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RESUMEN DEL PROYECTO

En este Trabajo Fin de Master se propone un nuevo modelo matematico para optimizar la
operacion de las baterias, que permite incluir el coste de degradacion y la representacion de
los ciclos de carga y descarga de las baterias en un problema de despacho econdémico de
manera enddgena.

Palabras clave: Sistemas de almacenamiento de energia, envejecimiento, degradacion,

despacho econémico, programacion lineal entera mixta.

1. Introduccion

Durante las ultimas dos décadas, los sistemas de almacenamiento de energia se han
convertido en una tecnologia fundamental para los sistemas de energia eléctrica [2]. Con
el crecimiento de las energias renovables para reducir las emisiones de dioxido de
carbono, ha aumentado el interés en el desarrollo del uso de las baterias en estos sistemas.
La tecnologia de almacenamiento de energia en baterias permite reducir las fluctuaciones
de potencia en la demanda eléctrica, aumentar la flexibilidad del sistema y acrecentar la
robustez de las tecnologias renovables variables como la energia eolica o la solar [1].
Ademas, también hay un gran interés en el uso de las baterias de forma que el propietario
pueda interactuar con la red almacenando energia en horas de baja demanda y vertiendo
esta energia en picos de demanda lo cual permite reducir los costes operacionales [2].

Este interés en el uso de baterias en los sistemas de potencia ha planteado un nuevo reto
relacionado con la optimizacion del uso de éstas con sus peculiaridades caracteristicas
tecnoldgicas y economicas [3]. Asi, se prevé que el coste de fabricacion de baterias
disminuya, sin embargo, tienen una vida Util limitada debido a los procesos de
degradacion que tienen lugar durante los ciclos de carga y descarga, resultando en una
disminucioén en la capacidad efectiva de las baterias [2], lo cual implica que la operacion
de las baterias afecta de forma directa en su vida util. Ademads, la mayoria de los costes
de operacion de estos sistemas de almacenamiento en baterias esta asociado a estos
costes de degradacion, haciendo necesaria su representacion en los modelos de despacho
econdémico y de los mercados eléctricos.



2.

Definicion del Proyecto

Con el aumento del uso de los sistemas de almacenamiento de energia en baterias, se han
desarrollado modelos con diferentes niveles de complejidad para optimizar la operacion
de estas baterias. Estos modelos estudian el funcionamiento de las baterias desde
diferentes perspectivas, ya sea tedrica o empirica. Los modelos teéricos representan el
agotamiento de iones litio u otros materiales activos mientras que los empiricos se basan
en el uso de datos experimentales y se disefian para su aplicacion sobre un sistema de
baterias especifico [4]. El desarrollo de sendos modelos pone en evidencia la importancia
de considerar de forma precisa el envejecimiento de las baterias en los sistemas de
almacenamiento. Sin embargo, tanto los modelos tedricos como los empiricos tienen sus
propias limitaciones, que quedaran descritas en este documento.

En este Trabajo Fin de Master se propone un nuevo modelo matematico para optimizar
la operacion de las baterias, que permite incluir el coste de degradacion y la
representacion de los ciclos de carga y descarga de las baterias en un problema de
despacho econdmico. Este nuevo modelo se entiende como fundamental y de medio
plazo porque ademas de considerar las caracteristicas técnicas de las baterias
proporcionadas por el fabricante, representa su operacion en un horizonte temporal de
un afio. La principal contribucion de este proyecto frente a los modelos existentes en la
literatura es que permite cuantificar la repercusion en términos de eficiencia
computacional y capacidad de representacion de los ciclos de carga y descarga
modelados de forma enddgena.

Descripcion del modelo/sistema/herramienta

Para el desarrollo del modelo propuesto, se ha tomado como punto de partida el [3], en
donde se propone un modelo de despacho econdomico que introduce el coste de
degradacion de las baterias como una funcién lineal, sin comprometer el tiempo de
ejecucion significativamente. Sin embargo, la optimizacion de la gestion de las baterias
se realiza en dos pasos independientes. Primero, [3] emplea un algoritmo intuitivo para
contabilizar el numero de ciclos de carga y descarga junto con sus profundidades. En
segundo lugar, una vez determinados los ciclos de las baterias se resuelve el problema
de despacho econdémico tomando dichos ciclos como variables de entrada. De esta
manera, no se considera la influencia que tiene la operacion de las baterias en los ciclos
como parte integrante de un sistema en el que ademas coexisten otras tecnologias
incluidas en el despacho econdmico, obteniendo resultados menos realistas.

Por este motivo, en este Trabajo Fin de Master se ha desarrollado un modelo matematico
que incluye el coste de degradacion de la bateria de manera endégena como funcién del
namero y profundidad de los ciclos determinados por el despacho econdémico. Se ha
elaborado un modelo matematico de optimizacion de costes con variables enteras, que
posibilita la formulacién y resolucion del despacho econdmico teniendo en cuenta las
fases de carga y descarga de las baterias como resultados inherentes al mismo problema.
Esto proporciona una representacion mas precisa del coste del envejecimiento de las
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baterias y de su influencia, al mismo tiempo que mejora la coherencia de su integracion
con las demads tecnologias del sistema.

También se han realizado una serie de casos estudio para comprobar el funcionamiento
del modelo a nivel préactico en el mercado ibérico de la electricidad (MIBEL), analizando
el efecto de considerar el coste de envejecimiento frente a no considerarlo, la
linealizacion del coste no lineal de degradacion y, por ultimo, su eficiencia
computacional.

Resultados

Para el andlisis de resultados se han realizado tres casos estudio basados en el
planteamiento de analisis de sensibilidad sobre un caso base que considera como datos
de entrada el escenario de los planes de energia y clima para Espafia (PNIEC) y Portugal
(PNEC) correspondiente al afio 2030.

1. Caso estudio 1: Analisis de sensibilidad del coste de degradacion de la
bateria
Se ha comparado la operacion de la bateria considerando el coste de degradacion
de la bateria y sin tenerlo en cuenta. Ademas, se ha hecho un analisis del impacto
de la variacion del coste de degradacion en el modelo, obteniendo los resultados
que se muestran en la Figura 1 y la Figura 2.
En la Figura 1 se representa la operacion de la bateria sin considerar el coste de
degradacion, en azul, y considerando el coste de degradacion, en naranja. Se
puede observar que la penalizacion debida al coste de envejecimiento afecta a la
operacion Optima de la bateria suavizando las pendientes de carga y descarga
como una forma de alargar su vida util.
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—No degradation Degradation
Figura 1. Comparacion de la operacion de la bateria considerando coste de envejecimiento y no

considerandolo
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En la Figura 2 se representa la operacion de la bateria para distintos costes de
envejecimiento. Se observa que cuanto mayor es el coste de envejecimiento, y
por lo tanto, mayor es la penalizacion en la funcidon objetivo, maés se aleja la
operacion de la bateria de su operacion ideal, suavizando las pendientes de carga
y descarga para alargar su vida util.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 8 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166

Week Hours [h]

——Base Price 50% Base Price 75% Base Price.  ——125% Base Price ——150% Base Price

Figura 2. Anadlisis de sensibilidad del efecto del coste de envejecimiento en la operacion de la bateria

2. Caso estudio 2: Analisis de sensibilidad de la aproximacion lineal de la
funcion no lineal de degradacion
En el segundo caso de estudio, se ha comparado el efecto de aplicar un nimero
diferente de tramos en la aproximacion lineal de la funcidon no lineal de
degradacion en el modelo, considerando de uno a cinco tramos.
En la Figura 3, se representa la operacion de la bateria al variar el nimero de
tramos en la funcion de coste de degradacion.
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Figura 3. Analisis de sensibilidad del efecto de incrementar el numero de segmentos en la linealizacion de la

funcion estrés



Las Figura 4 y la Figura 5 representan la correlacion entre la fluctuacion del
precio de mercado, representado en linea discontinua negra, y la operacion de la
bateria para un segmento y cinco segmentos respectivamente de la funcion de
coste de degradacion, representado en azul. El eje izquierdo representa el nivel
de la bateria en GWh y el eje derecho representa el precio de mercado en
€/MWh. En estas figuras se puede ver con mas detalle como el modelo se vuelve
mas sensible a las fluctuaciones de precio cuanto mayor es el numero de
segmentos.
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Figura 4. Correlacion entre la fluctuacion del precio de mercado y la operacion de la bateria con un tinico

segmento en la funcion de coste de degradacion
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Figura 5. Correlacion entre la fluctuacion del precio de mercado y la operacion de la bateria con cinco

segmentos en la funcion de coste de degradacion
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3. Caso estudio 3: Resultados computacionales
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Este caso compara los resultados computacionales teniendo en cuenta los
tiempos de ejecucion cuando se varia el numero de ciclos forzados (ciclos
minimos impuestos a través de las condiciones de contorno de la bateria, ya sean
ciclos diarios, ciclos de “n” dias, o ciclos semanales) y el nimero de tramos
utilizados en la aproximacion lineal del caso estudio 2.

La Tabla 1 muestra los resultados computacionales de la variacion de tiempo de
los ciclos forzados. Como se observa en los resultados, cuanto mayor es el
tiempo de los ciclos forzados, mayor es el tiempo computacional.

Tabla 1. Resultados computacionales al variar el tiempo de los ciclos forzados

cicLos
FORZADOS nn“

Tiempo de

. ., 87 196 275 612 1054
ejecucion [s]

La Figura 6 y la Figura 7 muestran la correlacion entre la fluctuacion del precio
de mercado, representado en linea discontinua negra, y la duracion de los ciclos
forzados, representado en azul. El eje derecho representa el nivel de carga de la
bateria en GWh y el eje izquierdo representa el precio de mercado en €/ MWh.
Las figuras muestran que si el tiempo del ciclo forzado es muy pequefio, la
bateria se ve forzada a satisfacer los ciclos forzados, no pudiendo operar segun
las condiciones del modelo. Por este motivo, cuando se fija el tiempo de los
ciclos forzados a 6 horas, la bateria no puede seguir la curva de mercado,
mientras que, si se amplia el tiempo de los ciclos forzados, se obtiene una mejor
relacion con la curva de mercado.
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Figura 6. Correlacion entre la fluctuacion del precio de mercado y ciclos forzados de 6 horas
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Figura 7. Correlacion entre la fluctuacion del precio de mercado y ciclos forzados de 72 horas

Los resultados computacionales de la variacion del nimero de segmentos de la
funcién de coste de envejecimiento se muestran en la Tabla 2. Como se muestra en
la tabla, los tiempos computacionales tiene una pequefia variacion para los casos con
2, 3 y 4 segmentos, mientras que para los casos de 1 y 5 segmentos, los tiempos de
gjecucion son mayores.

Tabla 2. Resultados computacionales al variar el numero de segmentos de la funcion de coste de

envejecimiento
NUMERO DE
SEGMENTOS
Ul ¢t 332 253 254 287 320

ejecucion [s]

5. Conclusiones

Los sistemas de almacenamiento de energia en baterias tienen potencial para desempenar
un papel importante en el dmbito de la generacion de energia. Su habilidad para
garantizar la fiabilidad de la red, mejorar su eficiencia e integrar energias renovables
resalta la necesidad de mejorar la operacion y optimizacion de estos sistemas para reducir
sus costes y extender su vida util. Si no se considera la degradacion de las baterias, se
corre el riesgo de que la bateria termine su vida util antes de tiempo lo que puede tener
un importante impacto econémico. Ademas de la motivacion econdmica, también hay



una motivacion medioambiental debido a los materiales con los que se fabrican las
baterias que pueden tener un impacto negativo en el medioambiente.

Este Trabajo Fin de Master presenta un modelo de programacién matematica que permite
representar un despacho econdmico incluyendo una funcion de degradacién para
optimizar el uso de los sistemas de almacenamiento en baterias. Este modelo considera
los ciclos de carga y descarga como variables del problema y es capaz de cuantificarlos
de manera enddgena.

Los casos de estudio realizados han permitido demostrar la eficiencia computacional y
la exactitud del modelo. Los resultados del primer caso muestran que la penalizacion
debido al coste de degradacion de la bateria aplicada a la funcidén objetivo afecta
negativamente la operacion Optima de la bateria en términos de ingresos de mercado, de
forma que pueda extender la vida util de la bateria y optimizar de esta manera su uso. El
segundo caso de estudio compara la operacion de la bateria linealizando la funcion de
coste de envejecimiento con distintos numeros de segmentos. Los resultados obtenidos
demuestran que el modelo se vuelve mas sensible a las fluctuaciones en los precios de
mercado segiin aumenta el nimero de segmentos. El tltimo caso de estudio compara los
resultados computacionales relacionados con el tiempo de ejecucion cuando se varia el
numero de ciclos forzados y el niimero de segmentos. En relacion con los ciclos forzados,
cuanto mayor es el tiempo de los ciclos, mayor es el tiempo computacional. Sin embargo,
si el tiempo del ciclo forzado es muy pequefio, la bateria no puede operar con las
condiciones del sistema. Por esta razon, es importante encontrar un compromiso entre
estas dos condiciones. En relacion con el nimero de segmentos, es importante encontrar
el nimero de segmentos correcto que permite representar la funcion de coste
correctamente sin comprometer el tiempo de ejecucion.

Como conclusion, este Trabajo Fin de Master propone un modelo que permite incluir
facilmente el coste de degradacion de las baterias considerando los ciclos de carga y
descarga como variables del problema y cuantificandolos de manera endégena. Los
casos de estudio realizados han permitido demostrar su eficiencia computacional y
precision.
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ABSTRACT

A new mathematical model that minimizes the system cost with integer variables that
includes the battery degradation cost in an endogenous manner has been designed. This
mathematical model formulates and solves an economic dispatch problem considering the
charge and discharge cycles of the battery as output variables of the problem, obtaining a
better representation of the aging cost and its impact on other model’s variables.
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energy storage systems (BEES), mixed integer linear programming (MILP).

1. Introduction

Over the past two decades, energy storage systems (EES) have become a crucial
component in the electricity generation systems [2]. With the increase in use of
renewable energy sources to reduce the use of carbon-emitting technologies, there has
been an increase in interest towards the development of these storage technologies. These
systems can mitigate power fluctuations, enhance system flexibility, and improve the
reliability of variable renewable technologies like wind and solar energy [1].
Additionally, there is a growing interest in the use of energy storage systems in grid-
interactive battery projects to enhance grid reliability and reduce operational costs [2].

The rising interest in energy storage systems, has raised concerns regarding the
development of operation strategies to optimize the use of batteries [3]. Cost of batteries
are expected to decrease. However, batteries have a limited lifespan due to the
degradation process that takes place during the charge and discharge cycles, that result
in a decrement in their energy storage capacity [2]. This means that the way a battery is
operated directly affects its lifespan. Most of the operating costs of these EESs is related
to the degradation process associated with their operation, making these degradation
costs necessary to be included in the optimization problem of the economic dispatches.

2. Project definition

With the increase in the use of EES, models with different complexities have been
developed to optimize the operation of batteries. These models analyze battery
performance from two different perspectives, theoretical and empirical models. The first
ones focus the representation of the depletion of lithium ions and other active materials
while the second ones are based on experimental data and designed for a specific battery
energy storage application [4]. The development of these models has emphasized the
importance of accurately considering battery degradation in storage systems. However,



both types of models have their limitations. During the development of this project, these
limitations, together with its influence on the performance of the ESS, will be analyzed.
A new mathematical model to optimize the operation of battery energy storage systems
(BEES) including its degradation costs, has been developed. This model is considered as
a fundamental model for the medium-term analysis, since it only uses the technical
characteristics of the batteries provided by the manufacturer for the batteries’ operational
representation throughout a year of study. The main contribution of this project is to
quantify the repercussions in term of computational efficiencies and representation
capacities of the charge and discharge cycles when modelled in an endogenous way.

Model description

The starting point of this project has been the model presented in [3], which proposes an
economic dispatch model that introduces battery degradation cost as a linear function
without significantly compromising execution time. However, the optimization problem
is performed in two independent steps. First, a straightforward algorithm is used to
account for the number of charge and discharge cycles along with their depths. Secondly,
these cycles inputted in the economic dispatch problem. Therefore, the model does not
consider in an endogenous way the interaction of the battery’s operation and their cycles,
nor the impact of the degradation costs over the operation of the rest of technologies
considered in the economic dispatch, resulting in less accurate results.

During the development of this master’s thesis, a new mathematical model that minimize
the system cost with integer variables that includes the battery degradation cost in an
endogenous manner has been designed. A mathematical optimization cost model with
integer variables has been developed, making it possible the state and solve of the
economic dispatch considering the battery’s charge and discharge cycles as inherent
results of the problem itself. This provides a more precise representation of the battery’s
degradation cost and its influence, improving at the same time a consistent integration
with the rest of the technologies of the model.

In addition, a series of case studies have been carried out to verify its performance at a
practice level in the Iberian electricity market (MIBEL), analyzing the effect of
considering the aging cost versus not considering it, the linearization of the degradation
nonlinear cost function, and its computational efficiency.

Results

For the analysis of results, three case studies were conducted, each applying a sensitivity
analysis over a base case that represent the national energy and climate plans for Spain
(PNIEC) and Portugal (PNEC) for 2030.

1. Case Study 1: Sensitivity analysis of the battery degradation cost
In this case study, the battery’s operation was compared considering the battery
degradation cost and without considering it. In addition, an analysis of the
impact on the battery’s operation applying different levels of the degradation
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costs was performed, resulting in the outcomes shown in the Figure 1 and Figure
2.

Figure 1 represents the battery’s operation not considering the degradation cost,
represented in blue, and considering it, represented in orange. It can be observed
that, due to the penalization imposed by the degradation cost, the optimal
battery’s is affected softening the charge and discharge cycles as a way to
preserve the battery’s lifespan.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 100 106 111 116 121 126 131 136 141 146 151 156 161 166

Week Hours [h]
—No degradation ——Degradation

Figure 1. Comparison between considering degradation cost and not considering degradation cost

Figure 2 represents a sensitivity analysis of the effect on the battery’s operation
for different degradation costs. It can be observed that the larger the degradation
cost is, and therefore, the higher the degradation penalization of the objective
function is, the further away gets from the battery’s optimal operation, making
the charge and discharge slopes softer as a way to optimize its lifespan.

1 6 1 16 21 26 31 36 41 46 51 56 61 66 71 76 81 8 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166

Week Hours [h]

—Base Price 50% Base Price 75% Base Price  ——125% Base Price  —150% Base Price

Figure 2. Sensitivity analysis of the effect of the degradation cost



2. Case Study 2: Sensitivity analysis of the degradation cost linear
approximation
The effect of applying a different number of steps in the linear approximations
of the nonlinear the degradation function was analyzed in this case study,
ranging from one to five steps.
Figure 3 represents the battery’s operation when varying the number of segments
of the degradation cost function. Figure 4 and Figure 5 show the correlation
between the market price fluctuation, in dashed black, and the battery’s
operation for a single segment and five segments respectively of the degradation
cost function, represented in blue. The left axis represents the battery’s SoC in
GWh, and the right axis represents the market price in € MWh. These figures
show in detail how the model becomes more sensitive to market price
fluctuations as the number of segments gets higher.
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Figure 3. Sensitivity analysis of the effect of increasing the number of segments on the stress function
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Figure 4. Correlation between the market Price fluctuation and the battery’s operation with a single segment

in the degradation cost function
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Figure 5. Correlation between the market price fluctuation and the battery’s operation with five segments in

the degradation cost function

3. Case Study 3: Computational Results

This case study compares the computational results regarding the execution
times when varying the number of forced cycles (cycles imposed through the
existence of initial and final conditions of the state of charge of the battery at
different hours, going from daily cycles or cycles of “n” days length to weekly
cycles), and the number of steps used in the linear approximation of the
nonlinear aging function of case study 2.

Table 1 shows the computational results obtained when varying the time frame
of forced cycles. As it can be seen in the results, as the time of the forced cycles
gets higher, the execution time gets higher.

Table 1. Computational results varying forced cycles

FORCED
CYCLE “n“
196 275 612

Execution
time [s]

87 1054

Figure 6 and Figure 7 represent the correlation between the market price
fluctuation, represented in black dashed, and forced cycles’ duration,
represented in blue. The right axes represents the battery’s SoC in GWh and the
left axis represents the market price in €/ MWh. Figures shows that if the time
frame is very small, the battery is forced to do the forced cycles, not being able



to operate according to the conditions of the system. As the time frame gets
higher, the battery can fulfil the model’s conditions. When the forced cycles are
set to 6 hours, the battery is not able to follow the market price curve, while as
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Computational results when varying the number of segments of the degradation
cost function are shown in Table 2. As shown on the table, the computational
times have a low variation for 2, 3 and 4 segments while for 1 and 5 segments
the computational time is longer.

Table 2. Computational times varying the number of segments of the cost function

NUMBER OF
SEGMENTS
253 254 287 320

Execution

time [s] =2

Conclusions

Energy storage systems have a huge potential to assume an important role on electricity
generation. Their ability to ensure reliability, improve efficiency and integrate renewable
energy sources highlights the need to improve the operation and optimization of this
systems to reduce its cost and extend their lifespan. If battery’s degradation is not
considered, this can lead to the battery reaching the end of its lifespan too early with its
subsequent economic impact. In addition to economic reasons, environmental
sustainability reasons are also key factors to optimize the battery’s lifespan due to the
rare materials they rely on and their impact on the environment.

This thesis has presented a mixed integer linear mathematical programming model that
represents an economic dispatch that includes a degradation cost function to optimize
the use of energy storage systems considering charge and discharge cycles as variables
of the problem quantified in an endogenously way.

The study cases carried out demonstrate the computational efficiency and accuracy of
the model. The results of the first case show that the degradation cost penalization
applied to the objective function, negatively affects the optimal operation of the battery
in terms of market revenue for the energy storage system to extent the battery’s life and
optimize its use. The second case compares de battery management for piecewise linear
cycle aging cost functions with different number of cycle depth segment. The results
obtained demonstrate that the model becomes more sensitive to market price fluctuations
as the number of segments applied increases. Lastly, the third case compares the
computational results regarding the execution times when varying the number of forced
cycles and the number segments. In terms of forced cycles, as the time of the forced
cycles gets higher, it takes a larger computational time. However, if the time frame is
very small, the battery is forced to do the forced cycles, not being able to operate
according to the conditions of the system. For this reason, it is important to find a
compromise between these two conditions. In terms of the number of segments in the
degradation cost function, it is key to find the amount of segments needed to correctly
represent the degradation cost function without compromising its computational results.

All in all, this thesis proposes a model that easily enables to include the battery’s
degradation cost, introducing the charge and discharge cycles as variables of the problem



and quantifying them in an endogenously way. In addition, the cases studies demonstrate
the computational efficiency and accuracy of the model.
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Chapter 1. INTRODUCTION

This chapter presents the role of energy storage systems (EES) and describes the importance
of designing an electricity generation model that accurately describes battery ageing to
justify the motivation and objectives of this thesis. Finally, the structure of the document

will be presented.

1.1 THE ROLE OF ENERGY STORAGE SYSTEMS

Energy storage systems play an important role on the electricity generation systems. It has
been a growing interest in the use of these technologies because of the batteries technological
advancements developed during the past two decades, the increased in the use of intermittent
renewable sources, the limitations in the transmission and distribution infrastructure and the
improvement of market regulations [ 1]. Some applications of energy storage systems include
energy arbitrage, transmission and distribution upgrade deferral, transmission congestion
relief, load following, voltage support, frequency regulation and the enhancement of

renewable energies [2].

e Energy arbitrage: It refers to the practice of purchasing low-cost electricity during
off-peak hours to charge an energy storage system, and then selling the stored energy
when prices are higher during peak periods. This allows participants to take
advantage of electricity prices fluctuations, caused mainly by the high integration of
renewable energies, and obtain extra profits [3].

e Transmission and distribution upgrade deferral: Energy storage systems also
provide possible alternatives to traditional distribution planning projects providing
capacity upgrades and supporting load growth and reliability needs [4].

e Transmission congestion relief: The mismatch between the growth in peak
electricity demand and the capacity transmission network additions that has taken

place in the recent years, has resulted in the congestion of transmission networks
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leading to the need of additional transmission capacity and the increased in charges
related to the access of the system. Energy storage systems can be used to mitigate
this costs by storing energy during transmission congestion periods and discharging
during peak demand hours [2].

e Load following: Load following is essential to ensure the reliability and integrity of
the transmission system by balancing the electric generation with the demand. Due
to its characteristics, energy storage systems are convenient for this purpose because
they can operate at partial output levels without significant efficiency or lifespan
effects [2].

e Voltage support: To maintain the stability of the grid, voltage support controls the
injection and absorption or reactive power to ensure that the system remains within
the optimal range. While traditionally, this service has been provided by generation
resources, energy storage systems offer a viable alternative to address this challenge
[2].

e Frequency regulation: Frequency regulation matches the generation load with the
instantaneous load to maintain the target frequency. Due to its rapid response time,
unlike other generators, energy storage systems provide a key advantage providing
the required power within seconds instead of minutes [2].

e Enhancement of renewable energies: In the rise of renewable energy sources
towards decarbonization, energy storage has become a crucial element in the pursuit
of this sustainable development. Energy storage systems play a crucial role in
mitigating power fluctuations, enhancing the system flexibility and enabling the
efficient storage and dispatch of electricity caused by variable renewable energy

sources [5].

As explained in the applications presented above, energy storage systems represent a key
element to address various challenges to ensure reliability, efficiency, and the integration of
renewable energy sources in power systems. Because of this reason, it is importance to

optimize their use to reduce operation costs and increase the batteries lifespan.
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1.2 ENERGY STORAGE SYSTEMS OPTIMIZATION

Batteries do not require fuel and have minimal operational and maintenance costs. However,
they have a limited amount of charge and discharge cycles due to degradation, which reduces
the battery's energy capacity and lifespan. Disregarding this degradation process can lead to
the battery reaching the end of its life within two or three years. Incorporating a degradation
model into operational optimization can balance the revenue gained from the battery's
application with the reduction rate of its lifetime, resulting in helping the operators of the

batteries to significantly extending the battery's lifespan [1].

In addition to economic reasons, it is also important to limit battery degradation rates for
environmental sustainability reasons. Batteries rely on rare materials like nickel and cobalt.
Considering their health and environmental impact, the costs of mining and recycling have
not been fully accounted. Economically viable batteries should not be treated as disposable

items but should be carefully managed to maximize their utilization throughout their lifespan

[1].

With the growth in using battery energy storage systems for key power system applications
such as energy arbitrage, frequency control, voltage support, peak saving and demand
response, it is crucial to develop accurate methods for the assessment of these technologies.
Operating costs, predominantly influenced by the degradation of battery cells over time, is
an essential aspect of operational planning for battery energy storage systems. Therefore, it
is important to develop a model that formulates the degradation process as a function of

battery operations [6].

Various models of different complexities have been developed to optimize the utilization of
batteries in energy storage systems [1]. These models can be classified into theoretical
models, that focus on the depletion of lithium ions and other active materials, and empirical
models, based on experimental data and designed for an specific battery energy storage

application [6]. However, both types of models have their own limitations, and their

10
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representation can influence the optimal operation of the battery energy storage systems.

This classification and limitations will be discussed in further detail in Chapter 2.

During the development of this project, a new model for the representation of degradation
costs will be proposed. This model will focus on a one-week synthetic period that represents
the whole year and is considered a fundamental model that consider a theoretical
representation of the ageing cost using the manufacturer technical characteristics of the
represented batteries. The main contribution of the model proposed is that quantifies the
impact of charge and discharge cycles in an endogenous manner in terms of computational
efficiency and representation capabilities, incorporating in this way the degradation of the
battery and its lifespan. This model offers significantly accurate results while keeping
execution times comparable to other simpler and less accurate approaches found in the

literature. Chapter 3. will describe the proposed model and its contributions in further detail.

1.3 MOTIVATION

Modeling battery degradation significantly improves the battery’s lifespan and makes the
decision-making investment easier [1]. However, it is important to find a balance between
the computational complexity of the model and its accuracy. Figure 1-1 shows an overview
of some representative battery degradation models present in literature and a comparison of
their accuracy and computation complexity. It shows that while sophisticated models may

offer greater accuracy, they often require substantial computational resources.
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Figure 1-1. Comparison of accuracy and computation complexity of the most representative degradation

models present in literature [1]

The model proposed in this project is based on the one proposed in [7]. The authors propose
an electricity market model that introduces a linear degradation cost for batteries without
significantly impacting execution time. The limitation of [7] is that the optimization process
is carried out in two independent separate steps. In the first step, the rainflow algorithm, a
straightforward algorithm able of counting cycles and their cumulative, determines the
number of charge and discharge cycles. Then, these figures are incorporated as inputs in the
economic dispatch of the batteries and other generation technologies, failing to represent
how the charge and discharge cycles might affect the cost minimization, resulting in dispatch

profiles that might diverge from reality.

As stated before, the model proposed in this thesis will be built upon the findings of [7]. The

model is a mixed linear and integer mathematical programming (MILP) model that
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represents the economic dispatch considering charge and discharge cycles in an endogenous
way to achieve a more accurate representation of the power system. The computational
efficiency and accuracy will be evaluated in Chapter 4. to determine the practical success of

the model.

1.4 OBJECTIVES

This project has two main objectives that will be assessed during its development.

1. Analyze and develop a MILP model that can represent and quantify the charge and
discharge cycles and the degradation process of one or a group of batteries of a power
system endogenously. For this purpose, the starting point was the optimization model
proposed in [7] where the quantification of the charge and discharge cycles and the
degradation of the battery are implemented endogenously.

2. Perform and conclude case studies to illustrate the importance of including battery
degradation and analyze their computational performance compared to not including it

endogenously.

1.5 DOCUMENT STRUCTURE

The thesis is structure as follows. Chapter 2. reviews the degradation models present in
literature, compare their different approaches and optimization techniques, and state their
contributions and limitations. Chapter 3. describes the model proposed to accurate include
the degradation cost of batteries in the economic dispatch optimization model. Chapter 4.
presents the analysis of a series of case studies to evaluate the computational complexity and
accuracy of the model and Chapter 5. presents the conclusions and future improvements and

lines of research.

13



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)

C O M I I_ I_ A S MASTER EN INGENIERIA INDUSTRIAL

UNIVERSIDAD PONTIFICIA

STATE OF ART

Chapter 2. STATE OF ART

This chapter presents a review of the degradation models present in literature. The first
section presents a brief description of battery ageing mechanisms. The second section
presents the main operational stress factors for power-grid applications. The third section
describes the classification of the degradation models present in literature. The fourth section
classifies the degradation model described in the articles previously analyzed in the third

section.

2.1 BATTERY AGEING MECHANISMS

Given the importance of long-term cycling and storage behavior of battery energy storage
systems in power systems’ applications, there has been a growing interest in developing
more sophisticated battery’s life-time evaluation techniques. However, understanding the
complex processes that take place during battery ageing is not an easy task. This decrease in
capacity and power fading is the result of diverse processes and interactions making it
necessary to study them at a set, rather than independently, which makes it even more
difficult to make an accurate assessment [8]. The battery ageing factors described below are
based on lithium-ion batteries because they are considered to have the highest potential for

power-grid applications [7].

Over the years, extensive research has been made to investigate the physical and chemical
reactions that take place within lithium-ion batteries, resulting in a deeper understanding of
the ageing process of various battery structures and defining how battery ageing mechanism
can vary depending on external factors [9]. Figure 2-1 shows the external factors that affect

the internal ageing mechanisms in a graphic way.
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Figure 2-1. Internal aging mechanisms that take place due to the effect of external factors [9]

Aging mechanism

This internal ageing mechanisms are described using partial differential equations. However,
although this models have a good accuracy, they cannot be included in economic dispatch

problems [7].

External factors, also known as stress factors when referred to battery degradation models,
can be classified according on whether or not they are affected by the way a battery is
operated as non-operational factors and operational factors [7]. Only operational factors are
considered in battery degradation models for power-grid applications. These stress factors,
which are directly affected by the way the battery is operated will be described in further

detail on the next section.

2.2 OPERATIONAL STRESS FACTORS

Operational stress factors that have significant impact on battery aging are cycle depth, over

charge and discharge, current rate, and average state of charge.

2.2.1 CYCLE DEPTH

This important stress factors allows to create a relationship between the cycle’s depth,
usually expressed as a percentage, and the amount of charge and discharge cycles that can
be performed by a battery. This relationship is defined by the cycle depth-number curved
[10]. Figure 2-2 shows an example of a cycle depth-number curve, which is usually provided

by the manufacturer.
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Figure 2-2. Cycle depth-number curve [10]

As shown in Figure 2-2, the battery shown in the example can perform over 5000 cycles of
10% depth while it can only perform 500 cycles of 80% depth. In other words, a battery can
perform a larger number of cycles with less deep cycles and a smaller number of cycles with

deeper cycles.

2.2.2 CURRENT RATE

Degradation rate is accelerated by high charge and discharge current rates [7].

T T

Cell 5 - C/3 100% DoD
Cell 6 - C/3 100% DoD
Cell 7- 1C 100% DoD |
Cell 8 - 1C 100% DoD

State of Health (%)

1

75 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Full Equivalent Cycles (#)
Figure 2-3. Influence of current rate over capacity retention [11]
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Figure 2-3 shows the influence of the current rate over the battery’s capacity retention. [11]
examined four cells by cycle aging, two of them with a current of C/3 and two of them with
a current rate of 1C, while other stress factors remained constant. The results show that cells

exposed to a higher current rate, significantly reduced their battery life.

2.2.3 OVERCHARGE AND OVERDISCHARGE

Overcharge and overdischarge takes place when the cell is charge or discharge, respectively,
outside the voltage threshold determined by the coupling of electrode chemistry forcing

electrodes outside their normal range and negatively affecting the battery’s life span [12].

2.2.4 AVERAGE STATE OF CHARGE (S0C)

Figure 2-4 shows the results of the calendar ageing test carried out in [13]. It shows the
relative values of capacity fade under different calendar aging conditions. Cells with higher

SoC, suffered a significantly higher capacity fade than cells with lower SoC.

—J—5s0C 50
0.25 1 SoC 70
SoC 80
021 SoC 90
~ —F—soC 100

T 1

T
0 50 100 150
time (days)

Figure 2-4. Capacity fade under calendar ageing conditions [13]
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2.3 DEGRADATION MODELS CLASSIFICATION

Degradation models present in literature can be classified into four main groups according
to their approach. Table 1 summarizes this classification and their main advantages and

disadvantages.

Table 1. Degradation model classification

MODEL
CLASSIFICATION DEFINITION MAIN ADVANTAGE MAIN DISADVANTAGE

Explain batteries’ degradation
mechanisms and their impact on

THEORETICAL the battery’s state and operation Offer accurate results Difficult to incorporate into
MODELS primarily focusing on the depletion the economic dispatch
of lithium ions and other active
materials
Constrained by the
Rely on experimental data specific More suitable for underlying experimental
EMPIRICAL . . . . .
MODELS to each battery energy storage integrating them into the data, not being applicable

to other battery
applications and scenarios

application economic dispatch

mbine theoretical and empirical
(ot dseiieiitzz) aiel @i Offer accurate results for

analysis providing models that offer
accurate results operating in
conditions and applications
different to the ones that apply the
experimental data

SEMI-EMPIRICAL
MODELS

Involve the development and
implementation of a mathematical
optimization model that
incorporates the degradation cost
of batteries

MATHEMATHICAL
MODELS

different operating
patterns and applications
than the ones that apply
the experimental data

Risk of over-generalizing

They can represent the
degradation cost in the
objective function as a way
to model the replacement
cost due to this
degradation

They have not been
implemented in an
endogenous way yet
difficulty its incorporation
in the economic dispatch
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2.3.1 THEORETICAL MODELS

Theoretical models explain batteries’ degradation mechanisms and their impact on the
battery’s state and operation primarily focusing on the depletion of lithium ions and other
active materials. They provide explanations of different degradation mechanisms and aim to
explain how they affect the battery’s usage and conditions. Although they offer accurate
results, these models are difficult to incorporate into the economic dispatch because finding
a correlation between battery operation patterns and their molecular-level processes is very

hard. Table 2 presents the literature of theoretical models.
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Table 2. Theoretical models literature

MODEL TIME MODEL OPTIMIZATION DEGRADATION| PUBLISH
REFERENCE[ APPROACH CONTRIBUTION LIMITATIONS | scoPE | APPLICATIONS CONSIDERATIONS METHOD BATTERIES MODEL YEAR

Develops a
battery lifetime

Presents an energy
model that uses

manager for energy
storage syste(;ns in Does not ; Seoth of disch dSmart IOC;|| | Lead—acitil, li- o e nesss
. micro-grids . wo . . epth of discharge prediction and loca ion an i .
[14] Theoretical SEEEEINE & S glgnbc;rglc;t;]a:?ng months Micro-grids (DoD) sl ultra- Peuk:r:te:-l;jtlme 2013
local prediction and algorithm capacitor
a local sheduling UGS
on the workload
of the battery.

algorithm
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2.3.2 EMPIRICAL MODELS

Empirical models rely on experimental data specific to each battery energy storage
application. This kind of model are more suitable for integrating them in economic dispatch
analysis. However, they are constrained by the underlying experimental data, not being
applicable to other battery applications and scenarios. It is necessary to conduct battery aging
experiments specific for the operation conditions and battery application to obtain an
accurate empirical model. This process can be time-consuming and have a significant cost

impact. Table 3 presents the literature of empirical models.
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DEGRADATION
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OPTIMIZATION

CONTRIBUTION

Table 3. Empirical models literature

OPTIMIZATION

CONSIDERATIONS

TECHNIQUE

Better performance of Particle
Swam Optimization (PSO)-
Forward Neural Network

Proposes the particle
swarm optimization-
based Feedforward

Empirical FNN) in relatively volatile
P Neural Network (PSO- ( ) y
. systems. If there is enough
FNN) for battery aging .
. data, the model accuracy is
estimate
excellent
. Considers the aging conditions
Electric test to . g. :
. of batteries as inputs of the
. estimate the SoC (DC . .
Empirical prognosis model. If there is

voltage test and

valiers e sl enough data, the model

accuracy is excellent

Comparison of two NN SoC

Neural networks (NN)
Empirical (Back Propagation (BP)
and Fuzzy)

Fuzzy. Superior performance
of the FNN. If there is enough
data, the model accuracy is
excellent.

estimation strategies, BP and Enough data

Enou.lgh d .ata Battery
availability
. Management SoC
for reliable System (BMS)
results ¥
Enough data
availability Li-ion
for reliable batteries S
results
availability Li-ion Current rate (C-
for reliable batteries rate)
results

METHOD

The particle
swarm
optimization-
based Feed
Forward Neural
Network (PSO-
FNN)

It uses the Rao-
Blackwellization
particle filter,
which is able to
estimate the
posterior
values of aging
indicators

Neural
networks (NN)
(Back
Propagation
(BP) and Fuzzy)

BATTERIES

Battery aging
estimate by
means of
Li-ion  Particle Swam
batteries Optimizacion-
Foward Neural
Network (PSO-
FNN)

Uses the Rao-
blackwellization
algorithm to
estimate aging
parameters

Li-ion
batteries

Estimation of

the battery's

SoC by means
of Neural
Networks

Li-ion
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2.3.3 SEMI-EMPIRICAL MODELS

Semi-empirical models combine theoretical and empirical analysis providing models that
offer accurate results operating in conditions and applications different to the ones that apply

the experimental data. Table 4 presents the literature of semi-empirical models.
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Table 4. Semi-empirical models literature

DEGRADATION
SIMULATION AND MODEL MODEL PUBLISH

REFERENCE (APPROACH OPTIMIZATION CONTRIBUTION LIMITATIONS | APPLICATIONS CONSIDERATIONS BATTERIES YEAR

TECHNIQUE

Calendar (temperature

Modeling of Combination of linear Proposes a .
o . . (derived from the
Lithium-lon and non-linear parameter tunning . . .
. Non-linear Arrhenius' equation)and . | . .
Battery Semi- components model  so that the model Lithium-ion
. L . . model. Two- BESS SoC) and cycle (due to . 2018
Degradation for empirical that uses the rainflow can be applied to . batteries
. . stage model charge and discharge cycles;
Cell Life algorithm for cycle other types of
. . number of cycles, SoC and
Assessment counting batteries. DoD)
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2.3.4 FUNDAMENTAL MODELS

Mathematical models involve the development and implementation of a mathematical
optimization model that incorporates the degradation cost of batteries. These models
consider as an input main technical data provided by the manufacturer, such as the maximum
storage energy or the maximum charge capacity. They can represent the degradation cost in
the objective function as a way to model the replacement cost due to this degradation.
Consequently, if long-term investment decisions are considered, the model can identify the
need for installing new batteries when modeling the degradation process of the batteries
while computing the charge and discharge cycles. For the short and medium terms, as it is
the case of this thesis, they can also represent the cycles when only operation decisions are
considered, and accounting for the replacement cost. Unlike the literature, in this project the
cycles are represented in an endogenous way in a medium-term dispatch model. Table 5
presents the literature of fundamental models. Table 6 presents the situation of the present

project on the actual literature.
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Table 5. Fundamental models literature
DEGRADATION SIMULATION AND MODEL TIME OPTIMIZATION DEGRADATION PUBLISH
RE
A3id, (0 2 | lalicisisa OPTIMIZATION TECHNIQUE ST LIMITATIONS |SCOPE| APPLICATIONS el B3NS B METHOD ERIIERES MODEL YEAR

Relies on the methodology of Captures nonlinearities Methodology of
Model Predictive Control (MPC) and is applicable for gy

Explicit cost
. . Model Predictive . function
[18] Fundamental LSl t_)ptlmal EE ?nd devellop.s a arbltrarylload pat_terns. Scaled to IMW 24 BESS 93, SEE el Control (MPC) for Ayl considering 2013
explicit cost function considering Peak shaving algorithm. It hours current-rate . 1MW BESS
. . o optimal BESS battery
battery degradation (mixed-  can solve the optimization . !
. . operation degradation
integer quadratic problem) problem endogenously
Virtual power
plant (WPP Uses the cycle life
Proposes a novel optimal (wind power Battery dependance with
generation scheduling . plant), PV DoD (depth of  degradation cost Lead-acid the DoD and the
L . Applicable for . . .
Two-stage stochastic mixed model for virtual power . 2 power plant discharge), modelled and  and nickel ambient
[219] Fundamental . N X . virtual power . . . 2016
integer linear programming plant considering e hours (photovoltaic), ambient approximated bya  metal temperature by
degradation costs of P CTPP temperature piecewise linear  hydride using data points
energy storage systems (coventional function provided by the
thermal) and manufacturer
battery fleets)
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Shelf degradation
(assumed as a Battery
straight-line degradation is

depreciation) and

Restricts cycle
cycle degradation v

life degradation

proposed to transform the Io'ok'-ah'ead rolling to perform a . (uses th'e and includes
. optimization model of Grid-scale degradation .
[20] Fundamental developed degradation model . test and \ h the degradation
. A wind BESS coordinated . month BESS's difference .
into the MILP optimization . . training cost in the
operation that includes a . between two L
problem . . period objective
linearized battery regular cycles to .
. . function
degradation model estimate
degradation of
one irregular
cycle)
Has to be
: . . solved in two
Defines an utility function as a steps. first
function of battery power  Demonstrates that the P3, . The objective
: the Batteries .
output and battery rainflow cycle-based . . function
[21] Fundamental quantification operating in SoC

degradation captured by
rainflow cycle-based
degradation model

convex

degradation cost is

maximizes the

of cycles and . .
y utility function

then the
optimization
process

power market

set to be the
maximum
between the
shelf
degradation,
due to normal
corrosion
process) and
cycle
degradation

Wind-
BESS

Rainflow cycle-
based model
for battery
degradation
calculation

BESS
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Proposes three

. . Residential .
Stochastic dynamic approach. L |a. degradation
; customers with .
PlEpeRes UilE2 CEEn Ao Comparative analisys of solar PV Stochastic dynamic  Li-ion LR e g2
[22] Fundamental models: fixed per kWh, static P . v NA 24 hours . SoC and DoD ¥ . kWh, static multi- 2017
three degradation models generation and approach batteries

factor model and
dynamic
multifactor model

multi-factor model and

. . home ener:
dynamic multifactor model gy

storage system

Has to be

. Linear cost
solved in two .
. . . function that
. . Linear cost function steps, first . .
Rainflow algorithm for . Batteries . L incorporates the
degradation model. The the Linear optimization

assesing battery cycle life and participating in number of charge

[7] Fundamental S model can be easily quantification 24 hours . DoD and SoC and rainflow Li-ion . 2018
BES optimization market . . e electricity . and discharge
. . incorporated into existing of cycles and algorithm .
offers iteratively. . markets cycles previously
market dispatch programs.  then the .
P calculated with
optimization .
the rainflow
process
The battery
degradation cost
Has to be S
solved in two is represented as
. Adresses the challenge of . a function of the
After counting the charge and . . steps, first N
. . attacking the complexity of The objective charge and
discharge cycles with the battery degradation the function maximizes Li-ion  discharged cycles
[23] Fundamental  rainflow algorithm, a cycle ) ¥ ces quantification 3 months BESS SoC and DoD . . BeCCYCeS, 2018
. function or the lack of the net utility of batteries counted by the
depth stress function is used . . of cycles and .
. future information one at a the battery rainflow
to model the life loss. . then the .
time .. algorithm, and
optimization Uatifyin its
process g Hhing

impact with an
stress function
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Table 6. Situation of the project on the present literature

DEGRADATION
SIMULATION AND OPTIMIZATION DEGRADATION |PUBLISH
REFERENCE APPROACH OPTIMIZATION CONTRIBUTION [CONSIDERATIONS METHOD
TECHNIQUE

Adresses the problem

. . . It cannot be
Batteries aging . . . in an endogeneous . .
. Mixed-integer linear . used as an . . . Linear degradation
impact on . . way, taking the . Generation Mixed-integer .. .
. programming. Linear expansion . . Li-ion cost function
generation Fundamental . number of charge and 1 week explotation DoD and SoC linear . L 2023
. degradation cost . model. Adressed L batteries  optimized in the
explotation . discharge cycles and . models optimization . .
function . ) in future objective function
models its depth as variables .
projects.

of the problem
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2.4 STRESS FUNCTION

To model the life loss of a battery, we use a cycle depth stress function @ (§). This function

depends on the normalized cycle’s depth §, which measures the changes in the battery’s SoC.
1

This function implies that a battery can do )

number of cycles before reaching the end of

its lifespan. This function is usually provided by battery manufacturers, and it is estimated

by means of empirical measurements [10].

[21] makes an analysis of the depth of discharge (DoD) stress functions present in literature.
This stress functions include linear stress function, ®(8) = k&, exponential stress function,
®(8) = k,5e*2% and polynomial stress functions, ®(8) = k,5%2. The linear function can
be suitable under some conditions. However, lab tests show that there is a high non-linear

relation on degradation under most conditions.

[6] proposes a model applicable for different lithium-ion batteries providing methods for
model coefficients tunning for the power degradation stress function by means of

manufacturer’s data.

[25] provides a power degradation stress function based on the influence that material
parameters of the battery and its operational conditions on the diffusion induced stress (DIS),

related to the cycle aging, and the solid electrolyte interphase (SEI).

[26] proposes a new aging model based on theoretical models of crack degradation and

provides an exponential dependence on depth of discharge stress.

For the purpose of this project, the stress function used in article [7]. Its near-quadratic stress
function, defined in E. 1, provides a good representation of the battery’s life loss caused by

the depth of discharge.

E 1  ¢(8) = (5.24E~4)5203
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Chapter 3. PROPOSED MODEL FOR BATTERY

DEGRADATION

This chapter describes the proposed MILP model that includes the optimization of the
battery’s degradation costs in the economic dispatch. The first section describes the
hypothesis considered. The second section presents the objective function, and the third
section formulates its constraints. Finally, the last section summarizes the final formulation

of the model.

3.1 HYPOTHESIS

The proposed model represents an economic dispatch, which optimizes the exploitation of
the power system to obtain the minimum total system cost maintaining the balance between
electric demand and generation. In addition to the classic economic dispatch objective
function and constraints [27], this model includes a degradation battery cost minimized in
the objective function and its respective constraints related to the count of charge and

discharge cycles and the battery degradation.
The hypothesis considered in this model are:

e The degradation of the battery is produced by the number and depth of the charge
and discharged cycles performed by the battery.

e Other degradation factors, such as the charge and discharge speed or temperature,
will not be considered.

e It is assumed that the initial and final conditions of the battery match with the
time frame (i.e., the state of charge, SoC, of each battery at the beginning of the
timeframe coincides with the SoC at the end). In addition, for the development of

the study cases, forced cycles of 24 hours have been used. These forced cycles are
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3.2

used to force the battery to have an specific SoC at the end of this 24 hour cycles
providing a better analysis of the battery’s performance.

It is assumed that the aging cycles are only produced during the battery’s
discharge. As in [7]; this assumes that a half discharge cycle produces the same
aging as a complete charge and discharge while a half charge cycle does not produce
aging. This is a reasonable assumption because the amounts of energy charged and
discharged from a battery are almost identical in each forced cycle.

A cycle’s depth § at time ¢ depends on the discharged power at that same instant ¢,

as showed on equation E. 2.

1
E 2 690 = [aipmax 9t

No investment decisions will be considered.
It is a single-node model; therefore, neither the distribution, nor the transport grid
together with their losses are considered.

The secondary or the tertiary reserves are not represented.

MAIN INPUTS AND OUTPUTS

The main inputs and outputs considered in the model will be presented in this subsection.

For simplification, only the inputs and outputs related to the battery’s operation optimization

will be presented. Other inputs and outputs considered in this model can be consulted in [28].

3.2.1 INPUTS

Cycles’ depth stress function. The stress function used in the model is shown on
equation E. 3. This equation represents the incremental aging resulting from the

battery’s cycle depth §.

E3  ¢(8) = (5.24E~4)5203

Figure 3-1 represents the stress function used in the model.
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Figure 3-1. Stress function

e Battery’s main technical characteristics. The input technical characteristics of the

battery used in the model and its units are listed on Table 7.

Table 7. Battery's input parameters

Parameter Units
Charging performance %
Discharging performance %
Installed power GW
Maximum SoC GWh
Minimum SoC GWh
Maximum discharge and charge power GW
Battery's initial level GWh
Cell replacement cost €/kWh

e Forced cycles. As explained on subsection 3.1, forced cycles are used to have a better

representation of the battery’s operation.
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3.2.2 OUTPUTS:

e Number of cycles performed. The methodology used to count the cycles performed
by the battery will be explained on subsection 3.5.3.

e Cycles depth. The battery’s cycle depth is described by equation E. 2.

e Battery aging. The battery aging is defined by equation E. 4, which is the total stress
of all the identified cycles suffered by the battery.

E 4 ¢=En16(5n)

3.3 THE AGING COST

The aging cost C(g;) is defined by the replacement cost of the cells R with the stress
¢(5(g:))- Equation E. 5 shows the aging cost definition.

E5 C(g:) = RPp(6(g:))
To calculate the marginal cost, equation E. 5 is derived with respect to the discharged power,

obtaining equation E. 6.

E6 @ _ p ap(8(2))
0gi dgi

Applying the chain rule, equation E. 7 is obtained.

g7 900&) _ d9(8)08Gk) _ dgp®) 1

0g ds  0g ds ndisgmax

The marginal aging cost is defined by equation E. 8.

@) _ pdpd) 1
E 8 g =R a5 pdisgmax

¢ can be linearly approximated by J segments equally speciated in interval [0,1] as shown

in equation E. 9.
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¢, if6 € [0,%)

ace _ R a¢® _ | . i-1 1‘)
E 9 e - pdisgmax g =16 lfS € J T

¢ if e[%1)

Equation E. 10 defines the battery’s degradation cost.

E10 ¢ = ndiszmax/ [¢ (j) —¢ (1_71)]

3.4 OBJECTIVE FUNCTION

The objective function, defined in equation E. 11, consists in the minimization of the
production costs of each electricity generation technology and the degradation costs of the
batteries of the system. For the sake of simplicity only one battery is considered in the

formulation here presented.

1
E 1l C=31(E§=1 FPrg + Zjer GO rammgman)

The objective function consists of two main terms:

e [Fyp: g4 is the production cost of technology g during time ¢.
e (;d;, is the degradation cost of the battery in segment j during time 7 The model

minimizes the degradation cost of each of the batteries of the system.

3.5 CONSTRAINTS

For simplicity, only the constraints related to the battery operation are explained in this

subsection. The remaining constraints are explained in detail in [28].

The model comprises four groups of constraints: 1) production-demand balance equation, 2)
state of charge (SoC) of the battery, 3) count of the number of cycles, 4) definition of the
depth of the cycle.
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3.5.1 PRODUCTION-DEMAND BALANCE

Equation E. 12 defines de production-demand balance. The energy produced by all the
technologies and discharged by the batteries of the system must be equal to the demand and

the energy charged by the batteries.

E 12 Y5 ipig+g.=D +d,

® p.g4 is the power produced at time 7 by technology g
e g. is the discharge power of the battery at time z.
e D, is the demand of the system at time ¢.

e d, is the charge power of the battery at time z.

3.5.2 BATTERY’S STATE OF CHARGE (S0C)

The SoC is the amount of energy available in a battery at a specific point in time. Figure 3-2

shows an example of a battery’s SoC profile but expressed as a percentage.

Figure 3-2. Example of SoC profile

The SoC expressed in energy is defined in equation E. 13, which defines the stored energy
evolution in each time as the SoC in the previous time plus the charge and minus the
discharge, taking into account the corresponding efficiencies. Equation E. 14 limits the
maximum and minimum SoC of the battery and equations E. 15 and E. 16 define the initial
and final values of the battery, which has been established in this formulation for the last and

the first times of the time horizon (however, other shorter forced cycles can be also set).
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9
7]dis

E 13 e =e_, +dn™—
E 14 E™ <e, <E™
E. 15 e =E™
E 16 ey =E™

e ¢, is the energy stored at time .

o 1", n%s are the charge and discharge efficiencies respectively.

e [EMAX EMIN are the maximum and minimum energy that can be stored in the battery
respectively.

e EM Eend are the initial and final values of the energy stored in the battery

respectively.

3.5.3 NUMBER OF CYCLES COUNT

The binary variable &; is defined to count the number of cycles n;. Variable ¢, activates at
time ¢ if the battery is discharging at the previous time #-1 and it stops discharging at the

actual time 7. Equation E. 17 is the logical implication used.

E 17 Ifgi1>0andg, <0—-¢ =1

Equations E. 18, E. 19, E. 20, E. 21 and E. 22 are the restrictions defined to model the logical
implication in E. 17 applying the methodology explained in Annex II. Logical Prepositions
Model Methodology. Equation E. 23 defines the number of cycles at time 7. Equation E. 24

defines the binary variables.
E 18 g, <p, (E")
E19 g, —e=p,(—¢)
E 20 p,+p,,=1+¢
E21 g,_,—e=21—-¢)(-¢)

E 22 g, <(1—¢)(E™)
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E23 n =X &

t'=1
E24 p.p,.& €101}

e & is a binary variable that gets active if a discharge cycle ends at time .

e ¢ isalower bound for the discharge g;. The definition of this parameter is explained
in more detail in Annex II. Logical Prepositions Model Methodology.

® D4t P2: are auxiliary binary variables used for the logical implication defined in E.

17 (see Annex II. Logical Prepositions Model Methodology for more details).

n; is the number of cycles at time z.

Figure 3-3 shows the points of the SoC battery profile expressed as a percentage where
variable &; is activated.

70 T T

60 [~ —
50 — —

g g =1
&g =1

0 1 L L 1 1 | 1 L | l L | L
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14
[l

Figure 3-3. Activation of variable €, in the SoC profile

3.5.4 CYCLE’S DEPTH

The cycle’s depth is measured as a percentage. Equations E. 25 and E. 26 define the total
cycle’s depth 6 along the temporal horizon and the corresponding depth §; at each hour,
respectively. Equation E. 27 set the bound of the cycle’s depth §;, for each segment (or
step). Note that only one segment must be activated according to equation E. 28. Equation

E. 29 defines @;; as a binary variable.

E 25 6=XI,6

E26 & =Y_,6,
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- ,
E. 27 (’T)aj_t <&, < faj,t

E2 Y a, =1

j=1 %t

E29 a, €{0,1}

0 is the total depth of all the cycles performed during the temporal period.

6, 1s the cycle’s depth at time ¢.

8; ¢ is cycle’s depth at segment j at time .

a; . is the binary variable that activates only one of the segments.

Equation E. 30 sets the definition of the cycle’s depth §; using a logical implication. This

implication sums the discharge values between two consecutive cycles assigning the result

to the cycle’s depth variable, §;. The calculation is only performed at the end of a cycle, i.e.,

when €, = 1. Equations E. 31, E. 32, E. 33 and E. 34 are the constraints used to define it

applying the methodology explained in Annex II. Logical Prepositions Model Methodology.

Equation E. 35 defines the binary variables.

1
E 30 Ife=1land Yyroypi&pn=1-6, = Wzr’:t—k,tgtr

1

1
- N, - N, max
E 31 Sf pdis pmax Zt =t—kt gt' = 'ultk ( pdis pmax Zt =t—kt G )

E 32 &<y,
E. 33 Zt’:t—k,t & — 22 Usex (—2)
E 34 gty g, =2

E. 35 e, €{0,1}

Ko Hoper Bagper

40



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)

C O M I I_ I_ A S MASTER EN INGENIERIA INDUSTRIAL

UNIVERSIDAD PONTIFICIA

PROPOSED MODEL FOR BATTERY DEGRADATION

Figure 3-4 shows the cycle’s depth calculated for the SoC profile example.
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Figure 3-4. Cycle's depth calculation for the SoC profile

3.6 RESOLUTION METHOD

The proposed MLIP model will be solved using mixed-integer programming and the

“branch and bound” algorithm in GAMS [29].
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Chapter 4. CASE STUDY

This chapter presents the results of the proposed model. The base case solves the economic
dispatch with no battery degradation cost using as inputs the national energy and climate
plans for Spain (PNIEC) and Portugal (PNEC) for 2030. The first case study performs a
sensitivity analysis of the battery’s ageing cost over the base case. The second case consists
of a sensitivity analysis of the ageing cost linear approximation and the third case analyses
the computational results regarding the number of forced cycles and number of segments

considered in the linear approximation.

4.1 INITIAL ASSUMPTIONS

The model is solved for a time horizon of one week, for the first week of year 2030. This
week has been chosen because is the week of the year with the largest variance, allowing to

increase the use of the battery to reduce the operation costs of the system.
The initial assumptions considered when solving the model were the following:

e Except for case study 3 the model is solved for the third week of year 2030 since it
has the largest demand variance, allowing the battery to increase its use and reduce
the system’s operation costs and reducing the computational times without
compromising the results.

e For thermal technologies, neither startup and shutdown costs nor generation ramps
will be considered.

o Instead of a set of installed batteries, only one aggregated average battery is
represented by simplicity. This last simplification can be proved to be sensible when
only operational decisions are considered. However, when investment decisions are
considered, the number and types of batteries to be installed in the long-term might

be a key factor since different sizes of the installed power and storage capacity of the
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batteries might lead to very different solutions from the point of view of the total

system cost minimization.

4.2 BASE CASE

4.2.1 BASE CASE INPUT DATA

4.2.1.1 Electricity Demand

Figure 4-1 presents the weekly demand of the first week year 2030, obtained from [30]. This
is the week of year with the largest variance and it is the demand profile that has been used
for all the case studies, because, as explained in section 3.1, it provides more information
about the behavior of the battery to different demand profiles reducing the computational

times without compromising the results.

x10%
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Demand [MW]
S
T

©

o
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Figure 4-1. Weekly demand used for the case studies
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4.2.1.2 Renewable Capacities

The installed capacity for the wind and solar technologies according to [31] is defined in
Table 8. The profile shown in Figure 4-2, has been obtained from [30], which includes the

production of wind, solar and thermal solar.

Table 8. Renewable energies installed capacity for 2030

Technology Value Units
Wind 50,333 |GW
Solar 39,181 |GW

Renewable Energies Profile
100
90
80
70
60
50
40

Production [MWh]

30
20
10

0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166
Week Hours [h]

Figure 4-2. Renewable energies profile 2030

4.2.1.3 Stress Function

Equation E. 36 is the stress function used in the model and Figure 4-3 represents the plot of

the function.

E 36 @(5) = (5.24E — 4)5%03
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Figure 4-3. Stress function

4.2.1.4 Battery’s Parameters

The charge and discharge performance of the battery is of 95%. According to [32] the
estimated total amount of energy storage systems installed capacity in 2030 will be of 9 GW.
Considering that the battery takes an interval of two hours to completely charge, the
maximum SoC is of 18 GWh. The minimum SoC will be of 0 GWh to allow the complete
use of the battery. The battery will have an initial level of 9 GWh, this allows the battery to
charge or discharge during the first instance according to the needs of the model. The
replacement cost is set to be of 151 €/kWh, which is the average price per kWh for lithium-

ion batteries according to [33].

The parameters chosen and its units are summarized on Table 9.
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Table 9. Battery's parameters
BATTERY PARAMETERS
Parameter Value | Units

Charging performance 95 |%
Discharging performance 95 |%
Installed power 9 GW
Maximum SoC 18 |GWh
Minimum SoC 0 GWh
Maximum discharge and charge power 9 GW
Battery's initial level 9 GWh
Cell replacement cost 151 |€/kwh

4.2.1.5 Other Technologies Costs

The costs used for the other technologies present in the model, which include CO; prices,
fuel gas, nuclear fuel, oil and TTF prices, are summarize in Table 10, which includes the

reference from which the price has been obtained.

Table 10. Other technologies costs

BASE CASE PARAMETERS
Cost Units Reference
CO2 Costs 93,05 |£/TonCO2 [34]
Nuclear 6 €/MWh_e [35]
Fuel Costs
TTF 48,88 €/MWh_e [36]

4.2.2 BASE CASE STUDY RESULTS

For the base case study, no degradation costs have been considered to observe the battery’s
operation without the ageing effect. In addition, three segments linear approximation for the
stress function has been considered. A comparison of the results obtained considering and
not considering degradation costs is carried out in Case Study 1: Sensitivity Analysis of the

Battery Degradation Cost.
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Figure 4-4 shows the results obtained for the base case. In Figure 4-4, renewable energies
production and battery level is represented on the left axis and the market price is represented
on the right axis. The results show that the battery charges while there is a large renewable
energy production, and therefore, while the market prices are low. On the other hand, the
battery charges while there is a low renewable production, and the market prices are higher.

This shows that the battery’s model operation is consistent with a real-life battery operation.

This dispatch maximizes the market revenue for the battery energy storage system. The
energy storage system charges during renewable generation peaks, when market price is low,
and discharges when there a small amount of renewable generation and therefore market
price is high. However, it ignores the optimization of the battery’s lifespan because the

decisions do not take into account the degradation cost.
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Figure 4-4. Base Case results
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4.3 CASE STUDY 1: SENSITIVITY ANALYSIS OF THE BATTERY

DEGRADATION COST

This case study compares the battery’s operation not considering the degradation cost of the
battery and considering it. In addition, case study 1 makes a sensitivity analysis of how the

battery management varies with the degradation cost.

4.3.1 DEGRADATION COSTS CASE STUDY 1

As explained in section 4.2.1.4, the replacement cost considered is 151 €/kWh. Three
segments linear approximation for the stress function as in the base case has been considered.
The stress function @ is linearly approximated as explained in section 3.3. The replacement
cost linearization values using three segments is shown in Table 11. This will be considered

the base cost.

Table 11. Replacement cost linearization with three segments

D(6) Cost [€]

0,33 8,51

0,67 34,74
1 79,12

For this case study, five subcases have been analyzed considering different degradation
costs. The degradation costs considered are shown in Table 12, represented as a percentage

of the base costs defined above.

Table 12. Replacement cost for subcases of case 1

Subcase |Percentage of the base cost
1 100%
2 50%
3 75%
4 125%
5 150%
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4.3.2 CASE STUDY 1 RESULTS

Figure 4-5 shows a comparison of the battery’s operation considering degradation cost,
represented in orange, and without considering degradation cost, represented in blue. The
figure shows that the degradation cost penalization applied to the objective function,
negatively affects the optimal operation of the battery in terms of market revenue for the
energy storage system to extent the battery’s life and optimize its use. Slower charge and

discharge cycles are obtained because of including the degradation cost.

Figure 4-6 shows the sensitivity analysis of the effect of the degradation cost on the battery’s
operation. As explained in the previous paragraph, the degradation cost affects the battery’s
operation making the charge and discharge cycles slower to preserve the battery’s life. As
the price of the degradation cost increases, the charge and discharge cycles decrease their

speed. On the contrary, when the degradation cost decreases, the cycles are made faster.

Table 13 shows the number of cycles performed in each case and the objective function
result. As shown in the results there is not a significant variation between each of the cases.
The degradation cost mainly affects the charge and discharge speed and has a low effect on

the battery’s SoC profile and the objective function value.

Table 13. Number of cycles and objective function results for case 1

50% BASE 75% BASE 125% BASE | 150% BASE
- CASOBASE | BASE PRICE PRICE PRICE PRICE PRICE
62 66 64 66 65 66

Number of
cycles

Objective

. 1389,83 1389,82 1389,02 1389,43 1389,76 1389,52
Function [M€]
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4.4 CASE STUDY 2: SENSITIVITY ANALYSIS OF THE DEGRADATION

COST LINEAR APPROXIMATION

Case study 2 compares de battery management for piecewise linear cycle aging cost
functions with different number of cycle depth segment. For this purpose, the model will be

executed varying the number of segments in which the stress function is divided.

4.4.1 DEGRADATION COSTS CASE STUDY 2

As explained in section 4.2.1.4, the replacement cost considered is 151 €/kWh. For case
study 2, a sensitivity analysis is carried out to show how a piecewise linear cycle aging cost
functions with different number of cycle depth segment affects the model. Five subcases
have been carried out increasing the number of segments from 1 to 5. The stress function ®
is linearly approximated as explained in section 3.3. Table 14 shows the linearization values

used for each of the subcases.

Table 14. Replacement cost linearization for subcases of case 2

Subcase 1 Subcase 2 Subcase 3 Subcase 4 Subcase 5

1 segment 2 segments 3 segments 4 segments 5 segments
®(5) |Cost[€]| P(F) |Cost[€]| ®(6) |Cost[€]| P(5) |Cost[€]| P(F) | Cost[€]

1 79,12 0,5 19,37 | 0,33 8,51 0,25 4,74 0,2 3,02
1 79,12 | 0,67 | 34,74 0,5 19,37 0,4 12,32
1 79,12 | 0,75 | 44,12 0,6 28,05
1 79,12 0,8 50,30
1 79,12

Figure 4-7 shows how the linearization using different number of segments affects the
replacement cost. A cost curve with a greater number of segments is a closer approximation

of the actual cycle aging function.
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Figure 4-7. Piecewise linear cycle aging cost functions with different number of cycle depth segment

4.4.2 CASE STUDY 2 RESULTS

Figure 4-8 shows the sensitivity analysis of the effect of increasing the number of segments

used on the stress function linearization.

When the cycle aging cost is approximated by a single cycle depth segment, the marginal
cost of cycle aging remains constant, resulting in an overestimation of the marginal cost of
aging and obtaining the most conservative dispatch solution, where the battery only charges

and discharges when there is a large price deviation.

Figure 4-9 and Figure 4-10 show the correlation between the market price fluctuation,
represented in dashed black, and the battery’s state of charge when the cycle aging cost is
approximated by a single segment and five segment respectively. It is shown that there is a
higher correlation between the market price when approximating the cycle aging cost curve
with five segments than with a single segment, meaning the model becomes more sensitive

to market price fluctuations as the number of segments applied increases.
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It is important to note that between hours 52 and 91 there is a lost in correlation. This is
caused by the forced cycles imposed every 24 hours, forcing the battery to carry out a cycle

and causing the loss in correlation with the market price.

Table 15 shows the number of cycles performed in each case and the objective function

result. As shown in the results there is not a significant variation between each of the cases.

Table 15. Number of cycles and objective function results for case 2

et 53 61 62 57 59
cycles

Objective 1389,97 1389,63 1389,82 1389,32 1389,43
Function [M€]
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Figure 4-8. Sensitivity analysis of the effect stress function linearization increasing the number of segments

55



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIER{A (ICAI)

C O M I I_ I_ A S MASTER EN INGENIERIA INDUSTRIAL

UNIVERSIDAD PONTIFICIA

ICAI ICADE CIHS CASE STUDY
20 140
18 7\

. 1 - - o N - 120
e 1| | oo T AL Jo =
14 [ [ 100 2
| | | [ | I | | S
= AL AR | ! I (R 50 @
G 10 1| P\ l (! H : .y 3
9 4 | H I | | I | ' 1 (1 60 o
)
7 ) ! | ! [ ! N K
6 ! | 40 5
| | | @©
. | , | | [ | 1! S
! | . I | l | | 20
0 == == — - — l_\_- . .’-‘_ — o h — 4 p— A 0
L I Vo T @ ) N o 0 TN SR o N o @ ) NN o' TN IS o I 0 Y@ ) N o' RN AR o I 0 N @) I o 0 TN N OO MO ™~ W 8 M N o 1N OO MmN o wn 00 mM~N o W
TN AN NN TS NN O O O NN 0 0 o oo O O I AN AN SN N OO
D T e R O TR o B o I o B B O o TR e R B o B R |

Week Hour [h]

SoC == = MarketPrice

Figure 4-9. Correlation between the market price fluctuation and the state of charge of the battery when the cycle aging cost is approximated by a single

segment
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Figure 4-10. Correlation between the market price fluctuation and the state of charge of the battery when the cycle aging cost is approximated by a five

segments
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4.5 CASE STUDY 3: COMPUTATIONAL RESULTS

Case study 3 compares the computational results regarding the execution times when varying
the number of forced cycles and the number segments. In addition, an analysis of the effect

on the battery’s operation when varying the hours of the forced cycles has been carried out.

The computer used to solve the model is a Huawei MateBook D 14 AMD Ryzen 5 3500U
and 8 GB RAM. The computer’s operating system is 64-bit, x64-based processor, Windows
11 Home 22H2. The model has been coded with GAMS version 41.4.0 using CPLEX as

solver.

4.5.1 FORCED CYCLES

For this subcase study, it has been used the same degradation costs as in the base case of
case 1, for a piecewise linear cycle aging cost functions with three cycle depth segments.
The replacement costs are shown in Table 11. The time frame remains the same as the rest

of the cases, one week.

As explained in subsection 3.1, forced cycles are used to force the battery to have an specific
SoC at the end of an specific time frame. These forced cycles have been used to obtain a

better representation of the battery’s operation reducing the time of optimization.

In this subcase, the computational effect of varying the time frame of forced cycles has been

analyzed. In addition, the effect on the battery’s operation has been analyzed.

Table 16 shows the computational results obtained when varying the time frame for the
forced cycles. It can be observed that as the time of the forced cycles gets higher, it takes a

larger computational time.
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Table 16. Computational results varying forced cycles

FORCED
CYCLE “n“
196 275 612

Execution

time [s] &

1054

Figure 4-11 and Figure 4-12 show the correlation between the market price fluctuation,
represented in dashed black, and the time of forced cycles, represented in blue. The figures
show that if the time frame is very small, the battery is forced to do the forced cycles, not
being able to operate according to the conditions of the system. As the time frame gets
bigger, the battery can fulfill the model’s conditions. When the forced cycles are set to 6
hours, the battery is not able to follow the market price curve, while as the time frame gets

higher, a better fit of the curve is obtained.
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Figure 4-11. Correlation between market price fluctuation and 6-hour forced cycles
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Figure 4-12. Correlation between market price fluctuation and 72-hour forced cycles
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4.5.2 NUMBER OF SEGMENTS

For this subcase study, it has been used the same degradation costs as in case 2, for a
piecewise linear cycle aging cost function with different cycle depth segments. The
replacements costs for each case are shown in Table 14. The time period remains the same

as the rest of the cases, one week.

This subcase compares the computational results when varying the number of segments for

the piecewise linear cycle aging cost function.

Table 17 shows a comparison of the computational results obtained when varying the
number of segments of the cycle aging cost function. As shown in the table, the
computational times have a low variation for 2, 3 and 4 segments while for 1 and 5 segments
the computational time is longer. Therefore, there is no clear relationship between the

number of segments and the execution time.

Table 17. Computational times varying the number of segments of the cost function

NUMBER OF 1
SEGMENTS
332 253 254 287 320

Execution time

[s]
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Chapter 5. CONCLUSIONS AND FUTURE

DEVELOPMENTS

Energy storage systems have become key components of electricity generation. The growth
in interest on this technology over the past two decades is due to the battery technological
advancements, the increase in use of renewable energies, infrastructure limitations and

changes in the electricity market.

Their capacity to ensure reliability, improve efficiency and integrate renewable energy
sources highlights the need to improve the operation and optimization of this systems to

reduce its cost and extend their lifespan.

Batteries have a limited of charge and discharge cycles due to degradation, which reduces
the battery’s energy capacity and lifespan. If this is not considered, this can lead to the battery
reaching the end of its lifespan too early with its subsequent economic impact. In addition
to economic reasons, environmental sustainability reasons are also key factors to optimize
the battery’s lifespan due to the rare materials they rely on and their impact on the

environment.

This thesis has presented a mixed integer linear mathematical programming model that
represents an economic dispatch that includes a degradation cost function to optimize the
use of energy storage systems considering charge and discharge cycles as variables of the
problem quantified in an endogenously way. To prove its computational efficiency and

accuracy three case studies have been carried out.

The first case study compares the battery’s operation not considering the degradation cost of
the battery and considering it and makes a sensitivity analysis of how the battery

management varies with the degradation cost.

64



UNIVERSIDAD PONTIFICIA COMILLAS
ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAI)

C O M I I_ I_ A S MASTER EN INGENIERIA INDUSTRIAL

UNIVERSIDAD PONTIFICIA

CONCLUSIONS AND FUTURE DEVELOPMENTS

The results show that the degradation cost penalization applied to the objective function,
negatively affects the optimal operation of the battery in terms of market revenue for the

energy storage system to extent the battery’s life and optimize its use.

The second case compares de battery management for piecewise linear cycle aging cost
functions with different number of cycle depth segment. The results obtained demonstrate
that the model becomes more sensitive to market price fluctuations as the number of

segments applied increases.

Lastly, the third case compares the computational results regarding the execution times when

varying the number of forced cycles and the number segments.

In terms of forced cycles, as the time of the forced cycles gets higher, it takes a larger
computational time. However, if the time frame is very small, the battery is forced to do the
forced cycles, not being able to operate according to the conditions of the system. For this

reason, it is important to find a compromise between these two conditions.

In terms of the number of segments in the degradation cost function, it is key to find the
amount of segments needed to correctly represent the degradation cost function without

compromising its computational results.

For future developments, the proposed model will be used as an expansion generation model.
The model can represent the degradation cost in the objective function as a way to model the
replacement cost due to this degradation, making it necessary the installation of new batteries

if investment decisions are considered in the long term.

All in all, this thesis proposes a model that easily enables to include the battery’s degradation
cost, introducing the charge and discharge cycles as variables of the problem and quantifying
them in an endogenously way. In addition, the cases studies demonstrate the computational

efficiency and accuracy of the model.
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ANNEX 1. SUSTAINABLE DEVELOPMENT GOALS

The Sustainable Development Goals (SDG’s) are a set of seventeen global goals adopted by
the United Nations in September 2015 as part of the 2030 Agenda for Sustainable

Development. They represent a universal call to action to end poverty, protect the planet,

and ensure people’s peace and prosperity by 2030 [36].

This thesis is mainly aligned with four SDG’s:

SDG 7 “Ensure access to affordable, reliable, sustainable and modern energy”.
Energy poverty affects to a significant portion of the global population. 13% of the
world’s population lacks access to modern and reliable energy services especially
affecting people in rural areas and in low-income communities, making it difficult
for them to meet their basic needs and improve their living conditions [38].

By optimizing energy storage systems, the integration of renewable energy sources
such as solar and wind into the grid are enhanced, making clean and sustainable

energy more accessible and affordable.

Figure 0-1. SDG 7 “Ensure Access to affordable, reliable, sustainable and modern energy”

SDG 11 “Make cities inclusive, safe, resilient and sustainable”.
More than 50% of the world’s population live in cities, considered drivers of

economic growth and major contributors of the global GDP [37].
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Energy storage systems support the development of smart grids and sustainable

energy management, promoting more resilient, sustainable, and cleaner cities.

1 SUSTAINABLE CITIES
AND COMMUNITIES
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g |==]=5]55

Figure 0-2. SDG 11 “Make cities inclusive, safe, resilient, and sustainable”

e SDG 12 “Ensure sustainable consumption and production patterns”.
Unsustainable patterns can cause triple planetary crises involving climate change,
biodiversity loss and pollution threatening human well-being. Goal 12 main target is
to improve resource efficiency, reduce waste and pollution, and shape a new circular
economy [37].

Optimizing the management of energy storage systems which help extending their
lifespan, contributes to a more efficient energy consumption, reducing waste and

promoting more sustainable production technologies.

1 2 RESPONSIBLE
CONSUMPTION

AND PRODUCTION

O

Figure 0-3. SDG 12 “Ensure sustainable consumption and production patterns”

e SDG 13 “Take urgent action to combat climate change and its impact”
Due to the increase in concentrations of global greenhouse gases together with the

rise of the Earth’s temperature, taking urgent action to combat climate change and
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its devastating impacts has become a key goal for the 2030 Agenda for Sustainable
Development [37].

Energy storage systems provide more stability to the grid, allow to manage the
fluctuations of renewable energies technology generation, reducing the use of fossil

fuels and contributing to the mitigation of climate change.

13 CLIMATE
ACTION

Figure 0-4. SDG 13 “Take urgent action to combat climate change and its impact”
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ANNEX II. LOGICAL PREPOSITIONS MODEL

METHODOLOGY

In this annex the methodology used to transform logical implications into mathematical
constraints with new binary variables will be explained. For this purpose, a generic logical
implication is explained first, and then this methodology is applied to the logical implications

used in the model.

Equation E. 37 is a logical implication that states that if two constraints g(x) and h(x) are

fulfilled, then another constrained f(x) should be fulfilled.

E 37 Ifgx)<0andh(x) >0 - f(x) <0
| y J \ Y J
A B

To transform a logical implication into mathematical constraints with binary variables we
have to apply first the Morgan’s Law. According to Morgan’s Law, showed in equation E.

38, if A implies B, is equivalent to it is B or no A.

E. 38 A->B <o BornotA

If we apply Morgan’s Law to equation E. 37, equation E. 39 is obtained. In this way, each
“or” condition has its corresponding binary variable that allows to activate or desactivate the

constraint.

E. 39 \f(x) < O}o\r gx)>0orh(x) < 0’

B no A

In optimization problems, the greater than (>) or less than (<) sings cannot be used so they

must be replaced by greater-than or equal (=) or less-than or equal(<) sings. To do that,
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we assume a small error €, where ¢ is a small positive parameter. Equation E. 39 leads to

Equation E. 40 with only greater-than or equal or less-than or equal sings.

E 40 f(x)<0org(x)=corh(x)<0

Then each “or” condition is replaced by a constraint activated by a binary variable and an
upper or lower bound according to their sing. If the sing is lower or equal, then an upper
bound is used, if the sing is greater or equal, a lower bound is used. Equations E. 41, E. 42

and E. 43 shows the result of applying this procedure to equation E. 40.

E 4l f)<sp-f

E42 g)-ezp-(g—¢€)

E 43 h(x)<pus;-h

f, gand h being the upper, lower and upper bounds of f(x), g(x) and h(x) respectively.

Since one of the previous constraints must get active, and additional constrain E. 44 must

be added to force one of the binary variables to be zero.

E 44 p +p,+p, =2

The final transformation of the logical implication into mathematical constrains consist of

E.41,E. 42,E. 43 and E. 44

Now this general methodology is applied specifically to the logical implications used in the

model.

Equation E. 45 is the logical implication used to count the number of cycles. If the battery

is discharging at time #-1 and it stops discharging at time ¢, then the binary variable &, should
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get active indicating the end of a discharge cycle. Equations E. 46 and E. 47 use the
methodology described before.

E 45 Ifgi4>0and g, <0—-¢ =1
E 46 & =1org, <0org >0

E 47 &

lorg,, <0org, =2¢

The final constraints are shown in equations E. 48, E. 49 and E. 50. In this case, no additional
binary variable is needed to activate &, because it will only get active if the other two binary

variables are not active.
E 48 g, <p, (E™)
E 49 g ,—ezp, (-9

E S50 p,+p,,=1+¢

Depending on the model, sometimes is necessary to add the opposite logical implication,

shown in equation E. 51.

E 51 Ifeg=1-g,,>0andg, <0

The methodology applied is the same as the one applied to the previous constraints; however,
no additional binary variables are needed because they are associated to the activation of the

same variables. Equations E. 52 and E. 53 show the remaining constraints.

E 52 g, _,—e=2(1-¢)(-¢)

E 53 g, < (1—¢&)(E™™)
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For the logical implication related to the definition of the cycle’s depth, shown in equation
E. 54, the same methodology is applied, leading to equation E. 55.
E 54 Ife,=1land Yy y 60 =1-6, > Wzt,:t_k_t Jo
E 55 6, = Wztr:t_k'tgtr org < 00T Yprop & =2

n

Equations E. 56, E. 57, E. 58 and E. 59 show the final constraints equivalent to implication
E. 54 when applied the general methodology described at the beginning of this section.

1 1
- i - , max
E. 56 Sf 71aiisEmax Zt =t—lkt gt' = 'ultk ( ndisEmax Zt =t—k,t G )

E 57 & <,
E. 58 Zt’:t—k,t & — 22 Usex (—2)

E59 Wyt g, =2
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