

GENERAL INFORMATION

Data of the subject							
Subject name	gital Electronics						
Subject code	A-GITI-341						
Mainprogram	chelor's Degree in Engineering for Industrial Technologies						
Involved programs	ado en Ingeniería en Tecnologías Industriales [Third year]						
Level	eglada Grado Europeo						
Quarter	mestral						
Credits	,0 ECTS						
Туре	Compulsory						
Department	Department of Electronics, Control and Communications						
Coordinator	Fermín Zabalegui Sanz						
Office hours	Upon request						

Teacher Information						
Teacher						
Name	Fermín Zabalegui Sanz					
Department	Instituto Universitario de la Familia					
EMail	ferminzs@comillas.edu					
Profesores de laboratorio						
Teacher						
Name	Ivaro Padierna Díaz					
Department	Department of Electronics, Control and Communications					
EMail	apadierna@icai.comillas.edu					
Teacher						
Name	Eduardo Alonso Rivas					
Department	Department of Electronics, Control and Communications					
EMail	Eduardo.Alonso@comillas.edu					

DESCRIPTION OF THE SUBJECT

Contextualization of the subject						
Prerequisites						
A basic knowledge of analog electronics circuits is needed for this course						

Contents

Theory

Introduction to Digital Techniques

- Bits and logic levels
- Digital circuits technologies
- Digital design levels

Boolean Algebra

- Boolean algebra's definitions and theorems
- Non-primary logical functions
- Normal form of a Boolean function
- Simplifying Boolean functions using Karnaugh maps (K-maps)

Numeral Systems and Codes

- Positional numeral systems
- Base conversion
- Ranks and representation
- Hexadecimal and octal systems

Mathematical operations with binary numbers

- Representing whole numbers
- Ranks and representation of signed numbers
- Mathematical operations with signed numbers
- Other binary codes

Introduction to Hardware Description Languages. VHDL

- Design flow
- File structure
- Examples
- Data types, constants and operators
- Concurrent statements

Arithmetic Circuits

- One-bit adder
- N-bit adder
- N-bit subtractor
- N-bit adder-subtractor
- Multipliers
- BCD adder

Combinational Logic Design

- Multiplexers
- Demultiplexers
- Encoders
- Decoders
- Comparators

Sequential Circuits Fundamentals

- Introduction to sequential logic
- Basic concepts
- Bistables

Digital Circuits Timing

- Introduction
- Timing hazards
- Synchronous design
- Technical parameters of bistables
- Synchronous design and clock period
- Clock skew and distribution
- Asynchronous input synchronization

Finite-State Machines

- Definitions Mealy and Moore machines
- Design of finite-state machines
- VHDL definition
- Sequence detector
- Sequence detector with edge detectors

Registers

- Introduction
- Parallel registers
- Shift registers

Counters

- Binary up counter
- Binary down counter
- Up / down counters
- Counters with enable
- Mod M counters
- Cascaded counters
- Counters with load input
- Arbitrary sequence counter

Complex Digital Design: Datapath + Control Unit

- Introduction
- Parking barrier control
- Binary to BCD converter
- SPI connections

Memories

- Introduction
- Static RAMs
- Dynamic RAMs
- ROMs
- Examples

Laboratory

Laboratory practice units

- P1. Introduction to digital gates and digital oscilloscope.
- P2. Introduction to designing with schematics and compilation.
- P3. Introduction to simulation and physical design.
- P4. Combinational digital circuits with VHDL.
- P5. Arithmetic circuits. 5 bits adder.
- P6. Arithmetic circuits. 5 bits multiplier.
- P7. Arithmetic circuits. 5 bits ALU.
- P8. Introduction to latches and flip-flops.
- P9. Digital design. The electronic lock.
- P10. Digital design. The parking control.
- P11. Digital design. Microwave timer.

EVALUATION AND CRITERIA

Evaluation activities	Evaluation criteria	Weight		
Theoretical exams: • Final exam • Midterm exam	 Knowledge of concepts. Resolution of practical problems. Analysis and interpretation of the results. Presentation and written communication. 	54 %		
Class tests • Two class tests during the semester	 Knowledge of concepts. Resolution of practical problems. Analysis and interpretation of the results. 	6 %		
Laboratory practices:	 Application of concepts to the resolution of practical problems. 			

 11 units of digital electronics laboratory practices

- Syllabus 2022 - 2023
- Realization of practices in the laboratory.
- Analysis and interpretation of the results obtained in laboratory practices.
- Work in groups.
- Presentation and written communication.

Practical exam

Grading

Theoretical (ordinary period)

The normal period evaluation/grading is composed by:

- Two class tests (30 minutes maximum). The average mark of both exams is *nc*.
- One midterm exam: ni.
- One theoretical final exam: *ne*.

The theoretical final grade *nt* is:

 $nt = 0,7 \cdot ne + 0,2 \cdot ni + 0,1 \cdot nca$

A minimum mark of 4/10 is needed in the final exam (*ne*), otherwise *nt* will be the lowest mark between *ne* and the calculated mark *nt*.

Practical (ordinary period)

The normal period evaluation/grading is composed by:

- Final practical exam: **nex**.
- Laboratory practices, which include previous work, circuit designing and implementation and final documentation. The average
 mark of the 11 practices is *np*.

nlab = 0,5 • **nex** + 0,5 • **np**

A minimum mark of 4/10 is needed in the final exam (*nex*), otherwise *nlab* will be the lowest mark between *nex* and the calculated mark *nlab*.

In order to pass the course, attendance to laboratory sessions is compulsory.

Final grading (ordinary period)

In order to pass the course, both *nt* and *nlab* marks must be greater or equal to 5/10. If this condition is met, the final mark is:

nfinal = 0,6 • **nt** + 0,4 • **nlab**

Otherwise, the final mark will be the lowest between *nt* and *nlab*.

Extraordinary (re-sit) exam

In the case the theoretical or practical (laboratory) part has not been passed in the normal period, a re-sit theoretical exam and/or practical exam will be required.

If the theoretical part is failed, there will be a re-sit theoretical exam: **njt**. The mark for the theoretical part will be:

 $nt = 0.8 \cdot njt + 0.1 \cdot ni + 0.1 \cdot nc$

40 %

(ni: midterm mark, nc: average class tests mark)

A minimum mark of 4/10 is needed in the exam (njt), otherwise nt will be the lowest mark between njt and the calculated mark nt.

If the practical part is failed, there will be a re-sit practical exam: **njl**. The mark for the practical part will be:

nlab = 0,8 • *njl* + 0,2 • *np*

(*np*: average mark of the laboratory practices)

A minimum mark of 4/10 is needed in the exam (*njl*), otherwise *nlab* will be the lowest mark between *njl* and the calculated mark *nlab*.

In order to pass the course, both *nt* and *nlab* marks must be greater or equal to 5/10. If this condition is met, the final mark is:

$nfinal = 0,6 \cdot nt + 0,4 \cdot nlab$

Otherwise, the final mark will be the lowest between *nt* and *nlab*.

Attendance rules

Class attendance is mandatory, according to the Academic Regulations of the Higher Technical School of Engineering (ICAI). The requirements of attendance will be applied independently for theory and laboratory sessions:

- In the case of theory sessions, failure to comply with this rule may prevent them from taking the exam in the ordinary period.
- In the case of laboratory sessions, failure to comply with this rule may prevent you from taking the exam both in the normal and re-sit period.
- In any case, unjustified absences from laboratory sessions will be penalized in the evaluation.

WORK PLAN AND SCHEDULE

Activities	Date of realization	Delivery date
Understanding the theoretical contents in the textbook	After theoretical classes	
Solving the proposed exercises	Weekly	
Studying and preparation for the class tests that will be carried out during the term	Weeks 6 and 10 (3rd week after midterm exams)	
Preparation of the final theoretical exam	Weekly and class session in April	
Writing of the laboratory reports for each practice unit	Weekly	A week after the laboratory practice

BIBLIOGRAPHY AND RESOURCES

Basic References

• Jose Daniel Muñoz Frías. Introducción a los sistemas digitales. Un enfoque usando lenguajes de descripción de hardware. (Introduction to digital systems. An approach using hardware description languages. (2011) (September 2020 edition)

Complementary References

- John F. Wakerly. Digital Design: Principles and practices. Prentice Hall. 2000. (4th edition)
- Thomas L. Floyd. Digital Fundamentals. Pearson/ Prentice Hall. 2006. (11th edition)

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

Digital Electronicas - Preliminar planning (2022 / 2023) 3rd course

Theory

	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	WK12	WK13	WK14
01. Introduction														
02. Boolean algebra														
03. Numeral systems														
04. Introduction to VHDL														
05. Arithmetic Circuits														
Exercises														
Class Exam #1														
06. Combinational Blocks														
07. Sequential Circuits Fundamentals														
08. Digital Circuits Timing														
09.Finite-State Machines														
Exercises														
Class Exam #2														
10. Registers														
11. Counters														
12. Design of Complex Systems														
13. Introduction to Memories														
Exercises														

Laboratory

W1W2W3W4W5W6W7W8W9W10W11W12W13W14P01: Introduction to logic gatesP02: Designing and compiling with QuartusP03: Simulation and programming with QuartusP03: Simulation and programming with QuartusP04: Combinational desing with VHDLP04: Combinational desing with VHDLP05: Arithmetic circuits: 5-bit adderP06: Arithmetic circuits: 5-bit multiplierP07: Arithmetic circuits: 5-bit multiplierP07: Arithmetic circuits: 5-bit ALUP08: Introduction to bistablesP08: Introduction to bistablesP09: Electronic lockP09: Electronic lockP0