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Abstract 

 

We study the stock price efficiency of companies with exposure to the hydrogen economy. As 

hydrogen, a pillar of the energy transition required for the global society to achieve the 

Sustainable Development Goals for 2030, does not trade as a commodity, we use the Solactive 

Hydrogen Index NTR as a proxy. Efficiency is assessed through a fractal methodology, with 

data from November 2018 to June 2021. Additionally, we run a time-varying approach that 
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improves the robustness of the efficiency estimates. We find random price behavior consistent 

with the weak version of the market efficiency hypothesis, with only mild departures from 

efficiency in some companies with higher hydrogen exposure. There is also evidence of time-

varying behavior of randomness during the acute pandemic period. The study validates the 

Solactive Hydrogen Index as an adequate proxy for the hydrogen economy. 

 

Keywords: Hydrogen Economy, ESG Investment, Efficient Market Hypothesis, Fractals, Long 

Memory, Time Series Analysis 

JEL codes: Q42, Q40, G14, G11, C13 

 

1. Introduction 

The hydrogen economy is growing because of its potential to help the global society 

meet some of the Sustainable Development Goals for 2030 (Goals 7 and 10, respectively, for 

affordable and clean energy and climate action). However, significant research and investment 

are required to make it more affordable, reliable, and safe (Acar & Dincer, 2019; Burton, Padilla, 

Rose & Habibulllah, 2021). For investment flows to increase research and development in the 

hydrogen economy, market efficiency is a necessary condition for better capital allocation. 

However, hydrogen does not trade as a commodity with a market quotation, which potentially 

hampers investments in the field.  

In this study, we investigate the suitability of the Solactive Hydrogen Economy Index 

NTR (Sohydron) as a proxy for the hydrogen economy. Despite the nascent hydrogen economy, 

with short time-series data available, we can extract useful information from it. Suppose trading 

in the index follows the Efficient Market Hypothesis (EMH) (recent literature reviews can be 

found in Zaremba, Umutlu & Maydybura, 2020; Jacobs & Muller, 2020; Harvey, Liu & Zhu, 

2016). In that case, we argue that financial frictions should not be a barrier to hydrogen as a 

driver of climate transition.  

This study contributes to society in a few significant ways. First, we show that applying 

fractal methodologies to short time series can improve the robustness of market efficiency 

studies. Second, we find that financial frictions such as inefficient capital markets should not 

be a barrier to developing the hydrogen economy. Finally, we provide some guidance on the 

crossroads between environmental, social, and corporate governance (ESG) investments and 

long-term price dependence, including the effect of the global pandemic on the efficiency of 

hydrogen markets. 
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The fractal methodology is suitable because of the departures from normality of the 

sample under study. Furthermore, as the companies that constitute the Sohydron index show 

different degrees of exposure to the hydrogen economy and belong to diverse industries, we 

deepen the analysis by clustering stocks into four groups for more granular results. 

We calculate three fractal estimators: the R/S-AL estimator developed by Annis and 

Lloyd (1976), Detrended Fluctuation Analysis (DFA), and multifractal Generalized Hurst 

Exponent (GHE) (see Di Matteo, Aste, & Dacorogna, 2003; Di Matteo, 2007; Barunik & 

Kristoufek, 2010; Sensoy & Hacihasanoglu, 2014). We complement the static estimation with 

a rolling window approach to further investigate the time-varying efficiency dynamics, which 

is particularly important because the data include the recent acute global pandemic. 

We find evidence of random price behavior that is consistent with the weak version of 

market efficiency, except for some mild departures in the companies with a more substantial 

hydrogen exposure, which are grouped in Cluster 1 (mainly electrolyzer and fuel cell 

companies). This cluster displays long memory in returns, precisely, a trend-reinforcing 

behavior. These results are consistent with recent investor interest that, coupled with that from 

regulators, has fueled the momentum of several hydrogen producers' stocks. However, the 

aggregated result for Cluster 1 does not imply uniform behavior. Indeed, there is no evidence 

of a substantial deviation from the weak EMH in the evolution of the three companies classified 

as green hydrogen pure players (GPPs). 

There is also an indication of a time-varying behavior of randomness during the acute 

pandemic period. The index returns exhibit steady, persistent behavior during the market crash 

in March 2020 but return to randomness by the second half of 2020. 

The study also validates the use of the index as an adequate proxy for hydrogen 

investments, given its mimicking behavior of those players who are more focused on the 

hydrogen economy. This renders the Sohydron index a suitable underlying asset for affordable 

investment products, such as Exchange Traded Funds (ETFs). This allows retail and 

institutional investors to effortlessly invest in the hydrogen economy. 

The remainder of this paper is organized as follows. Section 2 explains the relevance of 

the hydrogen economy, while Section 3 describes the sample that was used as a proxy for 

hydrogen behavior. In Section 4, the fractal methodology employed is explained. Section 5 

presents the results and a discussion of the empirical estimations from the fractal analysis, while 

Section 6 concludes. 

 

2. Hydrogen Economy  
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Hydrogen should play an essential role in climate transition (Shafiei, Davidsdottir, 

Leaver & Stefansson, 2017), as 20% of global carbon emissions could be abated by its 

widespread use in energy markets (BofA, 2020). Despite being in its nascence, the hydrogen 

economy may allow storage and transportation of renewable energy (Kalinci, Dince & Hepbasli, 

2017; Beheshti, Ghassemi & Shahsavan-Markadeh, 2016), with the potential to solve the main 

barrier to universal adoption of renewables. Hydrogen may power 20–25% of the transportation 

industry by 2050 (Mostafaeipour et al., 2016). It may also be deployed as a source of heat on 

buildings’ existing natural gas infrastructure (Alanne & Cao, 2017), and as an alternative 

feedstock for energy-intensive manufacturing industries (Acar & Dincer, 2014; Mehrpooya, 

Sayyad & Zonouz, 2017). However, several issues must be considered for its development. 

On the one hand, over 99% of hydrogen output is still generated using fossil fuels, 

accounting for 2.2% of global carbon emissions (BofA, 2020). Therefore, the hydrogen 

economy will contribute to climate change mitigation only if hydrogen is produced using 

renewable energy sources (Göllei, Görbe & Magyar, 2016). Such hydrogen is referred to as 

green hydrogen, as opposed to hydrogen produced through coal gasification (brown hydrogen) 

or steam methane reforming (grey hydrogen). Carbon dioxide emissions are released into the 

atmosphere during brown and grey hydrogen production. When these emissions are captured 

and stored, the hydrogen obtained is denominated as “blue.” Thus, energy transition entails 

moving from grey, through blue, to green hydrogen. 

On the other hand, the technologies for green hydrogen production are not economically 

viable (Burton, 2021). Its production cost would have to decline by 50% for it to be 

economically competitive with grey hydrogen (Jia et al., 2016). However, hydrogen production 

methods are becoming more efficient and affordable (Salvi & Subramanian, 2015). Further 

advancements are expected to lower costs and increase the scale of hydrogen production 

(Nastasi & Basso, 2016). Falling renewable prices are also paramount in reducing hydrogen 

costs; public policy measures setting higher carbon prices and more stringent decarbonization 

mandates could be a tipping point in favor of green hydrogen (Chintala & Subramanian, 2015). 

Finally, as the technology to exploit hydrogen is not fully mature, public investors are 

increasingly being pressed to play a role in sustainable investing (Elsenhuber & Skenderasi, 

2020). Simultaneously, driven by ESG investment criteria, private investors seek hydrogen to 

contribute to climate change mitigation (Göllei et al., 2016). 

Investment growth and attention by asset managers have been reflected in stock prices, 

bringing extreme volatility. Hydrogen-related stocks have increased by an average of more than 

100% during 2020 (such as PowerCell, Chart Industries, Ballard Power Systems, and Nel ASA). 
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In some cases, stock prices have risen by over 300% (Bloom Energy, FuelCell Energy, and 

Plug Power). Although stocks have retreated from all-time highs, concerns about asset bubbles 

remain. Determining whether, at this stage, this is an efficient market would be valuable to 

investors and public authorities. 

 

3. Sample description 

Presently, investors cannot trade hydrogen as a commodity. The main alternative for 

investors who want to build positions in the hydrogen economy is through specific company 

stocks, mutual funds, ETFs, or indexes related to the major companies in the industry. These 

include the Global Hydrogen Index, the Korean FnGuide Hydrogen Economy Theme Index, 

and the Sohydron index. We identify the Sohydron index as the best proxy to study hydrogen 

price behavior, given that it has a worldwide, diversified industry exposure and the most 

extended time series available. Other Solactive indices, such as the Solactive Sustainability 

Index Europe and the Solactive Green Bond Index, have been previously used in the academic 

literature (Mikołajek-Gocejna, 2018; Pham & Huynh, 2020; Saeed, Bouri & Alsulami, 2021). 

In the appendix, we describe the other indices and the reasons for their ineligibility for 

efficiency study purposes. 

The Sohydron index is denominated in US$ and aims to track the performance of a 

worldwide basket of stocks from companies involved in the hydrogen economy. The index is 

semiannually rebalanced and monthly adjusted. On each selection day, each index component 

is assigned an equal weight, subject to some constraints. We consider daily closing prices, for 

the Sohydron index and its components, over the period from November 16, 2018, when the 

index was created, to June 30, 2021. The total number of observations for the index and each 

of its components exceeds 600, except for three companies that started quoting at a later date 

(Doosan Fuel Cell Co on October 18, 2019, Advent Technologies Holdings Inc on January 23, 

2019, and Siemens Energy AG on September 28, 2020). Figure 1 shows stock price changes 

(in nominal dollars). 

 

Figure 1: Daily time series evolution of the Solactive Hydrogen Economy Index NTR (Sohydron) 

series and its components. 
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A company must meet a few requirements to qualify as this index component. The first 

is for the company to be part of the hydrogen production supply chain. Other requirements for 

inclusion are a market capitalization of at least $200 million at the time of inclusion and a three-

month average daily traded value of at least $1 million. The resulting basket includes many 

electrolyzer and fuel cell manufacturers, industrial producers of their main components, 

hydrogen producers, companies from the energy, automotive, or gas industries, and even a few 

large conglomerates. For instance, Infinergia Consulting (2021) classifies companies as “pure-

players” (focused on hydrogen activities) and “diversified” (have multiple activities, including 

hydrogen). According to Infinergia's hydrogen company database, 15 companies included in 

the Sohydron index are considered pure players. 

As of June 30, 2021, the index contained the 32 stocks shown in Table 1, which also presents 

the main statistics of their daily logarithmic close/close increments series. 

 

Table 1: Solactive Hydrogen Economy Index NTR and its components as of May 24, 2021, and 

descriptive statistics of the daily logarithmic close/close increments series. Jarque-Bera tests strongly 

reject normality of the returns in all cases at a significance level of 1% (***). The sample period is from 

November 16, 2018 to June 30, 2021. 

 

Short Name 
Index 

component 

Weightin

g % 
Country 

Num. 

Observ 

Mean  

(%) 

Std  

(%) 

Max  

(%) 

Min  

(%) 
Skew Kurtosis 

Jarque-Bera 

test 

Sohydron 

Solactive 

Hydrogen 

Economy 

Index NTR 

    660 0.18 2.02 10.88 -13.00 -0.29 9.04 1085.91*** 
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Ceres 

Ceres Power 

Holdings 

PLC 

2.73 UK 660 0.29 3.87 14.33 -20.89 -0.31 5.76 220.06*** 

Powerhouse 

Powerhouse 

Energy 

Group PLC 

0.99 UK 660 0.38 6.70 46.85 -20.92 1.74 10.87 2039.29*** 

AFC 
AFC Energy 

PLC 
3.28 UK 660 0.38 6.83 38.86 -22.46 1.22 8.73 1068.40*** 

Cell Impact 
Cell Impact 

AB 
3.98 Sweden 652 0.37 6.88 47.51 -37.44 0.33 9.72 1238.64*** 

FuelCell 
FuelCell 

Energy Inc 
3.13 US 657 0.36 13.38 207.99 -63.82 6.14 94.19 

231758.69**

* 

PlugPower 
Plug Power 

Inc 
4.06 US 657 0.44 5.53 30.10 -20.26 0.5 6.01 274.50*** 

Ballard 

Ballard 

Power 

Systems Inc 

3.51 Canada 657 0.28 4.74 17.10 -21.99 -0.25 5.56 186.37*** 

ITM Power 
ITM Power 

PLC 
3.53 UK 659 0.43 6.04 27.01 -23.66 -0.01 5.56 180.35*** 

Nel NEL ASA 2.97 Norway 651 0.22 4.48 13.63 -20.91 -0.66 5.78 257.22*** 

Xebec 

Xebec 

Adsorption 

Inc 

3.12 Canada 657 0.29 4.54 18.66 -36.81 -0.90 11.55 2091.91*** 

McPhy 
McPhy 

Energy SA 
1.95 France 664 0.27 4.58 37.61 -18.76 0.94 11.97 2321.82*** 

Orsted Orsted AS 3.31 
Denmar

k 
646 0.11 2.03 7.67 -10.32 -0.25 5.09 124.64*** 

Bloom 
Bloom 

Energy Corp 
3.17 US 657 0.08 6.86 36.79 -55.34 -0.28 12.69 2578.76*** 

Cummins 
Cummins 

Inc 
2.90 US 657 0.08 2.07 19.18 -12.53 0.62 17.15 5525.36*** 

Hyundai 
Hyundai 

Motor Co 
3.19 

R. 

Korea 
646 0.13 2.67 17.88 -10.70 0.99 9.41 1211.07*** 

SFC 
SFC Energy 

AG 
2.52 

German

y 
657 0.22 4.90 21.00 -33.35 -0.60 9.61 1236.26*** 

PowerCell 
PowerCell 

Sweden AB 
3.18 Sweden 652 0.29 5.13 30.04 -26.75 0.02 7.29 499.43*** 

Weichai 

Weichai 

Power Co 

Ltd 

3.17 China 644 0.11 2.71 12.29 -10.73 0.3  4.47 67.42*** 

Air Liq 
Air Liquide 

SA 
3.22 France 667 0.06 1.50 5.41 -12.71 -1.37 13.68 3378.47*** 

Linde Linde PLC 3.09 Ireland 657 0.09 1.80 10.13 -7.45 0.03 6.24 288.01*** 

Air Prod 

Air Products 

and 

Chemicals 

Inc 

3.19 US 657 0.09 2.01 12.86 -13.47 -0.52 13.22 2888.22*** 
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Uniper Uniper SE 3.18 
German

y 
658 0.03 1.60 6.43 -10.40 -0.80 8.52 904.44*** 

Toyota 
Toyota 

Motor Corp 
3.68 Japan 632 0.06 1.50 10.40 -5.76 0.68 7.67 621.47*** 

Chemours 
Chemours 

Co/The 
3.18 US 657 0.03 4.32 21.13 -25.87 -0.28 7.84 648.72*** 

Daimler Daimler AG 3.03 
German

y 
661 0.07 2.64 21.42 -19.73 -0.27 17.4 5716.82*** 

Kolon 

Kolon 

Industries 

Inc 

3.77 
R. 

Korea 
646 0.06 2.96 15.90 -12.12 0.29 7.24 492.64*** 

J Matthey 

Johnson 

Matthey 

PLC 

2.98 UK 660 0.01 2.27 12.23 -13.46 -0.41 6.65 384.18*** 

Kyocera 
Kyocera 

Corp 
3.17 Japan 632 0.03 1.65 7.46 -10.44 -0.72 8.15 751.8*** 

N Sanso 

Nippon 

Sanso 

Holdings 

Corp 

3.54 Japan 632 0.03 2.35 16.79 -12.82 0.14 10.70 1564.68*** 

Advent 

Tech 

Advent 

Technologie

s Holdings 

Inc 

2.48 US 484 
-

106.89 
2.68 17.11 -11.75 0.87 12.53 1895.32*** 

Doosan 
Doosan Fuel 

Cell Co Ltd 
3.70 

R. 

Korea 
420 0.54 5.53 26.90 -18.04 1.27 8.40 624.01*** 

Siemens 

Eng 

Siemens 

Energy AG 
3.10 

German

y 
190 0.21 2.52 15.39 -7.07 1.13 8.99 324.4*** 

 

The significant departures from normality in the daily returns of these stocks, shown in 

Table 1, support the use of the fractal methodology. The index itself experiences large 

movements and exhibits non-normal behavior. We also observe that the maximum and 

minimum returns for each stock point to broad movements.  

The results section shows the fractal analysis applied to each company and the index 

itself. However, given the diverse nature of the companies under study, we perform an initial 

clustering of the Sohydron components to obtain meaningful, aggregated results. We apply an 

average-linkage hierarchical agglomerative cluster analysis using the linear correlation between 

price series to measure the distance1 between the components. We include all components but 

three that display shorter price series that do not allow for proper correlation analysis: Advent 

Tech, Doosan, and Siemens Energy. While the number of observations (above 400) will allow 

the further inclusion of Advent Tech and Doosan in Cluster 1, the 190 observations for Siemens 

                                                 
1 See https://es.mathworks.com/help/stats/linkage.html for more information on the technique used. 

https://es.mathworks.com/help/stats/linkage.html
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Energy (which entered the Sohydron index in its last revision by May, 2021) justify the 

exclusion of this stock from the analysis. 

The resulting clustering dendrogram is shown in Figure 2, illustrating the groupings 

created. Each horizontal-axis value is one minus the sample correlation between groups. Hence, 

time series that are highly correlated are linked on the left side of the horizontal axis. Based on 

the cluster analysis, we obtain four company groups. 

 

Figure 2: Clusters produced by agglomerative cluster analysis using the linear correlation between price 

series as a measure of distance. The broken line marks the 84% correlation level. Advent Tech, Doosan, 

and Siemens Energy are not included due to their short price series. 

 

 

 

According to industry sources, most of the companies clustered together at the top in 

Cluster 1 (C1) were those previously mentioned as pure players. Furthermore, all three green 

hydrogen players (GPPs) are in C1. This cluster also includes Doosan and Advent Tech (not 

shown in Figure 2 because of their shorter price series) due to their business activities and the 

fact that Infinergia Consulting (2021) considers them to be pure players. 

Expectedly, the clustering analysis reveals that the Sohydron index is highly correlated 

with the pure players’ stock prices, which supports our claim that it is a good proxy for the 

hydrogen economy. 



 10 

Cluster 2 includes two of the companies classified as pure players by Infinergia (2021) 

and three that are diversified. This cluster shows proximity to C1 but a slightly weaker 

correlation.  

The remaining two clusters in the lower part of Figure 2 (C3 and C4) include mostly 

diversified companies (only J Matthey in C4 is a pure player), which, as noted before, means 

that their hydrogen exposure represents a smaller percentage of their overall business activities.  

Table 2 presents the clusters’ compositions with a summary of each company's activity 

and degree of involvement in the hydrogen economy. 

Table 2: Cluster groups of the Solactive Hydrogen Economy Index NTR and its components. 

Distinction between pure players (PP) and diversified (D) companies is according to Infinergia 

Consulting (2021), highlighting the three pure green hydrogen players (GPP) identified by Seeking 

Alpha (2021).  

Short Name Cluster Infinergia category Activity 

Sohydron    

Ceres C1 Pure Player (PP) Fuel cell technology 

Powerhouse C1 Diversified (D) Hydrogen production process 

AFC C1 Pure Player (PP) Fuel cell (alkaline and PEM) 

Cell Impact C1 Pure Player (PP) Fuel cell components (flow plates) 

FuelCell C1 Pure Player (PP) Fuel cell and integrated hydrogen projects 

PlugPower C1 Pure Player (PP) Fuel cell systems 

Ballard C1 Pure Player (PP) Fuel cells with PEM technology 

ITM Power C1 Pure Player (GPP) Electrolyzers (PEM) and integrated projects 

Nel 
C1 Pure Player (GPP) Electrolyzers (alkaline and PEM) and hydrogen 

projects 

Xebec C1 Diversified (D) Hydrogen production process 

McPhy C1 Pure Player (GPP) Electrolyzers and integrated hydrogen projects 

Orsted C1 Diversified (D) Renewable energy (mainly wind) 

Bloom C1 Pure Player (PP) Fuel cell (solid oxide) power generators 

Advent Tech C1 Pure Player (PP) Fuel cell, flow batteries, hydrogen production 

Doosan C1 Pure Player (PP) Fuel cells 

Cummins 
C2 Diversified (D) Industrial engineering co. PEM electrolyzers and 

fuel cells 

Hyundai C2 Diversified (D) Automotive co. Fuel cell hydrogen vehicles 

SFC C2 Pure Player (PP) Fuel cells for the mobile industry 

PowerCell C2 Pure Player (PP) Fuel cells and integrated hydrogen projects 

Weichai C2 Diversified (D) Diesel engines co. Fuel cell hydrogen vehicles 
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Air Liq C3 Diversified (D) Industrial gas co. Hydrogen producer (mainly gray) 

Linde C3 Diversified (D) Industrial gas co. Hydrogen producer (mainly gray) 

Air Prod C3 Diversified (D) Industrial gas co. Hydrogen producer (mainly gray) 

Uniper C3 Diversified (D) Energy co. Gas and renewables storage 

Toyota C3 Diversified (D) Automotive co. Hydrogen vehicles 

Chemours C4 Diversified (D) Chemical co. Materials for PEM membranes 

Daimler C4 Diversified (D) Automotive co. Fuel cells 

Kolon C4 Diversified (D) Chemical co. Components for fuel cells 

J Matthey C4 Pure Player (PP) Chemical co. Fuel cells. 

Kyocera 
C4 Diversified (D) Large conglomerate. Components for fuel cells 

(solid oxide) 

N Sanso 
C4 Diversified (D) Large conglomerate. Refueling stations for 

hydrogen vehicles 

Siemens Eng  Diversified (D) Electrolyzers (PEM). Energy transition 

 

4. Methodology 

In its weak form, the EMH assumes an inability to reach long-term, above-average, risk-

adjusted profits with respect to the information contained in past prices (Fama, 1970, 1991). 

Long-term dependency in asset prices is inconsistent with the EMH while short-term 

dependencies change rapidly over time, forcing investors to adjust their trading strategies 

(Kristoufek, 2019). 

Since Hurst’s (1951) seminal paper, fractality has been applied in different areas. 

Authors such as Mandelbrot (2005) introduced the fractal postulates of physics into finance, in 

an attempt to find answers that are not provided by classical theories. Recent studies such as Di 

Matteo et al. (2003, 2005), Di Matteo (2007), Kristoufek (2010), Auer (2016), and Okorie and 

Lin (2020) are some examples of the applications of fractal analysis to financial time series. 

Additionally, fractality has been applied to test market efficiency in commodity markets, e.g., 

Kristoufek and Vosvrda (2014), Tiwari, Kumar, Pathak and Roubaud (2019), Kristoufek (2019), 

energy markets (e.g., Sensoy & Hacihasanoglu, 2014), or cryptocurrencies (Caporale, Gil-

Alana & Plastun, 2018; Jiang, Nie & Ruan 2018). In addition to addressing the local memory 

issue, these studies point to the importance of correctly assessing long memory in asset returns 

due to the implications for asset pricing, because long-range dependency entails a violation of 

the weak EMH. 
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Therefore, to measure long-range dependence in a time series, we use the parameter H 

proposed by Hurst (1951), commonly known as the Hurst coefficient. Several techniques are 

available for computing H, including the rescaled-range (R/S) which is the traditional method. 

For computing the R/S Hurst estimate, and following Weron (2002), the return time series 

is divided into d subseries of length, n. For each subseries, Zi,m (m = 1,…, d ; i=1,….., n), the 

sample mean (Em) and standard deviation (Sm) are computed. The data are then normalized by 

subtracting the sample mean, Xi,m =Zi,m −Em, thus creating the cumulative time series, Yi,m 

=∑i
j=1 Xj,m. Subsequently, for each subseries, m, the rescaled range is obtained as follows:  

(
𝑅

𝑆
)

𝑚
=

𝑚𝑎𝑥 ( 𝑌1,𝑚, … 𝑌𝑛,𝑚 )  −  𝑚𝑖𝑛 ( 𝑌1,𝑚, … 𝑌𝑛,𝑚 )

𝑆𝑚
 (1) 

By calculating the mean value of the rescaled range for all subseries of length, n, the 

R/S(n) statistic is obtained. Repeating the process for divisions with different subseries lengths, 

n, the R/S(n) statistic asymptotically follows the relation (Mandelbrot, 1975): 

R/S(n)  = 𝐶 𝑛𝐻, (2) 

 

where C is a positive constant. By plotting log (𝑅/𝑆(𝑛)) versus log (n) in a graph, the H 

coefficient for the series is obtained from the slope of the fitted regression line. 

This Hurst coefficient (H) reveals long-run correlations in random processes and helps 

determine the existence of persistence in a given series. In independent processes, the value of 

H is expected to be approximately 0.5, representing a self-determining process in which the 

series observations are independent of previous observations. Values of 0 < H < 0.5 describe 

an anti-persistent time series, with mean-reverting characteristics. The strength of the mean-

reverting behavior increases as the Hurst exponent approaches zero (Mitra, 2012). Values of 

0.5 < H < 1 exhibit persistence, i.e., the values of the series in question increase or decrease in 

a broader range than could be possible from a random walk. Such series follow a trend for some 

time, which is later interrupted by abrupt discontinuities. The power of the trend-reinforcing 

behavior increases as the value of the Hurst exponent gets closer to one (Mitra, 2012). 

This approach can be applied without detailed assumptions on the structure of the 

underlying model (thus, avoiding the normal distribution hypothesis followed by many 

statistical methods). Its superiority to more conventional methods of determining long-range 

dependence (such as autocorrelation analysis, spectral analysis, and variance ratios) has been 

widely demonstrated (Lo, 1991). 
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The method of detecting long-term dependence was modified by Annis and Lloyd (1976) 

to account for small sample bias, thus providing the methodology used in this work, the R/S-

AL statistics. 

As several authors have advised against the use of a unique technique for testing for 

long-memory in a given dataset (e.g., Teverovsky, Taqqu & Willinger, 1999; Willinger, Taqqu, 

& Teverovsky, 1999; Clark, 2005), this study applies, together with the improved estimation of 

H proposed by Annis and Lloyd (1976), two of the most robust methods found in the literature: 

the widely extended DFA, and the alternative GHE approach.  

The DFA was first proposed by Peng et al. (1992) and Stanley et al. (1992) to avoid the 

spurious detection of correlations that are artifacts of non-stationarities in time series 

(Kantelhardt et al., 2002.) 

We follow Weron (2002) in adapting the DFA methodology to our work: 

Given a time series of log-returns, 𝑋𝑖, of N data points (i.e., 𝑖 = 1, … , 𝑁), the detrended 

profile, 𝑌𝑖, is obtained as the cumulative sum of 𝑋𝑖, subtracting the mean return 

(𝑋̅  =  
1

𝑁
∑ 𝑋𝑖

𝑁
𝑘=1 ). Hence: 

𝑌𝑖 = ∑(𝑋𝑗  −  𝑋̅)

𝑖

𝑗=1

, for 𝑖 = 1,2, … , 𝑁 (3) 

 

The data series, 𝑌𝑖, is then divided into d contiguous subperiods, 𝑦𝑖
𝑚, 𝑚 = 1, … , 𝑑, each of 

length, n. For each subperiod, 𝑚, the local trend is found by fitting a straight line, 𝑧𝑖
𝑚 , within 

the subperiod: 

𝑧𝑖
𝑚  =  𝑎 𝑦

𝑖
𝑚  +  𝑏 (4) 

 

The fluctuation is obtained using the corresponding variance between 𝑦𝑖
𝑚 and its fitted value, 

𝑧𝑖
𝑚, as follows: 

𝐹𝑚(𝑛)  =  √
1

𝑛
∑(𝑦𝑖

𝑚  − 𝑧𝑖
𝑚)2

𝑛

𝑡=1

 (5) 

 

The average fluctuation, 𝐹(𝑛)̅̅ ̅̅ ̅̅ , is then obtained by averaging all the deviations, 𝐹𝑚(𝑛), 

obtained. The process is repeated for various time scales, n, while the scaling relationship is 

defined by 
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𝐹̅(𝑛)  =  𝐶 𝑛𝐻, (6) 

 

where C is the constant and H is the Hurst exponent. As suggested by Kristoufek (2010), a 

minimum subperiod length is set to 10 samples to avoid inefficient fitting and averaging. 

The third method used in this study to examine long-term dependence in hydrogen-

related stocks is the GHE method, which analyzes multifractal features of data and avoids the 

sensitivity of the original Hurst exponent to outliers. 

The GHE was first introduced by Barabsi and Vicsek (1991) and generalized by Di 

Matteo et al. (2003, 2005) to study the degree of development of several financial markets. 

These studies have been followed by other authors, including Kristoufek (2010), Morales, Di 

Matteo, Gramatica and Aste (2012), Kristoufek and Vosvrda (2014), Sensoy (2013), and Jiang 

et al. (2018), among others. 

Following Di Matteo (2005), we analyze the q-order moments of the distribution of the 

increments, which is a good characterization of the statistical evolution of a stochastic variable, 

X(t). The 𝐾𝑞(𝜏) statistic is defined as 

𝐾𝑞(𝜏) =  
⟨|𝑋(𝑡 + 𝜏) − 𝑋(𝑡)|𝑞⟩

⟨|𝑋(𝑡)|𝑞⟩
 (7) 

Here, the time-interval, τ, can vary between 1 and τmax. According to Kristoufek (2010), the 

parameter, τ, can be understood as an investment horizon in financial terms.  

H(q) is then defined for each time scale, τ, and each parameter, q, as follows (Sensoy, 

2013): 

𝐾𝑞(𝜏)~ 𝜏𝑞𝐻(𝑞), (8) 

where H(q) is computed from an average over a set of values corresponding to different values 

of τmax in 𝐾𝑞(𝜏).  

In this study, the Hurst coefficient is used as a measure of the level of persistence of 

successive changes in hydrogen prices. Persistence (anti-persistence) refers to the probability 

of changes in one direction being succeeded by further changes in the same (opposite) direction 

(Batten & Ellis, 1996).  

Together with the estimation of the three fractality coefficients for every single stock as 

well as for the Sohydron index, a rolling window analysis is performed on the index to detect 

the time evolution of its long-range dependence (Subsection 5.1). Additionally, with the aim of 

assessing the extent to which the observed behavior was affected by the SARS-Cov-2 pandemic, 

another fractal analysis is repeated for the last 242 days only, corresponding to the period from 



 15 

July 2020 to June 2021 (Subsection 5.2). Finally, a rolling window analysis is also performed 

on each of the four clusters as well as on all the individual companies (Subsection 5.3). 

To assess the statistical significance of the results, confidence intervals are obtained, 

following Weron's (2002) methodology, where 10,000 Gaussian white noise sequences (H=0) 

of a fixed length are simulated and 5% and 95% sample quantiles of the estimated Hurst 

coefficients are obtained. For the full study period, 660-length series are used to obtain 

confidence intervals. For the moving window approach, 242-length series are used. 

 

5. Results and discussion 

5.1 Stock and index fractal analysis  

The Hurst coefficients obtained through the Annis-Lloyd corrected R/S analysis, 

extended DFA, and alternative GHE approach are presented in Table 3.  

Single stocks show mixed results, most of which are in the realm of efficiency. 

Persistent cases mostly appear in C1, while C2, C3, and C4 display an overall random behavior. 

McPhy is the only company whose three estimators point to some persistency. 

A first approach to the fractal structure of the Sohydron index provides two out of three 

Hurst coefficients just above the limit of the confidence interval. Nonetheless, the DFA 

estimator points to a random walk. Thus, overall, the results evidence a mild departure from the 

EMH for the entire period analyzed. 

Table 3: Fractal analysis of stock and Sohydron index returns. Time series from November 16, 2018 to 

June 30, 2021. Grey-colored numbers refer to persistence results (1 > H > 0.5), while those in bold refer 

to anti-persistence results (0 < H < 0.5). Confidence intervals are shown at the bottom of the table. 

 

Name Hurst DFA GHE 
Number 

Observations 

Sohydron 0.587 0.560 0.588 683 

          

 Cluster 1         

Ceres 0.563 0.550 0.529 660 

Powerhouse 0.538 0.530 0.560 660 

AFC 0.555 0.587 0.587 660 

Cell Impact 0.477 0.450 0.513 652 

FuelCell 0.512 0.562 0.598 657 

PlugPower 0.554 0.553 0.578 657 

Ballard 0.502 0.501 0.531 657 

ITM Power 0.498 0.510 0.460 659 
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Nel 0.499 0.515 0.536 651 

Xebec 0.542 0.554 0.551 657 

McPhy 0.570 0.622 0.599 664 

Orsted 0.539 0.498 0.513 646 

Bloom 0.565 0.566 0.577 657 

Advent Tech 0.474 0.520 0.453 484 

Doosan 0.534 0.581 0.590 420 

Cluster 2     

Cummins 0.549 0.487 0.479 657 

Hyundai 0.554 0.492 0.536 646 

SFC 0.435 0.422 0.447 657 

PowerCell 0.512 0.498 0.520 652 

Weichai 0.540 0.510 0.521 644 

Cluster 3     

Air Liq 0.463 0.471 0.455 667 

Linde 0.458 0.442 0.454 657 

Air Prod 0.498 0.515 0.470 657 

Uniper 0.527 0.442 0.495 658 

Toyota 0.443 0.377 0.471 632 

Cluster 4     

Chemours 0.529 0.532 0.513 657 

Daimler 0.506 0.486 0.567 661 

Kolon 0.502 0.456 0.513 646 

J Matthey 0.514 0.477 0.545 660 

Kyocera 0.476 0.422 0.428 632 

N Sanso 0.544 0.499 0.494 632 

Insufficient 

observations 
    

Siemens Eng 0.590 0.610 0.564 190 

          

          

Confidence Intervals Hurst DFA GHE   

5 0.437 0.407 0.438   

95 0.556 0.569 0.546   
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To better understand the dynamics of the returns, and following Kristoufek and Vosvrda 

(2014), we estimate the time-varying GHE estimator for the index on a moving window of 242 

days, as shown in Figure 3.  

Figure 3: Time evolution of the GHE Hurst coefficient for the Sohydron index. A rolling-window 

approach is used in which for each daily observation, t, H(t) is calculated using the previous-year data 

(242 daily observations). Confidence intervals are shown in broken lines. 
 

 

Visual observation allows assessing the change in the fractal dynamics of the index' 

returns. The index moves from persistency at the time of the acute SARS-Cov-2 pandemic, to 

randomness from September 2020 on, approaching the limits of the confidence interval at the 

end of the analyzed period.  

5.2 Fractal analysis in post-acute SARS-Cov-2 pandemic times 

Like in Yaya, Ogbonna, Mudida and Abu (2021), who distinguish between a pre- and a 

post-crash period when testing for market efficiency, and under the suspicion that the time 

evolution of the fractal coefficient might be affected by the coronavirus SARS-CoV-2 (Covid-

19) pandemic, a complementary analysis is conducted. Thus, the fractality analysis is repeated 

for the last 242 days (see Table 3). 

By excluding the probable overreaction of investors during the first five months of the 

global pandemic (as the WHO declared the outbreak a Public Health Emergency of 

International Concern on January 30, 2020), we aim to obtain a clearer picture of the hydrogen 

players' stock price evolution.  

Table 3: Post-acute SARS-CoV-2 pandemic Hurst coefficients for the July 2020/June 2021 period. 

Grey-colored numbers refer to persistence results, while those in bold type refer to anti-persistence. 

Confidence intervals are shown at the bottom of the table. 
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Name Hurst DFA GHE 
Number 

Observations 

Sohydron 0.506 0.500 0.567 242 

          

 Cluster 1         

Ceres 0.441 0.432 0.496 242 

Powerhouse 0.509 0.591 0.542 242 

AFC 0.574 0.663 0.629 242 

Cell Impact 0.511 0.493 0.504 242 

FuelCell 0.567 0.597 0.627 242 

PlugPower 0.556 0.493 0.609 242 

Ballard 0.540 0.493 0.591 242 

ITM Power 0.505 0.467 0.485 242 

Nel 0.507 0.544 0.534 242 

Xebec 0.534 0.604 0.634 242 

McPhy 0.466 0.426 0.450 242 

Orsted 0.508 0.445 0.515 242 

Bloom 0.528 0.494 0.540 242 

Advent Tech 0.468 0.422 0.511 242 

Doosan 0.465 0.425 0.504 242 

Cluster 2     

Cummins 0.457 0.442 0.411 242 

Hyundai 0.503 0.479 0.485 242 

SFC 0.482 0.452 0.422 242 

PowerCell 0.491 0.456 0.498 242 

Weichai 0.486 0.525 0.507 242 

Cluster 3     

Air Liq 0.504 0.429 0.457 242 

Linde 0.529 0.481 0.459 242 

Air Prod 0.458 0.443 0.468 242 

Uniper 0.443 0.393 0.411 242 

Toyota 0.487 0.474 0.482 242 

Cluster 4     

Chemours 0.455 0.423 0.393 242 

Daimler 0.460 0.394 0.449 242 
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Kolon 0.436 0.406 0.405 242 

J Matthey 0.488 0.444 0.484 242 

Kyocera 0.392 0.344 0.434 242 

N Sanso 0.415 0.354 0.384 242 

Insufficient 

observations 
    

Siemens Eng 0.590 0.610 0.564 190 

Confidence 

Intervals 
Hurst DFA GHE   

5 0.4069 0.359 0.390   

95 0.588 0.612 0.571   

 

The 95% confidence interval widens due to a decrease in the number of observations; 

however, together with the rolling window approach, the analysis evidences a return of the 

index to the efficiency area. The same can be said of most of the individual stocks. Thus, a 

persistent effect of the SARS-Cov-2 pandemic is evidenced, as well as a higher hydrogen player 

market efficiency during ordinary times. 

 

5.3 Rolling window analysis for each cluster and their components 

The results in Tables 2 and 3 point to several companies in C1 displaying persistent 

behavior, significant although very close to the confidence intervals, which is not the case in 

other clusters. To obtain a deeper understanding, we analyze the time evolution of the Hurst 

coefficient for each of the four clusters under study (Figure 4) together with their individual 

components (Figures 5 to 8). To assess the clusters' long memory evolution, the time series are 

obtained by summing all log-returns of the companies belonging to each of them. This allows 

a comparison of the groups’ dynamics.  

 

Figure 4: Time evolution of the GHE Hurst coefficient for the sum of the log-returns of the stocks in 

each cluster obtained in Section 3. A rolling window approach is used in which for each daily 

observation, t, H(t) is calculated using the previous-year data (242 daily observations). 
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Remarkable differences are observed among the four clusters. C1 is the largest, with 10 

of its 15 components being pure players, and shows distinctive persistency over the 3-year 

period, suggesting trending behavior. 

The evolution of the Sohydron index (Figure 3) resembles the time-variation of C1 

(Figure 4), validating it as an adequate proxy for hydrogen investing or ESG diversification 

purposes. This also renders the Sohydron index a suitable underlying asset for affordable 

investment products, such as ETFs, enabling retail investors to get exposure to the hydrogen 

economy.  

Not all the stocks in C1 behave the same, as already shown in the H parameter estimators 

(Tables 2 and 3). The C1 individual stocks’ rolling window estimations (Figure 5) graphically 

evidence these differences.  

 

Figure 5: Time evolution of the GHE Hurst coefficient for the stocks in C1. A rolling-window approach 

is used in which for each daily observation, t, H(t) is calculated using the previous-year data (242 daily 

observations). 
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 A remarkable feature of these charts is the time variation between randomness and 

persistency in all 15 stocks. However, this time evolution does not seem to follow the same 

underlying pattern. Indeed, the trend shifts neither coincide in direction nor happen 

simultaneously. Nevertheless, at the end of the period analyzed, 11 of the 15 companies show 

random behavior, including the three companies classified as GPPs. Thus, although some 

inefficiencies have been revealed during the stress period (SARS-Cov-2 pandemic), an overall 

trend to market efficiency is evidenced, confirming them as good investment options for 

gaining exposure to the hydrogen economy.  

C2 remains in the efficient territory during the entire sample period, as shown in Figure 

4. Despite showing a trend-reinforcing dynamic that approaches the efficiency-persistency 

frontier from March 2021, C2 never leaves randomness. Moreover, all five individual stocks´ 

returns remain in the random area and may also represent good opportunities for investors. 

 

Figure 6: Time evolution of the GHE Hurst coefficient for the stocks in C2. A rolling window approach 

is used in which for each daily observation, t, H(t) is calculated using the previous-year data (242 daily 

observations). 
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C3 shows overall market efficiency. Although it experiences persistent behavior during 

the acute phase of the pandemic, it ends well into random territory. These five companies are 
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diversified multiplayers, with their hydrogen related activities still small relative to their general 

businesses. Individually, all predominantly show market efficiency. 

 

Figure 7: Time evolution of the GHE Hurst coefficient for the stocks in C3. A rolling window approach 

is used in which for each daily observation, t, H(t) is calculated using the previous-year data (242 daily 

observations). 
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C4, similar to C3, comprises diversified multiplayer stocks with weaker exposure to hydrogen. 

However, as in C1, a tendency from persistency to market efficiency is evidenced during the 

time series analyzed.  

Individually, the charts of all six stocks’ exhibit a downward trend, suggesting a slight mean-

reverting dynamic until March 2021. However, all of them correct this movement ending within 

the efficiency confidence intervals. 

 

Figure 8: Time evolution of the GHE Hurst coefficient for C4 stocks. A rolling window approach is 

used in which for each daily observation, t, H(t) is calculated using the previous-year data (242 daily 

observations). 
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In summary, results evidence different behaviors among the Sohydron index 

constituents. Companies with milder exposure to hydrogen exhibit higher market efficiency. 

Most of the pure players show an overall slight trend-reinforcing conduct, evidenced by some 

of the estimators in table 2. However, the rolling-window approach and post-acute SARS-CoV-

2 pandemic fractal coefficients show a time variation of market efficiency (aligned with results 

in Zhang (2013) for oil markets or Sensoy and Hacihasanoglu (2013) for energy futures, among 

others) and confirm the current trend toward randomness.  

The findings are consistent with the increasing interest perceived from investors and 

regulators, and evidence that departures from randomness are corrected and are not permanent. 

Thus, the aggregated results point to early market efficiency in hydrogen players. 

 

6. Concluding Remarks. 
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This study uses a fractal methodology to examine hydrogen players’ efficient behavior. It 

is among the first works at the crossroads of ESG investment and efficient price behavior and 

is a pioneering study in hydrogen energy finance. 

The analysis shows that players participating in the hydrogen economy undergo lively 

dynamics during the full sample and evidence an overall weak form of market efficiency.  

The Sohydron index and some individual stocks (mainly pure players) show some 

alternating episodes of low and high random behavior in their Hurst coefficients. The mild 

departures from efficiency primarily occur during the acute SARS-Cov-2 pandemic, consistent 

with preceding studies which relate persistency to the most impactful market shocks and stock 

market overreaction (see Dima, Dima, & Ioan, 2022).   

A possible explanation for the few stocks that maintain a trend-reinforcing behavior in the 

post-pandemic period (primarily players with stronger exposure to hydrogen) may be connected 

to investors’ responses to public policy measures and incentives to boost the hydrogen economy, 

becoming a more demand-driven market dynamic in those cases. However, we find that 

financial frictions such as temporary market inefficiencies, shouldn´t be a barrier to the 

development of the hydrogen economy. 

The worldwide Sohydron index, with its heterogenous components (which show a very 

different exposure grade to the hydrogen economy), is revealed as an appropriate tool. It 

emerges as a good proxy to track the evolution of the hydrogen economy, and as a suitable 

underlying asset for investment products seeking to gain exposure to this market. It therefore 

becomes a good vehicle for portfolios that follow ESG criteria in their diversification strategies. 

To the best of our knowledge, ours is the first study to address efficiency in hydrogen-

related stock prices. The results point to reassuring implications for investors and regulators, as 

hydrogen is attracting increasing attention from governments and policy makers pursuing 

carbon neutrality, and from investors interested in ESG investment opportunities.  

With the hydrogen economy gaining momentum, we expect to see a hydrogen-commodity 

quote at some stage, which will enable efficiency studies in specific hydrogen markets. 
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Appendix: Other hydrogen indices 

 

The Global Hydrogen Index is a EUR Net Return Index first published by ICF BANK AG2 on 

February 26, 2020. The index shows the stock performance of a maximum of 25 companies 

involved in the development and production of green hydrogen and hydrogen transportation, as 

well as active fuel cell corporations. Every index component is equally weighted, while the 

requirements for inclusion are a market capitalization of at least €100 million at the time of 

inclusion and a daily average trading volume over a period of three months of at least €100,000. 

Since September 18, 2020, the index is composed by the 20 stocks shown in Table A.2. 

Similarly, ICF BANK AG has published the Global Hydrogen Index II EUR Net Return since 

September 14, 2020. The latter index only differs from the former in that the daily average 

trading volume of the components over a period of three months is required to be at least 

€3,000,000. The current components are the same in the two indices (Table A.2). 

These indices were discarded as hydrogen proxies due to their short time frames; however, 11 

of their components are also included in the selected proxy (Sohydron). 

 

Table A.1 

 

Name 
Weighting 

% 

Linde PLC 5 

Umicore 5 

Cummins Inc 5 

Bloom Energy Corp 5 

Olin corp 5 

Powercell Sweden AB 5 

Westlake Chemical 

Corp 
5 

Nel asa 5 

Fuelcell Energy Inc 5 

Air Liquide SA 5 

                                                 
2 www.icf-markets.de  
 

http://www.icf-markets.de/
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Ballard Systems Inc 5 

Alstom 5 

Paccar inc 5 

Pbf Energy Inc 5 

Worthington industries 5 

Air Chemicals Inc 5 

The Chemours 

Company 
5 

General Motors Co 5 

Plug Power Inc 5 

Chart Industries Inc 5 

 

The remaining ICF hydrogen-related indices, such as the Hydrogen Select Index EUR Net 

Return and the European Hydrogen Focus Index EUR Net Return, were discarded for being 

local portfolios. 

 

The Korean FnGuide Hydrogen Economy Theme Index is a price return index that comprises 

companies listed on the KOSPI/KOSDAQ market, which is classified as a hydrogen economy 

industry under a keyword-score computed by text-analysis. According to Bloomberg, the index 

was first published on June 12, 2017, is rebalanced half-yearly, is free-float market cap 

weighted, and prices are set in South Korean won. Regrettably, having consulted the Bloomberg 

data team, there seems to be no way to establish contact with the index issuer regarding its 

components. Furthermore, it is a local hydrogen-related portfolio. 

 


