

Syllabus 2022 - 2023

GENERAL INFORMATION

Data of the subject				
Subject name	Power Electronics Applications			
Subject code	DEA-GITI-448			
Mainprogram	Bachelor's Degree in Engineering for Industrial Technologies			
Involved programs	Grado en Ingeniería en Tecnologías Industriales [Fourth year]			
Level	Reglada Grado Europeo			
Quarter	Semestral			
Credits	4,5 ECTS			
Туре	Optional			
Department	Department of Electronics, Control and Communications			
Coordinator	Pablo García González			
Schedule	Morning sessions			

Teacher Information					
Teacher					
Name	Johel Jose Rodriguez D'Derlee				
Department	Department of Electronics, Control and Communications				
EMail	jjrodriguez@icai.comillas.edu				
Teacher					
Name	Pablo García González				
Department	Department of Electronics, Control and Communications				
Office	Alberto Aguilera 25 [221]				
EMail	pablo@comillas.edu				
Phone	6105				
Teacher					
Name	Aurelio García Cerrada				
Department	Department of Electronics, Control and Communications				
Office	Alberto Aguilera 25 [D-218]				
EMail	Aurelio.Garcia@iit.comillas.edu				
Phone	2421				

DESCRIPTION OF THE SUBJECT

C 1 - 1 -		C . I.		•
Contextual	IITATIAN A	T Th	a ciin	IDCT
CONTEXTUU	IIZALIOII O	,, ,,,,	C JUD	

Prerequisites

Syllabus 2022 - 2023

Students must have taken a course on electric circuit analysis, and have basic knoledge of Fourier Series and control systems.

Course contents

Contents

Theory:

- 1. Introduction.
 - What power electronics is and application examples.
 - Principles of energy conversion using power electronics.
 - Analysis of circuits with periodic voltage and current sources.
 - Power quality: definition of the most important concepts and electrical magnitudes.
- 2. AC-DC converters.
 - Introduction: power diode switching principles.
 - Single-phase rectifiers.
 - o Three-phase rectifiers.
 - Application example: HVDC system.
- 3. DC-AC converters.
 - Introduction: power transistor switching principles.
 - Single-phase inverter: square wave and Pulse Width Modulation (PWM).
 - Three-phase inverter: square wave and Pulse Width Modulation (PWM).
 - Park's Transformation and current control.
 - Application example: control system of a STAtic synchronous COMpensator (STATCOM).
- 4. DC-DC converters.
 - Operation principles.
 - Basic converters: Buck, Boost and Buck-Boost converter.

Laboratory:

The lab will be taught in 2-hour sessions. Students will design the current control system of a three-phase inverter to exchange real and instantaneous reactive power with the power grid. The control system will be implemented in Simulink, including switches, voltage and current probes and signal filters.

EVALUATION AND CRITERIA

Grading

Grading

The following conditions must be accomplished to pass the course:

- A minimum overall grade of at least 5 over 10.
- A minimum grade in the final exam of 4 over 10.

Syllabus 2022 - 2023

The overall grade is obtained as follows:

- Final exam 50%.
- Quizzes 30%: two or three 50-min quizzes.
- Lab evaluation 20%.

BIBLIOGRAPHY AND RESOURCES

Basic References

D.H. Hart. Power Electronics. McGraw-Hill, 2010.

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792