p-value is obtained with a standard 

normal distribution, for a one-tailed test.  
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If this statistic is less than 10% the results of the model can be considered 

to have a statistical significance higher than 90%. For the model that uses all 

eight variables, we obtain a Clark and West statistic or p-value of 0.0512, which 

means that the model has a significance of nearly 95%. 

In the table below we summarize the 𝑅𝑂𝑆
2  and Clark and West statistics 

for each model and rank them according to its forecasting performance compared 

to the benchmark model and statistical significance.  

Rank REDTI 
Drilling 

Activity 
Production 

World 

Industrial 

Production 

Electricity 

Consump. 
Inventories 

Monetary 

Policy 
𝑅𝑂𝑆
2  

Clark & 

West 

Model 1 x  x  x x  0.0348 7.894·10-5 

Model 2 x       0.0389 2.827·10-5 

Model 3 x x x  x x  0.0311 2.687·10-4 

Model 4 x  x   x  0.0300 0.0010 

Model 5 x  x x x x  -0.0076 3.147·10-4 

Model 6 x x x x x x  -0.0155 0.0020 

Model 7 x  x   x x -0.0181 0.0168 

Model 8 x x x x x x x -0.0315 0.0512 

Table  1. Summary of R2Os and Clark & West for various models including different 

combinations of variable. 
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Chapter 5 

Methodology II: Machine Learning 

Machine learning is a branch of artificial intelligence that allows machines 

to learn without being specifically programmed to do so. These machines or 

systems identify patterns among data and make predictions [37].  

Deep learning, a subcategory of 'machine learning' first described in 1960, 

allows systems to not only learn from experience, but to also train themselves to 

use data in the most efficient way. The three main currents used to train these 

models are: 

• Reinforcement learning occurs when a machine learns by trial and error 

until it reaches the best way to complete a given task. The system is given 

"rewards" for solving the assigned task correctly, without specifically 

programming it to perform it in a certain way. Therefore, the system 

modifies its behavior according to the rewards it obtains. 

• Supervised learning takes place when machines are trained with labeled 

data, such as photos with descriptions of the items in them. This way, once 

the machine is trained, the algorithm is able to select those labels from 

other databases.  

• Unsupervised learning occurs when machines look for similarities in 

unlabeled databases, instead of identifying patterns in labeled ones. In this 

case, the algorithms are not programmed to detect a specific type of data, 

but to look for items that look similar and can be grouped together. Facial 
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recognition is an example of unsupervised learning, where the algorithm 

searches for a series of common patterns in a face to recognize it every 

time.  

In the last few decades, the real-time execution capacity of computers and 

their processing speed have grown dramatically, drastically reducing the cost of 

computation. Also, systems to store and process huge amounts of data, known as 

big data (BD), have been developed. These two phenomena have led to the 

emergence of new prediction procedures based on supervised Machine Learning 

(ML) [36]. 

Even though there is no well-defined boundary between the so-called 

traditional prediction procedures and ML procedures, the main difference between 

the two resides in that the latter use statistical models and flexible algorithms 

that allow extracting information from high-dimensional data. In general, these 

ML procedures do not try to represent the mechanism that generated the data, 

they just predict and do not try to explain [36]. The ML or deep learning methods 

can improve prediction accuracy when there is a lot of data, but traditional 

models can be more efficient for solving simpler problems, or problems that by 

their nature require analytical solutions [37]. 

ML algorithms are computationally intensive and are designed to 

systematically identify patterns and relationships in the data that serve as the 

basis for making prediction [36]. In this thesis we focus on prediction procedures 

for dynamic data in which the lags of the variable to be predicted themselves may 

appear among the predictors. In the following subchapters we briefly review the 

main empirical applications of ML-based forecasting procedures in the context of 

economic and financial time series. 
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5.1. The prediction problem 

The objective is to obtain predictions of 𝑦𝑇+ℎ, where h is the prediction 

horizon, based on observations {𝑦1,..., 𝑦𝑇}, normally obtained in equidistant 

spaces of time. In our case, the prediction is univariate since the objective is the 

prediction of the future value of a single variable (natural gas price). In addition 

to observations, one can have a set of predictors, 𝑥𝑖,𝑡, where i=1,...,N, t=1,...T 

[36]. The prediction problem is to obtain h-periods-forward predictions by the 

following straightforward procedure: 

�̂�𝑇+ℎ|𝑇 = 𝑔ℎ(𝑦𝑇 , … , 𝑦1, 𝑥1,𝑇 , … , 𝑥1,1, … , 𝑥𝑁,𝑇, … , 𝑥𝑁,1)  

ML prediction procedures require selecting an architecture and/or some 

parameters, called hyperparameters. For example, in Artificial Neural Networks 

(ANN) procedures, one must select the number of nodes and layers and in 

regularization procedures, one has to pre-select the regularization parameters) 

[36]. 

These hyperparameters reduce the complexity of the model and must be 

selected prior to the actual estimation of the parameters of the model. The sample 

needs to first be divided into three subsamples: the training subsample, in which, 

given the hyperparameters, the parameters are estimated; the validation 

subsample, in which the hyperparameters are chosen by minimizing a given loss 

function; and the contrast subsample, in which the predictions are evaluated [36]. 

In a large majority of ML prediction applications, hyperparameters are 

selected by cross-validation and predictions are evaluated using the mean square 

prediction error (MSE). To allow finding patterns in the data, both the training 

and test samples must be large enough [36].  

   +  + + 

1 T1  T1+1 T 

+  

T1+1 T+H 
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Training sample 

(estimation): 

Given the hyperparameters, 

the model is estimated. 

Validation sample 

(model selection): 

Selection of hyperparameters that 

minimize the loss function of the 

predictions obtained with the 

estimated model in the training 

sample. 

Contrast sample 

(prediction): 

Evaluation of out-of-sample 

predictions: EPCM. 

Hyperparameters: 

- Regularization: 

Constants 

- Trees: Number of 

branches 

- Neural Networks: 

Activation 

function. 

Loss function: 

Mean square prediction error 
(MSE). 

Procedure: Cross-

validation 

 

Figure 5.1. ML Prediction Procedures [36]. 

ML prediction procedures can be classified into two main groups depending 

on whether they try to reduce the dimension of the predictors (regression models 

with regularization and the SVM-based procedures) or whether they try to 

represent complex functions (decision tree models, neural networks, or deep 

learning) [36]. The most popular procedures within each of these two groups are 

briefly described below. 

5.2. Dimensionality reduction: regression with 

regularization and Support Vector Machine 

Sometimes, before estimating, it is necessary to regularize, that is, to force 

the parameters of some predictors to take relatively small values or to select some 

predictors, in order to recover degrees of freedom and improve the predictive 

capacity of the model. This is done when the number of predictors in a regression 

model is very high and some of them may be redundant or not have enough 

information to be included in the predictive model. When the function g is linear, 

the predictive model is the following regression model: 

𝑦𝑇+1 = 𝛽
′𝑧𝑇 + 𝜀𝑇+1  

Where 𝑧𝑇 = (𝑦𝑇 , … , 𝑦𝑇−𝑝, 𝑥1,𝑇 , … , 𝑥1,𝑇−𝑝, … , 𝑥𝑁,𝑇 , … , 𝑥𝑁,𝑇−𝑝) is the vector of 

predictors, with p being the number of lags in the model.  
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A convex penalty to force the parameters in the vector β toward zero is 

introduced to estimate the (N+1) x p unknown parameters β. This is known as 

regression with regularization. Among the most popular regularized regression 

procedures are ridge regression which reduce overfitting but do not select 

predictors, so they do not generate a more interpretable model. Alternatively, 

with the Least Absolute Shrinkage and Selection Operator (LASSO), both 

parameter reduction and variable selection occur, improving both the accuracy of 

the predictions and the interpretability of the model by selecting only a subset of 

the available predictors. When both a high number of variables and their lags 

appear among the predictors the sparse group LASSO (sg-LASSO) is introduced, 

reducing the dimension both among variables and among their lags. Another 

popular regression procedure with regularization is the elastic net, in which a 

second penalty is introduced [36]. 

Finally, among the models we have SVM, a data mining procedure 

originally developed by Vapnik at Bell Labs in 1995 for classification. When 

applied to regression, SVM is referred to as Support Vector Regression (SVR) 

[36]. Support Vector Regression gives the flexibility to define how much error is 

acceptable in the model and finds an appropriate line to fit the data. Instead of 

minimizing the sum of the squared errors, the objective function of SVR is to 

minimize the coefficients, while the error term is handled in the constraints, where 

the absolute error is set to less than or equal to a specified margin(ϵ). SVR is a 

powerful algorithm that allows us to choose how tolerant we are of errors, both 

through an acceptable error margin(ϵ) and through tuning our tolerance of falling 

outside that acceptable error rate [45]. 
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5.3. Decision trees 

Decision trees are used to segment a range of predictor values into a finite 

number of subregions so that, within each subregion, the predictors are more 

homogeneous, and prediction can be performed more easily [36]. 

From each node of the decision tree only two branches can emerge. The 

thresholds are successively determined to minimize the MSE. Finally, the value 

of the predictors is used to guide us through the tree to one of the subregions 

(terminal nodes of the tree). This way the prediction of 𝑦𝑡+1 is obtained [36]. 

The best predictors and delays are selected to minimize the MSE when 

building a decision tree. However, this process often results in trees with many 

branches that can generate overfitting and, consequently, suboptimal predictions. 

For this reason, in practice, the tree is "pruned" by introducing a penalty on the 

number of terminal nodes in the objective function [36]. The most common 

procedures to generate decision trees are explained below. 

Bagging (Bootstrap Aggregation) is a procedure designed to generate 

decision trees by avoiding the large MSE that is usually observed in predictions 

obtained using decision trees. It is based on generating bootstrap samples of the 

predictors and building the corresponding decision tree on each of the bootstrap 

replicates. In the case of temporal data, the resampling to obtain bootstrap 

replicates of the training sample must be carried out with special care so as not 

to destroy the existing temporal dependence in the data [36]. There are several 

bootstrap techniques, such as the wild bootstrap which was proposed by Wu 

(1986) for regression models with independent but heteroskedastic errors. 

Bülmann and Yu (2002) have also proposed subsampling-based bagging 

(sub bagging) instead of Bootstrap and show that although it is computationally 

simpler, it has the same level of accuracy as Bagging. Subsampling-based 
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ensemble methods differ from traditional ensemble methods in that subsampling-

based ensemble methods use a subset randomly drawn from the original learning 

sample without replacement to train each learning machine (e.g., regression tree) 

in the ensemble. In comparison, the conventional ensemble methods aggregate 

predictions based on repeated bootstrap samples where each sample is of the same 

size as the learning sample, and it is drawn from the learning sample with 

replacement. Subsampling-based ensemble methods use a smaller training set to 

train each individual learning machine, resulting in computational advantages 

[46]. 

Random Forest (RF), originally proposed by Breiman (2001), is a procedure 

designed to reduce the correlation between decision trees when they are generated 

by Bagging. The same predictors appear in all bootstrap replicates and decision 

trees are built with bootstrap replicates of the training sample. Bagging uses in 

each tree all existing regressors (p), while RF selects randomly, only m < p of the 

p predictors, usually m =  √p, being m another hyperparameter to be selected by 

cross validation in the training sample. Along with m, it is also necessary to 

determine other hyperparameters such as the number of Bootstrap replicates, the 

number of decision trees and the minimum number of observations at the terminal 

nodes (pruning) [36]. 

Finally, another procedure to generate decision trees is Boosting, which 

generates trees sequentially from a relatively simple initial tree. At each step, the 

fit of the previous tree is improved by constructing a new tree for the residuals 

instead of for the variable to be predicted directly. The tree is improved by 

improving specific areas where the previous tree fit did not work properly. At the 

end of the process, the prediction is a weighted average of the predictions of all 

the intermediate trees, giving more weight to the last trees, which are the best 
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calibrated. Again, the number of trees and the Boosting learning ratio must be 

calibrated by cross-validation [36]. 

 

Figure 5.2. Decision Trees Selection Procedure through Random Forest [36]. 

5.4. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are data-driven procedures with very 

few prior assumptions about the models generating the data. They are 

computationally intensive mathematical models that attempt to mimic the way 

humans learn when they receive information. Their structure makes it possible to 

capture complex relationships between the predictors and the variable being 

predicted without the need to specify the correct form of these relationships, since 

the neural network itself will try to identify these relationships from the data 

available for training [36]. 

ANNs learn inductively through examples and mimic the ability to learn of 

humans [38]. Traditional approaches to time series forecasting assume that the 

time series under investigation is matched by a linear process, as opposed to ANNs 

[38]. 
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The first prediction application using ANN appears in Hu's (1964) thesis 

for weather forecasting. Recent research has validated the good predictive results 

of ANNs by showing that, if the networks are sufficiently large, almost all local 

minima are very similar to the global minimum [36]. 

Among the numerous types of neural networks, one of the most popular is 

the one known as "multilayer feedforward networks". These networks consist of 

an input layer, with several nodes (or neurons) that merely receive the values of 

the predictors; an output layer related to the variable to be predicted; and, 

between the two, a series of hidden layers, each with several nodes that receive 

information only from the nodes of the immediately preceding layer and pass the 

information on to the nodes of the next layer. All the nodes of a layer are linked 

to each of the nodes of the next layer through values known as "weights". Finally, 

at each node it is necessary to define an activation function that transforms the 

information arriving from each of the nodes of the previous layer. Among the 

most popular activation functions are linear, exponential, and logistic [36]. In 

most cases, input level neurons have no activation function because their function 

is to transmit inputs to the hidden layers [38]. The most used activation function 

for the output level is the linear function since the nonlinear activation function 

can insert a distortion in the previous outputs. Logistic and hyperbolic functions 

are often used at the hidden layers [39]. 

The relationship between the output (𝑦𝑇) and the inputs (𝑦𝑡−1,..., 𝑦𝑖−𝑝) of 

an ANN has the following mathematical representation:  

𝑦𝑡 = 𝑤𝑜 +∑𝑤𝑗

𝑞

𝑗−1

· 𝑔 (𝑤0𝑗 +∑𝑤𝑖𝑗 · 𝑦𝑡−𝑖

𝑝

𝑖−1

) + 𝜀𝑡 
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where, 𝑤𝑖𝑗 (i= 0,1,2,…,p; j=1,2,…,q) and 𝑤𝑗 (j = 0, 1, 2, . . . . , q) are model 

parameters often referred to as connection weights; p is the number of input 

nodes; and q is the number of hidden nodes. 

 

Figure 5.3. Neural Network with 4 lags and one layer with 2 nodes 

Once the functional form and architecture of the network has been specified, 

the parameter estimation process can begin. All the hyperparameters appearing 

in the network are determined using an iterative estimation procedure to update 

the weights using the errors. Specifically, the error made at the final or exit node 

is distributed backwards through all the hidden nodes that reach that final node, 

such that each node is assigned a part of that error by iteratively adjusting the 

weights of each node. This sequential optimization procedure is known as "back 

propagation of error", and the hyperparameter that controls the change of the 

weights from one iteration to the next is known as the learning ratio, which is 

often set to 0.1 [36].  

The goal is to estimate the parameters that minimize the cost function of 

the neural network, a standard measure of accuracy where the mean square error 

of both the training set and the test set is agreed [39]. 
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where N is the number of error terms. In the basic backpropagation training 

algorithm, the neural network parameters (𝑤𝑖𝑗)  are modified in ∆𝑤𝑖𝑗, according 

to the following formula:   

𝛥𝑤𝛿𝑗 = −𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
 

where, the parameter η is the learning rate and 
𝜕𝐸

𝜕𝑤𝑖𝑗
 is the partial derivative 

of the function E with respect to the weight 𝑤𝑖𝑗. This derivative is calculated in 

two steps. In the forward step, an input vector from the training set is introduced 

in the input units of the network and propagated through it, layer by layer, 

producing the final output. During the backward step, the obtained output is 

compared to the desired output and the resulting error is then propagated 

backward through the network by adjusting the weights in each process. To speed 

up the learning process and avoid the instability of the algorithm, the ∆𝑤𝑖𝑗 is 

defined as: 

𝛥𝑤𝑖𝑗(𝑡 + 1) =  −𝜂
𝜕𝐸

𝜕𝑟𝑖𝑗
+  𝛿𝛥𝑤𝑖𝑗(𝑡) 

After this, the estimated model is evaluated using a separate reserve sample 

that is not exposed to the training process [39]. 

A specific type of these neural networks are recurrent neural networks 

(RNN) are networks that were conceived in the 1980s but did not become popular 

at that time due to their high computational requirements. Recurrent networks 

have a certain form of memory, in contrast to the networks described above, 

which have an activation function that only acts in one direction, forward, from 
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one layer to the next, and do not remember previous values. Each recurrent 

neuron has two sets of hyperparameters, one applied to the input data it receives 

from the previous layer and another set applied to the output vector of the 

previous instant. This way, the structure of these networks allows a recurrent 

connection in time [36]. 

 

Figure 5.4. Example of RNN [41] 

Fully recurrent neural networks connect the outputs of all neurons to the 

inputs of all neurons. This is the most general most general neural network 

topology because all other topologies can be represented by setting some 

connection weights to zero to simulate the lack of connections between those 

neurons [44.]  

Long Short-Term Memory (LSTM) is a recurrent artificial neural network 

architecture that can process not just a single data point (such as an image), but 

the entire data stream (such as audio, video, or any series) [40]. In this type of 

architecture, the model learns to maintain its "cellular memory" state over time, 

adding one or more new gates that allow it to add or remove information in the 

“cell memory” [43]. 

The internal memory unit of the LSTM records historical information up 

to the present time and is controlled by three gates: input, forget and output. 

The input gate controls the new information entered into the internal memory 

unit, the forgetting gate controls how much information from the previous 



CHAPTER 5. METHODOLOGY II: MACHINE LEARNING 

86  
 

moments needs to be saved, and the output gate produces and reproduces the 

required information [39]. 

 

Figure 5.5. Example of LSTM cell [41] 

Networks need many observations to learn and making predictions outside 

the range of the variables’ values the networks have learned with may result in 

bad properties. In addition, convergence of the estimation process to a global 

minimum is often complicated, so the search process must be initialized at 

different random points. Neural networks can have problems related to overfitting 

and large computational effort. To solve these problems, procedures such as 

Extreme Learning Machine (ELM) have been proposed [36]. 

5.5. Tensor Flow and Keras 

Implementing a successful complex deep neural network model is not an 

easy task and was often limited to deep learning practitioners. Fortunately, 

several software frameworks recently became available where the design and 

training of deep neural networks is easier [39]. 

Given the increase in popularity of deep learning, Google researchers 

developed and launched TensorFlow, a deep learning framework and open-source 

software [39]. TensorFlow constitutes a stable platform for deep learning 

applications and research, providing scientists and practitioners with a 
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standardized system that has the potential to improve the reproducibility of deep 

learning techniques [40]. TensorFlow also offers a variety of enhancements, 

including improved graph rendering and compiling time. 

TensorFlow uses a declarative programming model that allows researchers 

to focus on the symbolic definition of what needs to be computed or modeled, 

rather than the exact method or the specific order in which these computations 

should be performed [41]. This model can be optimized for digital stability and 

performance, and individual parts can be converted to be executed by the CPU, 

GPU, or other TPUs [42]. The processing framework automatically manages the 

abstract representation of the model, which makes TensorFlow suitable for 

developing new models using gradient-based optimization [39]. 

Another of these types of deep learning software frameworks is Keras, a 

high-level open-source neural network application program interface written in 

Python language. Keras was originally developed by François Chollet, who now 

works at Google [43]. This interface can be run on several machine learning 

libraries such as TensorFlow (developed by Google), CNTK (developed by 

Microsoft) and Theano (developed by the University of Montreal). Keras aims to 

provide users with fast and easy prototyping through ease of use, modularity, and 

extensibility [41]. 

In 2018, Keras ranked second only after TensorFlow in effectiveness 

evaluations based on usage, interest, and popularity. It provides all standard loss 

functions, automatic backpropagation, and standard optimization algorithms [43]. 

Some other very widely used deep learning frameworks are Torch, Theano, 

and Caffe, which are particularly suitable for complex neural networks. Many 

startups and research groups have released deep learning tools such as Neon (a 
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Python-based framework), Deeplearning J (Skymind's Java engine) and H2O3 

(Skymind in Java-based machine learning) [42]. 

keras_model() Create model 

keras_model_sequential() Create model composed of a linear 

stack of layers 

compile() Set Keras model for training 

fit() Initiate training 

evaluate() Evaluate Keras model 

predict() Prediction method for Keras model 

summary() Prints a model summary 

save_model_hdf5() Save/ load models using HDF5 files 

get_layer() Retrieves layer according to its name  

pop_layer() Delete the last layer of the model 

save_model_weights_hdf5() Save model weights using HDF5 files 

load_model_weights_hdf5() Load model weights using HDF5 files 

get_weights() set_weights() Retrieve or set model weights 

get_config() from_config() Retrieve layer/ model configuration 

model_to_json() Set up model as JSON 

model_to_yaml() Set up model as YAML 

Table  2. Keras Functions 

5.6. Forecasting Natural Gas Prices with Machine Learning 

In this chapter, we will use machine learning algorithms to train the 

machine on historical price records and predict the expected future natural gas 

price. We will use the environment of Anaconda distribution, an open-source 

Python distribution platform. 
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We will predict the Natural Gas Price for the period of September 2010 to 

January 2022, similarly to what we did with the Autoregressive model, and 

compare the predictions with the real values obtained at EIA’s website. This 

prediction will be done using Time Series with Long short-term memory (LSTM) 

Neural Networks. We use Natural Gas historical monthly price downloaded from 

EIA’s website (51) from September 2000 to December 2021. As software 

frameworks, we will use TensorFlow and Keras. 

Throughout this application, stochastic gradient descent with 

backpropagation of errors to train deep neural networks will be used. Stochastic 

Gradient Descent (SDG) is an optimization algorithm used to train machine 

learning algorithms. Its job is to find a set of internal model parameters that 

perform well against some performance measure such as logarithmic loss or mean 

squared error. In our models we use mean squared error. The algorithm is 

iterative, which means that the search process occurs over multiple discrete steps. 

Each step uses the model with the current set of internal parameters to make 

predictions on some samples, comparing the predictions to the real expected 

outcomes, calculating the error, and using the error to update the internal model 

parameters. As an update procedure we use the backpropagation update 

algorithm, explained in the previous subchapters.  

After importing all the packages that we are going to use during the 

programming of the model, we import the historical gas price since 2000 from the 

EIA Website and plot it (Figure 5.6). 
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Figure 5.6. Historic price of natural gas since 2000. 

Then we train the LSTM model, separating the data sample into a training 

set and a test set. We use 20% of the data for the test set and 80% for the training 

set. We then define to get natural gas price 6 months back and predict the 

following month’s price, this defines our number of time-steps to use in the LSTM 

models. 

 

Figure 5.7. Test set vs. training set data split. 

Next, we build an LSTM model with 4 hidden layers, each with 200 

neurons, and one output layer. As activation function, we use the rectified linear 

activation function (ReLU), which is a piecewise linear function that will output 

the input directly if it is positive, otherwise, it will output zero. It looks and acts 

like a linear function, but is, in fact, a nonlinear function allowing complex 

relationships in the data to be learned. ReLU has become the default activation 
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function for many types of neural networks because a model that uses it is easier 

to train and often achieves better performance.  

𝑔(𝑧)  =  𝑚𝑎𝑥{0, 𝑧} 

We set the output layer as a dense layer with one neuron and the number 

of epochs to 50. The number of epochs is a hyperparameter that defines the 

number of times that the learning algorithm will work through the entire training 

dataset. One epoch means that each sample in the training dataset has had an 

opportunity to update the internal model parameters.  

As optimizer we use Adam, proposed by Kingma and Lei Ba in Adam: A 

Method For Stochastic Optimization. “Adam is a method for efficient stochastic 

optimization that only requires first-order gradients with little memory 

requirement. The method computes individual adaptive learning rates for 

different parameters from estimates of first and second moments of the gradients; 

the name Adam is derived from adaptive moment estimation” [47]. Default 

parameters are those suggested in the paper, 

• Learning rate (lr): float >= 0.  

• beta_1, beta_2: floats, 0 < beta < 1. Generally close to 1. 

• Fuzz factor (epsilon): float >= 0. Fuzz factor. 

As loss function, we use the mean squared error (MSE), which is calculated 

as the average of the squared differences between the predicted and actual values. 

This loss function compares the target and predicted output values and measures 

how well the neural network models the training data [48]. We also use Early 

Stopping, a form of regularization to avoid overfitting when training a learner 

with an iterative method, such as gradient descent. We set the patience to 16 

iterations, meaning that after 16 iterations without improvement on the MSE, 

the training is stopped. 
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A dropout regularization technique is also used. Dropout is a regularization 

technique for neural network models where randomly selected neurons are ignored 

during training proposed by Srivastava et al. in their 2014 paper “Dropout: A 

Simple Way to Prevent Neural Networks from Overfitting”. Some neurons’ 

contribution to the activation of downstream neurons is temporally removed on 

the forward pass, and no weight updates are applied to the neuron on the 

backward pass. As a neural network learns some neurons become specialized and 

neighboring neurons come to rely on this specialization, which can result in a 

fragile model too specialized for the training data. If neurons are randomly 

dropped out of the network during training, other neurons have to step in and 

make predictions for the missing neurons. This results in the network learning 

multiple independent internal representations, less sensitive to the specific weights 

of neurons, able to better generalize and less likely to overfit the training data. 

[49]. 

For training the model, a model.fit() training loop checks at the end of 

every epoch whether the loss is no longer decreasing, considering the minimum 

delta and patience (16 in our model). Once the loss is found no longer decreasing 

the training terminates.  

After training the model, we predict the natural gas price from September 

2010 to January 2022 and compare it to the actual historical natural gas price for 

those months, retrieved from the EIA’s website (Figure 5.10). 

Next, we compute two performance metrics: R2 (variance score) and Mean 

Squared Error (RMSE, test score). For this, we import the package math and 

skelearn.metrics. 
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Figure 5.8. September 2010 – January 2022 Natural Gas Price Prediction using LSTM 

Model vs. Actual Natural Gas Price 

R-squared is a statistical measure that represents the proportion of the 

variance for a dependent variable that is explained by an independent variable.  

𝑅2 = 1 −
𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
=

∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑠 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠)2𝑁
𝑖=1

∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)2𝑁
𝑖=1

 

where N is the sample size. 

 We obtain a variance score of 0.64, which means that 64% of the observed 

variation can be explained by the model inputs.  

RMSE is the standard deviation of the residuals or prediction errors, it is 

a measure of how concentrated the data points are around the line of best fit.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠𝑖)2
𝑁
𝑖=1

𝑁
 

  We obtain a test score of 0.52 RMSE, which means that the average error 

of our predictions is +/- 0.52€ with respect to the actual price.  

We will compare these values to the ones obtained with the AR benchmark 

model, which also only uses historical natural gas price to predict natural gas 

price for the following month.
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Chapter 6 

Summary of Empirical Results 

 

6.1. Natural Gas Price Forecasts with Autoregressive 

Model 

The first step in forecasting natural gas with the Autoregressive Model 

(AR) is to build a benchmark model whose prediction performance will then be 

compared to that of the ARX model. The parameters of the model are calculated 

by performing a regression for each month beginning in September 2010 and 

ending in December 2021 (135 times), since we have the data for natural gas 

prices for all these months. For each of these calculations, the alphas and betas 

obtained are stored in a matrix called BM_Parameters with size 135x2. Finally, 

taking the alpha, beta, and natural gas observed price for each period from 

September 2010 to December 2021, we calculate the natural gas price forecast for 

the following month. This way, a vector under the name of BM_Forecast is 

created to store the forecasts for each of the periods calculated (September 2010-

January 2022).  
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For September 2021, for example, we obtain a beta of 0.9347 and an alpha 

of 0.2838. Therefore, the equation of the benchmark model to forecast the price 

of natural gas for October 2021, results in the following: 

𝑦𝑡+1 = 0.2838 + 0.9347 𝑦𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 6. Benchmark Model with estimated alpha and beta. 

Using this equation and the observed price for natural gas in September 

2021 (5.1111), the price of natural gas for October 2021, would be: 

𝑦𝑡+1 = 0.2838 + 0.9347 ∗ 5.1111 + 𝜀𝑡+1 = 5.0611 + 𝜀𝑡+1 

and, considering that the recorded price of natural gas for October 2021 

on the EIA website is 5.4780, the stochastic term in this example would be 0.4169. 

The ARX model is built similarly by performing a regression using data of 

historical monthly natural gas price and monthly change of other seven variables 

that affect natural gas prices (mentioned in previous chapters) starting September 

2010 and ending in December 2021 (135 times). This way, the alpha and betas 

for each of the variables of the model are calculated and are stored in a matrix 

called ARX_Parameters with size 135x9. Finally, taking the alpha, eight betas, 

and natural gas observed price for each period from September 2010 to December 

2021, we calculate the natural gas price forecast for the following month. This 

way, a vector under the name of ARX_Forecast is created to store the forecasts 

for each of the periods calculated (September 2010-January 2022).  

For September 2021, for example, we obtain the following alpha and betas: 

𝛼 =  0.2178; 𝛽1 =  0.9481; 𝛽2 = −0.0011; 𝛽3 = −0.1841 ;  

𝛽4 = −0.0088; 𝛽5 = 8.0844; 𝛽6 = 1.3883; 𝛽7 = −0.0778; 𝛽8 = −0.0057  

The model, therefore, can be re-defined with the following equation: 



CHAPTER 6. SUMMARY OF EMPIRICAL RESULTS 

 

96  
 

𝑦𝑡+1 = 0.2178 + 0.9481𝑦𝑡 − 0.0011∆𝑓1𝑡 − 0.1841∆𝑓2𝑡 − 0.0088∆𝑓3𝑡 + 8.0844∆𝑓4𝑡

+ 1.3883∆𝑓5𝑡 − 0.0778∆𝑓6𝑡 − 0.0057∆𝑓7𝑡 + 𝜀𝑡+1         𝜀𝑡~(0, 𝜎
2) 

Equation 7. ARX model with estimated alpha and betas. 

The forecasting performance of each model is evaluated by the out-of-

sample R2 statistic, suggested by Campbell and Thompson [4] to compare the 

�̂�𝑡+1 and �̅�𝑡+1 forecasts at a 1-month horizon. �̂�𝑡+1 is the forecast using the ARX 

model and �̅�𝑡+1 is the forecast based on the benchmark model. This 𝑅𝑂𝑆
2  statistic 

is given by: 

𝑅𝑂𝑆
2 = 1 −

∑ (𝑦𝑡+1 − �̂�𝑡+1)
2𝑇−1

𝑡=𝑡0−1

∑ (𝑦𝑡+1 − �̅�𝑡+1)2
𝑇−1
𝑡=𝑡0−1

 

where 𝑦𝑡+1 is the realized and real value of the price of natural gas, 𝑡0 is 

the start of the forecasting sample (September 2010) and 𝑇 is the end of the 

sample (December 2021).  

After performing this calculation in Matlab, we obtain a value of 𝑅𝑂𝑆
2  that 

compares the predictive regression model to the benchmark model predictions. In 

the case of the model that uses eight variables, this value is -0.0315, which means 

that the predictive model forecasts (�̂�𝑡+1) do not outperform the benchmark 

forecasts (�̅�𝑡+1). 

In light of these results, we build different models using different 

combinations of variables. We start building a model using the four variables that 

appeared to be more significant when studied in the TFG – Modelling the Natural 

Gas Market [2], the REDTI, the U.S. gross withdrawals, the U.S. storage levels 

and U.S. electricity end-use. The 𝑅𝑂𝑆
2  for this model is significantly better, 0.0348, 

which means that the ARX model outperforms the benchmark model. We build 

some more models to identify the best combination of variables to predict natural 

gas prices. 
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We then examine whether the results are statistically significant by testing 

against the null hypothesis of equal MSPE between the two models. We estimate 

the MSPE-adjusted statistic developed by Clark and West (2007).  

We first define 

𝜀𝑡+1 = (𝑦𝑡+1 − �̅�𝑡+1)
2 − [(𝑦𝑡+1 − �̂�𝑡+1)

2 − (�̂�𝑡+1 − �̅�𝑡+1)
2] 

and then regress {𝜀𝑡+1}𝑠=𝑡0
𝑇−1  on a constant and calculate the t-statistic under the 

null hypothesis that the constant is zero. The p-value is obtained with a standard 

normal distribution, for a one-tailed test.  

If this statistic is less than 10% the results of the model can be considered 

to have a statistical significance higher than 90%. For the model that uses all 

eight variables, we obtain a Clark and West statistic or p-value of 0.0512, which 

means that the model has a significance of nearly 95%. 

Rank REDTI 
Drilling 

Activity 
Production 

World 

Industrial 

Production 

Electricity 

Consump. 
Inventories 

Monetary 

Policy 
𝑅𝑂𝑆
2  

Clark & 

West 

Model 1 x  x  x x  0.0348 7.894·10-5 

Model 2 x       0.0389 2.827·10-5 

Model 3 x x x  x x  0.0311 2.687·10-4 

Model 4 x  x   x  0.0300 0.0010 

Model 5 x  x x x x  -0.0076 3.147·10-4 

Model 6 x x x x x x  -0.0155 0.0020 

Model 7 x  x   x x -0.0181 0.0168 

Model 8 x x x x x x x -0.0315 0.0512 

Table  3. Summary of R2Os and Clark & West for various models including different 

combinations of variables. 

In Table  3 we summarize the 𝑅𝑂𝑆
2  and Clark and West statistics for each 

model and rank them according to its forecasting performance compared to the 

benchmark model and statistical significance. We highlighted in bold the models 
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that both outperform the benchmark model and are statistically significant (90% 

significance or above). 

6.2. Natural Gas Price Forecasts with Machine Learning 

Using Time Series with Long short-term memory (LSTM) Neural 

Networks, we predicted Natural Gas price for the period of September 2010 to 

January 2022, similarly to what we did with the Autoregressive model, and 

compared the predictions with the real values obtained at EIA’s website. We use 

Natural Gas historical monthly price downloaded from EIA’s website (51) from 

September 2000 to December 2021. As software frameworks, we will use 

TensorFlow and Keras. 

The parameters of the model are summarized in the following table: 

• Stochastic gradient descent with backpropagation error ✓ 

• Test vs. Training Set 20% vs. 80% 

• Time-lags 6 months 

• Number of hidden layers 4 

• Number of neurons per layer 200 

• Optimizer Adam 

• Activation Function ReLu 

• Output layer Dense 

• Number of epochs 50 

• Loss function MSE 

• Dropout Regularization Technique ✓ 

Table  4. Summary of Machine Learning Model Parameters. 

For training the model, a model.fit() training loop checked at the end of 

every epoch whether the loss was no longer decreasing, considering the minimum 
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delta and patience (16 in our model). Once the loss was found no longer decreasing 

the training terminates.  

After training the model, we predicted the natural gas price from 

September 2010 to January 2022 and compare it to the actual historical natural 

gas price for those months, retrieved from the EIA’s website (Figure 5.10). 

 

Figure 6.1. September 2010 – January 2022 Natural Gas Price Prediction using LSTM 

Model vs. Actual Natural Gas Price 

Next, we computed two performance metrics: R2 (variance score) and Mean 

Squared Error (RMSE, test score). We obtained the following values: 

R2 0.64 (64%) 64% of observed variation explained by model inputs 

RMSE 0.52€ Average error of predictions: +/- 0.52€  

Table  5. Summary of the Machine Learning model's performance metrics. 

We will compare in the next subchapter these values to the ones obtained 

with the AR model. 

6.1. Results Comparison: AR Model vs. Machine Learning 

In order to compare the performance of the Machine Learning model to 

the autoregressive models, the R2 (variance score) and Root Mean Squared Error 

(RMSE, test score) is calculated for the benchmark autoregressive model and the 
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ARX Model 1. We used Model 1 because it is the one with the best performance 

metrics. 

As explained in Chapter 5.6, the formulas for R2 and Root Mean Squared 

Error are the following: 

𝑅2 = 1 −
𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
=

∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑠 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠)2𝑁
𝑖=1

∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)2𝑁
𝑖=1

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠𝑖)2
𝑁
𝑖=1

𝑁
 

We obtain the following values for all three models: 

 Machine Learning BM AR Model ARX Model 1 

R2 0.64 (64%) 0.32 (32%) 0.34 (34%) 

RMSE 0.52€ 0.51€ 0.50€ 

Table  6. Performance metrics of the three different models 

 In terms of the variance explained by the model, the machine learning 

model is way superior to the autoregressive model, explaining approximately 30% 

more variance than the other two models. However, in terms of RMSE, all models 

perform a very similar error in average when predicting natural gas, around +/- 

0.50€.  

 Taking these performance metrics, the ARX model that includes, apart 

from the historical natural gas price, the variations in residential demand due to 

weather conditions, in natural gas production, in natural gas inventories and in 

electricity consumption, performs slightly better than the benchmark model that 

includes only historical natural gas prices to predict future prices.  
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Figure 6.2. Machine Learning vs AR Model predictions vs Actual Price 
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Chapter 7 

Conclusions 
 

Aware of the length of this document, the most important conclusions and 

results are presented as a summary in this chapter, so that the reader can refer 

to the data of most interest to them without having to go through the entire 

document. 

 The price of natural gas has been a topic of especial interest in the past 

few months, due to the European energetic crisis caused by the outburst of the 

Russian-Ukraine conflict. Europe imposed economic sanctions to Russia to show 

disapproval for the invasion and this led to a reduction of natural gas supply 

coming from Russia, which resulted in the rocketing of natural gas prices in June 

2022, which increased in 60% in only two weeks [2]. However, this paper uses data 

until December 2021, so it does not take into consideration the recent fluctuations 

in the natural gas market due to the political unrest. 

Demand for natural gas is increasing due to its price-calorific value ratio. 

According to the U.S. Energy Information Association (EIA), the United States 

used about 31.5 quadrillion British thermal units (Btu) in 2020 which makes 34% 
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of U.S. total energy consumption [13]. The most common uses of natural gas are 

for electricity, heating, transportation, and production. 

This paper first explained what natural gas is, how it is obtained, 

transformed, and transported, as well as how reserves, production, and demand 

are distributed around the globe, and what natural gas is used for (see Chapter 2 

above), as well as which factors might affect to the supply and demand of this 

commodity (see Chapter 3 above). Then, having described which factors affect 

the demand and supply of gas and how indicators were built to use in the 

forecasting model, an autoregressive model is built to forecast natural gas prices 

for September 2010 to January 2022, to compare the forecasting results to the 

real values recorded at the EIA website and to determine the forecasting 

performance of the model (see Chapter 4 above). Machine learning techniques are 

studied in Chapter 5. Methodology II: Machine Learning and one of them is then 

used to forecast natural gas prices for the same period. Finally, Chapter 6 is 

dedicated to the summary of all the results obtained in the two previous chapters. 

In order to model the market for natural gas and forecast natural gas prices 

using the autoregressive model, we gathered eight indicators or variables which 

could explain the variations in the price of this fuel. This selection is based on 

thorough research performed for the elaboration of the TFG – Modelling the 

natural gas market [2]. In this TFG – Modelling the natural gas market [2], it 

was found out that the variables that could explain the most part of natural gas 

price fluctuations were the residential demand due to change in temperatures, the 

levels of natural gas production and inventories held, and the amount of electricity 

consumed.  

To forecast natural gas prices, we first use an autoregressive model (ARX), 

that includes initially the eight variables gathered in the TFG – Modelling the 
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natural gas market [2] and forecasts the price of natural gas one period ahead 

(t+1). Then we include different combinations of the eight variables based on the 

results we obtained in the TFG – Modelling the natural gas market [2] and 

measure the forecasting performance of the model each time, trying to reach the 

most significant and most accurate forecasting model. 

In order to determine if including the variables that might affect to natural 

gas prices in the forecasting exercise delivers a better prediction of natural gas 

prices than when taking into account only the price for the commodity in previous 

periods, a benchmark model is used. This benchmark model consists of a first 

order autoregressive model, in which the price of natural gas for a period ahead 

is dependent on an independent term (alpha) and the price for natural gas in the 

current period multiplied by a scaling parameter (beta). To simulate the situation 

of a real forecaster, only data available before September 2010 is used for an in-

sample estimation of parameters, which is then updated recursively each period 

as new information is obtained for an out-of-sample estimation [1]. The recursive 

regression takes place for each month, starting August 2010, the monthly natural 

gas prices recorded until the moment of the calculation (since September 2000). 

The regression is then calculated for each month beginning in September 2010 

and ending in December 2021 (135 times) and forecasts for these months are 

obtained and compared to the prices recorded in the EIA website for this period.  

After estimating the benchmark model, an Autoregressive Exogenous model 

(ARX) is built, using initially all eight variables identified in TFG – Modelling 

the natural gas market. In this model, the times series being predicted is the price 

of natural gas (𝑦𝑡+1), and this prediction depends on the price of natural gas a 

period before the prediction (𝑦𝑡), and the year-to-year or month-to-month 

variation of seven other variables (see Chapter 2) also a month before the 

prediction (∆𝑓1𝑡 … ∆𝑓8𝑡). Like the benchmark model, to simulate the situation of 
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a real forecaster, only data available before September 2010 is used for an in-

sample estimation of parameters. The regression is calculated for each month 

beginning in September 2010 and ending in December 2021 (135 times) and taking 

the alpha, eight betas, and natural gas observed price for each period from 

September 2010 to December 2021, we calculate the natural gas price forecast for 

the following month, for the period spanned between September 2010-January 

2022.  

This is not the only ARX model we built. After comparing the ARX model 

performance to the benchmark model and determining the significance of the 

forecasts, various models with different combinations of variables were built and 

their forecasting performance was compared to determine how the model improves 

depending on the variables used to forecast the natural gas price.  

The forecasting performance of each model is evaluated by the out-of-

sample R2 statistic, suggested by Campbell and Thompson [4]. We then examine 

whether the results are statistically significant by estimating the MSPE-adjusted 

statistic developed by Clark and West (2007). Using these two metrics, the model 

with the best forecasting performance resulted to be the one that uses REDTI, 

natural gas levels of production and inventories and electricity consumption to 

forecast the price of natural gas, apart from the historical price of natural gas 

itself (see Table  1 in Chapter 4 for a summary of the results of each model). 

As mentioned above, Machine Learning forecasting techniques were also 

studied in this paper and one of them, LSTM Neural Networks, is used to forecast 

natural gas prices for the same period of September 2010-January 2022. This way, 

the results of Machine Learning and the Autoregressive models were compared. 

In this case, like in the benchmark autoregressive model, natural gas price was 

predicted using only historical natural gas prices, no other variables were included 
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to make the training of the machine less complicated. TensorFlow and Keras were 

used as software frameworks and the parameters of the model are summarized in 

Table  4 in Chapter 6.  

In order to compare the performance of the Machine Learning model to 

the autoregressive models, the R2 (variance score) and Root Mean Squared Error 

(RMSE, test score) is calculated for the benchmark autoregressive model and the 

ARX Model 1. We used Model 1 because it is the one with the best performance 

metrics. 

We obtained the following values for all three models: 

 Machine Learning BM AR Model ARX Model 1 

R2 0.64 (64%) 0.32 (32%) 0.34 (34%) 

RMSE 0.52€ 0.51€ 0.50€ 

Table  7. Performance metrics of the three different models 

 In terms of the variance explained by the model, the machine learning 

model is way superior to the autoregressive model, explaining approximately 30% 

more variance than the other two models. However, in terms of RMSE, all models 

perform a very similar error in average when predicting natural gas, around +/- 

0.50€.  

 Taking these performance metrics, the ARX model that includes, apart 

from the historical natural gas price, the variations in residential demand due to 

weather conditions, in natural gas production, in natural gas inventories and in 

electricity consumption, performs slightly better than the benchmark model that 

includes only historical natural gas prices to predict future prices.
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Chapter 8 

Future Lines of Investigation 
 

 The forecasting industry is a very wide one, with many techniques available 

to predict the behavior of almost every variable we could think of. In this study, 

we decided to use two techniques that are commonly used to forecast shares and 

commodity prices, the Autoregressive Model (ARX) with certain variables and 

Long-Short-Term-Memory Neural Networks. However, there are other 

methodologies that can be used for the same purpose and that might be of interest 

to study in the future. 

Concerning the variables considered to build the ARX Model, it could be 

of interest for future studies to include two more variables: the supply variations 

of nuclear power and the indicator “container trade volume”. As studied in the 

TFG: Modelling the Natural Gas Market [2], after the Fukushima earthquake and 

the consequent temporary reduction of nuclear power generation, natural gas 

prices rocketed, which suggests that the price of natural gas might be affected by 

the supply levels of nuclear power. Also, supply bottlenecks seem to have affected 

throughout history to the fluctuations in the price of natural gas. In order to 

include this supply problems in the model, a possible future modification of the 

model could be to include the indicator “container trade volume”, which counts 

the containers traded between certain regions at a certain point in time [2].
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 In Chapter 5, we studied different Machine Learning techniques, but we 

decided to predict natural gas prices for the next year using LSTM Neural 

Networks. However, in future studies it could be of interest to use another 

Machine Learning techniques, such as Convolutional Neural Networks (CNN) and 

compare the results to those obtained in this study. These neural networks consist 

of filters that are applied along the input data to de-noise it, so that it can be fed 

through a basic neural network. CNNs have always been considered as the best 

algorithm for image data processing, however, some studies suggest that CNNs 

could also be applied to an array of 1D values and give similar prediction results 

as LSTM Neural Networks using less training time and computational intensity 

[50]. Another option is to combine both techniques, LSTM and CNN, to obtain 

optimal results. 

 To make the model less complex, we only used historical natural gas prices 

to predict with Machine Learning. As we saw with the autoregressive model, the 

model that also included monthly variations of residential demand due to 

temperature changes, natural gas production, inventories, and electricity 

consumption, performed better than the benchmark model that only used 

historical natural gas price to predict future natural gas prices. Therefore, another 

future variation could be adding these variables to the Machine Learning model 

to see if it performs better than the one, we built and so it could be compared to 

the ARX model we built. 
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Annex I 

Sustainable Development Goals 
 

Throughout history, there have been many moments in which humans had 

to join forces to overcome the difficulties that laid ahead on a global scale. 

Examples include the 1948 Marshall Plan developed to rebuild the economies of 

Western Europe after World War II, or the achievement of the UN Millennium 

Development Goals, which succeeded, among other things, in halving the under-

five mortality rate and the number of people living in extreme poverty. 

Now, in the 21st century, the world is facing one of its greatest challenges. 

Everyone needs to work together to end global poverty, address social inequalities 

and tackle the serious problem of climate change by 2030. This requires 

investment in innovative solutions, bold finance to drive progress, and the 

commitment of entrepreneurs, the scientific community, activists, governments 

and, in general, the entire population. 

The United Nations (UN), aware of the situation, developed the so-called 

Sustainable Development Goals (SDGs), a set of 17 global goals designed to 

achieve a better and more sustainable future for all [48].  
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Figure A1.1. 17 ODSs. Fuente: Sustainable Development Goals. United Nations [20]. 

With these 17 goals encompassed in the 2030 Agenda, the UN presents a plan 

to follow to address the problems facing the international community today, 

giving all humans the opportunity to participate. This plan aims to make the 

world a place where resources are cared for in order to achieve a fairer 

distribution. The main components of this agenda are the five Ps:  

• People: ending poverty and world hunger in all their forms and ensuring 

dignity and equality among people.  

• Prosperity: to ensure prosperous and fulfilling lives in harmony with 

nature.  

• Peace: to implement justice, peace and inclusion in communities.  

• Partnership: to implement the Agenda through a strong global 

partnership.  

• Planet: protect the planet’s resources and climate to ensure a 

prosperous future for generations to come.  

Aware of the responsibility that this implies for the Engineering Community, 

which must, among other things, develop innovative processes and products to 
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achieve the goals set, this master’s thesis studies one of the cleanest burning fossil 

fuels available at the moment, natural gas. Burning natural gas for energy results 

in fewer emissions of nearly all types of air pollutants and carbon dioxide (CO2) 

than burning coal or petroleum products to produce an equal amount of energy. 

According to the EIA, about 117 pounds of CO2 are produced per million British 

thermal units (MMBtu) equivalent of natural gas compared with more than 200 

pounds of CO2 per MMBtu of coal and more than 160 pounds per MMBtu of 

distillate fuel oil [2]. Although the main objective of this master’s thesis is to 

predict natural gas prices and understand how the price is affected by various 

variables, it also aims to educate readers about natural gas, its properties, its 

possibilities, and its environmental implications.  

The Sustainable Development Goals included in this project “Forecasting 

Natural Gas Prices", by educating the reader about a fossil fuel that is cleaner 

than other fossil fuels and might be key in the transition to producing energy only 

from renewable sources, are the following:  

 

The SDGs addressed, and more information about their application in this 

project, are detailed below: 

SDG Dimension SDG Specification Role Objective 

Economic SDG 7: Ensure access to 

affordable, reliable, 

sustainable and modern 

energy for all 

Secondary Educate the reader 

about the possibilities 

of natural gas and how 
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it can help many 

countries to obtain 

energy independence 

and reduce GHG 

emissions while 

technologies to rely 

only on renewable 

energy sources are 

developed 

Economic SDG 12: Ensure 

sustainable 

consumption and 

production patterns 

Secondary Educate the reader 

about the uses given to 

natural gas and how 

daily activities affect 

to the greater or lower 

consumption of this 

fuel 

Environmental SDG 13: Take urgent 

action to combat 

climate change and its 

impacts 

Secondary Popularize natural gas 

as a cleaner option to 

other fossil fuels, such 

as petroleum or 

carbon, with lower 

GHG emissions, that 

used responsibly can 

constitute a good 

option in the transition 

to a fully renewable 

energy portfolio 
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Annex II 

MATLAB Code 
 

 

%%  

clear all 

clc 

close all 

%% Load Data 

infomat = load ('Matrix.mat'); 

Matrix = infomat.Matrix; 

infomatx = load ('Matrixx.mat'); 

Matrixx = table2array (infomatx.Matrixx); 

  

%%  Set up forecasting exercise 

infomat = load ('NGPrice.mat'); 

NGPrice=infomat.NGPrice1;                                         

% Target Variable 

  

start = 248;                                                                

% Forecasting starts here 

sample = size(NGPrice,1)-start-1;                                             

% Sample size to perform forecasting 

BM_Forecast = zeros(sample,1);                                              

% Empty Matrix to save benchmark model forecasts 

BM_Parameters = zeros(sample,2);                                            

% Empty matrix to save alpha and beta  

  

%% Benchmark Model - AR(1) 

  

for i = 0:sample-1                                                          

% For each observation starting Dec 2004 

    Y = NGPrice{129:start+i,:};                                               

% Take natural gas recorded prices until that moment 

    X = [ones(size(Y,1),1) Y];                                              

% Take lag of observed data 
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    b = regress(Y,lagmatrix(X,1));                                          

% Calculate relation between natural gas observed 

price and the one observed the period before                

    BM_Parameters(i+1,:) = b';                                              

% Save estimated alpha and beta 

    BM_Forecast(i+1,1) = X(end,:)*b;                                        

% Forecast(with the last observed data in Dec 2004) 

the value for Jan 2005....and do the same for each 

observation aggregating the new data point observed 

each month 

end 

  

%% Estimate ARX model 

Variables= Matrixx(:,[1:6 9]); 

% Variables= Matrixx(:,[1 3 5 6 9]); 

% Variables= Matrixx(:,[1]); 

ARX_Forecast = zeros(sample,1);                                             

% Empty Matrix to save ARX model forecasts 

ARX_Parameters = zeros(sample,size(Variables,2)+2);                         

% Empty matrix to save alpha and beta from ARX model 

  

for i = 0:sample-1 

    Y = NGPrice{1:start+i,:}; 

    X = [ones(size(Y,1),1) Y Variables(1:start+i,:)]; 

    b = regress(Y,lagmatrix(X,1)); 

    ARX_Parameters(i+1,:) = b';  

    ARX_Forecast(i+1,1) = X(end,:)*b; 

end 

%%  Estimate R2OS 

  

ERRORS = cell(sample,1); 

ERRORS2 = cell(sample,1); 

SE = cell(sample+1,1); 

SE2 = cell(sample+1,1); 

R2OS = zeros(sample,1); 

  

for i = 1:sample 

   ERRORS{i,1} = NGPrice{start+i,1}-ARX_Forecast(i,1); 

   SE{i,1} = ERRORS{i,1}.^2; 

end 

  

for i = 1:sample 

   ERRORS2{i,1} = NGPrice{start+i,1}-BM_Forecast(i,1); 

   SE2{i,1} = ERRORS2{i,1}.^2; 

end 

SE = cell2mat(SE); 

SE2 = cell2mat(SE2); 
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        temp1 = nansum(SE); 

        temp2 = nansum(SE2); 

   

        R2OS = 1-temp1./temp2; 

         

         

%% Estimate Clark and West (1996) statistic 

  

F = cell(sample,1); 

CandW = zeros(sample,1); 

  

F = SE2 -(SE-(ARX_Forecast-BM_Forecast).^2); 

  

      Y2 = F; 

      X2 = ones(size(Y2,1),1); 

      mdl = LinearModel.fit(X2,Y2,'Intercept',false); 

      tstat = table2array(mdl.Coefficients(1,3)); 

      CandW = (1-tcdf(tstat,sample-5)); 

  

%  

% save('FC_PMI_AR.mat','CandW','FORECAST','R2OS'); 
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Date Weather Conditions REDTI Drilling Activity Production 
World Ind 
Prod Electricity Consumption Inventories 

Natural Gas 
Price 

Monetary 
Policy 

01/1990 8.8 (7.74%) 3.63% (0.40%) 7.12% (3.47%) 202.52% 7.95 

02/1990 22.8 (13.63%) 0.13% 0.41% (0.24%) 0.40% 150.18% 7.80 

03/1990 29.8 2.18% 1.51% 0.42% (0.61%) 2.08% 134.29% 7.95 

04/1990 27 6.18% 0.58% (1.02%) 2.26% 2.86% 120.43% 8.14 

05/1990 53.9 4.03% 0.30% 1.12% 3.71% 2.37% 101.11% 7.77 

06/1990 54.1 6.45% 1.40% 0.36% 2.71% 2.48% 95.80% 7.67 

07/1990 34.6 0.20% 1.86% (0.01%) 5.13% 3.03% 94.41% 7.53 

08/1990 39.3 (6.05%) 2.60% 0.55% 4.04% 2.70% 93.01% 7.55 

09/1990 33 (1.29%) 2.52% 0.20% 6.17% 2.63% 110.11% 7.51 

10/1990 26.9 1.96% 6.82% (0.07%) 5.53% 3.67% 135.34% 7.34 

11/1990 22.1 5.54% 2.01% (0.48%) 2.25% 4.74% 146.68% 7.19 

12/1990 43.7 (7.07%) 2.13% (0.21%) (2.95%) 9.66% 110.12% 6.76 

01/1991 46.1 (10.22%) 0.93% 0.20% 0.46% 3.04% (33.86%) 6.39 

02/1991 16 (1.94%) 1.06% (0.70%) 2.40% 2.64% (32.03%) 6.10 

03/1991 38.3 (3.95%) 2.57% (0.40%) (0.28%) 1.99% (17.52%) 5.76 

04/1991 20.4 (3.86%) 2.68% 0.73% 0.04% 2.59% (14.83%) 5.56 

05/1991 30.2 (5.35%) 0.30% 0.45% 4.07% 3.35% (15.16%) 5.54 

06/1991 53.5 (3.39%) 0.03% 0.16% 4.64% 2.58% (22.03%) 5.53 

07/1991 47.7 (2.92%) (0.98%) 0.13% 1.95% 1.09% (19.13%) 5.45 

08/1991 46.4 (1.81%) (1.38%) (0.04%) 2.34% 0.07% (7.20%) 5.21 

09/1991 23.2 (3.68%) 1.48% 0.30% (0.12%) (0.31%) 9.48% 5.02 

10/1991 26.9 5.10% 1.19% 0.28% (0.20%) 0.15% 1.83% 4.80 

11/1991 66.4 (0.61%) 2.09% 0.03% 3.35% (3.28%) (16.37%) 4.41 

12/1991 33.1 (6.10%) 2.48% (0.80%) 2.32% (2.28%) (11.64%) 3.75 

01/1992 31.1 (4.55%) (0.25%) 0.43% (0.63%) 0.06% (25.35%) 3.60 

02/1992 17.5 (5.78%) 0.57% 0.69% 3.66% (1.29%) (13.47%) 3.53 

03/1992 44 (9.75%) (2.75%) (0.09%) 3.10% (3.71%) (7.43%) 3.53 
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04/1992 36.3 0.40% 0.09% 0.21% 3.13% (5.45%) 7.12% 3.27 

05/1992 7.9 3.59% 3.09% (0.30%) (1.58%) (5.02%) 17.81% 3.29 

06/1992 9.2 0.00% 5.08% 0.14% (3.91%) (4.46%) 26.20% 3.42 

07/1992 22.2 19.23% 5.82% 0.47% (0.93%) (2.82%) 42.56% 3.10 

08/1992 2.5 6.77% 3.35% (0.65%) (1.75%) (1.50%) 45.90% 3.08 

09/1992 33.6 7.55% 4.11% 0.54% (1.64%) (0.64%) 38.79% 2.85 

10/1992 48.3 12.08% 1.90% 0.17% 1.64% (0.57%) 32.38% 2.95 

11/1992 60.8 13.03% 0.38% (0.06%) 1.26% 0.21% 20.01% 2.98 

12/1992 49.6 12.86% 0.69% (0.57%) 3.63% (2.02%) 9.26% 2.76 

01/1993 34.3 (10.81%) 0.67% 0.77% 1.74% (3.06%) 42.25% 2.82 

02/1993 61.6 (26.43%) 1.13% 0.71% 1.19% (6.13%) 35.28% 2.87 

03/1993 56.7 (19.76%) 5.75% (0.09%) 5.95% (6.41%) 65.32% 2.93 

04/1993 46.8 0.75% 2.31% 0.28% 1.89% (4.84%) 54.97% 2.91 

05/1993 0.5 8.89% 2.02% 0.29% 0.38% (2.17%) 32.22% 3.10 

06/1993 36.9 11.22% (0.26%) (0.35%) 4.13% (0.83%) 22.61% 3.14 

07/1993 60.3 10.09% 0.48% 0.01% 6.47% (0.42%) 14.46% 3.08 

08/1993 59.6 8.33% 4.03% (0.12%) 8.36% (0.08%) 11.55% 3.09 

09/1993 47.8 7.95% 2.58% 0.37% 5.28% 0.49% (5.20%) 3.04 

10/1993 49.2 (2.38%) 2.71% 0.00% 1.75% 0.06% (18.76%) 3.11 

11/1993 66.1 (0.73%) 5.06% 0.30% 2.16% (0.37%) (1.80%) 3.13 

12/1993 48.3 4.41% 5.48% 0.58% 2.42% 0.13% 5.37% 3.13 

01/1994 65 (0.23%) 2.92% (0.04%) 7.20% (2.60%) 21.49% 3.05 

02/1994 58.5 (4.71%) 2.70% 0.33% 4.59% (1.91%) 56.42% 3.43 

03/1994 41.8 (0.49%) 4.40% 0.78% (0.28%) 1.30% (1.24%) 3.69 

04/1994 18.3 (1.24%) 4.41% 0.65% 2.23% 3.32% (15.20%) 4.07 

05/1994 31.1 (4.02%) 5.60% 0.52% 3.75% 2.45% (13.50%) 4.43 

06/1994 72.3 6.81% 4.81% 0.75% 6.72% 1.57% (5.90%) 4.68 

07/1994 42 1.72% 5.01% 0.23% 3.27% 2.03% (7.35%) 4.70 

08/1994 23.6 4.34% 5.31% 1.04% (0.46%) 2.11% (28.62%) 4.74 
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09/1994 2.2 8.78% 2.48% 0.36% 0.85% 1.77% (36.25%) 5.08 

10/1994 35.9 (0.85%) 1.62% 0.74% 2.38% 1.87% (27.15%) 5.27 

11/1994 34.4 (1.50%) 3.56% 0.87% 1.55% 3.43% (31.86%) 5.97 

12/1994 27.8 (2.83%) 2.55% 1.13% 0.73% 4.77% (28.36%) 7.12 

01/1995 30.3 (8.05%) 1.01% (0.35%) (2.27%) 8.16% (37.27%) 6.32 

02/1995 41.5 (8.76%) 0.36% 0.20% (0.16%) 8.88% (43.32%) 5.99 

03/1995 34.3 (11.73%) (0.14%) (0.06%) 1.86% 7.41% (32.21%) 6.00 

04/1995 54.9 1.51% 1.06% 0.45% 1.04% 4.04% (22.99%) 5.93 

05/1995 52.5 (0.30%) 0.64% (0.39%) 3.72% 2.63% (17.17%) 5.79 

06/1995 24 5.07% 1.55% 0.50% 0.82% 2.75% (17.25%) 5.68 

07/1995 56.1 13.35% 0.89% (0.11%) 1.57% 0.19% (28.55%) 5.54 

08/1995 95.6 0.00% (0.31%) 0.63% 9.90% (1.83%) (8.42%) 5.49 

09/1995 36.4 3.51% 1.95% 0.01% 4.48% (1.69%) 7.34% 5.54 

10/1995 23.4 0.24% 0.33% (0.00%) 3.15% (1.28%) 14.09% 5.49 

11/1995 70.6 3.86% 0.48% 0.52% 3.84% (3.56%) 25.84% 5.42 

12/1995 57.5 (0.70%) 0.58% 0.78% 3.99% (6.66%) 53.67% 5.33 

01/1996 49 (4.92%) 0.29% (0.19%) 6.70% (9.26%) 88.77% 5.03 

02/1996 40.5 1.23% 6.36% (0.03%) 7.02% (9.14%) 171.11% 5.05 

03/1996 67 2.43% 1.27% 0.50% 5.21% (11.33%) 86.26% 5.15 

04/1996 43.8 5.94% 2.89% 0.40% 3.12% (9.99%) 33.86% 5.19 

05/1996 64.9 4.71% 1.29% 0.66% 4.27% (9.38%) 32.83% 5.15 

06/1996 44.5 0.86% 2.54% 0.15% 4.51% (8.56%) 49.49% 5.26 

07/1996 30.4 3.61% 2.39% 0.31% 1.37% (6.14%) 67.40% 5.39 

08/1996 37.3 0.00% 3.09% 0.42% (3.11%) (3.77%) 26.57% 5.28 

09/1996 12.6 3.48% 2.73% 0.50% 0.72% (2.81%) 8.92% 5.29 

10/1996 36.4 (1.19%) 2.10% 0.29% 1.81% (2.57%) 29.92% 5.21 

11/1996 82.3 (3.41%) (1.78%) 0.45% 2.39% (2.57%) 43.85% 5.20 

12/1996 34.6 1.45% (3.44%) 0.54% 1.85% 0.17% 36.35% 5.22 

01/1997 46.3 (2.25%) 1.52% 0.32% 1.17% 0.45% 9.64% 5.23 
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02/1997 25.7 2.93% (2.10%) 0.56% (1.99%) 2.08% (51.03%) 5.27 

03/1997 34.6 5.28% 2.09% 0.81% (2.02%) 5.69% (37.66%) 5.49 

04/1997 64.7 1.54% (0.81%) 0.54% 2.38% 4.39% (11.09%) 5.46 

05/1997 55 2.85% 0.49% 0.22% (0.90%) 3.85% (2.19%) 5.35 

06/1997 12.9 6.65% (0.79%) 0.90% (1.72%) 3.71% (13.58%) 5.32 

07/1997 36.1 1.21% 0.20% 0.36% 3.53% 2.23% (13.57%) 5.35 

08/1997 28.6 (0.51%) (0.60%) 0.44% 1.42% 1.80% 18.95% 5.40 

09/1997 44.5 5.68% 0.63% 0.50% 3.99% 1.30% 51.00% 5.53 

10/1997 35.9 (1.95%) 1.31% 0.68% 7.02% 1.38% 25.65% 5.38 

11/1997 68.4 3.82% (0.48%) (0.15%) 2.21% 2.46% (2.18%) 5.46 

12/1997 44.2 3.68% (0.53%) (0.06%) 2.51% 0.17% (40.02%) 5.42 

01/1998 14.4 (6.02%) 1.12% (0.21%) (1.32%) 3.70% (37.57%) 5.36 

02/1998 14 (3.28%) (0.35%) 0.79% (0.55%) 5.24% (1.42%) 5.41 

03/1998 42 2.04% 0.17% (0.31%) 4.11% 3.54% 16.39% 5.37 

04/1998 31.1 (1.66%) 1.24% (0.07%) 2.01% 6.15% 17.46% 5.33 

05/1998 35.5 (1.86%) 1.04% 0.24% 7.08% 7.18% (6.05%) 5.41 

06/1998 65.4 0.86% 2.31% (0.20%) 8.32% 5.93% (2.94%) 5.29 

07/1998 61.1 (6.15%) 0.33% (0.10%) 5.81% 6.81% (2.61%) 5.23 

08/1998 77.9 2.91% 1.19% 0.34% 8.20% 5.12% (26.29%) 5.13 

09/1998 60 (1.06%) (4.81%) 0.24% 6.57% 3.36% (30.22%) 4.85 

10/1998 29.4 (7.16%) (1.32%) 0.30% 1.14% 3.99% (38.74%) 4.73 

11/1998 31.2 (3.85%) (1.33%) 0.16% 1.18% 6.24% (31.38%) 4.74 

12/1998 26.7 (1.60%) (0.95%) (0.12%) 1.37% 8.14% (26.50%) 4.69 

01/1999 31.6 (6.11%) (1.79%) 0.95% 4.76% 5.69% (12.88%) 4.76 

02/1999 18.2 (7.81%) (0.90%) (0.58%) 1.16% 5.32% (21.58%) 4.85 

03/1999 52.9 (3.06%) (1.59%) 0.81% 2.77% 4.79% (21.09%) 4.73 

04/1999 35.3 (9.95%) (2.47%) 0.06% 3.46% 2.64% (13.14%) 4.74 

05/1999 19.9 2.43% (3.80%) 0.93% 0.77% 1.50% 2.99% 4.74 

06/1999 40.7 14.21% (2.56%) 0.06% 0.68% 1.09% 3.95% 4.93 
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07/1999 72.6 10.14% (1.73%) 0.69% 3.65% (0.84%) 4.22% 4.93 

08/1999 57.3 10.25% (2.51%) 0.43% 1.58% (0.85%) 47.47% 5.19 

09/1999 17.5 7.21% 2.81% 0.65% (0.64%) 0.33% 23.13% 5.17 

10/1999 38.2 6.37% (0.61%) 0.58% (0.23%) (1.20%) 40.32% 5.31 

11/1999 2.9 5.66% 0.52% 0.94% 1.46% (0.72%) 9.36% 5.59 

12/1999 33.9 0.16% 0.82% 0.93% 1.20% (2.12%) 32.10% 5.83 

01/2000 36.8 (0.63%) (0.50%) (0.24%) 0.94% (4.14%) 26.57% 5.85 

02/2000 16.6 (2.53%) 1.86% 0.36% 8.09% (6.48%) 45.05% 5.85 

03/2000 21.4 (2.60%) 0.54% 0.50% 0.80% (4.70%) 50.21% 6.06 

04/2000 34 1.50% (0.08%) 0.99% 0.78% (5.30%) 36.81% 6.16 

05/2000 31.1 5.91% 1.32% 0.50% 5.40% (6.62%) 54.28% 6.62 

06/2000 43.4 4.96% 1.37% 0.10% 5.02% (6.76%) 79.39% 6.46 

07/2000 21.1 8.27% 1.77% 0.36% (2.31%) (5.70%) 65.47% 6.41 

08/2000 55.2 6.28% 2.61% 0.49% 2.25% (5.99%) 52.94% 6.39 

09/2000 35.7 3.98% 2.59% (0.22%) 2.82% (6.00%) 92.56% 6.52 

10/2000 22.9 3.95% 3.99% 0.33% 2.88% (4.72%) 78.40% 6.65 

11/2000 75 (1.19%) 0.85% 0.36% 4.45% (8.62%) 127.34% 6.44 

12/2000 84.5 2.64% 1.46% 0.36% 7.87% (12.09%) 266.64% 5.99 

01/2001 46.2 2.93% 2.02% (1.34%) 7.94% (8.63%) 225.49% 5.04 

02/2001 37.3 2.16% 0.08% 0.83% (0.25%) (7.75%) 105.21% 4.76 

03/2001 56.8 1.67% 1.97% (0.93%) 2.36% (8.61%) 79.59% 4.30 

04/2001 22.8 4.82% 3.58% (0.44%) 1.61% (5.60%) 65.31% 3.83 

05/2001 11.2 4.18% 3.47% (0.02%) (2.26%) (0.79%) 13.55% 3.23 

06/2001 43.2 5.32% 1.49% (0.24%) (3.47%) 1.87% (16.00%) 3.27 

07/2001 30 0.76% 1.19% (0.70%) (0.72%) 3.32% (23.79%) 3.05 

08/2001 73.7 (2.46%) 0.92% 0.55% 0.13% 5.01% (34.88%) 2.83 

09/2001 9.8 (5.81%) 1.12% (0.68%) (2.59%) 5.94% (58.58%) 2.17 

10/2001 30.7 (6.07%) (0.03%) (0.33%) (1.97%) 5.10% (52.21%) 1.57 

11/2001 0 (9.64%) 0.32% (0.27%) (4.23%) 11.05% (58.27%) 1.13 
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12/2001 22.3 (8.61%) 0.18% 0.08% (7.92%) 18.67% (73.50%) 0.67 

01/2002 18.4 (3.85%) (1.87%) 1.06% (6.11%) 18.68% (72.79%) 0.95 

02/2002 24.7 (6.34%) (2.69%) (0.27%) (2.88%) 18.18% (59.43%) 0.97 

03/2002 50.4 (9.13%) (2.58%) 0.97% (0.58%) 16.48% (42.07%) 1.40 

04/2002 21.3 (0.81%) (2.46%) 0.70% 1.55% 14.48% (34.92%) 0.93 

05/2002 53.5 12.75% (2.07%) 0.38% 2.07% 10.09% (18.12%) 1.12 

06/2002 53.4 2.03% (1.20%) 0.20% 2.46% 7.60% (14.13%) 1.02 

07/2002 68.7 1.70% (0.25%) 0.40% 6.74% 4.87% (5.26%) 1.15 

08/2002 68.1 0.70% (1.86%) 0.34% 1.64% 3.50% 2.95% 1.43 

09/2002 46.9 2.08% (4.30%) 0.30% 4.76% 1.68% 63.57% 1.59 

10/2002 54.5 (3.67%) (5.75%) 0.11% 5.75% 0.06% 64.82% 1.44 

11/2002 56.4 (3.67%) (1.33%) 0.35% 3.84% (3.73%) 67.41% 1.14 

12/2002 46.4 4.54% (1.01%) (0.34%) 6.30% (6.78%) 91.92% 1.12 

01/2003 50.2 0.56% (0.05%) 1.12% 4.62% (11.88%) 133.81% 1.02 

02/2003 58 4.46% 1.18% (0.02%) 6.77% (16.25%) 226.26% 1.16 

03/2003 40.5 2.27% 2.05% 0.05% 2.50% (13.91%) 90.50% 1.06 

04/2003 43 3.65% 1.48% (0.29%) (0.45%) (13.36%) 51.37% 1.01 

05/2003 53.2 8.68% (0.55%) (0.16%) (0.14%) (11.18%) 64.17% 1.28 

06/2003 18.7 5.32% 0.04% 0.46% (1.97%) (8.60%) 75.83% 1.10 

07/2003 47.7 1.54% (2.22%) 0.74% (0.96%) (6.46%) 64.57% 0.94 

08/2003 76.4 0.87% 0.75% (0.13%) 1.10% (5.15%) 57.38% 0.74 

09/2003 19 0.43% 2.80% 0.95% (1.18%) (2.85%) 26.21% 0.86 

10/2003 36.9 0.53% 4.08% 0.91% (2.11%) (0.02%) 10.26% 0.83 

11/2003 30.9 1.17% (0.07%) 0.33% (0.00%) 0.95% 9.95% 0.87 

12/2003 40.7 0.74% (0.37%) 0.74% 2.62% 2.24% 26.67% 0.74 

01/2004 55 (0.42%) 0.29% (0.16%) 1.03% 3.17% 10.50% 0.75 

02/2004 48.6 0.63% 2.13% 1.30% 1.58% 5.11% (31.95%) 0.75 

03/2004 21.9 0.73% (1.31%) (0.02%) 1.31% 5.66% (10.80%) 0.91 

04/2004 17.3 2.89% (0.61%) 0.65% 2.36% 6.23% 5.65% 0.87 
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05/2004 21.2 1.10% (0.77%) 0.33% 3.69% 5.15% 5.47% 1.07 

06/2004 34.6 0.40% (0.22%) (0.08%) 5.75% 3.56% 5.32% 1.32 

07/2004 23 2.97% 1.38% 0.69% (0.05%) 3.57% 15.07% 1.44 

08/2004 14.4 2.11% (0.84%) 0.05% (3.19%) 3.58% 5.85% 1.63 

09/2004 25 0.94% (3.40%) 0.40% 0.59% 1.91% 8.65% 1.93 

10/2004 36.2 (0.47%) (2.33%) 0.45% 1.32% 1.23% 34.04% 2.08 

11/2004 32.8 0.84% (0.44%) 0.15% 2.57% 1.88% 29.75% 2.35 

12/2004 43.4 (1.21%) (1.08%) 0.35% 2.14% 0.46% 3.95% 2.53 

01/2005 33.2 1.03% (1.35%) 0.78% (0.20%) 2.44% (1.81%) 2.68 

02/2005 26 0.74% (2.62%) 0.06% (2.91%) 5.81% 10.84% 2.84 

03/2005 54.4 3.23% 0.19% 0.24% 2.52% 2.67% 25.10% 2.96 

04/2005 17.7 4.03% (0.79%) 0.73% (0.09%) 2.96% 21.05% 3.08 

05/2005 43.2 0.60% 0.46% (0.38%) (2.47%) 2.78% (0.74%) 3.15 

06/2005 63.8 3.25% 0.37% 0.67% 3.32% 1.45% 11.74% 3.32 

07/2005 70.5 1.49% (1.73%) 0.09% 6.02% (0.42%) 24.81% 3.58 

08/2005 84.9 0.08% (1.41%) 0.32% 9.13% (1.99%) 72.19% 3.63 

09/2005 65.9 0.73% (7.47%) 0.08% 6.46% (2.38%) 139.21% 4.14 

10/2005 22 1.62% (6.87%) 0.58% 4.53% (1.96%) 102.11% 4.20 

11/2005 24.3 (2.23%) (3.43%) 1.07% 0.78% (1.08%) 65.83% 4.33 

12/2005 57.2 (0.65%) (1.37%) 0.66% 1.57% (0.90%) 88.61% 4.36 

01/2006 0 0.66% (2.94%) (0.13%) (1.42%) 6.03% 35.29% 4.53 

02/2006 38.3 7.57% (4.08%) 0.87% 0.38% 5.54% 17.58% 4.60 

03/2006 45.9 (1.21%) (4.14%) 0.31% 0.84% 7.37% (4.26%) 4.77 

04/2006 13.3 2.45% (3.56%) 0.41% 1.25% 7.80% (4.28%) 4.91 

05/2006 21.4 2.69% (2.69%) 0.68% 4.80% 7.18% (7.86%) 5.07 

06/2006 48.3 0.22% (1.73%) 0.33% 0.43% 6.77% (17.28%) 5.26 

07/2006 81.7 0.22% (0.45%) 0.33% 1.57% 5.11% (21.28%) 5.23 

08/2006 74.9 2.76% 0.07% 0.39% 1.33% 4.62% (30.11%) 5.20 

09/2006 20.8 0.85% 10.16% 0.38% (4.03%) 5.63% (62.98%) 5.15 
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10/2006 51.5 0.84% 8.26% 0.26% (1.58%) 3.63% (56.52%) 5.15 

11/2006 23.1 (1.87%) 3.82% 1.19% 1.13% 3.03% (29.92%) 5.13 

12/2006 21 1.20% 3.01% 0.64% (2.22%) 6.52% (49.98%) 5.17 

01/2007 31.1 0.63% 3.43% 0.58% 2.81% 0.40% (25.52%) 5.14 

02/2007 67.3 1.81% 4.67% 0.21% 6.33% (3.64%) 3.96% 5.13 

03/2007 23.8 (0.34%) 5.02% 0.65% (0.04%) (0.66%) 0.44% 5.18 

04/2007 48.6 0.00% 4.50% 0.14% 2.03% (2.84%) 4.25% 5.22 

05/2007 4.8 0.21% 5.63% 0.92% 1.20% (1.23%) 19.60% 5.10 

06/2007 47.5 1.30% 4.18% 0.15% (0.19%) (0.27%) 14.85% 5.01 

07/2007 28.8 0.20% 3.95% 0.45% (3.19%) 1.86% (2.72%) 5.02 

08/2007 100 0.40% 4.36% 0.43% 0.79% 0.95% (13.08%) 4.64 

09/2007 42.1 (1.14%) 4.84% 0.06% 5.67% 0.14% 21.93% 4.29 

10/2007 4.7 (2.71%) 4.76% 0.66% 4.84% 1.75% 10.04% 4.29 

11/2007 42.9 1.11% 6.29% 0.42% 2.57% 0.76% (8.25%) 3.69 

12/2007 44.8 1.17% 5.85% 0.21% 1.80% (2.30%) 4.40% 3.70 

01/2008 40 (3.20%) 5.49% 1.49% 3.63% (4.72%) 16.50% 2.66 

02/2008 41.7 0.35% 8.83% (0.54%) 1.63% (3.09%) 2.98% 2.14 

03/2008 48 1.26% 5.23% (0.31%) 1.33% (6.21%) 26.94% 1.87 

04/2008 27.8 1.18% 5.90% 0.43% 1.19% (5.19%) 28.52% 1.81 

05/2008 50.5 1.16% 4.19% (0.88%) (1.26%) (5.70%) 41.71% 1.96 

06/2008 78.6 2.17% 4.90% 0.26% 2.00% (5.97%) 65.38% 2.05 

07/2008 46.3 2.19% 7.40% (0.67%) 2.51% (5.30%) 69.88% 2.05 

08/2008 35.6 2.46% 5.65% (0.90%) (5.42%) (2.16%) 26.45% 2.13 

09/2008 26.3 0.25% (5.92%) (1.01%) (4.62%) (2.09%) 20.26% 1.91 

10/2008 39.3 (2.71%) 1.47% (1.54%) (4.99%) (2.17%) (4.51%) 1.84 

11/2008 46 (2.85%) 2.44% (2.70%) (2.77%) (1.34%) (7.51%) 1.42 

12/2008 50.3 (7.88%) 2.34% (3.21%) 0.23% (0.57%) (18.93%) 0.65 

01/2009 53.6 (11.96%) 4.50% (2.83%) (1.84%) 1.30% (34.41%) 0.61 

02/2009 32.1 (14.65%) 1.49% 0.85% (6.32%) 5.53% (47.15%) 0.88 
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03/2009 40.2 (16.39%) 2.65% (0.49%) (3.83%) 7.67% (57.79%) 0.75 

04/2009 31.5 (10.61%) 1.67% 0.19% (4.71%) 8.95% (65.26%) 0.43 

05/2009 23.5 (6.71%) 1.72% 0.57% (4.74%) 9.35% (65.73%) 0.21 

06/2009 53.3 (4.43%) 1.03% 0.98% (7.04%) 9.69% (69.62%) 0.02 

07/2009 19.7 (2.32%) (1.60%) 0.88% (6.29%) 9.02% (68.98%) -0.12 

08/2009 53.6 2.37% (0.04%) 0.82% (2.03%) 7.51% (61.27%) -0.28 

09/2009 32.6 1.88% 8.84% 1.13% (3.12%) 7.18% (60.97%) -0.41 

10/2009 63.5 2.56% 2.03% 0.49% (1.52%) 5.98% (40.12%) -0.47 

11/2009 13.9 1.66% (0.26%) 0.93% (3.31%) 7.23% (45.74%) -0.61 

12/2009 60.4 3.27% (1.38%) 0.59% 0.79% 4.72% (9.95%) -0.15 

01/2010 48.1 8.44% (1.86%) 1.86% 3.30% 3.29% 7.96% -0.45 

02/2010 59.5 8.52% (1.27%) (0.13%) 4.30% (0.67%) 15.59% -0.54 

03/2010 31.2 4.60% 0.62% 1.46% 3.17% 0.38% 6.23% -0.48 

04/2010 2.4 2.79% 1.97% 0.45% 0.78% 2.02% 11.99% -0.47 

05/2010 38.1 0.10% 2.10% 0.85% 3.26% 1.01% 6.94% -0.48 

06/2010 100 (0.73%) (0.08%) (0.19%) 8.19% (0.02%) 24.64% -0.54 

07/2010 77.9 1.89% 1.78% 0.47% 8.98% (1.37%) 34.66% -0.59 

08/2010 90.2 1.24% 1.94% 0.38% 7.68% (2.41%) 35.20% -0.70 

09/2010 55.8 (0.61%) 7.13% 0.23% 5.39% (1.52%) 30.36% -0.80 

10/2010 19.5 (1.13%) 7.27% 0.48% 0.18% 0.80% (15.69%) -1.00 

11/2010 43.5 (1.66%) 6.18% 0.58% 2.43% (0.58%) (0.09%) -0.96 

12/2010 65.9 (1.05%) 9.29% 1.17% 2.88% 0.08% (22.15%) -0.88 

01/2011 54.2 (3.30%) 4.03% 1.39% 0.70% 0.44% (23.91%) -1.01 

02/2011 44.6 (0.22%) 2.76% (0.17%) (0.54%) 1.06% (25.22%) -1.09 

03/2011 42.5 (2.54%) 5.90% (0.29%) (0.31%) (0.86%) (9.84%) -0.99 

04/2011 33.4 0.11% 7.28% (0.50%) 3.05% (3.14%) 2.74% -1.07 

05/2011 32.5 (0.79%) 7.80% 0.92% 1.47% (3.10%) 0.21% -1.14 

06/2011 84.4 (0.11%) 8.14% 0.26% (0.60%) (2.78%) (8.34%) -1.12 

07/2011 100 0.34% 5.96% 0.30% 0.56% (2.45%) (7.91%) -1.19 
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08/2011 88.4 1.59% 6.06% 0.22% 0.25% (1.66%) (9.24%) -1.38 

09/2011 34.7 1.45% 5.36% (0.06%) (0.45%) (1.08%) (3.74%) -1.40 

10/2011 26 2.87% 6.17% 0.01% 0.06% (0.61%) 0.44% -1.44 

11/2011 24.2 (5.68%) 8.75% (0.34%) 0.25% 0.80% (15.91%) -1.48 

12/2011 28.4 (6.70%) 5.97% 0.23% (5.18%) 4.74% (27.54%) -1.47 

01/2012 15.7 (3.78%) 11.83% 0.78% (6.58%) 9.24% (42.11%) -1.54 

02/2012 17.5 (8.48%) 12.15% 0.21% (2.91%) 12.19% (39.92%) -1.45 

03/2012 0 (7.75%) 4.70% (0.50%) (2.55%) 15.57% (46.83%) -1.27 

04/2012 19.5 (5.70%) 2.88% (0.70%) (1.50%) 13.86% (55.13%) -1.26 

05/2012 21.8 (4.61%) 3.31% 0.60% 3.21% 11.22% (44.40%) -1.24 

06/2012 51.4 (7.00%) 2.76% (0.40%) (0.97%) 9.11% (46.91%) -1.11 

07/2012 96.3 (6.45%) 5.33% 0.11% 0.17% 7.25% (34.19%) -1.18 

08/2012 69.1 (6.70%) 0.15% (0.30%) (2.03%) 5.94% (31.15%) -1.26 

09/2012 36.8 (8.21%) 2.21% (0.35%) (2.37%) 4.25% (28.56%) -1.36 

10/2012 31.8 (4.92%) 2.19% 0.51% 1.09% 2.33% (8.99%) -1.34 

11/2012 49.4 (0.94%) (0.19%) (0.14%) 1.19% 0.36% 7.19% -1.42 

12/2012 22.8 0.48% (0.79%) 0.32% (1.41%) 0.28% 3.71% -1.43 

01/2013 30.5 2.60% (2.31%) 0.40% 3.20% (1.97%) 22.14% -1.36 

02/2013 43.4 (1.84%) (3.82%) (0.02%) 1.53% (4.07%) 29.54% -1.42 

03/2013 58.8 (3.05%) (0.80%) 0.27% 4.91% (10.19%) 73.12% -1.44 

04/2013 41 (9.44%) 1.19% 0.38% 2.69% (10.09%) 111.64% -1.52 

05/2013 3.9 (5.61%) (0.08%) 0.07% (2.35%) (7.82%) 63.49% -1.27 

06/2013 57.2 (0.28%) 0.36% (0.43%) (1.31%) (5.72%) 53.18% -0.97 

07/2013 49.7 3.41% 1.92% 0.57% (3.07%) (3.77%) 20.71% -1.52 

08/2013 37 6.04% 5.10% 0.47% (2.90%) (2.32%) 18.85% -1.67 

09/2013 38.9 0.78% 0.17% 0.31% 1.76% (1.46%) 25.86% -1.80 

10/2013 30.1 (3.86%) (1.72%) (0.15%) 1.36% (1.36%) 9.78% -1.85 

11/2013 63.5 (2.14%) (0.66%) 0.48% 1.28% (2.46%) 1.00% -2.00 

12/2013 52.9 1.91% 0.09% (0.13%) 6.43% (6.81%) 24.97% -2.13 
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01/2014 59 (2.95%) 2.71% 0.87% 6.10% (11.14%) 39.08% -2.38 

02/2014 60.7 (5.80%) 3.84% 0.57% 5.64% (14.24%) 77.43% -2.54 

03/2014 65.9 (2.35%) 4.79% (0.15%) 1.48% (14.67%) 26.11% -2.62 

04/2014 31.1 (5.11%) 5.62% 0.39% (0.76%) (13.04%) 9.01% -2.89 

05/2014 8.6 2.85% 5.81% (0.23%) 0.54% (11.33%) 10.53% -2.99 

06/2014 56 (3.38%) 7.32% 0.19% 0.60% (9.44%) 17.03% -2.89 

07/2014 24.4 0.00% 4.65% 0.18% (2.11%) (7.41%) 8.55% -2.84 

08/2014 40.5 3.18% 6.01% (0.97%) (0.53%) (5.80%) 11.49% -2.89 

09/2014 42.5 3.70% 8.74% 1.00% 0.98% (4.69%) 6.55% -2.81 

10/2014 20.6 (2.38%) 8.86% (0.67%) 0.62% (2.77%) 1.04% -2.80 

11/2014 78 7.01% 8.42% 0.73% 1.19% (2.22%) 11.97% -2.77 

12/2014 24.9 (2.56%) 9.66% 0.23% (2.22%) 3.46% (19.50%) -2.42 

01/2015 43 (6.43%) 8.14% 0.56% (3.23%) 7.75% (36.58%) -2.27 

02/2015 77.6 (7.50%) 6.94% (0.27%) (0.67%) 8.52% (52.28%) -1.97 

03/2015 45.7 (15.54%) 7.76% (0.04%) 0.84% 12.17% (42.58%) -1.81 

04/2015 26.5 (11.20%) 6.77% (0.06%) (0.19%) 13.63% (44.27%) -1.59 

05/2015 12.3 0.45% 5.98% (0.25%) (1.11%) 12.84% (37.81%) -1.43 

06/2015 64 0.45% 3.91% 0.47% 1.23% 10.34% (39.50%) -1.40 

07/2015 47.5 (3.57%) 4.83% (0.21%) 3.30% 8.04% (29.58%) -1.29 

08/2015 58.1 (3.24%) 3.77% 0.34% 2.87% 6.72% (29.03%) -0.92 

09/2015 62.5 (5.26%) 3.65% (0.10%) 1.91% 5.71% (32.45%) -0.74 

10/2015 25.6 (2.53%) 2.57% 0.33% (0.10%) 4.54% (38.70%) -0.53 

11/2015 18.5 0.52% 2.42% (0.37%) (3.07%) 6.53% (49.55%) 0.00 

12/2015 0 (10.31%) 1.52% (0.24%) (3.72%) 7.09% (44.34%) 0.26 

01/2016 38.7 (23.56%) 1.18% 1.08% (2.65%) 7.85% (24.47%) 0.40 

02/2016 17.9 (23.31%) 5.29% (0.26%) (3.02%) 14.41% (31.85%) 0.53 

03/2016 14.2 (8.82%) (0.09%) 0.20% (6.03%) 17.22% (39.77%) 0.51 

04/2016 26.5 (5.38%) (2.90%) 0.18% (1.99%) 13.75% (27.02%) 0.41 

05/2016 16.1 (2.27%) (0.82%) (0.05%) (1.06%) 10.13% (33.01%) 0.48 
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06/2016 75.9 0.00% (1.20%) 0.69% 0.99% 7.59% (8.31%) 0.42 

07/2016 82.2 2.33% (1.27%) (0.49%) 2.35% 5.23% (2.34%) 0.47 

08/2016 95.4 (6.82%) (0.81%) 0.30% 5.10% 2.58% (0.03%) 0.45 

09/2016 66.6 10.98% (3.50%) (0.09%) 0.99% 1.08% 10.49% 0.51 

10/2016 15.1 15.38% (3.06%) 0.69% 0.14% 0.82% 25.27% 0.52 

11/2016 7.2 11.43% (1.76%) 0.07% 0.34% 0.55% 18.39% 0.43 

12/2016 44.1 7.69% (2.33%) (0.03%) 4.07% (4.50%) 82.54% 0.42 

01/2017 18.7 11.11% (3.52%) 0.76% (0.76%) (4.20%) 39.86% 0.38 

02/2017 0 7.14% (6.05%) 0.37% (6.88%) (2.74%) 40.39% 0.39 

03/2017 36.4 2.67% (0.99%) 0.53% 1.92% (5.94%) 65.73% 0.64 

04/2017 0 7.79% 0.42% 0.20% 1.28% (4.84%) 58.31% 0.85 

05/2017 27.2 7.23% 0.40% 0.18% 2.44% (4.38%) 59.58% 1.03 

06/2017 50 3.37% 2.29% (0.02%) (0.33%) (3.89%) 12.71% 1.06 

07/2017 65.9 2.72% 1.20% (0.11%) (1.15%) (3.60%) 4.41% 1.08 

08/2017 40.9 (3.17%) 1.73% 0.65% (5.35%) (2.63%) 1.07% 1.11 

09/2017 25 2.19% 5.22% 0.22% (4.45%) (1.87%) (2.37%) 1.10 

10/2017 8 (3.74%) 7.03% 0.07% 0.92% (2.55%) (4.71%) 1.16 

11/2017 36.6 (3.89%) 8.17% 0.93% 2.15% (3.43%) 17.07% 1.28 

12/2017 46.6 5.20% 10.15% 0.15% 0.70% (3.70%) (24.58%) 1.41 

01/2018 44.6 2.75% 9.90% 0.38% 8.05% (7.18%) 16.56% 1.40 

02/2018 20.2 (3.74%) 10.35% 0.35% 5.95% (10.20%) (7.42%) 1.55 

03/2018 50.2 4.44% 9.73% (0.37%) 1.79% (10.82%) (8.93%) 1.65 

04/2018 75.4 2.66% 10.64% 0.54% 1.93% (13.39%) (12.54%) 1.71 

05/2018 26.1 2.59% 11.50% (0.19%) 3.84% (11.58%) (13.28%) 1.77 

06/2018 78.8 (2.53%) 10.58% (0.15%) 2.81% (9.80%) (2.82%) 1.89 

07/2018 74.2 (3.11%) 13.95% 0.28% 2.02% (9.10%) (8.18%) 1.92 

08/2018 85.2 (1.60%) 15.76% 0.34% 5.74% (8.33%) 0.23% 2.01 

09/2018 80.6 1.63% 14.14% (0.40%) 4.91% (7.78%) (1.09%) 2.17 

10/2018 35.1 2.67% 13.85% 0.45% 3.25% (7.07%) 11.85% 2.30 
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11/2018 73.8 0.52% 12.53% (0.49%) 2.60% (8.38%) 35.20% 2.40 

12/2018 31.4 2.59% 12.10% 0.26% (0.05%) (4.38%) 40.66% 2.53 

01/2019 37.3 0.51% 12.81% 0.06% (4.41%) (2.11%) (21.81%) 2.49 

02/2019 43.2 (2.01%) 11.11% 0.09% 0.98% (3.94%) 0.21% 2.46 

03/2019 55.4 (1.03%) 10.22% 0.74% 1.64% (3.45%) 7.05% 2.40 

04/2019 14.7 (2.07%) 11.40% (0.39%) (1.61%) 2.59% (6.08%) 2.41 

05/2019 54.4 (2.65%) 10.50% 0.08% (2.14%) 3.29% (7.31%) 2.41 

06/2019 44.3 (2.72%) 11.00% (0.62%) (4.83%) 4.37% (19.82%) 2.19 

07/2019 73.6 (3.91%) 8.21% 0.10% 0.23% 5.24% (17.15%) 2.17 

08/2019 73.5 (3.49%) 7.55% (0.10%) (2.23%) 5.77% (26.12%) 2.02 

09/2019 100 (8.43%) 7.69% (0.15%) 0.93% 6.66% (15.39%) 1.96 

10/2019 37.3 (8.55%) 7.16% (0.17%) (0.29%) 7.22% (30.34%) 1.66 

11/2019 71.8 (6.47%) 7.65% 0.26% (1.63%) 8.17% (37.18%) 1.64 

12/2019 28.6 (1.54%) 6.81% 0.43% (0.67%) 7.06% (44.54%) 1.61 

01/2020 13.2 (7.81%) 6.52% (4.51%) (3.78%) 10.01% (35.66%) 1.63 

02/2020 24.7 (6.78%) 10.03% 0.36% (0.10%) 11.53% (31.09%) 1.41 

03/2020 24.7 (3.64%) 5.89% (0.13%) (3.77%) 15.57% (39.83%) 0.69 

04/2020 53.2 (12.26%) 1.78% (9.12%) (4.10%) 13.32% (34.52%) 0.50 

05/2020 29.8 (15.05%) (4.06%) 0.72% (7.33%) 11.89% (33.46%) 0.48 

06/2020 55.3 (3.80%) (2.49%) 5.02% (0.55%) 10.05% (33.19%) 0.40 

07/2020 91 (5.26%) (0.66%) 3.03% 0.69% 8.40% (27.24%) 0.25 

08/2020 88.1 (2.78%) (2.85%) 1.30% (1.15%) 7.29% 2.13% 0.26 

09/2020 37.8 4.29% (3.87%) 1.38% (5.34%) 5.59% (26.67%) 0.08 

10/2020 38.4 0.00% (5.30%) 0.80% (3.80%) 2.22% (4.74%) 0.17 

11/2020 11.1 1.37% (4.47%) 1.16% (3.13%) 4.20% (3.45%) -0.23 

12/2020 35.1 8.11% (3.67%) 1.64% 1.59% 2.21% 11.76% -0.29 

01/2021 25.8 7.50% (2.52%) 1.40% 1.53% 0.47% 29.50% -0.42 

02/2021 60.6 5.81% (13.07%) (0.27%) 0.72% (3.29%) 160.03% -0.48 

03/2021 26.7 1.10% (2.79%) 0.48% 0.77% (3.43%) 39.38% -1.56 
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04/2021 22.3 2.17% 1.03% 0.10% 3.23% (5.39%) 44.13% -1.80 

05/2021 19 6.38% 6.86% (1.18%) 4.99% (5.49%) 57.08% -2.00 

06/2021 69.1 (3.00%) 5.40% 1.29% 5.28% (6.70%) 90.25% -1.83 

07/2021 52.5 5.15% 3.67% (0.12%) (1.73%) (6.45%) 109.19% -1.89 

08/2021 89.1 (1.96%) 6.18% (0.44%) 3.19% (7.05%) 68.45% -1.80 

09/2021 38.6 1.00% 0.00% (0.82%) 4.03% 0.00% 155.75% -1.81 

10/2021 4.6 0.00% 0.00% 0.60% 0.00% 0.00% 134.30% -1.70 

11/2021 40 0.00% 0.00% 1.33% 0.00% 0.00% (100.00%) -1.85 

12/2021 40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -1.85 
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Annex IV 

Python Code 
 

 

""" 

Created on Mon Dec 26 12:35:33 2022 

 

@author: paula 

""" 

#%% Importing packages and importing NG Price from Excel 

 

import numpy as np 

import pandas as pd 

import openpyxl as xl 

 

import os 

os.getcwd() 

 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

from statsmodels.graphics.tsaplots import plot_acf,plot_pacf  

from statsmodels.tsa.seasonal import seasonal_decompose  

import matplotlib.pyplot as plt                        

from sklearn.metrics import mean_squared_error 

from statsmodels.tools.eval_measures import rmse 

import warnings 

warnings.filterwarnings("ignore") 
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import time 

 

from datetime import date 

from datetime import datetime 

today = date.today() 

 

df=pd.read_excel('NGPrice4.xlsx') 

df.head(10) 

 

df.isnull().sum() 

df=df.fillna(method='pad') 

df.isnull().sum() 

 

from os import listdir 

listdir() 

 

ax = df['Natural gas, US price'].plot(figsize = (16,5), title = 

'Monthly Historical Natural Gas Price (USD) Sep 2000 - Dec 

2021') 

ax.set(xlabel='Dates', ylabel='(USD)'); 

print("Today's date:", today) 

 

df.describe() 

 

#%% Separating train and test data 

 

train_data=df[0:200] 

test_data=df[200:] 

predict_data=df[120:] 

 

print('Observations: %d' % (len(df))) 

print('Train Dataset:', train_data.shape) 

print('Test Dataset:', test_data.shape) 
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ax= train_data.plot(figsize=(10,5)) 

test_data.plot(ax=ax, color='r') 

plt.legend(['train', 'test']) 

 

#%%Normalize Data 

 

from sklearn.preprocessing import MinMaxScaler 

 

scaler = MinMaxScaler(feature_range = (0,1)) 

train_data_scaled = scaler.fit_transform(train_data) 

print(train_data_scaled); print(train_data_scaled.shape) 

 

#%% Create a data structure with 6 time lags and 1 output 

 

X_train = [] 

y_train = [] 

for i in range(6, len(train_data_scaled)): 

    X_train.append(train_data_scaled[i-6:i,0]) 

    y_train.append(train_data_scaled[i,0]) 

X_train, y_train = np.array(X_train), np.array(y_train) 

print(X_train); print(); print(y_train) 

 

#%% Reshape Data 

X_train = np.reshape(X_train, (X_train.shape[0], 

X_train.shape[1], 1)) 

print(X_train.shape); print(); print(X_train) 

 

#%% Recurrent Neural Network 

#from keras.preprocessing.sequence import TimeseriesGenerator 

#from keras.models import Sequential 

#from keras.layers import Dense 

#from keras.layers import LSTM 
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from tensorflow.keras.callbacks import EarlyStopping 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

 

model = tf.keras.Sequential() 

# adding 1st LSTM layer and some dropout regularization 

model.add(tf.keras.layers.LSTM(units=200, 

input_shape=(X_train.shape[1], 1), return_sequences=True, 

activation = 'relu')) 

model.add(tf.keras.layers.Dropout(0.2)) 

# adding 2nd LSTM layer and some dropout regularization 

model.add(tf.keras.layers.LSTM(units=200, 

return_sequences=True)) 

model.add(tf.keras.layers.Dropout(0.2)) 

# adding 3rd LSTM layer and some dropout regularization 

model.add(tf.keras.layers.LSTM(units=200, 

return_sequences=True)) 

model.add(tf.keras.layers.Dropout(0.2)) 

# adding 4th LSTM layer and some dropout regularization 

model.add(tf.keras.layers.LSTM(units=200)) 

model.add(tf.keras.layers.Dropout(0.2)) 

# adding output layer 

model.add(tf.keras.layers.Dense(units=1)) 

#compiling RNN 

model.compile(loss='mse', optimizer='adam') 

early_stopping = EarlyStopping(monitor='loss', patience=16) 

# fitting RNN on training set 

model.fit(X_train, y_train, epochs= 50, batch_size=1,  

          verbose=2, callbacks=[early_stopping]) 

 

#%% Predict Natural Gas Price Sep 2010-Dec 2021 

dataset_total = pd.concat((train_data, test_data), axis=0) 

print(dataset_total) 
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dataset_total = pd.concat((train_data, test_data), axis=0) 

 

# inputs = dataset_total[len(dataset_total) - len(test_data)- 

6:].values 

inputs = dataset_total[len(dataset_total) - 136 - 6:].values 

inputs = inputs.reshape(-1,1) 

inputs = scaler.transform(inputs) # transforming input data 

 

X_test = [] 

y_test = [] 

 

for i in range (6, 142): 

    X_test.append(inputs[i-6:i, 0]) 

    y_test.append(train_data_scaled[i,0]) 

       

X_test, y_test = np.array(X_test), np.array(y_test) 

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 

1)) 

print (X_test) 

 

pred_price = model.predict(X_test) 

pred_price = scaler.inverse_transform(pred_price) 

print(pred_price) 

 

#%% Compare predicted values to real values 

a = pd.DataFrame(pred_price) 

a.rename(columns = {0: 'Predicted'}, inplace=True);  

a.index = predict_data.index 

compare = pd.concat([predict_data, a],1) 

compare 

#%% Graph predicted values vs real values 

 

plt.figure(figsize= (15,5)) 
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plt.plot(compare['Natural gas, US price'], color = 'red', label 

="Actual Natural Gas Price") 

plt.plot(compare.Predicted, color='blue', label = 'Predicted 

Price') 

plt.title("Natural Gas Price Prediction") 

plt.xlabel('Time') 

plt.ylabel('Natural gas price') 

plt.legend(loc='best') 

plt.show() 

 

#%% Compute performance metrics, R2 and MSE 

import math 

from sklearn.metrics import r2_score 

 

test_score = math.sqrt(mean_squared_error(compare['Natural gas, 

US price'], compare.Predicted)) 

print('Test Score: %.2f RMSE' % (test_score)) 

# Explained variance score: 1 is perfect prediction 

print('Variance score (test): %.2f' % r2_score(predict_data, 

pred_price)) 
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Annex V 

Predicted vs. Actual Prices 
 

 

 

 Henry Hub  Machine Learning BM AR Model ARX Model 1 

Sep-10 3.89 4.51 4.47 4.40 

Oct-10 3.43 4.16 4.10 3.98 

Nov-10 3.71 3.75 3.66 3.46 

Dec-10 4.25 3.73 3.93 3.78 

Jan-11 4.49 4.05 4.39 4.31 

Feb-11 4.09 4.34 4.63 4.50 

Mar-11 3.97 4.13 4.24 4.08 

Apr-11 4.24 4.05 4.15 4.00 

May-11 4.31 4.23 4.39 4.28 

Jun-11 4.54 4.31 4.45 4.34 

Jul-11 4.42 4.55 4.67 4.60 

Aug-11 4.06 4.50 4.54 4.46 

Sep-11 3.90 4.25 4.21 4.09 

Oct-11 3.57 4.07 4.07 3.92 

Nov-11 3.24 3.75 3.76 3.60 

Dec-11 3.17 3.43 3.46 3.30 

Jan-12 2.67 3.24 3.39 3.17 

Feb-12 2.51 2.87 2.93 2.69 

Mar-12 2.17 2.65 2.78 2.56 

Apr-12 1.95 2.39 2.44 2.18 

May-12 2.43 2.19 2.23 1.98 

Jun-12 2.46 2.28 2.68 2.51 

Jul-12 2.95 2.30 2.70 2.50 

Aug-12 2.84 2.58 3.15 3.01 

Sep-12 2.85 2.60 3.05 2.87 

Oct-12 3.32 2.67 3.05 2.86 

Nov-12 3.54 2.96 3.49 3.34 

Dec-12 3.34 3.20 3.69 3.56 

Jan-13 3.33 3.18 3.50 3.34 
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Feb-13 3.33 3.19 3.49 3.37 

Mar-13 3.81 3.20 3.49 3.36 

Apr-13 4.17 3.53 3.93 3.86 

May-13 4.04 3.88 4.26 4.19 

Jun-13 3.83 3.91 4.15 4.01 

Jul-13 3.62 3.82 3.95 3.83 

Aug-13 3.43 3.68 3.76 3.61 

Sep-13 3.62 3.50 3.57 3.41 

Oct-13 3.68 3.54 3.75 3.64 

Nov-13 3.64 3.56 3.80 3.69 

Dec-13 4.24 3.54 3.75 3.64 

Jan-14 4.71 3.99 4.32 4.28 

Feb-14 6.00 4.50 4.75 4.73 

Mar-14 4.90 5.67 5.93 5.97 

Apr-14 4.66 5.07 4.91 4.87 

May-14 4.58 4.96 4.69 4.59 

Jun-14 4.59 4.86 4.62 4.52 

Jul-14 4.05 4.85 4.63 4.54 

Aug-14 3.91 4.39 4.11 3.97 

Sep-14 3.92 4.15 3.99 3.86 

Oct-14 3.78 4.01 4.02 3.91 

Nov-14 4.12 3.84 3.89 3.75 

Dec-14 3.48 4.04 4.19 4.10 

Jan-15 2.99 3.60 3.57 3.40 

Feb-15 2.87 3.25 3.14 2.94 

Mar-15 2.83 3.01 3.02 2.85 

Apr-15 2.61 2.85 2.98 2.82 

May-15 2.85 2.66 2.77 2.59 

Jun-15 2.78 2.69 3.01 2.84 

Jul-15 2.84 2.65 2.94 2.81 

Aug-15 2.77 2.68 3.00 2.89 

Sep-15 2.66 2.65 2.93 2.82 

Oct-15 2.34 2.59 2.82 2.70 

Nov-15 2.09 2.43 2.51 2.37 

Dec-15 1.93 2.26 2.28 2.11 

Jan-16 2.28 2.12 2.13 1.96 

Feb-16 1.99 2.18 2.46 2.30 

Mar-16 1.73 2.08 2.16 1.97 

Apr-16 1.92 1.95 1.91 1.71 

May-16 1.92 1.96 2.10 1.97 

Jun-16 2.59 1.96 2.12 1.99 

Jul-16 2.82 2.24 2.72 2.63 

Aug-16 2.82 2.45 2.93 2.86 

Sep-16 2.99 2.56 2.93 2.89 

Oct-16 2.98 2.71 3.10 3.04 

Nov-16 2.55 2.77 3.08 3.01 
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Dec-16 3.59 2.59 2.65 2.58 

Jan-17 3.30 3.11 3.67 3.66 

Feb-17 2.85 3.05 3.37 3.31 

Mar-17 2.88 2.87 2.96 2.83 

Apr-17 3.10 2.82 3.02 2.96 

May-17 3.15 2.91 3.20 3.14 

Jun-17 2.98 2.96 3.24 3.19 

Jul-17 2.98 2.88 3.06 2.96 

Aug-17 2.90 2.86 3.08 2.98 

Sep-17 2.98 2.81 3.00 2.85 

Oct-17 2.88 2.83 3.08 2.93 

Nov-17 3.01 2.78 2.99 2.89 

Dec-17 2.82 2.83 3.11 3.02 

Jan-18 3.87 2.74 2.88 2.76 

Feb-18 2.67 3.35 3.94 3.94 

Mar-18 2.69 2.80 2.80 2.72 

Apr-18 2.80 2.74 2.82 2.71 

May-18 2.80 2.70 2.89 2.78 

Jun-18 2.97 2.69 2.91 2.81 

Jul-18 2.83 2.77 3.05 2.95 

Aug-18 2.96 2.70 2.92 2.79 

Sep-18 3.00 2.77 3.07 2.97 

Oct-18 3.28 2.81 3.10 3.01 

Nov-18 4.09 3.00 3.38 3.28 

Dec-18 4.04 3.60 4.17 4.11 

Jan-19 3.11 3.75 4.00 3.92 

Feb-19 2.69 3.28 3.18 3.02 

Mar-19 2.95 2.98 2.84 2.73 

Apr-19 2.65 2.93 3.04 2.95 

May-19 2.64 2.72 2.77 2.63 

Jun-19 2.40 2.62 2.75 2.61 

Jul-19 2.37 2.44 2.53 2.35 

Aug-19 2.22 2.37 2.50 2.38 

Sep-19 2.56 2.27 2.37 2.23 

Oct-19 2.33 2.38 2.70 2.60 

Nov-19 2.65 2.30 2.47 2.35 

Dec-19 2.22 2.44 2.77 2.64 

Jan-20 2.02 2.27 2.38 2.27 

Feb-20 1.91 2.16 2.18 2.04 

Mar-20 1.79 2.06 2.07 1.94 

Apr-20 1.74 1.97 1.95 1.80 

May-20 1.75 1.91 1.90 1.77 

Jun-20 1.63 1.88 1.91 1.79 

Jul-20 1.77 1.82 1.77 1.71 

Aug-20 2.30 1.85 1.89 1.82 

Sep-20 1.92 2.05 2.43 2.37 
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Oct-20 2.39 1.98 2.06 1.97 

Nov-20 2.61 2.18 2.37 2.32 

Dec-20 2.59 2.33 2.69 2.65 

Jan-21 2.71 2.40 2.65 2.64 

Feb-21 5.35 2.50 2.77 2.75 

Mar-21 2.62 3.99 5.03 5.13 

Apr-21 2.66 2.83 2.68 2.64 

May-21 2.91 2.74 2.72 2.71 

Jun-21 3.26 2.73 2.98 3.00 

Jul-21 3.84 3.01 3.30 3.28 

Aug-21 4.07 3.44 3.84 3.75 

Sep-21 5.16 3.71 4.07 4.02 

Oct-21 5.51 4.75 5.07 5.08 

Nov-21 5.05 5.36 5.41 5.40 

Dec-21 3.76 5.25 5.31 5.30 
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