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Abstract 
The power system industry has been going through dynamic infrastructural 

and operational changes in recent years that have caused more prominent lightly 
damped electromechanical oscillations. Real-time monitoring of 
electromechanical oscillations is of great significance for power system 
operators; to this aim, software solutions (algorithms) that use synchrophasor 
measurements have been developed for this purpose. Mode estimation is widely 
accepted as one of the most important applications of wide area and 
measurement systems. This thesis investigates different approaches for 
improving mode estimation process by offering new methods and deepening the 
understanding of different stages in the mode estimation process. 

One of the problems tackled in this thesis is the selection of synchrophasor 
signals used as the input for mode estimation. The proposed selection is 
performed using a quantitative criterion that is based on the variance of the 
critical mode estimate. This approach differs from the existing techniques based 
on heuristics or on the analysis of the observability matrix of the power system. 
The proposed criterion and associated selection method, offer a systematic and 
quantitative approach for PMU signal selection. It is shown that not only the 
power system model affects the decision on signal selection, but also the 
characteristics of the ambient noise excitation that is neglected in observability-
based methods. In addition, it is shown that the signal selection problem is 
similar to the PMU placement problem for this particular application, which 
means that the proposed solution provides a way of including mode estimation 
requirements into a global PMU placement formulation.  

The thesis also analyzes methods for model order selection used in mode 
estimation. Further, negative effects of forced oscillations and non-white noise 
load random changes on mode estimation results have been addressed by 
exploiting the intrinsic power system property that the characteristics of 
electromechanical modes are predominately determined by the power generation 
and transmission network. 

An improved accuracy of the mode estimation process can be obtained by 
intentionally injecting a probing disturbance. It is shown that further 
improvement can be accomplished by adequately shaping the frequency 
spectrum of the probing signal. The thesis presents an optimization method that 
finds the optimal spectrum of the probing signals. In addition, the probing signal 
with the optimal spectrum is generated considering arbitrary time domain signal 
constraints that can be imposed by various probing signal generating devices.  

Finally, the thesis provides a comprehensive description of a practical 
implementation of a real-time mode estimation tool. This includes description of 
the hardware, software architecture, graphical user interface, as well as details of 
the most important components such as the Statnett’s SDK that allows easy 
access to synchrophasor data streams.  
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Sammanfattning 
Elkraftsbranschen har under de senaste åren undergått dynamiska förändringar 

som har orsakat tydligare elektromekaniska oscillationer med låg dämpning. 
Realtidsövervakning av elektromekaniska oscillationer är av stor betydelse för 
kraftsystemoperatörer och av denna anledning har mjukvarulösningar 
(algoritmer) utvecklats för detta ändamål. Det är allmänt erkänt att estimering av 
egenmoder är en av de mest viktiga tillämpningarna av WAMS, 
övervakningssystem för stora områden (engelska: wide-area measurement 
systems).  

Ett av problemen i denna avhandling är hur insignaler från synkroniserade 
fasmätningar ska väljas för modestimeringen. Det föreslagna valet görs med ett 
nytt kriterium baserat på den mest kritiska modens varians. Denna tillnärmning 
på problemet medför ett paradigmskifte då tidigare föreslagna metoder för val av 
insignal har antingen baserats på ren heuristik eller på observerbarhetsanalys 
som har visat sig vara otillräcklig.  Det påvisas att inte bara kraftsystemmodellen 
påverkar insignalvalet utan även karaktären på bruset i som exciterar systemet 
vilket bortses från i metoder som bygger på observerbarhet. Vidare visas det att 
insignalvalet liknar problemet med att placera fasmätningsenheter (PMUer) för 
detta ändamål, vilket betyder att den föreslagna lösningen ger ett sätt att 
inkludera behoven för modestimeringen i PMU-placeringsproblemet. 

Denna avhandling analyserar också metoder för val av modellens ordningstal 
för modestimering. Vidare så behandlas även de negativa effekter på 
modestimering som tvungna svängningar och laständringar bestående av färgat 
brus innebär; dessa löses genom att utnyttja att karakteristiken hos de 
elektromekaniska egenmoderna är bestämda av transmissionsnätets egenskaper.  

Förbättrad noggrannhet hos modestimeringen kan uppnås med att injicera 
systemet med en signal för sondering. Det visas att ökad noggrannhet kan uppnås 
med ett anpassat frekvensspektrum hos denna signal. Avhandlingen presenterar 
en optimeringsmetod som finner det optimala spektrumet för sondsignaler. I 
tillägg så genereras sondsignaler med optimala spektrum som tar hänsyn till 
godtyckliga begränsningar i tidsdomänen som kan orsakas av de apparater som 
generar signalen. 

Slutligen så ger avhandlingen en fullödig beskrivning av en praktisk 
implementering av ett verktyg för modestimering i realtid. Detta inkluderar en 
beskrivning av den använda hårdvaran, mjukvaruarkitekturen och 
användargränssnittet samt detaljer av de viktigaste komponenterna, såsom 
Statnetts SDK för ett användarvänligt strömmande av synkroniserade 
fasvektormätningar.  
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Samenvatting 
Recente veranderingen in de energie sector hebben tot gevolg dat er meer 

zwak gedempte electro-magnetische oscillaties voorkomen. Het real-time 
monitoren van dit soort oscillaties is erg waardevol voor electriciteitsnet 
beheerders. Voor dit doeleinde zijn algoritmen ontwikkeld die gebruik maken 
van synchrophasor metingen. Het is in het algemeen bekend dat de schatting van 
trillingsmodes een van de belangrijkste toepassingen is van meet systemen op 
grote schaal. In deze thesis worden verschillende technieken onderzocht om deze 
schatting te verbeteren door de oorzaak van mogelijke afwijkingen te 
identificeren. Daarnaast wordt in deze thesis de implementatie van de nieuwe 
methode uitgebreid behandeld. 

Een van de problemen die worden behandeld is de selectie van synchrophasor 
signalen die worden gebruikt als ingrediënt voor de schatting van de 
trillingsmodes. De voorgestelde selectie wordt uitgevoerd aan de hand van een 
nieuw criterium dat is gebaseerd op de variantie van de schatting van de kritieke 
modes. Deze aanpak verschilt met de huidige procedures die gebaseerd zijn op 
ruwe schatting of op de analyse van de observability matrix van het elektrisch 
systeem. We laten zien dat niet alleen dit model van belang is bij de signaal 
selectie, maar ook de karakteristieken van de aanwezige ruis, hetgeen wordt 
genegeerd in de methoden gebaseerd op de observability matrix. Ook tonen we 
aan dat de signaal selectie lijkt op het probleem van PMU plaatsing, wat betekent 
dat de voorgestelde oplossing ook een manier voorziet om de eisen van de 
trillingsmodeschatting te omvatten in de globale PMU plaatsing. 

De thesis analyseert ook methoden om de orde van het model dat voor de 
schatting van de trillingsmodes gebruikt wordt te kiezen. Ook worden de 
negatieve effecten van geforceerde oscillaties en gekleurde ruis aangepakt door 
gebruik te maken van de intrinsieke eigenschap van elektrische systemen dat de 
karakteristieke functies van elektromechanische systemen wordt gedomineerd 
door het transmissie gedeelte.  

Een nauwkeurigheidsverbetering voor de schatting van trillingsmode kan 
worden behaald door opzettelijk verstoringen te veroorzaken met een sonde. We 
tonen aan dat verdere verbetering wordt behaald door het frequentie spectrum 
van deze verstoringen adequaat te kiezen. In de thesis wordt een optimalisatie 
methode uiteen gezet die het optimale frequentie spectrum van deze verstoringen 
bepaald. Daarnaast worden aanvullende beperkingen in het tijdsdomein (die 
voorkomen in dergelijke apparaten) ook beschouwd.  

Ten slotte wordt een volledige beschrijving van de praktische implementatie 
van een real-time methode voor trillingsmodeschatting gegeven. Hierin wordt 
een beschrijving gegeven van de hardware, de software architectuur, de grafische 
user interface maar ook de benodigde details van de belangrijkste componenten, 
zoals Stattnet's SDK die gemakkelijke toegang verschaft tot de data van 
synchrophasors. 
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   Chapter 1
1 Test jkkj 

Introduction 
 

1.1 Background 
The power system industry has been going through dynamic infrastructural 

and operational changes in recent years, which have changed the way how the 
industry is functioning. Deregulation and competitive markets have been 
established with the aim to improve efficiency and to attract new investments. 
Fast developments in the semiconductor industry and Information and 
Communication Technology (ICT), together with the competitive market 
philosophy, have motivated research on how power system utilities can benefit 
from these new technologies. This research has opened opportunities for better 
monitoring and control of the system and consequently better efficiency. Last but 
not the least, an increased environmental awareness has brought large 
investments in renewable resources, which introduced dispersed and highly 
volatile power generation. All these changes impose new challenges that, in 
order to be adequately addressed, require a paradigm shift in power system 
operation.  

One of the by-products of the ongoing changes in the power industry is that 
lightly damped electromechanical oscillations have become more pronounced. 
Electromechanical oscillations were initially caused by the introduction of high 
gain automatic voltage regulators, which are designed to overcome voltage 
stability problems in the power grid. Recently, the installation of large scale 
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renewable resources connected to the grid through power electronic converters 
has caused a reduction in the system’s mechanical inertia. The reduced inertia 
makes the system more vulnerable to stability issues, including 
electromechanical oscillations. The volatile nature of renewable resources such 
as wind and solar power plants, together with uncertain market behavior, result 
in conditions that are often unpredictable for system operators. This means that 
the system might be operated in conditions for which it has not been designed, 
making it more vulnerable from the stability point of view. In order to ensure 
more reliable operation of the systems, large interconnected networks, such as 
Central European Grid (formerly UCTE grid), make plans for interconnections to 
other areas. These large areas, which are sometimes connected by relatively 
weak power lines, cause new electromechanical oscillations or boost the existing 
ones. Considering that lightly damped oscillations can be potentially dangerous, 
this has become a great concern for the power system community. 

To analyze and control power system oscillations or even more generally, any 
other phenomenon in the system, it is necessary to obtain adequate models that 
describe the behavior of the phenomenon of interest. These models can be 
obtained in two ways: 

1) Physical modeling, 
2) Measurement based modeling. 

This modeling classification is very general and can be applied for the analysis 
of arbitrary phenomena in arbitrary dynamical systems.  

Physical modelling implies building models using laws of physics such as 
Kirchhoff’s laws, Newton’s law of motion, etc. These laws determine the model 
structure of the analyzed system, whereas the values of model parameters are 
determined from different experiments performed on each individual component 
of the system. These experiments are usually carried out by the component 
manufacturer and end-users are often supplied with the necessary parameter 
values.  

Physical modelling is a well-studied area that provides deep insight into the 
actual nature of the dynamic system behavior such as electromechanical 
oscillations in power systems. However, this approach has the intrinsic weakness 
that the components change their properties (parameters) due to aging and/or 
changing operating conditions. This means that these models have to be updated 
frequently, which is a very cumbersome and costly procedure for power system 
utilities. Often, model updates are not economically feasible, which means that 
the available models are often inaccurate description of the reality. This 
weakness became obvious in power systems after the August 14, 2003 blackout 
in the Eastern US interconnection. During that blackout 50 million people were 
affected with a total load loss of 61,800 megawatts (MW). The estimated cost of 
the blackout was between 4 billion and 10 billion USD in the United States only 
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[1]. The post-mortem analyses with the existing models could not reproduce the 
event due to inaccurate modelling. This was especially the case for modelling of 
loads and generators. The result of this was that the utilities had to make large 
investments in obtaining more accurate models with the aim to analyze the 
incident and to design counter measures to prevent future blackouts. This was 
also the case in the 1996 outage on August 10 with more details provided in [2]. 

An alternative to physical modeling is measurement based modeling. Real 
time measurements provide accurate information about current system behavior. 
Consequently, this information can be used to obtain updated models that 
describe the current state of the system. This approach is relatively new and 
significantly less investigated in the literature, but it has a great potential to be 
used in power systems for analyses of complex phenomena, including but not 
limited to electromechanical oscillations. Generally, there are several challenges 
that the model estimation tools need to deal with (see also Fig. 1.1): 

1) Large dimensions of the problem,  
2) Large amounts of measurement data, 
3) Uncertainty in the estimated model, 
4) Privacy and data access, 
5) Fast tracking of model changes. 

Most of these issues are coupled and contradictory by nature, i.e. the solution 
of one issue increases the complexity of the other. For instance, it is desirable to 
have models with high level of details, which requires large model dimensions, 
but this requirement implies that large amount of data is necessary for the 
estimation of such complex models. In the same fashion, a small model 
uncertainty implies that more information about the system is required, which 
leads to requiring a larger amount of data. A large amount of data makes data 
handling more difficult from the computational perspective but also from the 
cyber security perspective. The requirement of fast tracking on the other hand 
implies that fast numerical algorithms with shorter datasets should be used, 
which compromises the uncertainty of the estimated model. As a conclusion, it is 
obvious that an adequate solution will have to deal with large amounts of data 
collected in a short period of time, where the data is obtained by a potentially 
large number of sensors.  

A breakthrough in power system operation was made by the development of 
synchrophasor technology. This technology provides vast amount of information 
about the system dynamics. Currently, in the US there are more than 1700 
Phasor Measurement Units (PMUs) [3] while in China, full 500 kV transmission 
system observability has been accomplished for some years [4]. In addition, with 
further development of this technology it is reasonable to expect that even higher 
data reporting rates which will provide even more information about the system 
dynamics. However, it has to be noted that PMUs are not the only source of 
information to exploit and that other direct and indirect measurements, as well as 
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forecast techniques, can be used as an additional source of information that can 
contribute to better modeling of the system. 

 

 
Fig. 1.1 Challenges and approaches in power system model estimation. 

To solve the abovementioned issues a multidisciplinary approach is needed. 
Some of the research lines that are expected to give contribution in this field are 
big data analysis, internet of things, control theory and system identification, etc. 
Big data analysis is supposed to provide algorithms that are able to handle 
massive amounts of measured data. The Internet of Things concept might make 
access to these measured data even easier by solving privacy issues and making 
the deployment of different sensors easier. 

This thesis, unfortunately, will not give answers to all the fundamental 
challenges raised in the previous paragraphs. However, there is a hope that the 
thesis will motivate further research in this very important area. In this thesis, the 
focus will be on electromechanical oscillations, which can be accurately 
described by low order models, thus significantly simplifying the overall 
problem. For instance, one oscillation is accurately described by one pole/mode 
of the dynamic system, which means that the sufficient model order for the 
description of inter-area modes in the system is two times the number of modes 
(the number of critical inter area modes is typically less than 5). The models that 
describe electromechanical oscillations are estimated using measured 
synchrophasor signals. The algorithms which use synchrophasor measurements 
to estimate critical modes (frequency and damping ratio) are often referred to as 
mode estimators. 
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Generally there are three groups of mode estimators:  

1) Transient response (sometimes called ringdown), 
2) Ambient response, 
3) Probing. 

This classification is based on the types of measured responses that are used 
for mode estimation. Transient response or ringdown mode estimators use data 
that are the result of some large disturbance in the system. This type of system 
response is called “natural system response” (or response due to initial 
conditions) and it is mainly determined by the poles of the system, which means 
that this response can be used for estimating the modes’ frequency and damping. 
This can be achieved by fitting exponentially decayed sine waveforms to the 
measured response. Some of the popular approaches for this type of mode 
estimation are Prony analysis, the Eigenvalue Realization Algorithm (ERA), 
Matrix Pencil’s etc. Under the assumption that only the linear part of the 
response is analyzed (appropriate data pre-processing is assumed) these methods 
are able to provide very accurate mode estimation results. The reason behind this 
fact is that given a strong system excitation, the measurement noise does not 
have significant effect on the mode estimator’s accuracy. 

However, in real-life operation, an occurrence of such a large disturbance is 
relatively rare, and moreover, unwanted. This means that operators cannot rely 
on this source of information for continuous mode tracking. Nevertheless, these 
methods are useful because they can provide fast and accurate estimates after a 
disturbance. These estimates can be used as the basis to take manual control 
actions or to trigger automated corrective actions. Another important application 
of these methods is post-mortem analyses, i.e. when analysis of past disturbances 
is needed, usually with the aim to develop long term actions that should prevent 
future disturbances of the same kind. These methods are extensively investigated 
in the literature and they will not be a topic of further discussion in this thesis. 

Another approach to estimate modes is based on the system’s ambient 
response that is omnipresent in all synchrophasor measurements. As it will be 
shown later, this ambient noise is colored by the system that creates it. This 
means that the ambient response carries information about the system, and 
consequently, information about the dominant system modes. A compromise 
between these two categories of mode estimation methods (ambient vs 
ringdown) has been found in methods that use a low magnitude probing signals 
as an excitation to the system. These methods are non-intrusive (do not 
jeopardize stability of the system by any means) but, due to the known 
excitation, are able to provide more accurate mode estimation results compared 
to ambient data-based methods. A low magnitude excitation (probing) can be 
generated by the following modulating signals: 
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1) Reference signals of automatic voltage regulators, 
2) Reference signals in the control systems of FACTS devices (active and 

reactive power, voltage control, etc), 
3) Reference signals of turbine governors. 

The focus of this thesis is on non-intrusive mode estimation, meaning ambient 
data-based and probing methods. First, a literature review related to non-
intrusive mode estimation methods will be provided, together with the gap 
analysis. Later, the thesis’ contributions will be presented, whereas the following 
chapters will describe these contributions in detail. 

1.2  Literature Review 
This section describes state of the art of non-intrusive mode estimation 

methods. First, a short historical overview is provided, followed by a description 
of the basic principle of mode estimation algorithms. Further, different mode 
estimation algorithms are classified into several groups according to their 
properties, followed by a description of each group of methods. At the end, some 
challenges and alternative approaches are emphasized. 

1.2.1 History of mode estimation in power systems 

The need for obtaining power system models from measured data has been 
recognized in the industry for a long time. A substational effort has been put in 
understanding what information can be obtained from the measured data. This 
work was a basis for developing methods that are focused on the estimation of 
electromechanical oscillations. 

In the late 1970s and 1980s, Bonneville Power Administration conducted field 
tests with the aim to gather more information about the dynamic behavior of the 
Western US power system. The first tests were conducted in 1977, when the 
system was intentionally perturbed by white noise disturbance signal [5]-[9]. The 
spectrum of the obtained measured signals was used to assess the dynamic 
behavior of the system. This assessment enabled an early detection of an 
emerged oscillation, which was reported in [8]. Further, these tests led to the 
development of tools for oscillation detection [10]. In parallel, more intrusive 
tests have been conducted with the aim to record system’s response in case of a 
large disturbance. It was found that the Prony method is suitable for this 
application [11]. Other research also contributed to the solution of the model 
estimation problem. For example in [12], an ambient excitation is used to fit a 
simple model structure, and in [13] a transfer function of an individual element 
(a generator) was identified. In [14], a non-parametric method similar to the 
Empirical Transfer Function Estimate (EFTE) is used to fit the system response 
to a known excitation. In the second step of the proposed method the estimate is 
used for fitting to a model structure in the frequency domain. Online stability 
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assessment based on real time measurements was proposed quite early (in 1993) 
[15]. This initial approach exploited properties of the classical power system 
model. Later, online stability assessment has been investigated thoroughly, 
which will be described in detail in the sequel of this chapter. 

In [16]-[19] ringdown signals were used for model identification. Soon, it was 
recognized that the models estimated from measurements can be used not only 
for stability assessment but also for power system control and controller design 
where the focus was on damping controller design. This application motivated 
research in this area with several notable results [20]-[25]. In addition to the 
classical control approaches, several authors investigated improving damping of 
the system by changing thy system operating points [26],[27]. As the 
significance of the mode estimation in power system became more relevant, an 
IEEE task force was established to provide a comprehensive treatment of 
different mode estimation approaches. A report produced as a result of the efforts 
of the task force has been published as a special IEEE publication [28]. 
Furthermore, the importance of dynamic system state tracking is emphasized in 
several general scope publications [20],[29]-[34]. An overview of possible 
applications (in addition to mode estimation) was presented in [35], where the 
FNET wide area measurement system developed at Virginia Tech and the 
University of Tennessee was used to analyze dynamic phenomena across North 
America. 

1.2.2 Basic principles of ambient based mode estimation 

Ambient mode estimation algorithms have been used in civil, aerospace and 
mechanical engineering since the 1970s [36]. But it was in 1997 when Pierre et 
al. published pioneering results about ambient based mode estimation [37], 
which established research foundation in this area. These methods gained 
popularity thanks to the introduction of synchrophasor technology that enabled 
an easy access to high sample-rate measurements [38]. In this subsection, the 
basic principle of ambient mode estimation methods is introduced, without 
describing particularities of different available methods.  

During the steady state period, the power system behavior can be described by 
a linear Multiple Input Multiple Output (MIMO) model where the excitation 
driving the system is a product of random load switching. The assumptions of 
steady state and linearity are heavily exploited in the development of ambient 
mode estimation algorithms (even though there are methods that do not rely on 
this assumption). This assumption should not be seen as a limitation because in 
the case of non-steady state periods (presence of large disturbances), other 
methods developed for ringdown signals are more suitable. Therefore, the 
resulting power system model can be represented by Fig. 1.2. 
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Power system
dx/dt=Ax(t)+Bu(t)

y=Cx(t)+Du(t)

Load

Load

Load

P,Q

P,Q

PMU

PMU

PMU

 
Fig. 1.2 Power system model during ambient condidtions. 

If only one measurement variable is monitored (observed), it can be shown 
that the model can be described by a Single-Input Single-Output (SISO) model 
that has the same poles/modes as the original MIMO system (see Fig. 1.3). 

 

Power system
H(s) PMULoad P,Q

Aggregated  
Fig. 1.3 Simplified SISO model of the system during ambient conditions. 

This model is described by only one transfer function and the load represents 
the aggregated consumption of the whole power system. It can be assumed that 
this aggregated load has white noise characteristics. If observed in the frequency 
domain, this means that the power spectrum of the measured signal is 
proportional to the squared modulus of the system’s frequency response.  

Fig. 1.4 Frequency domain representation of the system. 

Furthermore, this means that it is possible to fit the coefficients of the transfer 
function to the measured power spectrum. Once the transfer function is 
determined, and using the property that the modes of the aggregated system 
(H(s)) are the same as the ones in the original MIMO system, it is easy to obtain 
values of the modes, i.e. their frequency and damping ratio. The only 
unanswered question here is how to carry out this fitting procedure. This can be 
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done in many ways, leading to different ambient based mode estimation 
algorithms.  

In the case of probing, the only difference is that (in addition to the ambient 
excitation) at least one input signal is known (designed). Consequently, the 
underlying model of the system has to be fitted taking into account the probing 
(input) signals as well as the ambient response. As linearity has been implicitly 
assumed, the superposition principle can be exploited. This means that when 
probing, the measured (output) signal is composed of two components. The first 
component is a result of the ambient excitation (as explained above), and the 
second is a result of probing. This is illustrated in Fig. 1.5: 

Power system
H(s) PMULoad P,Q

Aggregated
+

Power system
G(s)Probing

 
Fig. 1.5 Model of the sytem during probing tests. 

It has to be noted that transfer functions H(s) and G(s) are not equal, which 
means that in order to obtain a full description of the system, both transfer 
functions have to be estimated. 

1.2.3 Classification of mode estimation methods  

As mentioned in the previous subsection, there are different approaches (i.e. 
algorithms) to obtain a mathematical description of the system, and 
consequently, critical electromechanical modes from measured data. These 
algorithms for mode estimation have different properties that can be used for 
their classification and analysis.  

The first classification can be carried out by considering the method’s ability 
to obtain modes when: 1) excitation is due to ambient noise and 2) the excitation 
is exactly known (probing). Further, signal processing and system identification 
algorithms can be generally categorized as stationary and non-stationary. 
Stationary methods assume that the properties of the underlying model do not 
change with time, while non-stationary methods attempt to capture how the 
system is changing in time, in addition to estimating the model parameters.  

A model of the system can be obtained from a block of data (one model 
estimate is obtained with one data block) or the model can be recursively 
updated when a new measurement set becomes available. Recursive algorithms 
are in general more attractive for online applications due to their lower 
computational cost, however there is also a qualitative difference between these 
two groups of methods. In the case of recursive algorithms, a forgetting (penalty) 
factor is often applied to the data points that are further in the past, and thus, are 
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given exponentially lower importance. Conversely, block processing algorithms 
usually treat all the data in the block equally.  

In addition to mode estimation (mode frequency and damping ratio) some 
algorithms are able to provide estimates of mode shapes. Information about 
modes shapes is useful to help determining which generators are involved in the 
observed oscillation. To be able to estimate mode shapes, it is necessary to use 
multiple measurements locations i.e. the estimated model must have multiple 
outputs. Some methods such as subspace identification provide this estimate at 
practically no additional cost, while in the case of other methods additional 
computation is required. The mode shape estimation topic will be covered 
separately in this chapter. 

The main properties of different mode estimation algorithms are summarized 
in Table 1.1. 

Table 1.1 Classification of mode estimation algorithms. 

Property Algorithm Type 
Excitation Ambient or Probing 

Stationarity Stationary or Non-stationary 

Computation type Block Processing or Recursive 
Mode shape 
estimation Supported or Unsupported 

 

It has to be noted that one group of mode estimation methods can have 
different properties (e.g. prediction error methods can have both block 
processing and recursive form, they can be designed either for probing or 
ambient excitation, provide mode shapes or not, etc). However, when 
considering stationarity, it is possible to clearly distinguish groups of methods 
that use the stationarity assumption from those that do not (because stationarity 
is an intrinsic property of the approach).  

The following table (Table 1.2) lists different groups of methods classified as 
stationary or non-stationary methods.  
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Table 1.2 Stationary and non-stationary mode estimation algorithms. 

Stationary Non-stationary 
Time-series analysis Hilbert Huang Transform (HHT) 

Subspace identification Wavelet  
Frequency domain analysis Teager Kaiser operator 

Ringdown from ambient Koopman modes 
Kalman filtering Associate Hermite Expansion 

Non-parametric methods  
 

These groups of methods will be discussed in more details in the sequel of this 
chapter. 

1.2.4 Methods for mode estimation 

The following paragraphs describe different methods and approaches for mode 
estimation. Namely, the following methods are covered:  

1) Subspace identification methods,  
2) Time series analysis,  
3) Mode estimation algorithms based on Kalman filtering,  
4) Frequency domain methods,  
5) Non-parametric methods,  
6) Ringdown mode estimation applied on signals constructed from 

ambient data, 
7) Methods based on the Hilbert Huang Transform,  
8) Methods based on Wavelets. 

Each of these groups will be described shortly in the sequel and relevant 
references will be provided. 

 

Subspace identification methods 
Subspace identification methods have gained attention in the system 

identification community due to their robust implementations and the simplicity 
they offer in identifying MIMO systems. The main idea behind subspace 
methods is to extract a column space of the system’s observability matrix. It can 
be shown that this column space contains information about the system that is, in 
the mathematical sense, similar to the original system (obtained using a 
similarity transformation). An important property that is exploited in mode 
estimation is that a similar system has the same eigenvalues as the original one.  

The column space of the observability matrix is extracted from the data 
matrices that are created from measured data. The appealing property of 
subspace methods is that they provide the results by performing QR and SVD 
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decompositions, which are both numerically stable and efficient operations. This 
means that subspace methods are scalable, suitable for large models and large 
data sets. It is important to note that for ambient mode estimation stochastic 
subspace identification is used. This is due to the stochastic (ambient) excitation. 
A detailed theoretical description of subspace methods can be found in [39].  

Application of subspace methods in power systems was proposed as early as 
1996 [20], whereas the first application for mode estimation in power systems is 
presented in [40] and a more detailed analysis of subspace methods for this 
application is provided in [41]. Confidence intervals of the estimates obtained 
using subspace methods for ambient mode estimation are calculated using 
bootstrap methods in [42], whereas confidence intervals for probing mode 
estimation were proposed in [43]. A numerically efficient recursive method for 
subspace identification, where an SVD decomposition is not required in every 
iteration, is proposed in [44]. An improved bootstrap method is presented in [45]. 
A slightly modified stochastic subspace method is proposed in [46], while 
different subspace algorithms are tested in [47]; however, in these methods the 
stochastic part of the system was not considered. 

 

Time series analysis 
The theory of time series and spectral analysis is the basis for numerous mode 

estimation methods. One of the most popular approaches applied in power 
system mode estimation is to estimate AR(MA) models from the covariances 
that are estimated from data. The basis for these methods are the so called Yule-
Walker equations, which are used to determine the coefficients of a rational 
transfer function of the underlying ARMA model, which can be written as:  

1 0
( ) ( ) ( )

p q

i j
i j

y k a y k i b u k j
= =

= − − + −∑ ∑ ,  (1.1) 

where:  

( )y k  – measured output signal at time point k; 

( )u k  – random load input at time point k (assumed to be white noise); 

ia , jb  (i=1,…, p, and j=0,…, q) – unknown coefficients of the rational 
transfer function; 

p, q – orders of the numerator and denumerator of the estimated rational 
transfer function, respectively. 

Multiplying both sides of (1.1) by ( )y k q l− − , 1,...,l p= , taking the expected 

 
 



1.2    LITERATURE REVIEW 13 

value and using the definition of autocorrelation (r), the following matrix 
equation (known as the modified Yule-Walker equations) can be written: 

1( ) ( 1) ( 1)

( 1) ( ) ( )p

r q r q p a r q

r q p r q a r q p

 − + +   
    = −    
    + − +    



   



. (1.2) 

Note that the following property is used in the derivation:
{ ( ) ( )} 0E u k j y k q l− ⋅ − − = , for j<l+q. The autocorrelations in (1.2) are 

estimated using (1.3): 
1

0

1( ) ( ) ( )
N n

k
r n y k n y k

N

− −

=

= +∑ . (1.3) 

The solutions of the system (1.2) are the autoregressive (AR) coefficients of 
the model, which are sufficient to compute the modes of the system. In case that 
the moving average (MA) part is also of interest, it can be computed using 
Durbin’s method [48].  

In power systems, this procedure has been the basis for development of a large 
number of methods. For instance, the first paper that uses estimation of AR 
model was published by Pierre [37]. In [49], the Yule-Walker and Burg methods 
were applied on low-voltage measurements. The use of block processing ARMA 
model estimation is demonstrated in [50]. In [51], the Yule-Walker method with 
Spectral analysis is proposed. This method differs from the original in the way 
how autocorrelation coefficients are calculated. Instead of (1.3), the 
autocorrelation coefficients in [51] are obtained as an inverse Fourier transform 
of the spectrum that is estimated using a non-parametric method such as Welch’s 
method. The robust recursive least squares (RLS) method is introduced in [52], 
while a regularized robust RLS method is proposed in [53] where a dynamic 
regularization is introduced to help to include a priori knowledge about the 
system and reduce influence of under-determined problems. The robust approach 
helps to reduce the negative the influence of the so called non-typical data. It is 
important to note that the RLS algorithms are also suitable for probing mode 
estimation. The initialization of the regularized robust RLS method is discussed 
in [54]. Better numerical behavior of RLS algorithms is accomplished by using 
QR decomposition to triangularize the input data matrix [55]. 

The least means squares (LMS) adaptive filtering technique is introduced in 
[56] [57], while an adaptive step-size LMS is proposed in [58]. The 
performances of LMS adaptive filtering are improved by using the initial weight 
vector that is the estimated from an Autoregressive (AR) block processing 
method [59]. Optimal model order selection using the Bayesian Information 
Criterion (BIC) for this type of mode estimation is demonstrated in [60], whereas 
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in [61], the Akaike Information (AIC) and the Final Prediction Error (FPE) 
criteria are used. In addition, it is showed that FPE asymptotically approaches 
the AIC when the number of data points increases. Multichannel AR models 
with Yule-Walker equations are used in [62],[63]. Adaptive tracking RLS 
algorithms are proposed in [64] and [65] where the Kalman filtering theory is 
used. The Kalman filtering approach from [64] and [65] makes these methods 
suitable for the analysis of non-stationary signals. A comparison between the 
Yule-Walker and subspace methods was provided in [66]. It has to be noted that 
other signal processing techniques have been tested for mode estimation as well 
[67],[68]. 

A more general framework for parameter identification is provided through 
the so called prediction error theory. In contrast to classical time-series analysis, 
this theory was developed to incorporate probing excitation in addition to 
ambient excitation. However, most of the time series methods can be interpreted 
as a special case of prediction error methods. The first application of prediction 
error methods in power systems was reported in [69],[70], even though mode 
estimation was not in the focus of these publications. Instead, the goal was to 
capture slower dynamics (up to 0.5 Hz). Later, similar methods were applied for 
mode estimation. Due to the firm mathematical foundation of prediction error 
methods, they are able to provide straightforward estimate of the uncertainty of 
the estimated model. This property was used in several publications. In [71], the 
method for estimating confidence intervals was provided, whereas in [72] a 
recursive formulation was derived. 

 

Mode estimation algorithms based on Kalman filtering 
Kalman filtering is one of the most important estimation techniques in control 

theory. Naturally, Kalman filtering has been applied to solve different problems 
in power systems, including mode estimation. The application of Kalman 
filtering for mode estimation was reported in [73],[74]. Later, the extended 
Kalman filtering technique, which is able to handle time variant systems, is 
applied in [75]. In order to increase computational efficiency, a parallelized 
variant of the extended Kalman filter is developed in [76]. The Kalman filtering 
has also been applied to detect large disturbances in the system [77]. In this 
approach, the innovation part was tracked and a sudden change is used as an 
indicator that something has changed in the system’s structure. 

 

Frequency domain methods for mode estimation 
Frequency domain methods provide mode estimates by fitting data in the 

frequency domain. The first application of frequency domain mode estimation 
was reported in [78], where the signal’s spectrum is fitted to a second order 
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model structure. In [79], frequency domain data are used first to decouple 
different modes and then to fit such decoupled data to an appropriate model 
structure. A frequency domain decomposition that uses SVD to extract dominant 
modes was proposed in [80]. A distributed algorithm for frequency domain 
decomposition was developed in [81],[82]. The performances of the prediction 
error and least square frequency domain methods were compared in [83]. 

 

Non-parametric methods for mode estimation 
Non-parametric methods estimate the power spectrum of a signal or the 

system’s frequency response without fitting it to some predefined model 
structure. Instead, the spectrum is described with a frequency-by-frequency 
approach. In the power systems community, non-parametric methods were first 
applied for coherency identification [84], while the application for mode 
estimation came later. A non-parametric description of the system eliminates the 
possibility of errors caused by an inadequate model structure; however the 
analysis of such models is usually not trivial because there is no simple 
mathematical representation of the model. 

Non-parametric methods offer a comprehensive visualization of the estimated 
modes as shown in [85]. Also, it is possible to estimate the damping ratios using 
non-parametric methods as it was demonstrated in [86] and [87]. The usage of 
orthogonal sliding windows with the aim to reduce the variance of the estimate 
was proposed in [88]. The application of non-parametric methods in a real-life 
environment was demonstrated in [89] with four different systems and in the 
Japanese network [90]. 

 

Ringdown mode estimation applied to signals 
constructed from ambient data 

The autocorrelation sequence of measured data implicitly contains information 
about the generating system’s frequency response. This fact can be seen from the 
following known relationship: 

( ) ( ) ( )y t h t u t= ∗ , (1.4) 

where ( )y t  is the output , ( )h t  is the system impulse response, and ( )u t  is the 
input signal, which is assumed to be white noise. This equation can be expressed 
in terms of correlations, as follows: 

( ) ( ) ( ) ( ) ( ) ( )yy xy xxr k h t r k h t h t r k= ∗ = ∗ − ∗  (1.5) 
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where ( )xxr k  and ( )yyr t  are the autocorrelation sequences of the input and 

output, respectively, and, ( )xyr k  is the cross-correlation between the input and 

output. Because ( )xxr k  is considered to be a delta impulse, i.e. the identity 
element for convolution, the autocorrelation of the measured output is actually 
the natural system response on the previous bounded excitation that is 
mathematically (but not physically) equal to ( )h t− . Note that the system is 
assumed to be causal.  

This fact means that the autocorrelation sequence can be used as an input to 
ringdown mode estimation algorithms such as the Prony or the Eigensystem 
Realization Algorithm (ERA). Therefore, these algorithms essentially have two 
steps, where the first step computes the autocorrelation sequence and in the 
second step well-known ringdown analysis methods are applied. This approach 
was first applied in [91], where Prony’s method is used, whereas [92] employs 
the ERA method. In [93] the random decrement technique, which is an efficient 
way to compute the autocorrelation sequences, is used as the first step, while the 
Wavelet Transform based mode estimation is used in the second step. The 
random decrement technique was also applied together with Independent 
Component Analysis in [94]. 

 

Methods based on the Hilbert Huang Transform 

The dynamic behavior of power systems can be very complex. The methods 
discussed before assume stationarity of the system, i.e. the system does not 
change during the mode estimation process. However, this assumption might not 
be fully satisfied in reality, which is the motivation for treating signals as non-
stationary that can contribute to better overall estimation accuracy.  

The Hilbert transform is probably the most popular technique for the analysis 
of non-stationary signals. The main characteristic of the Hilbert transform is that, 
in contrast to the Fourier transform, it also provides information on how 
frequency components change over time. Because the application of the Hilbert 
transform on raw data usually provides a large number of components that are 
difficult to interpret, empirical mode decomposition is applied with the aim to 
differentiate a finite number of oscillatory modes (intrinsic mode functions - 
IMF). IMF is defined as a function that has the same number of extrema as zero 
crossings, and which satisfies the following condition: 

( )
2

2

1 0
t

t

IMF r dr

ε

εε

+

−

=∫ , (1.6) 
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where ε  is arbitrarily chosen and t a point in time. With these properties IMF 
signals will have slowly varying amplitudes and phases, what makes them more 
appealing for the Hilbert spectrum analysis. These two methods combined 
(Empirical Mode Decomposition and Hilbert Transform) constitute the Hilbert 
Huang Transform (HHT). The main idea behind this decomposition is that 
components should represent phenomena that are occurring on different 
frequency scales. The main disadvantage of EMD is that it is a heuristic method, 
i.e. there is no formal mathematical proof that it really separates different 
frequency components. A detailed description of the HHT method can be found 
in [95]. 

The first attempts to apply the HHT for the analysis of electromechanical 
oscillations in power systems was reported in [96] and [97], where the focus was 
on visualization and result interpretation. In order to improve the performance of 
the HHT affected by mode mixing, masking techniques were developed and 
applied in [98]. A method to estimate the critical mode’s damping ratio using 
HHT was proposed in [99]. A more general discussion on how to use HHT 
techniques for measurements in power system was provided in [100]. In this 
paper two analytical approaches to examine nonstationarity features are 
investigated. The first method is based on selective Empirical Mode 
Decomposition of measured data. The second is based on wavelet shrinkage 
analysis. In addition, experience with the application of these techniques to 
quantify and extract nonlinear trends and time-varying behavior is discussed, and 
the physical interpretation of the proposed algorithms is provided. A discussion 
on how to separate different frequency components from the measured signals 
using the HHT is given in [101]. 

In [102], an improvement of HHT is proposed. First, a local implementation of 
the EMD is proposed and second, the HT is computed using variable window 
filters. A modified HHT method with the use of wavelets was proposed in [103]. 
In [104], the HHT method is used to locate sources of oscillations. This 
information was used to design local control actions that contribute to improved 
system damping. A method that ensures the continuity of residuals during sliding 
estimation was proposed in [105]. This property helps obtaining more stable 
results because it prevents the time-consecutive IMFs to differ drastically. An 
improved method that addresses problems related to mode mixing and the “end 
effect” was proposed in [106]. In this paper, the Symmetrical Extreme Extension 
(SEE) method was employed to expand the original signal during the processing 
of EMD and the frequency heterodyne technique was used to overcome the 
mode-mixing phenomena. In [107], a two level decomposition was used instead 
of EMD with the aim to solve the mode mixing problem. In addition, the 
normalized Hilbert Transform was used to address the Gibbs Phenomenon of the 
traditional Hilbert transform. In [108], empirical orthogonal functions were used 
to extract dynamic patterns of the system that can be analyzed instead of raw 
data. Another method based on EMD to remove the trends from the measured 
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data was proposed in [109]. A comprehensive description of the application of 
the HHT method in the Japanese grid was reported in [110]. 

 

Wavelets methods 

The wavelet transform is another popular technique for time-frequency 
analysis of signals. This technique treats different frequency components 
differently, resulting a good compromise between time and frequency resolution.  

The performance of wavelet-based mode estimation methods has been 
assessed in [111]. Considerations for wavelet selection were discussed in [112]. 
A more general discussion on the applicability of the wavelet transform for mode 
estimation is given in [113]. In [114], the wavelet transform, together with 
empirical orthogonal decomposition, was used to identify and extract relevant 
dynamical spatio-temporal patterns in measured signals. Other applications of 
wavelet transforms have been investigated as well, for instance, coherency 
identification [115] and mode estimation using ringdown responses [116],[117]. 

1.2.5 Mode estimation performances and applications 

In order to find the most suitable among all the methods that have been 
developed, it is essential to fairly assess the performance of each method. This 
task is generally very complicated because measured data might have different 
properties in different systems. For that reason, it is necessary to establish 
methods for comparing different mode estimation algorithms. The first step in 
that direction was reported in [118], however further research in this area is 
needed. Several publications have compared the performance of different mode 
estimation algorithms with the aim to provide better understanding of the 
methods [119]-[123]. These comparisons are valuable because the understanding 
of different properties opens the possibility to combine different methods with 
the goal to improve overall mode estimation [124].  

The theoretical development of methods for mode estimation was followed by 
practical implementations. The experience gained from these analyses in real-life 
conditions has provided a new understanding of power system behavior. For 
instance, the authors in [125] attempt to characterize ambient conditions in 
power systems in order to better understand its behavior. In addition, analyses in 
real life conditions have provided understanding of the market value of mode 
estimation products. Many practical mode estimation implementations have been 
reported in the literature, and they are discussed in the sequel. 

In [126],[127],[128], the experience in the Nordic region is presented where 
subspace and Kalman based mode estimators were used. A description of the 
different decision support tools and challenges in implementation of wide area 
system was discussed in [129]. An attempt to reconstruct a model of the WECC 
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system using PMU measurements (even though a simplified model) was reported 
in [130]. The Oscillation Monitoring System (OMS) implemented into the 
Phasor Data Concentrator at Tennessee Valley Authority was described in [131]. 
In this system, a frequency domain decomposition is used for ambient data 
processing, while the event detection is used to trigger Prony analysis of 
ringdown signals. A system stability monitoring and control developed by 
Bonneville Power Administration (BPA), Ciber Inc. and Washington State 
University (WSU) was described in [132].  

A detailed description of the Brazilian wide area measurement system was 
provided in [133]. Data collected with this system were later used for the 
validation of the model of the Brazilian power system using ambient, rindown 
and probing signals [134]. A subspace identification method for real time mode 
estimation in Brazilian system was reported in [135].  

An application of parametric (Yule-Walker) and non-parametric methods for 
mode estimation in the Danish grid was reported in [136]. A similar study has 
been extended for four different power systems (namely WECC, Eastern US 
interconnection, Nigerian and Danish system) [89]. A non-parametric FFT-based 
method was applied in the Singaporean-Malaysian power system [137]. 
Monitoring of electromechanical oscillations in the European grid using a 
commercial wide area measurement system was reported in [138]. Oscillation 
monitoring using the FNET system, which has been developed at Virginia Tech 
and the University of Tennessee, was reported in [139],[140],[141]. Experience 
with mode frequency and damping estimation in the Norwegian grid was 
presented in [142]. Different practical issues in oscillation monitoring were 
discussed in [143], where a statistical approach for analysis was proposed. Mode 
estimation in Finland using the random decrement technique and the wavelet 
transform was described in [93], as well as the Finnish wide area measurement 
system. A damping controller installed in the Chinese grid that is tuned using the 
model identified from ambient data was described in [144]. One implementation 
of a graphical user interface for mode estimation was presented in [145]. 

1.2.6  Mode shape estimation algorithms 

In addition to estimating the critical mode’s frequency and damping ratio, it is 
also helpful to know the dominant path of the oscillation as well as elements 
(generators) that are involved in the oscillation. This information is contained in 
the mode shapes. 

Generally speaking, in order to estimate mode shapes it is necessary to use 
multiple measurements to determine how different elements contribute to the 
oscillation. In [146], mode shapes were estimated using spectral correlation 
analysis. The communication method and channel matching methods were 
introduced in [147] and [148]. Mode shape estimation based on estimates of 
transfer functions was formulated in [149] and a two-variable ARMA model for 
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eigenvector estimation was presented in [150]. A non-parametric recursive 
implementation of spectral correlation based mode shape estimation algorithm 
was developed in [151]. Mode shapes can also be estimated from ringdown 
signals as demonstrated in [152], where pre-filtering and correlation analysis 
were used. Mode shape estimation from probing tests using the empirical 
transfer function estimate (ETFE) technique was proposed in [153]. The 
difference in this paper compared to other non-parametric based estimators is 
that the probing signals are available, therefore instead of estimating the 
spectrum of the signal, the ETFE technique is used. Mode shape estimation using 
prediction error methods with an ARMAX model was proposed in [154], a 
similar approach was used in [155] where a SIMO model was estimated using 
the prediction error method. Application of the wavelet transform for mode 
shape estimation was introduced in [156]. A comprehensive comparison of mode 
shape estimation methods was reported in [157]. 

1.2.7 Probing methods 

As stated before, the idea to intentionally excite the system and to use the 
measured response in order to estimate dynamic properties of the system is 
relatively old [5],[158]. However, most of these approaches required large 
disturbances in the system. In [159], an application of system identification 
methods with low power excitation is introduced with the aim to improve 
ambient based estimation. The consequence of using this type of excitation is 
that input-output identification methods are used instead of the output only 
methods required for ambient based methods. However, it has to be noted that in 
contrast to ringdown methods, the ambient excitation in this case cannot be 
neglected.  

A method for determining confidence intervals of the estimates from probing 
tests using the bootstrap method and subspace identification was proposed in 
[43]. This approach is very similar to the bootstrap method originally proposed 
for ambient based mode estimation but it was demonstrated that the same 
approach can be applied for probing tests. The shape (profile) of the time domain 
probing signals affects the performance of the mode estimator. This property was 
analyzed in [160],[161] where a probing signal design procedure was proposed. 
An idea to use several generators for probing was proposed in [162] with the aim 
of increasing the power of the probing signal, which in case of a single generator 
can be constrained by the probing equipment. Different subspace methods for 
probing based mode estimation were tested in [163]. 

1.2.8 Other research lines 

In the previous text, an overview of mode and mode shape estimation methods 
has been discussed. In addition to these methods, other research directions have 
contributed to a better understanding of the system dynamics from measured 
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data. A short overview of the research topics related to mode estimation is given 
in the sequel.  

In [164], as well as in [130],[165]-[168] a full model of the power system was 
identified using measured data. To this aim, a simplified model structure is used 
(classical representation). All mode estimation algorithms discussed above are 
based on open-loop identification algorithms; in [169],[170] a closed-loop 
identification approach has been investigated. Prior knowledge of the system can 
be included to improve identification results. For instance in [171], a Bayesian 
framework is used to estimate a second order model of the system. A very 
interesting two stage model identification approach was proposed in [172], 
where the local systems are first estimated and later merged to form a model of 
the entire system. The importance of locating the sources and causes of 
electromechanical oscillations was emphasized in [173] where one method for 
that purpose was proposed. 

Even though the damping ratio has been the most widely used small signal 
stability criterion, some authors proposed other stability indices 
[174],[175],[176]. For example, the identification of the damping torque instead 
of the mode’s damping ratio estimation was proposed in [177]. The identification 
of trends in measured data using structural time series models was proposed in 
[178]. In [179], the complex-singular value decomposition (C-SVD) method is 
applied on the ensemble matrix (matrix constructed from the measured signals) 
with the aim to describe both temporal evolution and spatial distribution of the 
dominant oscillation mode. In [180], an effort has been made to characterize the 
system state that precedes a large system disturbance. In order to make use of all 
available measurements, the data fusion approach has been proposed in [181]. 
An attempt to treat power oscillations as waves that are spreading through the 
system was proposed in [182]. A method that fits the measured data to an 
orthogonal polynomial expansion was proposed in [183],[184]. Finally, mode 
estimation using the Teager-Kaiser energy operator was proposed in [185]. 

1.3 Challenges in Mode Estimation 
The previous subsection provided a general overview of the methods for non-

intrusive mode estimation, as well as some challenges that have been 
successfully addressed to some extent. It can be noticed that a large number of 
methods have been developed and their characteristics are generally well 
understood. However, in order to commercialize these tools, it is necessary to 
address some additional issues that can corrupt the final mode estimation results. 
These topics are briefly described in the sequel, and some of them are discussed 
in more details throughout the thesis. 
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1.3.1  Relevant measured signals  

By observing a full order model of the system (Fig. 1.2), it is obvious that 
every measured signal, i.e. its power spectrum, can be described by a transfer 
function whose denominator corresponds to the characteristic polynomial of the 
full order system. However, it can be shown that many measured signals (due to 
different numerators and zero pole cancelations) do not contain relevant 
information about the critical mode of interest, which leads to the conclusion that 
a large amount of data handling can be avoided by using low order system 
models and relatively few signals from certain locations where the observability 
of the critical mode is better. 

However, the approach of using low order models, despite all benefits, has one 
major disadvantage. Namely, estimated low order models contain a certain 
amount of intrinsic bias, which results with biased estimated parameter values 
(such as damping ratio). In addition, this bias is difficult to assess and has a 
different value for each signal used in the identification. This means that the 
estimated critical modes depend on the signals used for the identification, i.e. 
some critical modes might not be extracted from some signals. Therefore, it is 
necessary to select appropriate signals for mode estimation in order to obtain 
accurate results. This can be achieved by characterizing signals according to their 
properties and purpose. The problem of signal selection is especially difficult in 
the case of MIMO system identification. It has to be noted that it is not only the 
location that has to be selected but also the signal type (voltage, current, power 
etc.). These problems are partially addressed in this thesis. 

Properties of different signals for monitoring of events were first discussed in 
[186]. Signal selection method for mode estimation is explicitly discussed in 
[187]. In this paper a method for signal selection based on “modal power 
contribution” as a ranking criterion is proposed. The modal power contribution is 
defined as the part of the power spectrum that is directly related to the critical 
mode of interest. The higher value of modal power contribution implies that 
signal is a better choice for mode estimation. In [188], two new ranking criteria 
have been proposed. These criteria are also based on the shape of the power 
spectrum where their geometrical properties were used for the formulation. The 
basic idea behind these criteria is that signals which have peaks in the power 
spectrum at the critical mode frequency are good choices for mode estimation. In 
[189], a classical power system model was used to define Cramer-Rao bounds 
for different measured signals with the aim to estimate the power system 
parameters. It has to be noted that some authors focused on selecting the optimal 
signals that can improve oscillation damping control (such as Power Oscillation 
Damper), rather than to improve mode estimation for monitoring purposes, for 
instance in [190]. 
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In the case of probing mode estimation, the optimal signal selection should 
determine the probing signal as well as measured signals (in contrast to the 
ambient signal selection where only measured signals are determined), which 
leaves space for additional performance improvements. 

The previously mentioned approaches for the selection of relevant 
measurements are based on the system’s structure; however, other parameters 
can be taken into consideration, such as measurement noise, reliability and 
robustness. In addition, it is important to analyze other properties of critical 
modes, such as their sensitivity to different operational parameters. Finally, a 
strict requirement for mode estimation methods is to ensure sufficient confidence 
in the obtained results. The problem of the result confidence is discussed further 
in the thesis. 

1.3.2 Forced oscillations 

The forced oscillation phenomena in power systems have sporadically 
appeared in the literature over the last 40 years [191]. There are different sources 
of these oscillations. Xuanyin et al. [192] report that the regulation system of 
steam turbines can cause this kind of oscillatory behavior. Other authors have 
investigated the impact of cyclic loads in the system [191],[193]. Vournas et al. 
report, in [194], diesel generators as one of the possible causes for forced low-
frequency oscillations. Regardless of the cause, all types of forced oscillations 
have some common characteristics which can be used for their identification. 
Considering that a forced oscillation is a permanent vibration with a specific 
frequency, its spectrum is characterized by a very narrow high amplitude peak. 
This can be concluded from the fact that an undamped sine signal is represented 
by a Dirac delta function in the frequency domain. A more detailed discussion on 
forced oscillations caused by cyclic loads was presented in [195]. A method for 
identifying causes of forced oscillations that relies on the clustering approach 
was reported in [173]. A similar problem was addressed in [196] by graph 
theory. Effects of forced oscillations on mode estimation results and mode shape 
estimation were analyzed in [87] and [197], respectively. These analyses show 
that they can severely corrupt mode estimation results and that new mode meter 
estimators need to be able to provide accurate results even when in the presence 
of forced oscillations. One approach for tackling negative effects of forced 
oscillations on mode estimation is proposed in this thesis. 

1.3.3 Efficiency of processing large amount of data 

With the current trend of deploying a large number of PMUs in power 
systems, it is obvious that a modern wide area monitoring system has to be 
capable of receiving, transmitting and processing a large amount of data in a 
secure, reliable and fast way. Security and reliability of the data storage and 
transfer is a popular research topic within the ICT research community. One 
approach to increase computational efficiency and reduce the required data 
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bandwidth, was addressed using distributed computation as presented in 
[81],[82],[198]. This approach assumes that mode estimation is should be 
performed locally at each substation of interest, whereas the global (optimal) 
results at the central level can be obtained using the local results that are 
transmitted with significantly reduced bandwidth in comparison with raw 
measured data. Despite this and similar contributions, more efforts are necessary 
to develop fast, secure and reliable mode estimation. 

1.4 Contributions of This Thesis 
The focus of this research was to improve existing mode estimation tools and 

to address some issues related to the application of these tools. In addition, the 
aim was to introduce new paradigms and approaches in dealing with mode 
estimation. The contribution of the thesis can be classified into five domains that 
also follow the structure of the thesis: 

1) Optimal signal selection and optimal PMU placement for mode 
estimation, 

2) Mode estimation considering arbitrary spectral load characteristics, 
3) Optimal probing signal design, 
4) Optimal model order selection, 
5) Practical implementation of a real-time mode estimator for research 

purposes. 

Each of these topics will be covered in a separate chapter and this section will 
describe briefly the main points made in the thesis. 

1.4.1 Optimal signal selection and optimal PMU placement 
for mode estimation 

The common problem that power system operators face in utilizing mode 
estimation tools is to choose synchrophasor signals that have “sufficient” 
information about the monitored critical mode. Heuristically, there is a common 
understanding about some of the properties of good signal candidates, such as 
peaks in the signals’ spectra at the frequency of the mode and location of the 
signal with respect to the mode’s dominant path. However, these means of 
quantifying the signals’ relevance are based on experience and do not provide a 
mathematically formal description and deeper insight in the signals’ properties. 

This thesis formulates a numerical criterion that describes the signals’ 
suitability for the mode estimation. This criterion is formulated as the estimation 
variance of the critical damping ratio. Furthermore, a numerically efficient 
algorithm to compute the criterion is presented, as well as a fast (approximate) 
criterion that is used screening signals. These criteria are used to formulate the 
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optimal signal selection criterion. In addition, the relationship between the 
defined criteria and the signal spectrum shape is discussed in more detail. 

The proposed signal selection method is discussed in Chapter 2, and the 
method with application examples has been published in a paper in the IEEE 
Transactions on Power systems [199]. 

1.4.2 Mode estimation considering arbitrary spectral load 
characteristics 

Ambient based mode estimation exploits the property that the power system is 
continuously excited by random load changes. It has been hypothesized that it is 
valid to model these random load changes as white noise. This hypothesis is 
crucial because it enables the extraction of the power system transfer function 
from the measured synchrophasor measurements. Unfortunately, by analyzing 
real-life synchrophasor measurements, it can be noticed that this assumption is 
not always fully satisfied. This phenomenon is particularly important in the case 
of the so-called forced oscillations which represent an obvious violation of the 
white noise assumption. 

This thesis proposes a mode estimation algorithm that relaxes the white noise 
assumption, meaning that good estimation results can be guaranteed regardless 
of the spectral load characteristics. This is possible if a sufficient number of 
synchrophasors is available in the system. The proposed procedure is based on 
the power system separation of the dominant transmission part from the less 
important distribution part of the system, where emphasis is accordingly given to 
ensure accurate estimation results of the transmission network modes. 
Furthermore, if full measurement observability is not available, a method for the 
reconstruction of the necessary synchrophasor signals is proposed.   

The proposed mode estimation method that includes spectral load 
characteristics is discussed in Chapter 3, and the method with application 
examples has been published in a paper in the IEEE Transactions on Power 
systems [200].  

1.4.3 Model order selection for mode estimation 

Mode estimation methods can be broadly classified as parametric or non-
parametric methods. Non-parametric methods generally do not require complex 
parameter tuning, which makes them easy to use and attractive when obtaining 
initial mode estimates. In contrast, parametric methods, when the underlying 
model structure is properly selected, can provide more accurate results as well as 
deeper insight into the mode estimation process.  

Different parametric mode estimation methods have different set of estimation 
parameters that have to be selected. One of the most important parameters is the 

 
 



26 CHAPTER 1.    INTRODUCTION 

model order of a predefined model structure to which the system response is 
fitted. 

The problem of optimal model order selection has been investigated 
extensively in the control and signal processing community and these methods are 
evaluated in this thesis from the perspective of mode estimation in power systems. 
The methods analyzed in this thesis are: 1) Residual analysis for model order 
selection, 2) Model order selection-based on singular values, 3) Akaike 
Information Criterion, 4) Variance-Accounted-For (VAF) as a measure of optimal 
fitting between measured data and the model’s response. 

A comparison of different methods for optimal model order selection is 
provided in Chapter 4. The main results of this comparison have been published 
in a paper presented at the Power and Energy Conference at Illinois [201]. 

1.4.4 Optimal probing signal design 

Ambient based methods rely on the omnipresent excitation of random load 
changes. This property makes these methods very attractive because of their 
simple implementation, i.e. they only require measured signals that are easily 
available through a WAMS system. However, a disadvantage of this group of 
methods is their limited accuracy. Namely, accuracy is determined by the 
intrinsic properties of the power system (level of ambient noise, level of 
measurement noise, etc.) and the power system operators are generally not able 
to influence these parameters.  

Improved accuracy can be obtained by intentionally introducing a disturbance 
to the system, where a large disturbance, i.e. large power of the probing signal 
generally, leads to improved mode estimation results.  

The main contribution of this thesis is that it provides a relationship between 
mode estimation accuracy and the properties of the probing signal. It is shown 
that the accuracy depends only on the spectrum of the probing signal and not on 
the time domain signal realization. 

This relationship is used to formulate the optimal probing signal design 
problem, where the power of the probing signal and level of the system 
disturbance is minimized, whereas the desired mode accuracy is treated as a 
constraint. The result of this Linear Matrix Inequality (LMI) optimization is the 
optimal spectrum of the probing signal that can be parameterized as a multisine 
or continuous spectrum. Further, three different methods have been used for the 
time domain realization of the probing signal. Emphasis is given to the newly 
developed method that is able to easily take into account different time domain 
constraints that can be imposed by probing devices.  

It is shown that the proposed method for optimal probing signal design is able 
to provide the same mode estimation accuracy while requiring less excitation (5-
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7 times weaker) in comparison when all frequencies are equally excited. 
Equivalently, the proposed methodology provides 4-5 times better mode 
estimation accuracy when the probing signal is optimally shaped in comparison 
with the white noise probing signal of the same power.  

A detailed description of the probing signal design procedure is given in 
Chapter 5, whereas the most important results are being prepared for publication 
as a journal paper. 

1.4.5 Practical implementation of a real-time mode 
estimator for research purposes 

The focus of this thesis was to contribute with theoretical advancements to 
enhance the mode estimation process. However, a practical implementation of 
such algorithms imposes additional challenges that need to be addressed as well. 
To address such kind of challenges, it is necessary to perform testing integrated 
mode estimation solutions that include physical Phasor Measurement Units and 
ICT systems that are fundamental elements of wide area monitoring system (i.e. 
mode estimation system). 

To demonstrate a practical implementation of a mode estimator, the Statnett’s 
Synchrophasor Software Development Kit (SDK) was used as an interpreter of 
the IEEE C.37.118 protocol, which enabled easy access to the measured 
synchrophasor data. The mode estimation algorithm itself was implemented in 
the LabVIEW environment using a state machine software architecture. The 
developed mode estimation application was tested using synthesized and real 
synchrophasor measurements. 

More details on the practical mode estimator implementation are given in 
Chapter 6, whereas the main results are published as a conference paper and 
were presented at Clemson University’s Power System Conference [202]. 
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   Chapter 2
2 Test jkkj 

Optimal Signal Selection and PMU 
Placement for Mode Estimation 

 

2.1 Introduction 
In recent years there has been a trend of increasing the number of PMU 

installations in power systems, leading to higher degrees of observability in 
different systems. However, because not all synchrophasor signals contain an 
equal amount of information about the critical mode of interest, it can be shown 
that only a limited number of carefully selected signals contain sufficient 
information for accurate mode estimation. Furthermore, concurrent use of a large 
number of signals leads to estimation bias as well as higher computational 
complexity that may not be suitable for online applications. This reasoning poses 
the research question of optimal signal selection for mode estimation. The first 
attempts to address this question have been presented in [187] and [188]. In 
[187], a Modal Power Contribution (MPC) metric is proposed as a signal 
selection criterion, while in [188], suitable signals are selected based on the 
geometry of the signals’ power spectra. In the more recent papers [82] and [198], 
two level algorithms for mode estimation have been proposed. In these papers, 
signals contribute to the final mode estimation according to their weighting 
factors that represent signals’ quality. In [82], the weighting factor is defined as 
the Fourier Transform magnitude at the critical mode’s frequency, whereas in 
[198], the mode energy is used instead. The means for quantifying the signals’ 
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relevance for mode estimation (either signal selection criteria [187],[188] or 
weighting factors [82],[198]) have been developed using heuristics that do not 
offer a formal proof that the selected signals provide the best possible mode 
estimation results. 

The problem of optimal signal selection can be also seen as a problem of 
optimal PMU placement for mode estimation with the question of where to 
install the PMUs to obtain the best possible estimation of the critical mode. To 
the author’s best knowledge, this question has not been formulated, even though 
optimal PMU placement (for other applications such as state estimation and 
stability assessment) has been investigated in the literature [203],[204]. In the 
traditional PMU placement problem formulations, the optimization criterion is 
mainly defined as maximum observability. This observability is defined either in 
terms of numerical observability or topological observability [204]. However, 
the methods developed do not provide information about the optimal signals that 
should be used to obtain accurate mode estimation results. 

An estimate of the critical mode’s damping ratio can be seen as a realization 
of a random variable whose variance depends on the signal that is selected as an 
input to the mode estimator. Therefore, if an unbiased mode estimator is used, 
the best signal for mode estimation is the one that provides the smallest variance 
of the critical mode’s damping ratio. This means that the variance represents the 
key numerical criterion for ranking the signals according to their quality for 
mode estimation. 

This chapter provides a formal algorithm to compute an estimate of the 
(asymptotic) variance of the critical parameter estimates for each signal; under 
the assumption that the signals’ power spectra are known in the form of 
AutoRegressive Moving Average (ARMA) models. The best signals (for mode 
estimation) are then determined by ranking the signals according to the 
calculated variances. This algorithm has its foundation in a theorem that gives a 
formula for the parameter covariance matrix (and consequently the variances of 
interest) of an arbitrary model parameterization.  

The proposed algorithm has the advantage that it uses only parameters of the 
ARMA models as an input to the algorithm. This makes the variance 
computation independent of the method used to determine the ARMA models. In 
the case of off-line PMU placement (for mode estimation), the ARMA models 
can be obtained from the existing physical power system model (off-line 
simulation). On the other hand, in the case of selecting the best from the set of 
available synchrophasor measurements, any identification method can be used 
(on-line operation). 

The proposed algorithm gives a formal approach in determining optimal 
signals for mode estimation; however, in an on-line setting, it may be 
computationally expensive to evaluate this algorithm for each signal. For this 
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reason, a fast pre-selection method (first stage) is formulated in order to 
determine a limited number of signals that are possible candidates for the 
optimal signal. Later, the formal approach (second stage) is applied only on the 
signals selected in the first stage to determine the optimal ranking of the signals. 
The proposed methods are applied to synthetic signals from the KTH Nordic 32 
test system. 

2.2 Power System Model for Describing an Ambient 
Response 

This section describes a general power system model. The presented model 
will be used throughout the thesis, whilst this section that treats optimal signal 
selection will be using a special case of the presented general power system 
model.  

Ambient responses, which are of interest here, are mainly driven by small 
perturbations in the network, and therefore associated power system dynamic 
behavior can be accurately represented by a linear model [205],[206],[207]. The 
linear power system model is obtained by linearzing a non-linear model around 
some steady state operating point. For this reason, all the variables will describe 
deviation from the defined steady state operating point (denoted by ∆ ). 

The inputs of the system are defined as loads variations1. The responses 
(outputs) of the system are variables measured by PMUs (voltage, current 
phasors and other derived quantities) excluding measurements at the load buses. 
Thus, the power system model can be represented in state-space form assuming 
zero initial conditions, as follows: 

[ ][ ]1 2 1 2( ) ( ) ( ) ( ) Ts s s s s∆ = ∆ + ∆ ∆X A X B B U U  ; (2.1) 

[ ][ ]1 2 1 2( ) ( ) ( ) ( ) Ts s s s∆ = ∆ + ∆ ∆Y C X ∆∆  U U  , (2.2) 

where 1( )s∆U  and 2 ( )s∆U are sub-vectors of the input vector ( )s∆U , denoting 
measured and non-measured inputs, respectively. Vector ( )s∆X  denotes the 
state vector and ( )s∆Y is a vector of output variables measured by PMUs. Note 
that some or all inputs can be measured by PMUs but these signals are not part 
of the output vector ( )s∆Y . Matrices A, B=[B1 B2], C and D=[D1 D2] are 
system, input, output and control matrices, respectively. Note that the separate 
notation for measured and non-measured inputs is introduced and will be used in 
Chapter 3, while the simplified form that treats all the inputs equally will be used 

1 It is assumed that all control references in the system are held constant, therefore not considered 
as controllable inputs in the power systems. 
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in this chapter.  

Using the state space model (1)-(2), the transfer function matrix between loads 
(at the input) and measured variables (at the output) is computed as follows: 

1( ) ( )s s −= − +Η C I A B D . (2.3)
 The complete model of the system can be written in a developed form as: 

11 1 1 1

21 1 2 2

1 1

( ) ( ) ... ( ) ( ) ( ),
( ) ( ) ... ( ) ( ) ( ),

( ) ( ) ... ( ) ( ) ( ),

N N

N N

M MN N M

H s u s H s u s y s
H s u s H s u s y s

H s u s H s u s y s

∆ + + ∆ = ∆
∆ + + ∆ = ∆

∆ + + ∆ = ∆
  

 (2.4) 

where ( )iu s∆  and ( )iy s∆  are the i-th elements of the vectors 

[ ]1 2( ) ( ) Ts s∆ ∆U U   and ( )s∆Y , respectively and ijH  is the element of the H 
matrix at position (i, j). N denotes the number of inputs (loads) both measured 
and not measured, i.e. the length of ( )sU . M denotes the number of outputs 
(available PMU measurements and length of ( )s∆Y ). This model can be 
visually represented as shown in Fig. 2.1. 

 
Fig. 2.1 Model of the power system using loads as inputs and PMU 

measurements as outputs. 
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Fig. 2.1. shows that a single output signal can be considered as a sum of N 
components that are driven by only one load (denoted by x in Fig. 2.1.). The 
decomposed signals are used in the formulation of the mode estimation method 
that is presented in the sequel. 

2.3 Approach 
As stated before, the power system’s ambient response, which can be observed 

in measured synchrophasor signals, is the result of random fluctuations of loads 
in the power system [95]. These random load fluctuations at the aggregated level 
can be represented by white noise [200]. Using linearity of the power system and 
following the structure of the model from Fig. 2.1, its model can be represented 
as a set of transfer functions that leads to a mathematical description of the i-th 
measured synchrophasor output yi (linearization is assumed and deviations ( ∆ ) 
are omitted to simplify notation): 

,  (2.5) 

where Hij is the transfer function from the j-th input to i-th output and 𝑒̂𝑒𝑗𝑗 the 
disturbance associated with the j-th input. Because the input is assumed to be 
white noise of variance 𝜎𝜎�𝑗𝑗2, it is denoted by 𝑒̂𝑒𝑗𝑗 instead of the more general 
designation 𝑢𝑢𝑗𝑗 used in Fig. 2.1. 

Consequently using spectral factorization, the corresponding power spectrum 
of the signal yi(t) can be written as: 

 (2.6) 

As shown in (2.6), this spectrum can also be expressed using one single 
transfer function G0i that is excited by white noise with variance σi

2. The modes 
of G0i are equal to the modes of the original system (power system). The transfer 
function G0i can be assumed to be proper, monic and to have a stable inverse. 

A parametric (ARMA) model for G0i can be deduced from two sources: 

1) From the measured data. Measured data is used to find the best 
signals for mode estimation among the set of given measured signals 
(on-line operation). 

2) From the existing power system model. The existing model is used to 
determine the best locations for PMUs (off-line simulation). This is 
usually referred to as an optimal PMU placement problem. One way 
of deducing ARMA models from the existing simulation model is to 
apply a frequency domain fitting procedure as presented in [208]. In 

1 1 2 2 1
( ) ( ) ( ) ... ( )

i i i N N
y t H e t H e t H e t= + + +  

2 2 2 22 2 2 2
1 1 2 2 1 0

( ) ...
yi i i N N i i

f H H H Gσ σ σ σF = + + + =  
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this case the frequency domain data are obtained from (2.6) at an 
arbitrary number of frequency points. An alternative approach is to 
perform time domain system identification using the data synthetized 
from the model response. It should be noted that a large identification 
dataset can be generated and used for this purpose, meaning that the 
estimated ARMA model can be arbitrary close to G0i [209]. 

The sequel presents how to obtain the ARMA model from measured data 
using a prediction error method, assuming that the same procedure can be used 
for the PMU placement problem formulation i.e. when the ARMA models are 
computed using the existing power system model2. Because the prediction error 
method can also be used for on-line mode tracking (estimation), a mathematical 
description of the estimation error is provided as well. This estimation error 
analysis is used later to define the criterion for optimal signal selection. 

Using measured data yi(t) (t=1…N), the estimate of the true system G0i 
(denoted by Gi(𝜃𝜃�)) is determined within an ARMA model structure Gi(θ). The 
identified parameter vector 𝜃𝜃� is the one that minimizes the prediction error 

criterion 2 1 2

1 1

1 1( , ) ( ( ) ( ))
N N

i i
t t

t G y t
N N

ε θ θ−

= =

=∑ ∑ . Suppose that the model structure 

Gi(θ) is sufficiently rich to describe the true system G0i (i.e. there is a vector of 
parameters θ0 for which Gi(θ0)=G0i), then the estimate 𝜃𝜃� is a consistent estimate 
of that true parameter vector θ0. Moreover, it can be proven that asymptotically 
the estimate 𝜃𝜃� is an unbiased estimate of θ0 and that the estimate 𝜃𝜃� is normally 
distributed around θ0, i.e. 0( )N θ θ−



 ~ Ɲ (0, Pθ) with covariance matrix Pθ 
given by [209]: 

12
0 0( , ) ( , )T

eP E t tθ σ ψ θ ψ θ
−

 =   , (2.7) 

where 
0

0
( , )( , ) d tt
d θ θ

ε θψ θ
θ =

= − , and 2
eσ  is the driving noise variance from (2.6). 

Since θ0 is not known, Pθ can be evaluated at 𝜃𝜃 = 𝜃𝜃�. In addition, Pθ can be 
estimated during the identification process as follows3 [71], [209]:  

1
2

1 1

1 1( , ) ( , ) ( , )
N N

T

t t
P t t t

N Nθ ε θ ψ θ ψ θ
−

= =

 =  
 

∑ ∑
  

. (2.8) 

Pθ is a measure of the asymptotic modeling error between Gi(𝜃𝜃�) and G0i and 

2 Other identification methods can be used for estimation of ARMA models as well [29],[81],[45].  
3Note that P

θ
 does not depend on the number of data samples N, however, the real variance of the 

estimate is reduced proportionally when N increases. 
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therefore, indirectly, of the estimation error of the critical damping ratio that is 
deduced from ( )iG θ

 4. Because Pθ is an indirect measure, it is more useful to 
deduce the covariance matrix Pζ of the damping ratio estimates (ζ�). Moreover, 
the diagonal elements of Pζ provide a quantitative measure of the accuracy of the 
damping ratio estimates that can be obtained using a particular signal (diagonal 
elements of Pζ represent variances of the damping ratio estimates). 

Suppose now that the covariance matrix Pζ can be estimated, and that it is 
estimated for all measured signals yi. The best signal for damping ratio 
estimation is the one that gives the smallest variance of the critical damping ratio 
estimate (which is the corresponding element of Pζ). This reasoning provides the 
basis to develop a formal algorithm for the selection of the optimal signal for 
mode estimation applications, which is illustrated in Fig. 2.2. 

Determine a list 
of signal 

candidates
and take the 
first signal

Calculate the 
asymptotic 

variance of the 
critical 

parameter

All signal 
processed?

Rank the signals 
according to the 

asymptotic 
variance

No

Yes

Take the next 
signal

Signal with the 
lowest variance 
is the best signal  

Fig. 2.2 Global algorithm of optimal signal selection for ambient mode 
estimation. 

The sequel provides an algorithm for the computation of Pζ that uses only 
ARMA model parameters and not the dataset that is used for the identification of 
the ARMA model. This property makes the signal selection algorithm 
independent of the identification method used to determine the ARMA model. 

2.4 Computation of the Asymptotic Parameter 
Covariance Matrix  

2.4.1 Derivation of a parameterization suitable for the 
mode estimation application  

For the mode estimation application, accurate estimation of the mode damping 
ratios (ζ) is of essential importance. This means that a new parameterization is 
required where these parameters (ζ) are in the vector of model parameters ρ. To 
do this, the identified transfer function is expressed in terms of discrete poles and 

4 This damping ratio can be deduced by converting the discrete-time model Gi(𝜃𝜃�) into a 
continuous-time model and performing a pole/zero-decomposition of this continuous transfer 
function. 
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zeros and then transformed to the continuous domain using the well-known 
Tustin approximation. Once, the poles/zeros are expressed as continuous 
variables, they can be written in terms of frequencies and damping ratios. The 
parameterization obtained contains the parameters of interest (ζ) in the vector of 
parameters (ρ). This procedure is demonstrated in the sequel. 

The estimated ARMA model in terms of discrete zeros, poles and gain can be 
written as follows:  

1 1 * 1

1 1 * 1

(1 z ) (1 z )(1 z )

( )
(1 z ) (1 z )(1 z )

ri ci ci
i Real i Complex

Zeros Zeros

ri ci ci
i Real i Complex

Poles Poles

q q q

H k
p p p

q

− − −

∈ ∈

− − −

∈ ∈

− − −

=
− − −

∏ ∏

∏ ∏
. (2.9) 

To express poles/zeros frequencies and damping ratios, the discrete poles and 
zeros have to be substituted by continuous domain poles and zeros. This is done 
by using Tustin’s approximation (2.10) that gives the relationship between 
discrete and continuous domains [210]: 

, (2.10) 

where { },i ci cit q p∈  and  is the i-th continuous domain pole/zero. The real 
poles/zeros from (2.9) do not need to be expressed in terms of continuous 
domain parameters because there is no frequency and damping ratio associated 
to these poles/zeros. In the case of complex poles/zeros, the expression (2.10) 
has to be expressed in terms of pole/zero frequency and damping ratio using the 
following relationship: 

, (2.11) 

where ζi is the damping ratio of the i-th pole/zero and ωi its natural frequency. 
By substituting (2.11) into (2.10), the following is obtained: 

. (2.12) 

Expression (2.12) represents the relationship between the desired 
parameterization ρ (with continuous domain damping ratios as parameters) and 
discrete poles/zeros. Finally, by substituting (2.12) into (2.9), a reparameterized 
model is obtained whose derivatives can be easily calculated. One factor of the 

1 0.5

1 0.5
i s

i
i s

cT
t

cT

+
=

−

i
c

2 1
i i i i i

c ξ ω ω ζ= − ± −

2

2

1 1
1 1

2 2
1 1

1 1
2 2

i i s i s i

i

i i s i s i

T T
t

T T

ζ ω ω ζ

ζ ω ω ζ

± −
=

± −




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reparameterized model is shown in (2.13)-(2.15) (other factors have a similar 
form): 

 (2.13) 

The real part and amplitude of ti are as follows: 

, (2.14) 

. (2.15) 

2.4.2 Theoretic derivation of the expression for Pρ as a 
function of Pθ 

As presented in [71] and [209], one way to compute the covariance matrix Pρ 
of the model parameter vector 𝜌𝜌� (one sub-vector of 𝜌𝜌� is the vector ζ�, 
consequently Pζ can be extracted from Pρ) is to use a first order Taylor 
approximation of the mapping between 𝜃𝜃� and 𝜌𝜌� (i.e. ρ=f(θ)), and to project the 
covariance matrix Pθ (estimated using (2.8)), as follows:  

( ) ( ) Td dP P
d dρ θ

θ θ

ρ θ ρ θ
θ θ

=

   =    
    

. (2.16) 

However, a closed-form expression for ρ=f(θ) does not exist and the matrix 
( )d

d θ θ

ρ θ
θ =



 must be evaluated numerically as shown in [71]. In addition, this 

approach assumes that Pθ is known, which means that Pθ has to be computed 
during the ARMA model identification (usually computed using (2.8)). This can 
be seen as a disadvantage in the case that the used identification method does not 
provide matrix Pθ as an output (e.g. subspace identification methods).  

This chapter presents an approach that computes Pρ directly from the 
estimated model, and at the same time, avoids the numerical evaluation of 

( )d
d θ θ

ρ θ
θ =



. A block diagram of the proposed approach is illustrated in Fig. 2.3. 

(thick line), whereas the method from [71] is marked by a dashed line. 

21 * 1 1 2(1 )(1 ) 1 2Re{ }
i i i i
t z t z t z t z− − − −− − = − +

2 2

2 2
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1 0.25
i s

i
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T
t

T T
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Fig. 2.3 Block diagram of parameter covariance matrix calculation. 

In the proposed procedure to compute Pζ, an estimated ARMA model is 
treated as an exact representation of reality i.e. 𝜃𝜃�=θ0 (even though this introduces 
a certain error in the calculated Pζ). The identified ARMA model Gi(θ0) is 
reparameterized with another parameter vector ρ0 which has the same dimension 
as θ0 and whose one sub-vector is ζ0. This allows deriving an expression for the 
covariance matrix Pρ. The variance of the mode of interest is then the 
corresponding diagonal element of Pρ. The expression for the calculation of the 
covariance matrix Pρ is given in Theorem 1. 

Theorem 1: Let the true SISO system G0 be proper, monic and to have a stable 
inverse. Also, assume that G0 can be described by an ARMA model structure 
G(θ) with the parameter set θ, that is, 0θ θ∃ =  such that G(θ0)=G0 and that the 
estimate of  θ0 (denoted by 𝜃𝜃�) determined by an identification method is an 
accurate estimate of θ0, that is, θ0 can be replaced by 𝜃𝜃� in the expressions. Also, 
assume that G(θ) can be expressed in terms of another set of parameters ρ. 
Further suppose that the mapping between θ and ρ is such that ρ(θ0)=ρ0 and that 

0

( )d
d θ θ

ρ θ
θ =

 is invertible. Then, the approximated expression for the covariance 

matrix of the new parameter vector Pρ can be computed as follows:  
1

( ) ( )TP E t tρ ρ ρψ ψ
−

 =   , (2.17) 

where ( )tρψ  is defined as: 

0

1
0

( )
( ) ( ) ( )

T
i

p
dG

t G e t
d

ρ ρ

ρ
ψ ρ

ρ
−

=

 
=  

 
. (2.18) 

Signal e(t) denotes a white noise process with unity variance.  

 
Proof of Theorem 1: 

Without losing generality, it can be assumed in (2.7) that the variance of the 
driving noise σe

2 is equal to one because Pθ does not depend on σe
2. Also, note 

y(t) Poles ζ 

Pρ Pθ
Asymptotic 

variance of the 
critical parameter

( )G θ

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that the following equation holds: 

, (assuming that ρ is a function of θ, 

i.e. ρ=f(θ)). Using this expression and the relationship 
1

0
( )( )( , ) ( )i

i
dGdt G e t

d d
θe θψ θ

θ θ
−= − = , ψ(t,θ) can be written as: 

 (2.19) 

where the following notation is used: 

. (2.20) 

Note that ( )1 1 T

oi oiG G− −= . Substituting (2.19) into (2.7) results with: 

; (2.21) 

where the fact that  is a deterministic matrix is used. To simplify 

notation, this can be written as: 

, (2.22) 

where  as defined in Theorem 1. 
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Taking an inversion of the (2.22) and replacing θ0 by its estimate 𝜃𝜃�, the 
expression (2.16) is obtained, i.e.: 

( ) ( ) Td dP P
d dρ θ

θ θ

ρ θ ρ θ
θ θ

=

   =    
    

. (2.23) 

This concludes the proof of the theorem.□ 

 

It is to be noted that expression (2.18) does not require a closed-form 
expression of the mapping ρ=f(θ) between θ and ρ, nor its derivatives. It only 
requires to be able to obtain an expression of the transfer function G(ρ) and then 

to obtain the derivative  on this new expression. This step is as easy 

as for the original parameter vector set (see expression (2.7)). Derivatives of the 
factors of H(ρ) can be easily computed, i.e. the transfer function 

 from (2.18) can be determined. It can be noted that only 

the derivatives of the elementary factors have to be computed because the 
remaining transfer function does not depend on the parameters of the 
corresponding elementary factor (other factors are constant). 

Even though this theorem is used here to evaluate the variance of the damping 
ratio, this theorem in fact is general and can be applied to other cases where a 
change of parameterization is necessary. 

At this point it is possible to provide an explanation of why traditional PMU 
placement algorithms are not able to find the optimal PMU location for mode 
estimation. It was shown that the variance of the damping ratio depends only on 
the underlying ARMA model. However, this ARMA model is determined by two 
factors. The first one is a power system model and the second one is the 
excitation (noise) that excites the system (see (2.6)). Therefore, PMU placement 
methods that use only power system models without including characteristics of 
the ambient excitation (which is the common case) are not able to provide a 
complete answer about optimal PMU placement for mode estimation 
applications. The importance of the excitation is also discussed in [187]. 

In the previous derivation, it is assumed that the order of the ARMA model is 
appropriately selected. This means, on the one hand, that the model order has to 
be high enough to describe the dynamics of the system accurately, but on the 
other hand, it is important to keep the order (and consequently the number of 
estimated parameters) as low as possible. More information about methods for 

( )dG

d ρ ρ

ρ
ρ

= 

( )1
0

( )

o

T
TdG

G
d

ρ ρ

ρ
ρ

−

=

 
 
 

 
 



2.4    COMPUTATION OF THE ASYMPTOTIC PARAMETER 
COVARIANCE MATRIX 41 
 

optimal model order selection can be found in Chapter 5 of this thesis or in 
[201]. 

2.4.3 Numerical algorithm for parameter covariance 
calculation 

This paragraph presents a numerically efficient algorithm for the computation 
of the asymptotic parameter covariance matrix Pρ that is defined in Theorem 1. 
The term ψρ(t), that is given by (2.18), represents an output of a single-input 
multiple-output system that can be written in a state space form described by A, 
B, C, D matrices and state vector x(t) as: 

( 1) ( ) ( )
( ) ( ) ( )

x t Ax t Be t
t Cx t De tρψ
+ = +

= +
. (2.24) 

Using the property that e(t) and x(t) are uncorrelated (E[e(t)x(t)]=0) and the 
assumption of unity variance of the white noise, the inverse of covariance matrix 
can be written in terms of the output state space equation: 

( )( )( ) ( ) ( ) ( ) ( ) ( ) TTE t t E Cx t De t Cx t De tρ ρψ ψ    = + + =     

( ) ( ) ( ) ( )

( )

T T T T

T T

E Cx t x t C E De t e t D

CX t C DD

   = + =   
= +

 (2.25) 

where X(t)=E[x(t)xT(t)]. This term can be computed from the state space 
equation (2.24): 

 (2.26) 

In steady state, asymptotically, the following equation holds X(t+1)=X(t), that 
leads to: 

, (2.27) 

which is a Lyapunov equation whose unknown is X(t) and, that can be readily 
solved using e.g. MATLAB5. Substituting the computed X(t) into (2.25), the 
value E[ψρ(t)ψρ

T(t)] is obtained. Further, by computing the inverse of 
E[ψρ(t)ψρ

T(t)] the covariance matrix Pρ is obtained.  

The previous results lead to the following algorithm for the computation of the 

5 In the MATLAB environment, this matrix equation can be solved efficiently using the function 
dlyap. 
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parameter covariance matrix: 

Step 1:  Find the parameters θ0 of the underlying ARMA model Gi(θ) for the 
selected signal i using a system identification technique.  

Step 2: Express the ARMA model Gi(θ) in terms of parameters ρ to obtain 
Gi(ρ), and find the corresponding parameters ρ0. 

Step 3: Compute the derivatives of Gi(ρ) with respect to the model parameters 
ρ evaluated at ρ=ρ0. 

Step 4: Compute the vector of transfer functions

( )
0

1
0

( )
( )

T
Ti

i
dG

F G
d

ρ ρ

ρ
ρ

ρ
−

=

 
=  

 
. 

Step 5: Express the transfer functions F in state space form with one input and 
a number of outputs that is equal to the number of parameters. 
Corresponding system matrices are denoted by A,B,C,D. 

Step 6: Solve the Lyapunov equation A=AXAT + BBT for X. 

Step 7:  Compute E[ψρ(t)ψρ
T(t)]=CXCT+BBT. 

Step 8:  Compute the parameter covariance matrix as: Pρ=E[ψρ(t)ψρ
T(t)]-1. 

This procedure provides the asymptotic covariance matrix  as the final 
result that contains the asymptotic variances of the estimated damping ratios as 
diagonal elements. It is important to note that the values of the asymptotic 
variances do not depend on the number of samples used in the identification. 
This is not the case for the absolute variance observed that linearly decrease 
when the longer data set is used for identification i.e. the following holds: 

( )Cov N Pρρ →

, as N → ∞ , and consequently 
1( )Cov P
N ρρ ≈

. 

2.4.4 Mode estimation in the case of multiple critical modes 
in the system  

The proposed algorithm answers the question of the optimal signal selection 
for one critical mode of interest. If multiple modes are monitored in the real-
time, it is obviously possible to determine a different signal ranking for each of 
the critical modes (the proposed procedure is performed for each critical mode 
separately). Based on these results, the recommended practice for real-time mode 
estimation is to perform estimation separately (as parallel processes) for each 
critical mode using the corresponding optimal signals.  

An alternative to this approach is to use an integral ranking criterion that 
combines the computed variances of different modes of interest (weighing sum 

Pρ

 
 



2.4    COMPUTATION OF THE ASYMPTOTIC PARAMETER 
COVARIANCE MATRIX 43 
 

for instance). The integral criterion provides a unique signal ranking that takes 
different critical modes into consideration, meaning that there is no need to run 
parallel mode estimations (as in the previous approach). However, this ranking 
provides only suboptimal results (each particular mode will be estimated using 
suboptimal signals). 

2.4.5 Remarks on signal selection for mode shape 
estimation 

In the analysis of electromechanical oscillations, it is also useful to obtain 
information about the mode shapes of the critical modes [28],[149]. The sequel 
of this subsection provides a short discussion about important considerations for 
signal selection for mode shape estimation and the relationship between damping 
ratio and mode shape signal selection. 

In contrast to damping ratio estimation, mode shape estimation does not 
estimate a parameter that is common for all measured signals. Rather, each 
location has its own true parameter value that needs to be estimated. 
Furthermore, it can be said that the most relevant signals are those that have the 
largest influence on the critical mode. Therefore, there are two aspects in signal 
selection for mode shapes: 

1) Signals that have the largest participation in the oscillation.  

2) Signals that provide the best accuracy of the mode shape estimate. 

The relative mode shape that corresponds to the k-th signal is estimated as 
[149]: 

(s)
( )

(s)
i i

k
k i

ref s j

Y
M

Y
λ ω

λ
= ≈

≈ , (2.28) 

where iλ  is a critical mode, and (s)kY  and (s)refY  are the Laplace 
Transforms of the k-th and reference signals, respectively. If a white noise signal 
is selected as a reference signal, the mode shape estimation is reduced to an 
ARMA model estimation. Furthermore, the signals that have a large value of 
such defined mode shape will also have a large participation in the oscillation, 
which corresponds to the first aspect of the signal selection for mode shape 
estimation (large signal participation). 

Once the ARMA model (2.28) and its parameter covariance matrix Pθ  are 
estimated, (2.16) can be used to obtain the uncertainty of the frequency response 
at the mode frequency following the procedure as in Section 2.4.1 (with the 
difference that the uncertainty of the damping ratio estimate is obtained instead). 
Further, this uncertainty represents the uncertainty of the mode shape estimate 
and consequently a measure of the accuracy that can be obtained with a 
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particular signal (the second aspect of signal selection for mode shape 
estimation). Note that the new parameterization in (2.16) is required, i.e.   

( ) ( )kMρ ω θ= . 

Based on these results (mode shape values and accuracy of the estimates), it is 
possible to make a decision on which signals should be used for mode shape 
estimation. 

Mode shape estimation using the considerations above is beyond the scope of 
this thesis, and subject to on-going research. Therefore, this will not be analyzed 
in more details in the sequel. 

2.5 Signal Selection for On-line Application 
This section first discusses the relationship between the estimated damping 

ratio and its variance computed by (2.17), and further formulates a signal pre-
selection method that is beneficial for on-line applications, where computational 
time can be critical. 

2.5.1 Qualitative analysis of the relationship between 
damping ratio and its variance  

To establish a qualitative relationship between the damping ratio and its 
variance, (2.17) is expressed in the frequency domain by applying Parseval’s 
theorem: 
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1 1 ( , ) ( , )
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oi

dG dGP d
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π

ρ
π ρ ρρ ρ

ρ ω ρ ω ω
π ρ ρ
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− ==

     =         
∫ . (2.29) 

Using the property of the derived parameterization G(ρ), that it is a product of 

modes’ factors, it is apparent that the value of the term 
0

1 ( , )

oi i

dG
G d

ρ ρ

ρ ω
ρ

=

 
 
 

 in 

(2.29) depends only on the mode whose parameter is ρi (ρi is the i-th element of 

ρ). This is due to cancellations between G0i and ( , )

i

dG
d

ρ ω
ρ

 for all other modes’ 

factors. Now, it is possible to plot the frequency response of the term 

0

1 ( , )

oi i

dG
G d

ρ ρ

ρ ω
ρ

=

 
 
 

 for different values of ρi, where ρi represents the damping 

ratio of the critical mode (ζi) while the frequency of the mode ωi is fixed on the 
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value ω0i. This plot is shown in Fig. 2.4. Note that fixing the value of ωi is a 
justified assumption since it is known that the estimate of ωi is generally very 
accurate6. This means that the shape of the frequency response plotted in 
Fig. 2.4. does not change significantly when ωi is changed. 

 

Fig. 2.4 Bode plot of the transfer function ( )
0

1

0
( ) /F dG d G

ζ ζ
ζ ζ −

=
=  for different 

values of ζ. 

It can be seen from (2.29) that the diagonal elements of Pρ
-1 are equal to the 

integral of the squared frequency response from Fig. 2.4. Now, assume that the 
parameter estimates ρ� are mutually independent. This assumption is equal to the 
assumption that off-diagonal elements of the matrix Pρ (i.e. covariances) are 
equal to zero7. Using this assumption, it can be said that the value of integral in 
(2.29) is a diagonal matrix whose inverse is obtained simply by replacing the 
elements by their reciprocals. This means that variance of ζi is inversely 
proportional to the area below the corresponding lines in Fig. 2.4, which again 
inversely depends on ζi. Therefore, this directly correlates the value of the critical 
damping ratio ζi and its variance (the smaller damping ratio implies smaller 
variance).  

This conclusion can also be derived from another approach. Let us assume that 
all parameters in ρ0 except ρ0=ζi are known and that only ζi has to be estimated. 
Using the same reasoning from (2.29) and Fig. 2.4, it follows that the larger the 
damping ratio the larger the estimation variance becomes. 

A critical situation in real-life operation is when the damping ratio of the 
critical mode decreases with time. The previous results show that, in this 
situation, the accuracy of the estimate will improve, which is a desirable 

6 This assumption does not affect the generality of the approach; it only enables simplification of 
the reasoning and the presentation. 

7 This assumption is not fully satisfied in reality, however it enables a qualitative analysis of the 
relationship between the values of the parameter estimates and the signal spectrum by simplifying the 
computation of the matrix inverse in (2.29). 
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property. On the other hand, when the damping ratio increases, the accuracy of 
the estimate will decrease. However, since this is not a critical situation for the 
grid, the smaller accuracy will not affect operation of the system. 

2.5.2 Signal pre-selection 

Running the formal algorithm for all available synchrophasor signals in real-
time can be computationally demanding. Also, this is unnecessary because the 
majority of the signals will contain little or no information about the mode of 
interest. This phenomenon might happen due to a zero-pole cancellation effect. 
For that reason, it is beneficial to develop a fast pre-selection method that will 
aid in determining if the signal can be considered as a candidate for optimal 
mode estimation. 

This pre-selection algorithm will be formulated in a similar manner as the 
formal algorithm: A criterion that can be computed efficiently is defined and 
used for ranking of the signals. Using this ranking, a limited number of the top 
ranked signals will be selected as candidates for the optimal signal (first stage). 
In the second stage, the full formal algorithm from Section 2.4 will be applied on 
the selected signal candidates in order to determine the final ranking. 

The proposed pre-selection ranking criterion is defined as the average 
amplitude of the signal’s Fourier transform over a small range around the 
critical frequency. This procedure finds if there is a peak in the signal’s 
spectrum, which indicates that the critical mode is visible in the analyzed signal. 
Since the value of the peak is not directly proportional to the accuracy of the 
obtained estimate, it is necessary to run the formal algorithm and determine the 
final signals’ ranking for optimal mode estimation. This pre-selection criterion 
can be computed efficiently by using Goertzel’s algorithm [211]. 

If a signal, due to (near) pole-zero cancellation, contains little information 
about the critical mode, its power spectrum will generally not have a pronounced 
resonance peak at the frequency of the considered mode i.e. the damping ratio of 
the estimated mode (if it is observable) will have a large value. Using the results 
from Section 2.5.1, this implies that the computed ranking criterion will 
numerically have a large value causing the signal to be discarded. This means 
that the bias (caused by the lack of information about the critical mode in the 
signal) will not affect the selection of the top ranked signals. 

It is important to note that this section, besides formulating the pre-selection 
method for signal selection, provides new insight to the commonly accepted 
premise that signals whose spectrum has a large peak at the mode frequency are 
likely to be a good choice for mode estimation. 
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2.6 Application 
In order to illustrate the application of the presented methodology for optimal 

signal selection, the KTH Nordic 32 [212] and the IEEE test systems with 10 
generators and 39 buses are used. The KTH Nordic 32 test system has one 
critical inter-area mode at approximately 0.5 Hz (or 3 rad/s) with damping ratio 
of 3.52 %, which is closely studied in [212], [213]. The IEEE test system has a 
critical mode at 0.58 Hz with damping ratio equal to 2.29 %. The simulated 
synchrophasor measurements are obtained from the simulations where active and 
reactive powers of all loads are modeled as white noise, which is the only 
disturbance in the system. 

2.6.1 Critical parameter variance computation and 
validation 

The variance of the estimated damping ratio of the critical mode is computed 
using the methodology presented in Section 2.4. Using the methodology from 
[201], a model order of 12 is selected as appropriate and used for all the signals. 
The ranking criterion (variance of the estimate) is computed assuming a first 
order approximation of the prediction error criterion with respect to the model 
parameters [209] as well as a Tustin approximation used for mapping between 
discrete and continuous domains. These approximations inevitably introduce 
errors in the computed damping ratio variance (it will deviate from the actual 
variance). To assess the effect of these errors, the computed variance is 
compared with the sample variance that is obtained using the results of 2000 
simulated Monte Carlo mode estimations (for each mode estimation, an 
independent realization of the excitation is used). This sample variance is 
multiplied by the number of samples used for the estimation. Modes are 
estimated using the prediction error method that minimizes the prediction error 
criterion over the set of ARMA model parameters as shown in Fig. 2.3. In these 
simulations, 3000 data samples with 5 Hz sampling frequency (10 min data 
block) are used for each simulation. The variance obtained using Monte Carlo 
simulations is denoted as “observed” in the sequel. 

The results obtained with the KTH Nordic 32 test system are given in Fig. 2.6 
and Fig. 2.5, whereas the on-line diagram of the system with the locations of the 
signal candidates is presented in Fig. 2.7. 
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Fig. 2.5 Calculated and observed variance of the estimated damping ratio of the 

critical mode 0.5 Hz using voltage magnitude synchrophasor signals. 

 

 
Fig. 2.6 Calculated and observed variance of the estimated damping ratio of the 

critical mode 0.5 Hz using voltage angles synchrophasor signals. 

The results confirm that the variances computed using the approach proposed 
in this chapter do not significantly differ from the variances obtained using 
Monte Carlo simulations (the difference is always less than 25 %). Further, the 
results suggest that the voltage angle signals, if chosen carefully, provide the 
smallest estimation variance. However, in this particular case, it is possible to 
choose among a large number of voltage magnitude signals that provide 
reasonably good accuracy (around 0.2). The locations of the signal candidates 
provide further insight in the obtained results (Fig. 2.7). 

Note that the obtained variances can be interpreted from the perspective of 
absolute standard deviation of the estimated damping ratio. Namely, the absolute 
variance when N samples are used for identification is simply obtained by 
dividing the asymptotic variance (shown in Fig. 2.6 and Fig. 2.7) with N. 
Further, it is straightforward to express the absolute variance through standard 
deviation. For instance, if N=3000 (as used in the presented test cases), the 
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asymptotic variance of 0.15 will represent an absolute variance of 5∙10-5. Further, 
the corresponding standard deviation of the damping ratio estimate will be 
0.707% (computed as 55 10 100%−⋅ ⋅  ), whereas it is known that the true 
system’s damping ratio is 3.52%. This damping ratio estimation accuracy of 
0.707% is maximal accuracy that can be accomplished using only ambient data. 
A further accuracy improvement can be accomplished using probing methods as 
presented in Chapter 5 of this thesis. As it will be shown, the absolute variance 
of 5∙10-7  (which corresponds to 10 times lower standard deviation, i.e. 0.070%) 
can be accomplished with a reasonable low-power excitation. 

 
Fig. 2.7 Single-line diagram of the KTH Nordic 32 Test System with the 

locations of the candidate signals for ambient mode estimation. 
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mode causes an oscillation of the area represented by generators 17 and 18 
against the Northern part of the system. It can be noticed that the best voltage 
angle signals are in the vicinity of these generators. On the other hand, voltage 
magnitude signals that are in the vicinity of buses 36-37 provide the smallest 
variance of the damping ratio. The results conclusively show that the optimal 
locations are very different when different signal types are used. This can be 
explained by the fact that the voltage angles deviations will be largest in the 
proximity of the dominant oscillating generators, whereas voltage magnitude 
oscillations at these buses can be significantly suppressed by the reaction of 
automatic voltage regulators. More details on this phenomenon can be found in 
[213]. 

The proposed signal selection algorithm has been derived under the 
assumption that the prediction error estimator is unbiased as commonly assumed 
in mode estimation algorithms. However, due to the zero pole cancelation and 
the reduced model order that is used to describe the full system dynamics, a 
certain amount of bias is an inevitable consequence. This bias is a complex 
phenomenon for which an analytical expression does not exist. In the sequel, the 
bias obtained with different signals is analyzed using Monte Carlo simulations. 
For each signal, 2000 Monte Carlo mode simulations are run and the mean value 
of the mode damping ratio estimates is used for the bias calculation (the bias is 
the difference between this value and the true value which is equal to 3.52%).  

Fig. 2.8 and Fig. 2.9 show damping ratio estimates obtained as the mean of the 
2000 estimates from Monte Carlo simulations, as well as the absolute value of 
the bias (the red line shows the absolute value of the difference between the solid 
blue line and the true damping ratio value denoted by the blue dashed-dotted 
line). Fig. 2.8 shows results for 15 the top-ranked voltage magnitude signals, 
whereas Fig. 2.9 shows results for the 15 top-ranked voltage angle signals. 

 
Fig. 2.8 Bias analysis of the top ranked voltage magnitude signals from the KTH 

Nordic 32 test system. 
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Fig. 2.9 Bias analysis of the top ranked voltage angle signals from the KTH 

Nordic 32 test system. 

The results suggest that the top ranked signals with the proposed methods tend to 
provide a smaller value of the bias (the red lines in Fig. 2.8 and Fig. 2.9 are 
almost monotonically increasing). 

2.6.2 Signal pre-selection 

As it was concluded before, the power spectra of the measured signals can be 
used for optimal signal pre-selection. In other words, the optimal signals for 
damping ratio estimation will have large peaks in their spectra at the critical 
mode frequency. The validity of this assumption is analyzed by comparing the 
power spectra of the voltage magnitude signals. The results are presented in Fig. 
2.10 and Fig. 2.11.  

 
Fig. 2.10 Power spectra of the best 10 voltage magnitude signals ranked based 

on the methodology from Section 2.4. 
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Fig. 2.11 Power spectra of all voltage magnitude signals. 

Fig. 2.10 and Fig. 2.11 show that the 10 best signals for the 0.5 Hz mode have 
in general large peaks (according to Fig. 2.10) compared to all signals whose 
power spectra are given in Fig. 2.11. 

Numerical comparisons between the pre-selection and formal algorithm for 
voltage magnitude signals are given in Table 2.1. 

It can be seen that among the first 10 signals that are determined by the pre-
selection algorithm, the 4 best signals computed by the formal algorithm are 
present. Also, the best 10 signals determined by the formal algorithm 
(highlighted) are contained in the 22 first signals computed by the pre-selection 
algorithm. Further, it can be noticed that the pre-selection tends to favor the 
signals measured directly at the middle voltage generator buses (buses denoted 
by numbers 1-20) even though these signals do not ensure the optimal mode 
estimation (according to the formal algorithm).  
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Table 2.1 Comparison of the pre-selection and formal algorithm in the case of 
voltage magnitude signals. 

 Pre-selection Proposed method 
 Bus 

No. 
Criterion 

Value 
Bus 
No. 

Criterion 
Value 

1 12 11.61 36 0.160 
2 14 10.88 37 0.164 
3 11 10.46 38 0.164 
4 38 9.73 12 0.164 
5 13 9.54 26 0.182 
6 39 9.20 43 0.184 
7 15 8.75 39 0.191 
8 36 8.66 35 0.201 
9 5 8.63 41 0.210 
10 37 8.48 40 0.213 
11 9 8.47 13 0.221 
12 32 8.46 14 0.228 
13 10 8.32 9 0.231 
14 40 8.16 8 0.239 
15 41 8.14 15 0.242 
16 8 7.98 11 0.251 
17 34 7.21 1 0.253 
18 26 7.09 22 0.261 
19 35 7.06 34 0.262 
20 1 7.04 24 0.271 
21 42 7.02 45 0.285 
22 43 6.90 25 0.298 

 

A similar analysis has been conducted for voltage angle signals, and the 
results are reported in Table 2.2.  
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Table 2.2 Comparison of the pre-selection and formal algorithm in the case of 
voltage angle signals. 

 Pre-selection Proposed method 
 Bus 

No. 
Criterion 

Value 
Bus 
No. 

Criterion 
Value 

1 16 21.66 18 0.125 
2 18 21.43 50 0.129 
3 50 20.35 49 0.139 
4 49 19.74 17 0.153 
5 48 19.01 48 0.185 
6 47 15.83 47 0.196 
7 17 12.90 45 0.198 
8 45 12.63 16 0.210 
9 7 10.79 40 0.233 
10 46 10.62 27 0.291 
11 29 7.19 46 0.316 
12 27 7.15 13 0.324 
13 31 7.10 43 0.349 
14 41 6.81 16 0.354 
15 40 6.62 29 0.372 

Table 2.2 shows even better matching between the pre-selection and formal 
algorithm in case of voltage angle signals, compared to the voltage magnitude 
signals. The first 15 pre-selected signals contain the 10 best signals determined 
by the formal algorithm (highlighted). 

2.6.3 Comparison of signal selection methods 

This section provides a comparison among different signal selection methods, 
namely the proposed method is compared with the methods proposed in [188] 
(denoted by CF1) and in [187] (denoted by MPC). In addition, the variance of 
the damping ratio estimate obtained using Monte Carlo simulations is reported 
(observed variance), even though this method is not applicable for on-line signal 
selection. 

Firstly, voltage magnitude and angle signals synthetized using the KTH 
Nordic 32 test system were used to obtain rankings with different criteria. The 
values of different computed criteria and corresponding rankings (top ten signals 
for each criterion) are shown in Table 2.3 and Table 2.4. 
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Table 2.3 Comparison of different signal selection algorithms using voltage 
magnitude signals from the KTH Nordic 32 test system. 

Observed 
variance  

(Bus/Value) 

Proposed 
method  

(Bus/Value) 

CF1[188]  
(Bus/Value) 

MPC[187]  
(Bus/Value) 

36 0.159 36 0.16 42 0.453 40 27.98 
37 0.165 37 0.164 37 0.150 47 26.82 
38 0.177 38 0.164 39 0.143 42 4.16 
43 0.189 12 0.164 14 0.113 38 3.73 
41 0.197 18 0.182 15 0.104 51 2.75 
39 0.201 43 0.184 51 0.098 14 2.29 
35 0.205 39 0.191 31 0.090 31 1.64 
26 0.209 35 0.201 34 0.081 25 1.53 
12 0.212 41 0.21 36 0.079 16 1.51 
40 0.214 40 0.213 6 0.079 52 1.47 

 

Table 2.4 Comparison of different signal selection algorithms using voltage 
angles signals from the KTH Nordic 32 test system. 

Observed 
variance  

(Bus /Value) 

Proposed 
method  
(Bus / 
Value) 

CF1[188]  
(Bus / 
Value) 

MPC[187]  
(Bus / 
Value) 

50 0.132 18 0.125 18 0.169 6 2.76 
18 0.133 50 0.129 7 0.161 17 1.81 
49 0.134 49 0.139 29 0.146 7 1.66 
44 0.152 17 0.153 16 0.129 13 1.13 
17 0.175 48 0.185 31 0.129 18 0.82 
28 0.198 47 0.196 17 0.126 40 0.74 
48 0.211 45 0.198 6 0.115 16 0.65 
45 0.233 16 0.210 51 0.092 47 0.49 
40 0.246 40 0.233 40 0.088 31 0.46 
47 0.249 27 0.291 50 0.076 44 0.421 

 

The results show that the final ranking results obtained with different 
algorithms differ significantly, however it can still be noticed from Fig. 2.7 that 
buses selected with different methods are relatively close to each other with 
some exceptions. 

Fig. 2.12 and Fig. 2.13 show the performance of the three signal selection 
methods in terms of the obtained bias that is calculated using 2000 Monte Carlo 
simulations. The results are shown for the top 10 ranked signals (as in Table 2.3 
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and Table 2.4) separately for voltage magnitude (Fig. 2.12) and voltage angle 
(Fig. 2.13) signals.  

 
Fig. 2.12 Comparison of biases obtained with the top-ranked voltage magnitude 

signals from the KTH Nordic 32 test system using different signal selection 
methods. 

 
Fig. 2.13 Comparison of biases obtained with the top-ranked voltage angle 
signals from the KTH Nordic 32 test system using different signal selection 

methods. 

The presented results show that the top ranked signals with the proposed 
method provide smaller values of bias (with a few exceptions). This can be seen 
from the fact that the blue line is placed below the other lines for most signals. 

Further, this comparison is performed using the IEEE Test system with 39 
buses and 10 generators. A characteristic of this system is that it has one critical 
mode at 0.58 Hz and a damping ratio of 2.29%, where generator 1 has a very 
large inertia, which makes other generators oscillate against generator 1. A single 
line diagram of the test system with the optimal locations determined by the 
proposed method is shown in Fig. 2.14. 
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Fig. 2.14. Single-line diagram of the KTH Nordic 32 Test System with the 

locations of the candidate signals for ambient mode estimation. 

Numerical results obtained by the different signal selection methods are 
presented in Table 2.5 and Table 2.4. These results suggest that the optimal 
locations for voltage angle signals are closer to the generators than the voltage 
magnitude signals. A difficulty with this system is that there is no single 
dominant mode path, rather, there are multiple paths that transfer oscillations 
from generator 1 to other oscillating generators. This explains the relatively 
dispersed optimal locations. 

The results obtained using the other two methods ([187] and [188]) show that 
the 10 top optimal locations overlap to some extent with the results from the 
proposed method. Due to multiple mode paths this system in general shows that 
several locations can provide sufficiently good mode estimation results. 
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Table 2.5 Comparison of different signal selection algorithms using voltage 
magnitude signals from the IEEE 39 bus test system. 

Observed 
variance  

(Bus/Value) 

Proposed 
method  

(Bus /Value) 

CF1[188]  
(Bus/Value) 

MPC[187]  
(Bus/Value) 

13 0.160 11 0.122 16 0.156 28 1.228 
11 0.175 4 0.122 11 0.123 31 0.792 
12 0.183 13 0.124 33 0.101 34 0.783 
31 0.158 15 0.141 25 0.099 15 0.740 
32 0.188 31 0.152 12 0.083 32 0.739 
15 0.189 6 0.161 31 0.081 29 0.693 
27 0.201 16 0.162 13 0.069 10 0.690 
10 0.207 23 0.175 23 0.068 8 0.635 
14 0.216 5 0.181 5 0.064 33 0.623 
6 0.218 17 0.193 27 0.062 16 0.622 

 

Table 2.6 Comparison of different signal selection algorithms using voltage 
angles signals from the IEEE 39 bus test system. 

Observed 
variance  

(Bus/Value) 

Proposed 
method  

(Bus /Value) 

CF1[188]  
(Bus/Value) 

MPC[187]  
(Bus/Value) 

11 0.052 10 0.049 16 0.156 33 1.14 
4 0.053 6 0.049 11 0.123 32 1.11 

23 0.055 32 0.050 33 0.101 31 0.75 
6 0.056 33 0.050 29 0.091 20 0.51 

28 0.057 23 0.051 12 0.083 23 0.43 
12 0.058 4 0.053 26 0.072 26 0.35 
26 0.061 11 0.053 10 0.071 15 0.30 
5 0.070 5 0.054 23 0.068 6 0.29 

10 0.071 20 0.056 6 0.063 10 0.28 
20 0.072 28 0.056 28 0.057 5 0.27 

 

Similarly to Fig. 2.12 and Fig. 2.13, a bias analysis is performed for the IEEE 
39 bus system. The results are shown in Fig. 2.15 and Fig. 2.16 where a similar 
conclusion can be drawn, which is that the proposed method generally selects 
signals that also provide smaller bias. 
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Fig. 2.15 Comparison of biases obtained with the top-ranked voltage magnitude 

signals from the IEEE 39 bus test system using different signal selection 
methods. 

 
Fig. 2.16 Comparison of biases obtained with the top-ranked voltage angles 

signals from the IEEE 39 bus test system using different signal selection 
methods. 

 

2.6.4 Effect of measurement noise and selected model 
order on the calculated ranking criterion 

The presence of measurement noise alters the spectrum of the measured 
signals and, consequently, the mode estimation results and estimated variance of 
the damping ratio. The effects of measurement noise on mode estimation are 
analyzed in [200],[214], whereas the effect on the estimated damping variance 
(ranking criterion) is analyzed in the sequel. This is done by analyzing signals 
that are synthetized by adding different levels of white Gaussian noise (described 
by Noise to Signal Power ratio-NSR) to the voltage magnitude signal of bus 38 
(the KTH Nordic 32 test system). The synthetized signals are used for ARMA 
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model estimation with settings described in the previous section. Finally, the 
obtained ARMA models are used as an input to the proposed method to obtain 
the variance of the critical damping ratio. The results of the performed analyses 
(Fig. 2.17) show how the estimated critical damping ratio and its variance 
change with different level of noise.  

 
Fig. 2.17 Effect of measurement noise on computed ranking criterion. 

The results show that the measurement noise increases the estimated variance. 
The final ranking of the signals will obviously depend on the level of the noise 
on each measurement, however a positive thing is that signals with more noise 
will be negatively penalized (the computed variance increases with noise). 

In the previous studies, the order of the ARMA model was selected to be equal 
to 12 (determined using methodologies from [201]). However, it is necessary to 
assess how the results of the proposed methodology change when a sub-optimal 
model order is selected. To do that, the KTH Nordic 32 test system is used to 
simulate one realization of synchrophasor signals. These signals are used as an 
input to the proposed method where different values of the selected ARMA 
model orders are used. The calculated damping ratio variances (criterion values) 
for different signals are shown in Table 2.7 (the selected model order 12 is 
highlighted). 
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Table 2.7 Effects of the selected model order on the estimated variance of the 
critical mode’s damping ratio. 

Model 
order 

Voltage magnitude Voltage angles 

Bus 38 Bus 36 Bus 18 Bus 49 
10 0.232 0.178 0.126 0.112 
11 0.155 0.152 0.125 0.133 
12 0.161 0.153 0.124 0.134 
13 0.165 0.168 0.134 0.125 
14 0.153 0.161 0.121 0.144 
15 0.154 0.158 0.129 0.136 
16 0.160 0.168 0.120 0.152 

 

Table 2.7 shows that the computed variance does not change significantly 
when the model order is non-optimal, but even this small deviation can cause 
changes in the final signal ranking. However, it has to be noted that as long as 
the model order is high enough to describe the dynamics of the system and if a 
real-time mode estimator uses the same model order, the obtained ranking will 
be correct even in the case when a non-optimal order is used (the mode 
estimation will not be optimal but because the estimated variance is correct, the 
ranking will be adequate).  

2.6.5 Computational performance of the proposed method 

Following the description of the proposed algorithm in Section 2.4, it is 
possible to assess its computational performance. The first step of the proposed 
algorithm is pre-selection. A typical required time for the pre-selection ranking 
criterion (FFT analysis) computation using a MATLAB implementation and an 
off-the-shelf personal computer (Intel i7, 2.7 GHz CPU, 8 GB of RAM) is 
around 0.4 ms per signal. 

The result of the pre-selection method is a list of a relatively small number of 
signals (less than 50 regardless of the system size) for which the final ranking 
criterion has to be computed. The final ranking criterion for one signal is 
computed as follows: 

1) ARMA model computation (Step 1 in Section 2.4.3). Formally, this is not 
part of the ranking criterion computation. ARMA models can be obtained 
from different sources. For instance, following the two level architecture 
from [82],[198], ARMA models can be computed at the substation level. 

2) Model manipulation (Steps 2-5 from Section 2.4.3). 

3) Variance calculation (Steps 6-8 from Section 2.4.3). 

Typical computational times required for the above procedures using a 
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MATLAB implementation a personal computer are given in Table 2.8. 

Table 2.8 Computational performances of the proposed signal selection method. 

Model 
order 

ARMA 
computation 

Model 
manipulation 

Variance 
calculation 

10 1.441 s 0.175 s 0.018 s 
12 1.841 s 0.258 s 0.023 s 
14 1.916 s 0.341 s 0.027 s 
16 2.049 s 0.465 s 0.031 s 

 

The results show that the total computational time, even for the largest 
systems can be held below 60 s (30 pre-selected signals, 2 s each), whereas the 
criterion computation time itself can be held below 10 s. By applying the 
decentralized approach proposed in [82],[198] or using a compiled programming 
language with better performance (C for example), the computational time can 
be significantly reduced. Regardless of this, the obtained time delay is 
acceptable, especially taking into account that long data blocks (10 minutes in 
the presented case studies) are used as an input, which makes a 60 s delay 
relatively small. 

2.7 Summary 
This chapter proposed a criterion and an algorithm that ranks synchrophasor 

signals according to their ability to estimate parameters of the critical mode 
(frequencies and damping ratios) with lowest variance. The value of the ranking 
criterion is computed directly from the model that describes the spectrum of the 
measured synchrophasor signal. These models can be obtained in two ways 
depending on the application: 1) from the physical model of the power system in 
the case of off-line PMU placement problem with the objective of optimal mode 
estimation, or 2) from on-line measurements in the case of on-line optimal signal 
selection problem which is used for mode estimation.  

This chapter emphasizes the fact that mode estimation, as one of the most 
important synchrophasor applications, requires special attention, even in the 
planning stage when PMU locations are decided. Traditionally, this was not the 
case because PMU locations are mainly determined based on state estimation 
application requirements. Also, during the operation it is advisable to 
periodically check if the used signals provide the best possible results because 
operational changes in the power system can cause a change in the critical modes 
as well as the signals that contain most information about these modes. 

Equation Chapter (Next) Section 1 

 
 



 
 
 

   Chapter 3
3 Test jkkj 

Ambient Mode Estimation Considering 
Spectral Load Properties 

 

3.1 Introduction 
It is reasonable to assume that aggregated loads changes at the low voltage 

level can be represented by a Gaussian white noise as shown in [91] 8. However, 
considering only the transmission network (which is common practice for 
transmission system operators), aggregated loads at the high voltage level have a 
spectrum whose distribution is determined by dynamic characteristics of the 
local distribution and surrounding transmission systems. Further, intrinsic 
oscillatory behavior of loads (load oscillations) [87], [195], makes spectral load 
properties even more complex. These considerations highlight that aggregated 
load spectra might not be accurately described by a simple function such as 
white noise. 

Even though the properties of input signals have been included in probing 
mode estimation, the existing mode estimation algorithms that use ambient 
responses assume that the spectral distributions of the loads are known in 
advance and constant, i.e. loads are represented by Gaussian white noise 
[215], [215]. As explained above, this assumption is very strict and may not be 
satisfied in real-world power systems [87].  

8 Load changes are assumed to be white noise, however load signal itself is represented by an 
integral of white noise. The use of integral of white noise as a load model instead of pure white noise 
introduces one additional pole at the complex plane origin which is visible in the measured signals. 
The locations of other modes are not changed. 
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This chapter proposes a mode meter algorithm which relaxes this assumption, 
i.e. the method does not assume any underlying load spectral distribution. This 
refinement makes mode estimates more accurate and independent of spectral 
load characteristics. The method assumes that load active and reactive powers 
are available from PMUs placed directly at the load buses. This assumption, 
even though not satisfied in present-day power systems, is expected to be 
fulfilled in the near future [215]. However, if some signals are not measured 
directly, they can be reconstructed using the inverse of the existing power system 
model, providing estimates of the load spectrums and information about the 
correlation between loads and measured system outputs. The method adopts an 
Autoregressive Moving Average (ARMA) model as an underlying model of the 
system. Using the estimated correlations and definition of the ARMA model, the 
problem of mode estimation is formulated as an unconstrained linear least-
squares problem which can be solved using well known optimization techniques. 
The algorithm concurrently uses all available synchrophasor signals from the 
network providing a robust estimate of critical system modes.  

The performances of the proposed algorithm are evaluated in the presence and 
absence of forced oscillations which are result of the load oscillations. The 
results are compared with two mode estimators: the Yule-Walker algorithm 
which is widely accepted as a method with good overall performances [215], and 
the N4SID method as a representative of the group of subspace identification 
methods [40].  

3.2 Methodology 
From the system identification and mode estimation viewpoint, it is neither 

necessary nor feasible to track all changes in the distribution system due to the 
large number of components and continuous changes in the operating conditions. 
Further, distribution systems are usually radially connected to the transmission 
system. This makes the identification of oscillatory events originating at the 
distribution level relatively straightforward (due to their local nature).Taking into 
account the aforementioned considerations, the power system model used in this 
chapter describes dynamics of the transmission system with the distribution 
system represented by active and reactive power injections at all load buses, i.e. 
distribution system dynamics are not represented explicitly. 

The model of the power system that takes into account the aforementioned 
consideration is described in a mathematically equivalent form to one described 
in Section 2.2 where loads aggregated at the transmission/distribution border 
points are considered as the inputs (without assuming white noise properties). 

The block diagram of the proposed method is depicted in Fig. 3.1. The method 
assumes that all inputs (loads) are measured, whereas outputs are arbitrarily 
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chosen in accordance with the available PMUs in the system. In the case that 
some inputs are not measured, these signals are reconstructed using the existing 
model of the system. The rest of the section describes each step in detail. 

  
Fig. 3.1 Global block diagram of the proposed method. 

3.2.1 Data preprocessing  

As the first step in the method, preprocessing aims to remove erroneous data 
and the mean of the measured signal. Further, the signal is downsampled to 5 Hz 
in order to improve computational efficiency of the algorithm. More details 
about preprocessing steps can be found in [87], [216].  

3.2.2 Reconstruction of unavailable signals and cross-
correlation estimation 

The second step reconstructs the signals of active and reactive load powers 
which are not available from the PMUs. The approach consists in using available 
information about the system (the existing power system model in this case) in 
order to obtain an estimate of the required inputs (loads). This procedure avoids 
the use of predefined signals (such as Gaussian white noise) for representing the 
loads. 

To reconstruct unavailable input signals from the measured outputs, it is 
necessary to find the inverse system of (2.1)-(2.2). An inverse system of the 
linear dynamical system is defined as a system which, when fed by the output of 
the original system, at the output it gives the inputs (excitation) of the original 
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system [217]. It is assumed that the original system is defined by (2.1)(2.2) and 
that there is no noise at the output. By using (2.2), the unknown inputs ( 2 ( )s∆U ) 
can be expressed as: 

1 1 1
2 2 2 1 1 2( ) ( ) ( ) ( )s s s s− − −∆ = − ∆ − ∆ + ∆U ∆ C X ∆∆  U ∆ Y , (3.1) 

what represents the output equation of the inverse system. By substituting 
2 ( )s∆U  from (3.1) into (2.2) , the state space equations of the inverse system 

are obtained: 
1

2 2

1 1
1 2 2 1 1 2 2

( ) ( )

( ) ( )

s s s

s s

−

− −

 ∆ = − ∆ + 
   + − ∆ + ∆   

X A B ∆ C X

B B ∆∆  U B ∆ Y
. (3.2) 

By introducing the following notation,  
1

2 2' ,−= −A A B D C  (3.3) 

1
1 1 2 2 1' ,−= −B B B D D  (3.4) 

1
2 2 2' ,−=B B D  (3.5) 

1
2' ,−= −C D C  (3.6) 

1
1 2 1' ,−= −D D D  (3.7) 

1
2 2' ,−=D D  (3.8) 

a standard state space formulation of the inverse system can be written as: 

1 1 2( ) ' ( ) ' ( ) ' ( )s s s s s∆ = ∆ + ∆ + ∆X A X B U B Y  , (3.9) 

2 1 1 2( ) ' ( ) ' ( ) ' ( )s s s s∆ = ∆ + ∆ + ∆U C X ∆ U ∆ Y . (3.10) 

The number of rows in matrix D2 has to be greater or equal to the number of 
columns, and the rank of D2 must be equal to the number rows (number of 
unknown input signals). If D2 is not a square matrix, pseudo-inversion is used, 
which is defined by: 

( ) 11
2 2 2 2

T T−− =D D D D . (3.11) 

Vectors ( )s∆X , 1( )s∆U , 2 ( )s∆U  and ( )s∆Y  maintain the definitions given 
in Chapter 2. Once the inverse system is determined, unknown input signals are 
computed by time-domain simulation of the linear system (3.9)-(3.10).  

At the beginning of this section it was assumed that all input signals are 
measured or reconstructed. However cross-correlations between inputs and 
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outputs carry all necessary information for mode estimation9, as time domain 
input signals are not directly used in the proposed mode estimation method. A k-
th element in the cross-correlation sequence between two signals ( ( )ix n  and 

( )sx n ) is estimated as follows: 

1

0

1( ) ( ) ( )
N k

is i s
n

r k x n k x n
N

− −

=

= +∑ . (3.12) 

In the process of signal reconstruction, a known model of the system is used. 
This represents a well-known “chicken and egg” problem, because a good signal 
reconstruction is obtained only if the system that we aim to identify is already 
known, i.e. the system can be identified accurately only if it is already known. 
There are many approaches to tackle this problem but the main idea behind is 
usually to use a rough initial model that is improved through an identification 
process. Iteratively, the solution converges to the true system. This approach will 
not be discussed further in this thesis, instead, only an initial model will be used 
to obtain final mode estimation. 

3.2.3 Transfer function estimation 

As described above, one output signal (measurement) is determined by all 
inputs (loads) in the system. Using the ARMA model formulation, the equations 
associated with the i-th output can be written as [218]: 

,1 ,1 ,1 1
1 0

,2 ,2 ,2 2
1 0

, , ,
1 0

( ) ( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ( ) ;

( ) ( ) ( ) ( ) ( ),

p q

i p i i
l l

p q

i p i i
l l

p q

i N p i N i N N
l l

x n a l x n l b l u n l

x n a l x n l b l u n l

x n a l x n l b l u n l

= =

= =

= =

+ − = −

+ − = −

+ − = −

∑ ∑

∑ ∑

∑ ∑

  

 (3.13) 

where xi,j(n) is the contribution of the j-th input to the i-th output at the sample n, 
whereas p and q are the autoregressive and moving average model orders, 
respectively, with corresponding coefficients ap(l) and bi,j(l).  

In equations (3.13), it is assumed that all denominator coefficients (ap(l)) for 
each transfer function are the same (considering the unique characteristic 
polynomial of the system).  

The sum of all equations associated with the i-th output (3.13) leads to: 

9 Autocorrelation is a special case of cross-correlation where both signals are identical. 
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, ,
1 1 0 1

( )

( ) ( ) ( ) ( ) ( )

i

p qN N

i p i s i s s
l s l s

= x n - l

x n a l x n l b l u n l
= = = =

 
 
 + - = - 
  
 

∑ ∑ ∑∑
(((+(((,

, (3.14) 

and further: 

, ,
1 1 0 1

( ) ( ) ( ) ( ) ( )
p qN N

i p i s i s s
l s l s

x n a l x n l b l u n l
= = = =

 
+ − = − 

 
∑ ∑ ∑∑ . (3.15) 

By multiplying both sides with xi(n-k) and taking expected values denoted by 
E{∙}, the following expression is obtained: 

1

,
0 1

{ ( ) ( )} ( ) { ( ) ( )}

( ) { ( ) ( )}.

p

i i p i i
l

q N

i s s i
l s

E x n x n k a l E x n l x n k

b l E u n l x n k

=

= =

− + − − =

= − −

∑

∑∑
 (3.16) 

Using the definition of the autocorrelation and cross-correlation sequences and 
assuming that inputs are wide-sense stationary [218], (3.16) can be written in 
compact form as: 

,
1 0 1

( ) ( ) ( ) ( ) ( )
p q N

ii p ii i s is
l l s

r k a l r k l b l r k l
= = =

+ − = −∑ ∑∑ ,  (3.17) 

or in equivalent form: 

,
1 0 1

( ) ( ) ( ) ( ) ( )
p q N

ii p is i s ii
l l s

r k l a l r k l b l r k
= = =

− − − = −∑ ∑∑ , (3.18) 

where rii(k) is the autocorrelation sequence of the i-th output signal and ris(k) is 
the cross-correlation between i-th output signal and s-th input (load) signal. 
These correlation sequences are estimated using (3.12). Note that all signals have 
zero mean due to the assumption of an underlying linear model and the 
performed preprocessing steps. This ensures that covariances and correlations 
can be used interchangeably. 

The same set of equations can be written for all available output signals (i= 
1,…, M). Further, an arbitrary number of correlation coefficients can be used 
(k=1,…, K), forming a set of linear M∙K equations. By using a sufficient number 
of autocorrelation and cross-correlation elements, it is possible to form an over-
determined system of equations given by (3.18). The resulting system is linear in 
the unknown ARMA model parameters. ARMA parameters are computed from 
(3.18) using least squares or any other linear programming solver [219]. Note 
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that this is an unconstrained linear least-square problem. 

3.2.4 Computation of system eigenvalues 

The computed ARMA model parameters define the characteristic polynomial 
of the system. The roots of the characteristic polynomial are the system poles 
(eigenvalues) in the z-domain which can be transformed to the s-domain using 
the well-known transform [205]: 

1 ln( )
s

j
T

= + =s σ ω z , (3.19) 

where Ts is the signal’s sampling period and z  is the vector of the computed 
poles in the z-domain. σ  and ω  are the real and imaginary components of the 
modes in the s-domain (s), respectively. Once the s-domain modes of the system 
are calculated, the damping ratio of the i-th pole ( ζ ) can be easily computed 
from: 

2 2

i
i

i i

σ
ζ

σ ω

−
=

+
, (3.20) 

in order to perform a small signal stability assessment of the system. 

3.3 Study Cases 
The proposed method is demonstrated using the KTH Nordic 32 test system 

[212]. The system has 44 inputs (22 load buses) and a total of 52 buses where the 
voltage magnitudes are measured. In addition to the 0.5 Hz that was analyzed in 
the previous section, the analyses in this section will also focus on the second 
electromechanical mode present in the system (0.73 Hz). The modes’ properties 
obtained from the classical small signal stability analysis are given in Table 3.1. 
Also, study cases are carried out to assess the performance of the proposed 
method and to compare it to other methods (the Yule-Walker and N4SID 
methods, later referred to as conventional methods). 

Table 3.1 Dominant modes of the KTH Nordic 32 test system. 

Mode 1 Mode 2 
Frequency(f) 

[Hz] 
Damping ratio (ζ) 

[%] 
Frequency (f) 

[Hz] 
Damping ratio 

(ζ) [%] 
0.4987 3.5223 0.7322 3.1801 

In all studies, a 13 minutes data window is used for mode estimation (3900 
samples are obtained after the preprocessing procedure where the signal is 
downsampled to 5 Hz). 
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The Autoregressive model order of the estimated model is chosen to be 25, 
whereas the moving average order is equal to 2. For the proposed method, 125 
elements of the correlation sequences are used (K=125) which corresponds to a 
25 second interval with 5 Hz sampling rate. Considering that the system has 52 
outputs (M=52), the total number of equations in the unconstrained linear least-
square problem is equal to 6500. The statistical properties of the three estimators 
are evaluated with 1000 independent Monte-Carlo simulations. 

3.3.1 Mode estimation in the presence of a forced 
oscillation  

The main advantage of the proposed method is that it takes into account the 
properties of the input spectrum. For the sake of simplicity, the most 
comprehensive non-white signals, i.e. white noise with only one permanent 
oscillation, are used to model load variations. This type of load behavior 
(sometimes referred to as cyclic load) has been identified in the power system 
literature [191]. It can be caused by some specific industrial processes [193] or 
intrinsic element properties, such as diesel generators [194]. This topic has 
gained more interest in recent time with the deployment of a large number of 
wind turbines which show oscillatory behavior due to the mechanical properties 
of the turbine [220]. 

 
Fig. 3.2 Fourier transform of the active power signal with a load oscillation at 

0.45 Hz. 

In this study, all load signals (active and reactive powers) are modeled by a 
load oscillation at 0.45 Hz, which is added to a Gaussian white noise with signal-
to-noise ratio of 17 dB (the squared amplitude of the sinusoidal signal 
component is 25 times smaller than the noise variance). The Fourier transform of 
the generated load signal is shown in Fig. 3.2. Measurement errors are neglected 
in the simulation studies. 

The results of the performed simulations are shown in Fig. 3.3-Fig. 3.5, while 
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numerical results are given in Table 3.2. The obtained results show that both 
estimators which do not take into account the shape of the load spectrum (Yule-
Walker and N4SID) wrongly estimate 0.45 Hz as the most critical 
electromechanical mode, making the true system mode at 0.5 Hz unobservable 
(invisible). Also, damping of this artificial mode is estimated with very small 
variance (around 0.001) because the forced oscillation is clearly visible in the 
spectrum of the measured signals. On the other side, the proposed algorithm 
correctly discerns the forced oscillation from the true system modes in the mode 
estimation process (mode at 0.45 Hz is not present in Fig. 3.5). This is possible 
because information about the load oscillation is extracted from the measured 
input signal and the corresponding correlation sequences.  

 
Fig. 3.3 ARMA 25/2 mode estimation using the Yule-Walker method in the 

presence of forced oscillations at 0.45 Hz. 
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Fig. 3.4 ARMA 25/2 mode estimation using the N4SID method in the presence of 

forced oscillation at 0.45 Hz. 

 
Fig. 3.5 ARMA 25/2 mode estimation using the proposed method in the presence 

of forced oscillation at 0.45 Hz. 

These results show that the “white noise load” assumption used in the Yule-
Walker and N4SID methods is essential for accurate mode estimation. However, 
as illustrated in Fig. 3.3-Fig. 3.5, this assumption might not hold and 
consequently it will affect the results of the mode estimation. On the other hand, 
the proposed method is not sensitive to the input load spectrum, i.e. it discerns 
from the main network modes and neglects specific load dynamics. 
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Table 3.2 Stochastic properties of the estimation results in the case where a 
forced oscillation is present in the load signals. 

               Method 
Parameters 

Yule-
Walker 

N4SID Proposed 
Method 

M
od

e 
1 

Mean {f} [Hz] 0.4498 0.4500 0.5009 
Mean {ζ} [%] 0.2470 0.0621 4.8334 

Var {f} 5.745e-9 1.253e-7 2.709e-5 
Var {ζ} 6.798e-4 0.0024 1.4035 

M
od

e 
2 

Mean {f} [Hz] 0.7445 0.7308 0.7393 
Mean {ζ} [%] 3.7522 4.8403 3.5531 

Var {f} 1.7872e-5 5.154e-5 3.173e-5 
Var{ζ} 0.3640 1.6854 0.6730 

Another important observation is that when a forced oscillation appears close 
to one of the true system modes, it deteriorates the accuracy of the Yule-
Walker’s method for that true system mode. In this case Mode 1 at 0.4987 Hz is 
estimated with significantly increased damping and large variance (Fig. 3.3). In 
contrast to that, the N4SID method accurately estimates Mode 1 with a variance 
which is in accordance to general N4SID performance (Fig. 3.4). Finally, these 
results show that Yule-Walker shows inferior performance in the presence of the 
forced oscillation compared to N4SID method, even though both methods show 
the drawback of estimating the artificial mode at 0.45 Hz. 

In order to determine the distribution of the obtained estimates by the 
proposed method, a larger number (10 000) of Monte Carlo simulations with 
randomly generated load variations is performed. It is found that the estimates 
obey a normal Gaussian distribution function which is shown in Fig. 3.6. 

 
Fig. 3.6 Probability distribution function (PDF) of the estimates. 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

Damping Ratio [%]

Pr
ob

ab
ili

ty

 

 

Measured PDF
Fitted PDF

 
 



74                 CHAPTER 3   AMBIENT MODE ESTIMATION CONSIDERING 
SPECTRAL LOAD PROPERTIES 

3.3.2 Mode estimation with loads modeled as pure 
Gaussian white noise  

The three mode estimators are compared in the case where input load changes 
are driven by white noise. This analysis shows that the proposed method 
provides results with similar accuracy as the conventional methods when their 
“white noise assumption” is fully satisfied. The results of the three estimators are 
given in Fig. 3.7-Fig. 3.9, whereas numerical results are summarized in 
Table 3.3.  

It can be noticed that in this case study Yule-Walker’s method provides 
slightly better results in terms of variance. This is because the “white noise load” 
assumption (which is incorporated into the Yule-Walker and N4SID methods) is 
fully satisfied.  

 
Fig. 3.7 ARMA 25/2 mode estimation using the Yule-Walker method with white 

noise at all inputs. 
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Fig. 3.8 ARMA 25/2 mode estimation using the N4SID method with white noise 

at all inputs. 

On the other hand, the proposed method estimates the input specta based on 
measurements leading to higher variance of the estimate. N4SID generally shows 
inferior performances, both in terms of variance and mean value of the estimate. 

 
Fig. 3.9 ARMA 25/2 mode estimation using the proposed method with white 

noise at all inputs.  
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the results show that the N4SID algorithm is not suitable for application when 
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one general deficiency of the mode estimation algorithms: closely located modes 
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frequencies from 0.7 to 1.2 Hz and damping ratio below 15 %). 

This analysis shows the importance of the “white noise load” assumption for 
conventional methods, whereas the proposed method obtains accurate results 
regardless of the load spectrum.  

Table 3.3 Stochastic properties of the estimation results in the base case (loads 
are modeled as a white noise). 

                   Method 
Parameters 

Yule-
Walker 

N4SID Proposed 
Method 

M
od

e 
1 Mean {f} [Hz] 0.4972 0.4978 0.4966 

Mean {ζ} [%] 3.3081 4.1213 3.8104 
Var {f} 8.8670e-6 1.6260e-5 1.6592e-5 
Var {ζ} 0.2728 0.7942 0.8561 

M
od

e 
2 Mean {f} [Hz] 0.7334 0.7309 0.7386 

Mean {ζ} [%] 3.8184 4.7095 3.5497 
Var {f}(10e-5) 1.4072e-5 6.2711e-5 2.3151e-5 

Var{ζ} 0.3563 1.7925 0.5965 

3.3.3 Mode estimation using the different types of 
synchrophasor signals 

In the previous sections, voltage magnitude synchrophasor measurements are 
used with the aim to assess the performance of the proposed method. However, 
the mode estimation method has been derived without assuming any particular 
output signal type, therefore different signals (such as active and reactive 
powers, currents and voltage angles) can also be used for the mode estimation. 
Table 3.4 shows the results of the estimation of the two critical 
electromechanical modes with measurement signals of different type. 

Table 3.4 Stochastic properties of the estimation results with measured signals of 
different type. 

               Signals 
Paramaters P Q P and Q Currents Voltage 

Angles 

M
od

e 
1 Mean {f} [Hz] 0.4984 0.4947 0.4957 0.4972 0.4876 

Mean {ζ} [%] 3.4598 4.8100 4.1088 3.687 3.6147 
Var {f}(10e-5) 2.1430 0.9188 2.9195 2.5516 8.6658 

Var {ζ} 1.0031 0.8956 0.3995 1.0146 0.7794 

M
od

e 
2 Mean {f} [Hz] 0.7510 0.7396 0.7471 0.7424 0.7364 

Mean {ζ} [%] 4.2281 3.4986 3.9582 4.2144 3.6546 
Var {f}(10e-5) 7.0669 1.0833 4.9610 3.0993 26.605 

Var{ζ} 2.0461 0.6622 0.5883 1.0455 0.7605 
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From the results in Table 3.4, it can be concluded that any type of signal can 
be successfully used for mode estimation, but the combination of active and 
reactive power signals provides estimates with slightly lower variance. One 
reason for this is that number of analyzed signals in this case is larger compared 
to other analyzed cases. Voltage angle signals provide high observability of the 
modes (because of their relatively low variance compared to the number of used 
signals), whereas the use of current signals provides less encouraging results. 

3.3.4 Effects of measurement noise on estimation accuracy 

In order to assess the robustness of the proposed method in the presence of 
measurement noise, different noise levels are simulated and the estimation 
results are compared with the case where no measurement noise is present. The 
noise is modeled by adding Gaussian white noise to the measured signals. The 
noise-to-signal ratio (NSR) used is defined as a ratio between the variance of the 
measurement noise and the variance of the ambient data analyzed. Fig. 3.10 
shows howthe  mean values and variances of the estimates (frequency and 
damping ratio) change with the different levels of measurement noise. The 
colored range in Fig. 3.10 represents 0.5±  standard deviation of the estimation.  

 
Fig. 3.10 Effects of measurement noise on frequency and damping estimation. 

In the case of frequency estimation, the standard deviation is of order 510− , 
therefore, this range appears as a thin line in Fig. 3.10. An important conclusion 
is that a large amount of noise does not significantly affect the frequency 
estimation. On the other hand, the estimated damping ratio increases with the 
increase of the noise level whereas the variance is not significantly increased. 
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3.3.5 Effects of load sensitivity on mode estimation 

As stated before, the proposed method neglects the behavior of the load, 
meaning that the method always estimates modes which are associated only with 
the transmission part of the system (transfer function between load buses and 
measured signals). Biases introduced by the load behavior can be analyzed using 
the load model from [206]: 

0
0

(1 )L pf
VP P K f
V

α
 

= + ∆ 
 

, (3.21) 

0
0

(1 )L qf
VQ Q K f
V

β
 

= + ∆ 
 

, (3.22) 

where: 

− P0 and Q0 are the initial active and reactive loads; 

− V0 is a voltage magnitude at the initial operating condition;  

− The α and β coefficients describe load active and reactive power 
dependence on voltage variation; 

− Kpf and Kqf describe load active and reactive power dependence on 
frequency deviation. In these studies, typical ranges for the load 
coefficients are adopted from [206]. 

The dependence of the location of the first critical mode at 0.5 Hz on different 
load sensitivity coefficients is shown in Fig. 3.11 and Fig. 3.12. 
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Fig. 3.11 Sensitivity of the mode location to load active power change caused by 

variations in voltage and frequency. 

 
Fig. 3.12 Sensitivity of the mode location to load reactive power change caused 

by variations in voltage and frequency. 

It can be concluded that the mode frequency is not significantly affected by 
load sensitivities, except in the case of reactive power sensitivity to voltage 
deviation.  

System mode damping is more sensitive to load characteristic changes (see 
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Fig. 3.11 and Fig. 3.12). Based on the presented results, the modes of the whole 
system can be computed from the estimated modes by knowing the model of the 
loads and using (3.21) and (3.22). As can be seen in Fig. 3.11 and Fig. 3.12, the 
uncertainty in the load parameters does not introduce significant error in the 
mode estimation. 

3.3.6 Mode estimation in the case of reconstructed signals 

Even though it is envisioned that all buses in the transmission network will be 
equipped with PMUs in the future, it is necessary to consider a situation where 
some load buses are not equipped with PMUs or some PMU measurements are 
not available due to device or communication malfunction. In this regard, the 
proposed methodology is employed to reconstruct missing measurements at load 
buses. It is reasonable to expect that a large number of missing load signals and 
the existing model uncertainty negatively affect the accuracy of the 
reconstruction procedure. However, even in the case where none of the loads are 
measured, the procedure provides better estimation of the input-output cross-
correlations compared to those of any other predefined spectral distribution.  

To analyze the method’s dependency on model inaccuracy, the generator’s 
inertias and exciters’ gains are intentionally changed to model this uncertainty. 
These model parameters are chosen under the assumption that they have a large 
influence on electromechanical oscillations [205], [207]. In addition, to analyze 
the dependency on measurement unavailability, none of the input (load) signals 
are measured and therefore they are all reconstructed using the methodology 
previously presented. 

Three test cases are analyzed where the generators’ inertias and exciters’ gains 
are changed by 10 %, 20 % and 50 % from their original values, respectively. 
This is done in such way that half of the generators have their original values 
increased, while the other half have these values decreased. The dominant modes 
of these modified (uncertain) models are given in Table 3.5. For each level of 
model inaccuracy 100 independent random load variations are simulated and the 
modes are estimated for each one of them. The results from the proposed mode 
estimation method are presented in Fig. 3.13-Fig. 3.15. 
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Fig. 3.13 Mode estimation results using the proposed algorithm with no 

measured inputs and assumed model with 10 % error. 

 
Fig. 3.14 Mode estimation results using the proposed algorithm with no 

measured inputs and assumed model with 20 % error. 
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Fig. 3.15 Mode estimation results using the proposed algorithm with no 

measured inputs and assumed model with 50 % error. 

 

Table 3.5 Dominant system modes for different model uncertainty levels. 

M
od

el
 Mode 1 Mode 2 

Frequency (f) 
[Hz] 

Damping (ζ) 
[%] 

Frequency(f) 
[Hz] 

Damping (ζ) 
[%] 

0% 0.4987 3.5223 0.7322 3.1801 
10 % 0.5225 2.9569 0.7251 3.1857 
20 % 0.5494 2.3961 0.7075 3.3520 
50 % 0.6060 1.9014 0.7237 2.3556 

Since an inaccurate model is used in the algorithm, the correlation sequences 
obtained will be imprecise, leading to less reliable but still satisfactory mode 
estimates which can be seen in Table 3.6. However, the most important property 
of the estimator, its ability to discern and neglect forced oscillations, is still kept 
due to the fact that forced oscillations are detected from the input data even with 
erroneous model parameters such as the ones used in these study cases.  
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Table 3.6 Stochastic properties of the estimation results in the case without 
measured input signals and different model uncertainty. 

 10% Model 
Variation 

20% Model 
Variation 

50% Model 
Variation 

M
od

e 
1 Mean {f} [Hz] 0.5022 0.5064 0.4966 

Mean {ζ} [%] 4.5042 5.2139 6.8878 
Var {f} 1.967e-5 2.508e-5 5.197e-5 
Var {ζ} 0.8344 1.0106 2.3343 

M
od

e 
2 Mean {f} [Hz] 0.7522 0.7547 0.7427 

Mean {ζ} [%] 4.9322 6.2311 7.4958 
Var {f} 3.318e-5 6.470e-5 1.623e-4 
Var{ζ} 0.6412 0.9853 1.6479 

The results in Table 3.6 show that, regardless of the model uncertainty, the 
forced oscillation is not identified as a true system mode. However, model 
uncertainty has an effect on the accuracy of the estimation process; this can be 
seen in the mean value and variance of the estimate (larger uncertainty leads to 
larger bias and variance). Fig. 3.13-Fig. 3.15 also show that the uncertain model 
does not create bias in the estimated mode frequency but slightly increases the 
value of the estimated damping ratio. 

The use of an inaccurate model to distinguish between a forced oscillation and 
a real system mode imposes a possible problem in the case where the model 
contains no information about the dominant mode. In that case, the real system 
mode can be interpreted as a forced oscillation and therefore it might not be 
reported to the operator. 

3.3.7 Effects of measurement noise on input signal 
reconstruction 

Measurement noise in the output signals (which are used for the reconstruction 
of the unavailable input signals) corrupts the quality of the estimated input 
signals. In the studies performed, a fully accurate model is assumed, meaning 
that the measurement noise is the only cause of errors for input signal 
reconstruction.  

Different measurement noise levels (up to 1.1 NSR) are simulated and six 
different sets of output signals are used in the reconstruction process. The 
selected output signal sets used in the reconstruction process are: 

• Set 1 - Voltage magnitudes in all buses and 60 both active and reactive 
power flow measurements10. 

 

10 There are 80 lines in the system, and PMUs can be installed at both ends. 
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• Set 2 - Voltage angles in all buses and 60 both active and reactive power 
flow measurements. 

• Set 3 - Voltage magnitudes and angles in all buses and 80 both active and 
reactive power flow measurements. 

• Set 4 - Voltage magnitudes and angles in all buses and 80 both active and 
reactive power flow measurements, as well as 80 current magnitude 
measurements. 

• Set 5 - Voltage magnitudes and angles in all buses and active and reactive 
power flow measurements at both ends of all lines in the system. 

• Set 6 - Voltage magnitudes and angles in all buses and active and reactive 
power flow measurements as well as current magnitude measurements at 
both ends of all lines in the system. 

The computed dependence between noise level in the measured output and the 
resulting noise in the reconstructed input is given in Fig. 3.16. Two cases are 
analyzed, the noise level produced at the active power inputs and the noise level 
at the reactive power inputs. 

From Fig. 3.16, it can be concluded that the first set of measurements provides 
satisfactory accurate input estimation. This is due to the fact that the NSR of the 
estimated input signal is around 2 for active power and less than 1.5 for reactive 
power in the case of 1.1 NSR in the output measurements. This proportion 
approximately holds for all noise levels. A larger number of measured signals 
reduces the effect of the output noise. In addition, with the larger number of 
measured signals, the noise produced at the input has a lower NSR compared to 
the NSR of the original (output) measurements. 
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Fig. 3.16 Errors in load signal estimation by using the inverse power system 

model caused by output measurement noise. 

3.4 Discussion 
3.4.1 Topology change 

Topology changes may lead to a significant displacement of the modes. 
Because the time window used for the estimation is in range of 10-15 minutes, 
the estimator may not be able to instantaneously calculate new (correct) results 
after a significant topology change. Instead, the estimated modes have a smooth 
transition to the correct results. 

The ambient system response is present in the measured signals all the time, 
whereas topology changes may introduce additional transient responses. The 
transient response can be used for mode estimation (employing methods that use 
transient responses) in order to crosscheck the results obtained using an ambient 
mode estimator. 

If the model is used for input signal reconstruction, it is necessary to update 
the model after a topology change to reflect the current state of the system. The 
effects of using an inaccurate model of the system are analyzed in the previous 
section. 

3.4.2 Computational complexity 

The computational complexity of the proposed method is mainly determined 
by two steps in the algorithm, namely: 

• Unconstrained linear least-squares problem. The least-squares problem is 
solved in every estimation cycle. The computation time depends on the 
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number of unknown model parameters which is equal to N M q p⋅ ⋅ + . In the 
analyzed problem (6500 equations), the required solution time is around 50 s 
using a MATLAB implementation and a personal computer11. The number of 
unknown parameters is especially sensitive to the order of the numerator (q) 
in the estimated ARMA model. A high order of the numerator leads to high 
order of the least-squares problem, which significantly reduces the 
computational performance of the method. 

• Pseudoinversion as a part of the input signal reconstruction. This step can 
take significant computational time in the case where a large number of input 
measurements is missing (up to 7 minutes for the reconstruction of 5000 
input signals using a MATLAB implementation and a personal computer). 
This step is performed only once after the model of the system is updated, 
therefore, the computational performance is less critical in this case. 

All other steps of the methodology (such as the correlation coefficient 
computation) require negligible computational time and do not affect the overall 
computation performance.  

3.5 Summary 
This chapter proposes a method for mode estimation using ambient 

synchrophasor data which relaxes the widely accepted assumption that the loads 
are accurately described by white noise. The proposed method is founded on the 
hypothesis that a large number of PMUs is deployed in the system. Despite the 
fact that this is not the case in present-day power systems, we believe that a 
sufficient number of PMUs will be deployed in the near future.  

The results obtained confirmed that the method correctly exploits information 
about spectral load properties, enabling the estimator to deal only with true 
system modes. These results indicate that the proposed method will provide 
more accurate mode estimates in real-life operating conditions where loads can 
have unpredictable spectral characteristics. 

The results obtained suggest that unavailable input signals can be extracted 
with satisfactory accuracy even with a relatively inaccurate model of the power 
system. The performed analyses also show that the proposed method provides 
comparatively accurate results even in the case where the “white noise” load 
assumption is satisfied, meaning that the proposed method, compared to 
conventional methods, does not compromise accuracy by any means. 

The proposed method correctly estimates the modes of the transmission part of 
the system. If necessary, the modes of the overall system (including loads) can 

11 Intel i7, 2.7Ghz CPU and 8 GB of RAM. 
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be estimated using existing load models to compensate for the bias introduced by 
the loads. 

The analyses show that the level of measurement noise affects the estimation 
accuracy, particularly the damping ratio estimation accuracy. The computational 
performance predominantly depends on the selected order of the numerator in 
the estimated ARMA model. A high order can result in unacceptable high 
dimensions of the least-squares problem. 

The proposed methodology gives a new perspective in the mode estimation 
problem. Still, forced oscillations and their effects on mode estimation 
algorithms in general need to be investigated more thoroughly in real-life 
conditions. Preassembly, the best results in practice can be obtained by 
confronting results from different approaches in an integrated manner; this is a 
topic for future research. It is also important to investigate new methods for 
obtaining faster response of the mode estimator in order to make estimation more 
accurate during transients.  
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   Chapter 4
4 Test jkkj 

Least Costly Probing Signal Design 
 

4.1 Introduction 
Probing based methods for mode estimation represent a compromise between 

ambient and ringdown mode estimation methods. These methods use a low 
magnitude probing signal as an excitation to the system [221]. These methods 
are non-intrusive but, due to the known excitation, are able to provide more 
accurate mode estimation results compared to ambient data-based methods. A 
low magnitude excitation (probing) can be generated by modulating the 
following signals: 

1) Reference signals of automatic voltage regulators, 
2) Reference signals in the control systems of FACTS devices (active and 

reactive power, voltage control, etc), 
3) Reference signals of turbine governors. 

Assuming a given location and the reference signal used for the probing, there 
is a question on how this signal should look like in order to obtain the best 
possible mode estimate. This issue was first addressed in [222], where different 
design considerations have been discussed. However, a formal mathematical 
formulation of the probing signal design procedure has not been provided. 

In the control theory community, the problem of optimal experiment (probing) 
design for system identification has been analyzed thoroughly [223],[224],[225]. 
The traditional approach in experiment design is to determine an input signal that 
ensures a high system performance from the control perspective [225]. More 
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recently, the least costly experiment paradigm was proposed [226],[227]. In this 
approach, the experiment is designed with respect to the allowed uncertainty of 
the estimated model. 

In this chapter, the least costly paradigm is adopted for the design of the 
probing signal. The probing signal is designed in such a way that the 
uncertainties of the critical modes’ damping ratio estimates are lower than a 
predefined threshold. The design procedure is formulated as a Linear Matrix 
Inequality (LMI) optimization problem with the power spectrum of the probing 
signal as a decision variable. The decision variable is parameterized (described) 
by: 

1) The signal’s autocorrelation function (ACF), or 
2) The amplitudes of the sine waves in a multisine signal. 

The objective function is defined as a weighted sum of two components: 1) the 
variance of the injected probing signal, and 2) the mean square of the output 
signal deviation that represents the level of the system disturbance. The 
constraints in the LMI formulation are the maximal tolerable variances of the 
estimates of the critical damping ratios.  

The optimal probing power spectrum that is determined can be realized with 
different time-domain signals. Three time-domain signal realization methods are 
presented in the sequel. Two of them are proposed here and used for realizing the 
probing signals whose power spectrum is described by an autocorrelation 
sequence, whereas the third method is used to generate a multisine signal, as 
proposed in [222]. 

The contributions of this chapter are summarized as follows: 

1) The expression that relates accuracy of mode estimation and spectrum of 
the probing signal is derived. 

2) Reactive power injection is proposed for probing.  
3) The least costly experiment design approach is adopted, modified and 

applied for design of probing signal. The modification introduces the 
mode estimation accuracy as a constraint. Two spectrum 
parameterizations are used (multisine and continuous spectrum). 

4) A signal realization method that considers time domain constrains has 
been developed. 

5) Two additional signal realization methods have been applied (FIR filter 
and multisine). 

6) The case studies demonstrate significant accuracy improvements when 
the probing signal is optimally shaped (4-5 times better accuracy of the 
mode estimation for the same input power). 
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4.2 Background  
As described in the thesis introduction, an ambient system response measured 

by Phasor Measurement Units (PMUs) can be described by a single transfer 
function H(z) excited by white noise e(t), where the white noise represents 
random load changes at an aggregated level. This ambient response is also 
present during probing tests when the system is intentionally excited. Assuming 
system linearity and using the principle of superposition, the measured 
synchrophasor signal y(t) can be decomposed into two components: One as a 
result of ambient excitation (H(z)e(t)) and another as a result of probing 
(G(z)u(t)), as shown in Fig. 4.1 and previously described in Fig. 1.5. Signal u(t) 
is the probing signal that can be designed and G(z) represents a transfer function 
between the probing signal and the measured output signal y(t). 

G(z)

H(z)

+u(t)

e(t)

Probing

Ambient

y(t)
PMU  

Fig. 4.1 Power system model during probing tests. 

Since both transfer functions in Fig. 4.1 (G(z) and H(z)) can be derived from 
the same state space model of a power system, it is reasonable to assume that 
both transfer functions have the same denominators. This defines an ARMAX 
(AutoRegressive Moving Average with eXogenous inputs) model structure of 
the system [154]: 

( , ) ( , )( ) ( ) ( )
( , ) ( , )

B z C zy t u t e t
A z A z

θ θ
θ θ

= + , (4.1) 

where z is the time shift operator and θ is a vector of model parameters. A(z,θ), 
B(z,θ) and C(z,θ) are polynomial functions in z. This model can be expressed in 
terms of another parameter vector ρ=f(θ), of which one subvector is the vector ζ 
that represents the damping ratios of all system modes. This reparameterization 
consists of the conversion of the discrete poles and zeros of (4.1) into the 
continuous domain and expressing them as a function of ρ, i.e. poles/zeros’ 
frequencies and damping ratios, as shown in Chapter 2 and [199]. The resulting 
model is: 

( , ) ( , )( ) ( ) ( )
( , ) ( , )

B z C zy t u t e t
A z A z

ρ ρ
ρ ρ

= + . (4.2) 

This model, and consequently its modes, can be identified from the measured 
data using a prediction error method [209]. If it is assumed that: 1) the model 
structure used in the identification has sufficiently high order to describe the true 
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system, 2) G(ρ) is strictly proper, and that 3) H(ρ) is proper, monic and has a 
stable inverse, the estimate obtained with a prediction error method is an 
asymptotically unbiased estimate of the true system parameters ρ0

12. 
Furthermore, the covariance matrix of the parameter estimates Pρ is given by 
[209]: 

1 *
0 02

*
0 0

1 ( , ) ( , ) ( )
2

( , ) ( , ) ,
2

u u u

e e

NP F F d

N F F d

π

ρ
π

π

π

ω ρ ω ρ ω ω
πσ

ω ρ ω ρ ω
π

−

−

−

 
= F + 

 
 

+ 
 

∫

∫
 (4.3) 

where: 

− N is the number of data points used for identification,  
− ρ0 represents the true system parameter vector, 
− Φu(ω) is the power spectrum of the probing signal, 
− 2σ  is the variance of the ambient (driving) noise, and 
− the functions Fu(ω, ρ0) and Fe(ω, ρ0) are defined as follows: 

1 ( , )( , )u
GF H ω ρω ρ

ρ
− ∂

=
∂

; and 1 ( , )( , )e
HF H ω ρω ρ

ρ
− ∂

=
∂

. 

Equation (4.3) provides the relationship between the power spectrum of the 
probing signal Φu(ω) and the accuracy of the estimation that is described by Pρ. It 
should be noted that (4.3) assumes that the true system parameters ρ0 are known. 
Because the true value of ρ0 is not known, an initial estimate of ρ0 will be used 
for the purpose of optimal probing design. The initial estimate of ρ0 can be 
obtained from an existing physical model of the system or with initial system 
identification. 

4.3 Optimal Power Spectrum of the Probing Signal 
The general block diagram of the proposed probing signal design procedure is 

given in Fig. 4.2. The input to the algorithm is a user defined maximal tolerable 
variance of the critical modes’ damping ratio estimates. An LMI optimization 
procedure provides the optimal spectrum of the probing signal. This procedure is 
described in this section, whereas the methods for the realization of the time-
domain probing signal are described in the following section. 

12 An estimate of ρ0 can also be obtained by first estimating the ARMAX model (4.1), and then by 
using the mapping ρ=f(θ). 
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LMI

Signal realization

max var(ζ)

Multisine

ACFdes

min(|upeak|/urms)

FIR filter

min(║ACF-ACFdes║
2)

white noise - e(t) u(t)

u(t)

u(t)

Probing Φu(ω) calculation

  
Fig. 4.2 Block diagram of the proposed probing signal design methods. 

4.3.1 Objective function of the LMI optimization problem 

The objective of the optimization procedure is to find the power spectrum that 
minimizes the system disturbance induced by the probing signal, as well as the 
control effort of the probing device. This objective function can be formalized 
as: 

21 2

( )
min ( ) ( )

2 2u
u u

k kJ d G d
π π

ω
π π

ω ω ω ω
π πΦ

− −

   
= Φ + Φ   

   
∫ ∫ , (4.4) 

where Φu(ω) is the power spectrum of the input (probing) signal. k1 and k2 are 
weighting factors. The selected output signal should reflect the level of the 
disturbance caused by the probing experiment. 

4.3.2 Power spectrum parameterization 

The power spectra of the probing and output signal in (4.4) have infinite 
dimensions which are impossible to handle by digital computers. Therefore, it is 
necessary to adopt a finite dimensional approximation (parameterization) of the 
spectra. Two parameterizations are used here: 1) signal autocorrelation sequence, 
and 2) multisine. In the sequel, (4.3) and (4.4) are expressed in terms of these 
two parameterizations. 

 

Spectrum parameterization using a signal’s 
autocorrelation sequence 

Using the parameterization based on the autocorrelation sequence, the power 
spectrum of the probing signal is defined as: 

( ) 0
M

j r
u r

r M
c e ωω

=−

Φ = >∑ , with r rc c−= , (4.5) 

where M is the order of approximation and rc (r=0,…,M) is the signal’s 
autocorrelation sequence (decision variable).  
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Now, the objective function (4.4) can be expressed in terms of the defined 
parameterization (by substituting (4.5) into (4.4)): 

1

( 0... )

*2
0 0

min
2

( , ) ( , ) .
2

r

M
j r

rc r M r M

M
j r

r
r M

kJ c e d

k G G c e d

π
ω

π

π
ω

π

ω
π

ω r ω r ω
π

= =−−

=−−

 
= + 

 
 

+ 
 

∑∫

∑∫
 (4.6) 

In the same manner, (4.3) can be formulated as: 

1 *
0 02

*
0 0

1 ( , ) ( , )
2

( , ) ( , ) .
2

M
j r

u u r
r M

e e

NP F F c e d

N F F d

π
ω

r
π

π

π

ω r ω r ω
πσ

ω r ω r ω
π

−

=−−

−

 
= + 

 
 

+ 
 

∑∫

∫
 (4.7) 

The expressions (4.6) and (4.7) can be further manipulated to obtain a form 
suitable for the definition of an LMI problem. It can be noticed that both, (4.6) 
and (4.7), are comprised of summands that have a general form as follows13: 

*1 ( ) ( )
2

M
j r

r
r M

T T c e d
π

ω

π

ω ω ω
π =−−

∑∫ , (4.8) 

where T(ω) is a vector of known transfer functions and cr is a real number. In the 

sequel, it will be shown how to express (4.8) in the form 
0

M

r r
r

R c
=
∑  which is later 

used in the LMI problem formulation. 

Because T(ω) is not a function of r, (4.8) can be rewritten as:  

*1 ( ) ( )
2

M
j r

r
r M

c T T e d
π

ω

π

ω ω ω
π=− −

∑ ∫ . (4.9) 

Using Parseval’s theorem and the fact that je ω  is the transfer function of the 
forward shift operator, the following holds: 

*
( ), ( )

1 1( ) ( ) ( )
2 2

M M
j r

r r y t y t r
r M r M

c T T e d c d
π π

ω

π π

ω ω ω ω ω
π π −

=− =−− −

= Φ =∑ ∑∫ ∫

[ ( ) ( )]
M

T
r

r M
c E y t y t r

=−

= −∑ . (4.10) 

13 Note that some summands do not have all elements of the general form. The first summand in 
(4.6) is obtained by choosing T(ω)=1, and the second summand in (4.8) is obtained for M=0.  
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In (4.10), E denotes the expected value of a random process, ( ) ( ) ( )y t T z e t=  
with ( )e t  white noise of unit variance and ( ), ( )y t y t r−Φ  is the cross-spectrum 
between ( )y t  and ( )y t r− . Due to symmetry ( r rc c−= ), (4.10) can be written as:  

0 0
1

[ ( ) ( )] ( )
M M

T T
r r r r

r M r
c E y t y t r c R c R R+ +

=− =

− = + +∑ ∑ ,  (4.11) 

where [ ( ) ( )]T
rR E y t y t r+ = −  for 1r > , and 0 [ ( ) ( )]TR E y t y t= . Note that with 

rR +  and 0R  calculated, it is trivial to express (4.8) in the desired form (

0

M

r r
r

R c
=
∑  ), i.e. it can be written as T

r r rR R R+ += +  for r>0, and 0rR R=  for r=0. 

Consequently, this also provides an algorithm for expressing (4.6) and (4.7) in 
the desired form. Therefore, the following paragraphs will provide the algorithm 
for the calculation of rR +  and 0R . 

To compute rR +  and 0R , the transfer function vector T(z) first needs to be 
expressed in single-input multiple-output (SIMO) state space form, as follows: 

( 1) ( ) ( )
( ) ( ) ( ).

x t Ax t Be t
y t Cx t De t

+ = +
= +

 (4.12) 

Now, the matrix rR +  can be written as follows:  

( ) ( )

( ) ( ) ( ) ( )

.

T
r

T T T T

T T
r er

R E y t y t r

CE x t x t r C CE x t e t r D

CX C CX D

+  = − = 
   = − + − =   

= +

 (4.13) 

To obtain (4.13), it was used that ( )e t  is white noise and that 

[ ]( ) ( ) 0E e t x t r− =  for all 0r ≥ . From the control system theory it is known 
that the following holds for all values of r: 

1

1
( ) ( ) ( )

r
r i

i
x t A x t r A Be t i−

=

= − + −∑ , (4.14) 

therefore, the expression for Xer from (4.13) can be written as: 
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( )

1

1

1

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) .
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r i T
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r r T

r T r

X E A x t r A Be t i e t r

E A x t r A Be t r e t r

A BE e t r e t r A B

−
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−

− −
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  

 = − + − − = 
 = − − = 

∑

 (4.15) 

In a similar way, the expression for Xr can be written as: 

1

1
( ) ( ) ( )

( ) ( ) ( ) ( ) ,

r
r i T

r
i

r T r T r

X E A x t r A Be t i x t r

E A x t r x t r A E x t x t A X

−

=

  = − + − − =  
  

   = − − = =   

∑  (4.16) 

where X  can be written as: 

( )( )( 1) ( 1) ( 1) ( 1) TX E Ax t Be t Ax t Be t = − + − − + − =   

.T TAXA BB= +  (4.17) 

Equation (4.17) constitutes the Lyapunov equation T TX AXA BB= + that can 
be solved for X, which provides a solution for Xr. 

Now, using the obtained expressions for Xr and Xer and the value of the 
computed X, (4.13) can be written as: 

1T T r T r T
r r erR CX C CX D CA XC CA BD−

+ = + = + . (4.18) 

At this point only R0 needs to be determined. Following the same approach as 
in the case of rR + , the following holds: 

( )( )0 ( ) ( ) ( ) ( ) ( ) ( ) TTR E y t y t E Cx t De t Cx t De t  = = + + =     

( ) ( )( ) ( ) ( ) ( )T T T T T TE Cx t x t C E De t e t D CXC DD+ = + . (4.19) 

Now, using the general expressions (4.8)-(4.11), (4.18) and (4.19) the 
objection function defined by (4.6) can be written in a linear form with respect to 

the coefficients cr (r=0,…,M), i.e using the derived form (
0

M

r r
r

R c
=
∑ ): 

1 0 2( 0... ) 0
min
r

M

r rc r M r
J k c k Q c

= =

= + ∑ , (4.20) 

where rQ  (r=1,…,M) are constant matrices. 
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Further, following the same procedure, (4.7) can be written as: 

1
2

0

M

r r
r

NP R c NSr σ
−

=

= +∑ , (4.21) 

where rR  (r=0,…,M) and S are constant matrices. 

 

Multisine power spectrum parameterization 

A multisine signal is defined by the following expression: 

1
( ) cos( )

M

r r r
r

u t A tω ϕ
=

= +∑ , (4.22) 

where rA , rω  and rϕ  are the amplitude, frequency and phase of the r-th sine 
component. Consequently, the power spectrum of a multisine signal is equal to: 

2 2

1
( ) ( ) ( )

2

M

u r r r r
r

A Aπω δ ω ω δ ω ω
=

Φ = − + +∑ . (4.23) 

Following a similar procedure as in the previous subsection, the objective 
function (4.4) is expressed in terms of the multisine parameterization by 
substituting (4.23) into (4.4): 

2

22 21 2
0 0

( 1... ) 1 1
min ( , )

2 2r

M M

r r r
A r M r r

k kJ A G Aω r
= = =

   = +   
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∑ ∑ , (4.24) 

where 2 ( 1,..., )rA r M=  is the decision variable.  

Further, the relationship between the probing signal’s power spectrum and the 
estimation covariance matrix (defined by (4.3)) can be expressed in terms of the 
multisine parameterization (by substituting (4.23) into (4.3)): 

{ }1 * 2
0 02
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−
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+

∑

∫
 (4.25) 

Note that this expression can be simplified as: 
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1
2

1

M

r r
r

NP R c NSr σ
−

=

= +∑ , (4.26) 

where Rr is derived trivially from (4.25), and the procedure for the derivation of 
S given in the previous subsection.  

4.3.3 Constraints used in the LMI optimization problem 

The accuracy of the mode estimation is determined by the estimation 
variances of the critical modes’ damping ratios (ζi.). These variances are the 
diagonal elements of Pρ (see (4.3)). Therefore, sufficiently accurate mode 
estimation is obtained if the variance of each critical damping ratio ζj is 
constrained to be smaller than some user-defined value. This is written as: 

var( ) ( , ) T
j i iP i i e P e rrr ζ = = < , i.e. 0T

i ir e P er− >  (4.27) 

where r is the user-defined constraint (maximal allowed value of the critical 
variance), i is the index of a critical mode’s damping ratio in the parameter 
vector ρ0, and ei is a unity vector whose i-th element is equal to one. When 
several modes need to be accurately estimated, a constraint defined by (4.27) is 
added for each critical mode. 

As it can be seen from (4.3), the relationship between Pρ (or T
i ie P eρ ) and the 

decision variable (power spectrum of the probing signal) is non-linear due to the 
inversion operation. In order to formulate an LMI form of the constraint (4.27), 
this relationship has to be convexified. This can be done by exploiting the Schur 
complement property that a matrix is positive definite if and only if its Schur 
complement is positive definite [228]. Since (4.27) can be represented in the 
form of Schur complement, an equivalent constraint would be a constraint on the 
positive-definiteness of the matrix whose Schur complement is equal to 

T
i ir e P er− . Therefore, the constraint (4.27) can be written as: 

1 0
T
i

i

r e
e Pr

−

 
> 

  
. (4.28) 

The constraint defined by (4.28) has a form of an LMI. This can be seen when 
1Pρ

−  in (4.28) is replaced by (4.26) or (4.21) (depending on the parameterization 
adopted). 

Another constraint that has to be taken into account is that the obtained power 
spectrum must be positive for all frequencies (physical constraint). When the 
power spectrum is parameterized using an autocorrelation sequence, the 
spectrum’s positivity can be guaranteed by the existence of a symmetric matrix Z 
that satisfies the following LMI constraint [226],[227]: 
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0
T T T

T T T

Z A ZA C A ZB
C B ZA D D B ZB

 − −
> − + − 

, (4.29) 

where A, B, C and D matrices are defined as follows: 

1

0 0
0m M x M

A
I −

 
=  

 
; [ ]1

1 0 ... 0
xM

B = ; 

[ ]1 2 1
... M xM

C c c c= ; 0 / 2D c= . 

When the multisine parameterization is used, this problem is solved by 
imposing non-negativity of the decision variable: 

2 0;rA ≥  for 1, 2,...,r M= . (4.30) 

4.3.4 LMI optimization problem formulation 

The previous subsections describe two types of LMI optimization problems 
(that differ only by the power spectrum parameterization adopted) whose 
solutions provide the optimal spectrum of the probing signal. The optimization 
problem that uses the autocorrelation-based parameterization is defined by the 
objective function (4.20) subject to (4.28) and (4.29), considering relationship 
(4.21). On the other hand, the optimization problem that uses the multisine 
parameterization is defined by the objective function (4.24) subject to (4.28) and 
(4.30), considering relationship (4.26). For the sake of simplicity, the defined 
optimization problems will be rewritten here: 

LMI optimization formulation using autocorrelation 
parameterization 

1 0 2( 0... ) 0
min
r

M

r rc r M r
J k c k Q c

= =

= + ∑ , (4.31) 

subject to: 
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, (4.33) 

where all variables are defined before. 
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LMI optimization using multisine spectrum 
parameterization 

2

22 21 2
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( 1... ) 1 1
min ( , )

2 2r

M M

r r r
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= = =
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subject to: 
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T
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r e
Ne R c NS

σ =

 
  > +
  

∑
, (4.35) 

2 0;rA ≥  for 1, 2,...,r M= , (4.36) 

where all variables are defined before. 

4.4 Probing Signal Realization 
Section 4.3 provides an optimal power spectrum of the probing signal. 

However, a spectrum can be realized with different time-domain signals, which 
leaves additional opportunity for optimization. One property of the signal that 
can be considered in the optimization is the signal’s magnitude (because probing 
equipment might have a physical limitation regarding the signal magnitude that 
can be obtained). Another important property of the signal that can be optimized 
is its crest factor [222], defined as: 

{ ( )} { ( )} { ( )}
{ ( )}

{ ( )} { ( )}1
2 u

max u t max u t max u t
Cr u t

rms u t var u t
d

π

π

ω
π −

= = =

Φ∫
. (4.37) 

The crest factor describes the signal’s magnitude relative to the variance 
which is obtained from the LMI optimization (var{u(t)} is a result of the 
optimization). Smaller values of the signal’s crest factor are beneficial because 
they impose smaller strain on the probing equipment [222].  

In the sequel of this chapter, three methods for the realization of time-domain 
signals with specified power spectra are presented. Two methods are used for the 
realization of probing signals whose spectrum is described by an autocorrelation 
sequence, whereas the third method realizes multisine signals.  
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4.4.1 Signal realization with constrained signal’s magnitude 

The sequel describes a method for obtaining a time-domain signal with a 
given power spectrum and constrained magnitude. This method can be seen as a 
special case of the method proposed in [229], [230]. 

The desired spectrum is described by the autocorrelation sequence desACF , 
which is defined as ( ) cdes rACF r =  for r=0,…,M, (see (4.5)), and ( ) 0desACF r =  
for, r=M+1,…,M+K, where K is an arbitrary positive integer constant. The main 
idea of the method is to minimize the discrepancy between ACFdes and the 
sample autocorrelation sequence of the probing signal u(i).  

The signal’s sample autocorrelation of lag τ , computed using k data points, is 
given by: 

1
1

1 1 1( ) ( ) ( ) ( ) ( ) ( )
k

k k
i

kACF u i u i ACF u k u k
k k kτ

τ τ τ τ−
= +

−
= − = + −∑ , (4.38) 

The optimal signal can be found iteratively. In the iteration m, a signal 
window of size L is determined (u(k) for k=(m-1)L+1,..,mL). The defined signal 
window is computed by minimizing the following objective function: 

( )2

( ) 0
( ) ( )

M K

mL desu k
min ACF ACF

τ

τ τ
+

=

−∑ , (4.39) 

subject to: 

( )min maxu u k u< < ,      k=(m-1)L+1,.., mL, (4.40) 

where umin and umax are lower and upper bound, respectively. 

The optimization problem defined by (4.39)-(4.40) is a nonlinear optimization 
problem which can be solved in the MATLAB environment by the command 
“fmincon”. The full length signal u(k) with N elements is therefore determined 
in ceil(N/L) iterations. Note that the complete signal can be determined in only 
one iteration if L=N. However, if N is large, the optimization problem can be 
impractical to solve due to the large dimension of the decision variable 
(dimension is equal to L). In other words, a fixed value of L makes this type of 
signal realization scalable.  

It is important to note that the methodology presented above can be easily 
modified to include other types of time-domain constraints that would need to be 
considered depending on the specific characteristics of the probing equipment. 
This makes the described method very appealing for practical application. 
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4.4.2  Signal realization using an FIR filter 

A signal with the desired spectrum can be realized by passing a white noise 
signal through an appropriate filter. In this case, the squared frequency response 
of the filter has to be equal to the desired signal’s power spectrum. Therefore, the 
problem of signal realization is equivalent to finding the parameters of the filter. 
If it is assumed that the filter has an FIR structure, its parameters can be obtained 
using a spectral factorization technique [231]. To this end, the application of the 
method described in [231] is straightforward because the input to the method is a 
signal’s autocorrelation sequence, and the outputs are the parameters of the FIR 
filter. 

It should be noted that this procedure is not suitable for multisine spectrum 
parameterization. This can be concluded from the fact that a multisine 
autocorrelation sequence is indefinitely long; therefore, it is not possible to 
approximate it using an FIR filter. A more physical explanation is that generating 
a sine signal from the white noise requires a very narrow banded filter, which 
results in a filter of impractically large order. 

This type of signal realization has the advantage that is easy to implement. 
Once the filter’s parameters are determined, an arbitrarily long signal is 
generated simply by filtering white noise. On the other hand, a disadvantage is 
that the magnitude of the signal is not explicitly constrained, which can result in 
a relatively large crest factor.  

4.4.3 Multisine realization with minimization of crest factor 

The multisine signal spectrum that is determined as a result of the LMI 
optimization provides the amplitudes of the sine waves that compose the signal. 
However, the phases of the sine waves are not determined (they do not affect the 
spectrum). By exploiting this freedom to choose sine phases, it is possible to 
obtain signals with minimal crest factors. A method to minimize the crest factor 
of a multisine signal is presented in [222] and used here without modifications. 

4.5 Case Studies 
The theory and techniques presented in Section 4.3 and Section 4.4 are 

validated through simulations using the KTH Nordic 32 test system [212]. It is 
assumed that a FACTS device with the capability of injecting reactive power is 
installed at bus 48. This reactive power injection is selected as the input used for 
probing. As an output, the voltage magnitude of bus number 38 is selected and 
used for mode estimation. The disturbance is evaluated using the same output 
signal, i.e. the deviation of the voltage magnitude is selected as a measure of the 
disturbance caused by the probing experiment. The KTH Nordic 32 test system 
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has two critical modes at 0.5 Hz and 0.76 Hz. The probing signal will be 
designed to accurately estimate the damping ratios of these two modes. 

It was mentioned that an initial estimate of ρ0 is required to perform optimal 
probing signal design. This initial estimate is obtained through an identification 
procedure. The data for this identification are generated with the linearized high-
order power system model. The ambient excitation (active and reactive power 
injections) is modeled by unity variance white noise in all load buses, whereas 
the input signal is chosen to be white noise with a variance of 10 000. The order 
of the identified models (G(z) and H(z)) are chosen to be equal to 12. This initial 
estimate has a limited accuracy that will be improved by using the optimal 
probing. The duration of the optimal probing signals, which is determined in the 
sequel, is chosen to be 10 minutes, i.e. 3000 data samples (the sampling 
frequency is equal to 5 Hz).  

4.5.1 Minimization of the probing signal variance 

In the first case study, the power spectrum of the probing signal is obtained by 
minimizing its variance (k1=1 and k2=0 in (4.4)) with the constraint that the 
variance of the damping ratios’ estimates is smaller than 10-5 (for both modes). 
In these studies, three types of probing power spectra are designed: 1) white 
noise (M=0), 2) a signal whose power spectrum is described by an 
autocorrelation sequence (M≠0), and 3) a multisine. The variance of the white 
noise probing signal is obtained directly from (4.3) by replacing ( )u ωΦ  with a 
constant function. The multisine signal is designed with a frequency resolution 
of 0.01 Hz. In the case of a continuous spectrum signal representation, the 
spectrum is described by 21 coefficients (M=20).  

The obtained probing spectra are shown in Fig. 4.3 and Fig. 4.4 with the 
corresponding signals’ variances shown in Table 4.1. 
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Fig. 4.3 Spectrum of the optimal input signal with continuous spectrum 

parameterization when the input variance is minimized. 

 

 
Fig. 4.4. Spectrum of the optimal multisine input signal when the input variance 

is minimized. 

Table 4.1 Introduced system disturbance when the variance of the probing signal 
is minimized. 

 White noise Multi-sine FIR filter 
var(u(t))  10410.0 1179.8 1901.4 
var(y(t)) 1.6761 2.0915 1.5994 

It can be noticed that the white noise excitation has a much larger (required) 
input and output variance (disturbance) compared to the optimal multisine and 
the FIR realization. These results mean that the same accuracy of mode 
estimation can be obtained with 5-7 times weaker excitation. Also, it can be 
shown that when the same input power is used, the proposed methodology 
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provides 4-5 times better accuracy of the mode estimation. These results present 
the main benefit of the proposed method for optimal probing signal design.  

Also, the signal’s energy is mostly allocated around the critical modes’ 
frequencies (0.5 Hz and 0.76 Hz). This is understandable because the easiest way 
to excite the mode is to introduce an excitation exactly at the frequency of the 
mode. 

The signals are generated assuming that the ambient excitation has unity 
variance in all load buses of the power system. Thus, the obtained probing signal 
variance from Table 4.1 represents a ratio between the probing signal variance 
and the variance of the ambient excitation (the adopted relative value is equal to 
one).  

4.5.2 Minimization of the output signal variance  

The goal in this case study is to minimize the response of the system 
introduced by the probing signal (k1=0 and k2=1 in (4.4) ). Therefore, in this case 
the variance of the output signal (measured voltage magnitude) is minimized. 
The variances of the damping ratio estimates are constrained to be smaller than 
10-5 (for both critical modes). The obtained probing spectra are shown in Fig. 4.5 
and Fig. 4.6 with the values of the signals’ variances shown in Table 4.2. 

 
Fig. 4.5 Spectrum of the optimal probing signal with continuous spectrum 

parameterization when the output variance is minimized. 
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Fig. 4.6 Spectrum of the optimal multisine probing signal when the output 

variance is minimized. 

 
Table 4.2 Introduced system disturbance when variance of the output signal is 

minimized. 
 White noise Multi-sine FIR 

var(u(t))  10410.0 101850 50558 
var(y(t)) 1.6761 1.2424 1.3928 

The variance of the probing signal is very large (Table 4.2) as compared to the 
case when the probing signal’s variance was minimized (Table 4.1). It is 
interesting to note that the high frequency components carry most of the signal’s 
power. This is due to the low system gain at these frequencies; thus, a probing 
signal with such components does not disturb the system significantly. In 
addition, the minimization of the output variance does not reduce this variance to 
a large extent. This can be explained by the fact that certain level of disturbance 
is required in order to obtain accurate mode estimation results. 

4.5.3 Minimization of the weighed sum of probing signal 
and output variances 

In order to minimize both probing (input) and output variance, a weighted sum 
is taken as a criterion (denoted by var{uy(t)}). The weighting factors are chosen 
to be k1=0.5 and k2=1000 because the output variance has a numerical value that 
is roughly 2000 times smaller. The obtained probing spectra are shown in 
Fig. 4.7 and Fig. 4.8, with the signals’ variances shown in Table 4.3. 
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Fig. 4.7 Spectrum of the optimal probing signal with continuous spectrum 

parameterization when both, probing and output variances are minimized. 

 
Fig. 4.8 Spectrum of the optimal multisine probing signal when both, probing 

and output variances are minimized. 

Table 4.3 Introduced system disturbance when the variance of the input and 
output signals is minimized. 

 White noise Multi-sine FIR filter 
var{u(t)}  10410.0 1441.6 1933.6 
var{y(t)} 1.6761 1.598 1.5515 
var{uy(t)} 6881.1 2318.8 2518.2 

This type of criterion represents a compromise between the two previously 
presented criteria. However, it can be noted that high frequencies do not 
contribute significantly to the mode estimation accuracy, and thus, these 
components are suppressed (compared to the case when only the output variance 
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is minimized). The result is that the power spectrum shape is similar to the case 
when only probing signal’s variance is minimized (see Table 4.1). 

4.5.4 Validation of the damping ratio variance constraint 

The procedure presented in Section 4.3 is derived using several assumptions. 
One of them is infinite data length (the obtained expressions describe asymptotic 
behavior). Also, different approximations are used in the derivation such as the 
Tustin approximation for expression of continuous domain parameters (mode 
frequency and damping ratio), the first order approximation of the expression for 
Pρ , etc. (see [209] for more details). Therefore, it is necessary to assess if the 
actual estimation variance (obtained using Monte Carlo simulations) corresponds 
to the design values. 

Four different values of the constraint for damping ratio variances are applied 
and optimal probing signals are obtained. Using the designed probing signals as 
an input, the modes are estimated using the prediction error method in 1000 
Monte Carlo simulations. The results are then used to compute the “actual” 
variance of the estimation process. The system is identified using an ARMAX 
model structure, while the modes are calculated afterwards from the identified 
model. The signals are realized using FIR filter and multisine parameterization. 
The results for the 0.5 Hz mode are presented in Table 4.4. 

Table 4.4 Variances of the damping ratio estimates observed using Monte 
Carlo simulations. 

Signal Objective 
function 

Applied Constraint Value 
10-5 5∙10-6 10-6 5∙10-7 

FI
R

 
fil

te
r var{u(t)} 1.29∙10-5 5.89∙10-6 9.17∙10-7 5.01∙10-7 

var{y(t)} 1.33∙10-5 5.99∙10-6 1.02∙10-6 4.83∙10-7 
var{uy(t)} 1.18∙10-5 6.18∙10-6 9.71∙10-7 4.91∙10-7 

M
ul

ti-
 

si
ne

 var{u(t)} 1.11∙10-5 6.11∙10-6 1.34∙10-6 6.02∙10-7 
var{y(t)} 1.26∙10-5 6.31∙10-6 9.98∙10-7 4.71∙10-7 
var{uy(t)} 1.23∙10-5 6.44∙10-6 1.26∙10-6 5.83∙10-7 

The results in Table 4.4 show a certain deviation of the estimation variance 
from the design values, but this difference is always less than 35%. Regardless, 
applying the probing methods will always lead to a better estimation variance as 
compared to the ambient data-based method (the obtained accuracy with the 
ambient data-based method for the same setup and zero input signal is 1.65∙10-5).  

4.5.5 Comparison of different signal realization methods 

In Section 4.4 three methods for signal realization are presented and their 
performances are compared here. The power spectrum obtained by minimizing 
probing signal’s variance with required accuracy of 10-5 (Table 4.1) is used for 
the realization of time-domain signals. 
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Signal realization with constrained magnitude 
In the case of signal realization using constrained magnitude, the crest factor 

can be defined by an analyst. However, an excessive reduction of the crest factor 
can compromise the shape of the obtained power spectrum (the signal might not 
have the power spectrum/autocorrelation that was designed). To evaluate the fit 
between the desired and obtained spectrum, the criterion defined by (4.39) is 
used. First, it is analyzed how this criterion changes with different values of the 
signal limits (and consequently the crest factor). The value of L is chosen to be 
equal to 2. The results are shown in Fig. 4.9. 

  
Fig. 4.9 Fitting criterion and crest factor as a function of the applied signal 

magnitude limit. 

Fig. 4.10 shows the obtained sample autocorrelation sequence for different 
values of the applied magnitude constraint. It can be noticed that when the 
accuracy is constraint to 10-5, a sufficiently good fit is obtained for magnitudes 
larger than 50 which corresponds to a fitting criterion smaller than 1000.  
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Fig. 4.10 Obtained sample autocorrelation sequence as a function of the 

applied signal limit. 

 

 
Fig. 4.11 Part of the designed probing signal with the magnitude constrained 

to 60. 

The time-domain realization of the designed signal with the magnitude 
constrained to 60 is shown in Fig. 4.11. 

 

Signal realization using an FIR filter 
The method to realize the probing signal using an FIR filter does not allow 

control over the crest factor value. Therefore, the obtained crest factors for 
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different optimization criteria and estimation accuracy levels are only reported in 
Table 4.5. 

Table 4.5 Crest factor for signals obtained using FIR filters. 

Objective 
function 

Applied Constraint Value 
10-5 5∙10-6 10-6 5∙10-7 

var{u(t)} 3.7193 3.6738 3.6463 3.6472 
var{y(t)} 3.6962 3.6924 3.6274 3.6614 
var{uy(t)} 3.6509 3.7130 3.6394 3.6726 

The obtained crest factors are in the range from 3.62 to 3.72 for all 
realizations. Note that the signals’ magnitudes can be obtained using (4.37) and 
values in Table 4.1 and Table 4.5. 

Multisine realization with minimization of crest factor 
As presented previously, the goal is to find the vector of sine waves’ phases 

that minimize the crest factor [222]. The procedure is initialized by choosing 
random phases. Table 4.6 presents values of crest factors for signals whose 
spectra were determined before. 

Table 4.6 Crest factors of the designed multisine signals. 

Objective 
function Method 

Applied Constraint Value 
10-5 5∙10-6 10-6 5∙10-7 

var{u(t)} Random phases 4.034 4.143 3.980 4.418 
Optimal phases 3.272 3.354 2.981 3.469 

var{y(t)} Random phases 2.863 3.323 3.639 4.137 
Optimal phases 2.618 2.941 3.012 3.221 

var{uy(t)} Random phases 3.579 4.182 4.236 3.901 
Optimal phases 2.754 3.338 3.693 3.472 

It can be noticed that the obtained crest factor is reduced significantly 
compared to the case with random phases. However, observe that these values 
depend on the spectrum and phases used for initialization. The obtained crest 
factors are in the range from 2.6 to 3.7, what makes this type of signal realization 
comparable to the method which uses an FIR filter.  

The presented results show characteristics of the different signal realization 
methods such as the crest factor and signal magnitude (related by (4.37)). 
However, the final decision on whether the obtained probing signal is suitable or 
not will depend on the characteristics of probing equipment and the operators’ 
judgment of the acceptable disturbance level introduced by the probing 
experiment. 
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4.6 Summary 
This chapter proposed a methodology for probing signal design used for 

power system mode estimation. Probing experiments in power systems are costly 
processes that have to be planned carefully. One of the important design 
considerations in the planning stage is the shape of the probing signal. This 
chapter solved this problem by taking into consideration the desired mode 
estimation accuracy and limitations imposed by probing equipment. It was 
shown that only the power spectrum of the signal (not the time-domain signal 
realization) determines the accuracy of the mode estimation process. This 
property enables a two stage approach where the probing power spectrum is 
determined in the first stage, and in the second stage, a time-domain probing 
signal is generated aiming to satisfy the constraints imposed by the probing 
equipment. Even though these constraints are commonly related to the probing 
signal’s crest factor, this chapter proposed a more general framework for time-
domain signal realization that can be adapted to incorporate more complex 
constraints imposed by real-life probing equipment. 

Even though the proposed methodology treats estimation accuracy as a hard 
constraint, the actual (observed) estimation accuracy differs because of the 
assumptions and approximations used in the derivation of the methodology. 
Therefore, it is recommended to apply a reasonable margin when the desired 
estimation accuracy is defined. In addition, it must be noted that the quality of 
the design process depends on the accuracy of the power system models used for 
design. These models may originate either from: (a) a physical modelling, or (b) 
an estimation processes. The accuracy of such models will thus depend on 
different sources of errors, either modeling assumptions in (a) or estimation 
accuracy in (b). The impact of such errors was not the subject of analysis here, 
and is open for further investigation. 

 

Equation Chapter (Next) Section 1 

 

 
 



 

 
 
 

   Chapter 5
5 Test jkkj 

Model Order Selection 
 

5.1 Introduction 
Mode estimation methods may have different sets of estimation parameters 

that have to be chosen carefully in order to obtain accurate estimation results. 
However, the model order used for fitting the measured system responses is a 
common parameter for most parametric methods. Generally speaking, the choice 
of model order defines the richness of the selected model structure. The richer the 
model structure is, the more accurate model can be obtained if sufficient amount 
of data is used. However, a richer model structure also means larger number of 
parameters that need to be estimated. Consequently, it is more difficult to find the 
“true” parameter values with a fixed data parcel length, which results in higher 
variance of the estimated parameters. Therefore, there is a trade-off between 
model structure richness (model order) and estimated parameter variances. This 
trade-off does not have a unique solution and generally, the optimal model 
depends on the particular application and different approaches can be used to 
compute it. 

The problem of optimal model order selection has been investigated 
extensively in the control and signal processing community [39],[232],[233]. 
However, a comparison of these methods has not been analyzed explicitly from 
the perspective of mode estimation in power systems. 

This chapter gives an overview and a discussion of four methods that can be 
used as an aid in determining optimal model orders. These methods are: 1) 
Residual analysis for model order selection [209], 2) Model order selection based 
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on singular values [39], 3) Akaike Information Criterion [61], 4) Variance-
Accounted-For (VAF) as a measure of optimal fitting between the measured data 
and the model response [39]. 

The main difference between probing based methods and ambient/ringdown 
based methods is the existence of a known input to the system. This difference 
affects the selection of the model order, however, similar procedures can be used 
when either ambient or ringdown mode estimation methods are applied. 

The model order selection algorithms are assessed using simulation outputs 
from the KTH Nordic 32 test system and the IEEE test system with 50 generators 
and 145 buses. The optimal model order is determined for selected input and 
output signals. Comparisons of the obtained results are used to draw general 
conclusions about recommended model order values for mode estimation 
applications. 

5.2 Model Order Selection Algorithms 
5.2.1  Residual analysis based model order selection 

As described previously, an ambient system response measured by a Phasor 
Measurement Unit (PMU) can be described by a single transfer function H(z) 
excited by white noise e(t), where the white noise represents random load 
changes at an aggregated level. This ambient response is also present during 
probing tests when the system is intentionally excited. Assuming the system 
linearity and using the principle of superposition, the measured synchrophasor 
signal y(t) can be decomposed into two components: one as a result of ambient 
excitation (H(z)e(t)), and another as a result of probing (G(z)u(t)) as shown in 
Fig. 4.1 and Fig. 5.1. Signal u(t) is the known probing signal and G(z) represents 
a transfer function between the probing signal u(t) and the measured output 
signal y(t). It is assumed that G(z) and H(z) have the same denominators which 
means that an ARMAX model accurately describes the system [154]. This 
implies that the modes of G(z) or H(z) represent the poles/modes of the system 
that needs to be determined. 

G(z)

H(z)

+u(t)

e(t)

Probing

Ambient

y(t)
PMU  

Fig. 5.1 Power system model during probing tests. 
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By minimizing the prediction error criterion over a set of model parameters, 
the unknown transfer functions are determined. The prediction error criterion is 
defined as: 

2

1

1( ) ( , )
N

t
I t

N
θ ε θ

=

= ∑ , (5.1) 

where [ ]1( ) ( ) ( ) ( ) ( )t H z y t G z u tε −= − . 

In the case of perfect model estimation, it can be shown that ( )tε  is white 
noise and that any deviation from the true model parameters causes an increased 
value of the prediction error criterion. In addition, it is obvious that ( )tε  should 
not be correlated with past inputs ( )u t . These two facts constitute two criteria for 
model validation and consequently model order selection [209]. These criteria are 
evaluated by plotting the autocorrelation sequence of ( )tε  and the cross-
correlation between ( )u t  and ( )tε . If the model order is sufficiently rich to 
describe the system, the obtained autocorrelation should have the autocorrelation 
of white noise (a peak at 0 and close to zero for other values). In turn, the cross-
correlation should be close to zero for all values. Then the optimal model order is 
the smallest one for which the defined requirements are satisfied. The cross-
correlation test gives better insight if G(z) is of the right order (assuming that G(z) 
and H(z) are not related as in ARMAX structure), while the autocorrelation test 
gives overall information about G(z) and H(z). This approach essentially relies on 
the analyst’s judgement on when the defined criteria are satisfied. Further, this 
imposes difficulties when the model order needs to be determined in an 
automatized fashion. However, an important property of this approach is that it 
provides additional insight about the system’s behavior and not just the value of 
the optimal model order. 

5.2.2 Model order selection using singular values 

Subspace identification methods are known for being able to provide 
numerically efficient and robust results even for complex systems [39]. Another 
benefit of subspace identification methods is that they provide straightforward 
ways for model order selection. Subspace algorithms aim to extract the column 
space of the system observability matrix 2[C CA CA ... CA ]n T

obsΟ =  from 
measured data. Without going into details about different subspace methods, it 
can be said that the observability matrix column space is determined by 
performing a singular value decomposition (SVD) on an appropriate matrix 
obtained from measurement data matrices (matrices whose elements are known 
input data or measured outputs). Determining the dimension of the column 
spaces is equivalent to selecting the model order. This can be achieved by 
calculating the singular values obtained during the computation of the 
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observability matrix column space. If the measured signal contains a relatively 
small amount of process or measurement noise, the number of singular values 
whose magnitude is relatively large will be exactly equal to the model order. 
Even if it is not possible to clearly distinguish the true model order, this approach 
allows to see how and to what extent additional parameters (added by increasing 
the model order) can influence the fit between measured and modeled outputs. 
Essentially, the optimal model order will be selected when the additional 
singular value (singular value that corresponds to additional model order) is not 
significantly lower from the previous singular value or when its value approach 
the singular values that are the result of the noise in the system. In this thesis, the 
MOESP subspace identificaiton method is used to demonstrate the applicability 
of singular values for optimal model order selection. 

5.2.3 Akaike Information Criterion for model order 
selection 

Any information criteria can be viewed as a cost function of two parts: a loss 
function and a model complexity penalty. In this context, the Akaike Information 
Criterion is not an exception. One of its versions can be written in the following 
way: 

( ) ln( ( )) ,AIC N I nρ θ ρ= +  (5.2) 

where, 

N  - number of data samples,  

n  - number of system parameters (characterizing the order of the system), and  

ρ  - regularization coefficient, which is usually equal to 2. 

The idea behind such formulation is that AIC puts a penalty on the use of 
models with orders higher than necessary. It should be noted that this penalization 
factor can also be used in combination with singular value based model order 
selection. An advantage of the AIC is that minimization can be performed with 
respect to different model structures. More details about AIC and general 
identification theory can be found in [61]. 

5.2.4 Variance Accounted For criterion for model order 
selection 

A comprehensive way of evaluating the goodness of fit between measured 
data and the data obtained by the estimated model is the so-called Variance-
Accounted-For (VAF) performance index. This index is defined as: 
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, (5.3) 

where ( | 1)y k k − is the one step ahead predictor defined as: 

1 1( | 1) ( ) ( ) ( ) 1 ( ) ( )y k k H z G z u t H z y k− − − = + − 
 . 

As described in [209], the prediction error method is derived under the 
assumption that 1( )H z−  is a proper and monic transfer function with a stable 

inverse. This means that 11 ( ) ( )H z y k− −   depends only on past values of ( )y k  

and not on ( )y k itself.  

Instead of using the one-step ahead predictor ( | 1)y k k −  in (3), it is also 
possible to use the signal ( )y k  simulated with the model over the period of 
interest. The difference between these two approaches (one step ahead predictor 
vs fully simulated signal) is that in the latter case, previous measurements are not 
used to improve the prediction as it was done for ( | 1)y k k − . In other words, if 
previous measurements are not used for prediction, the VAF indicates how the 
model output matches the measured signals over a longer period of time, whereas 
the one step ahead predictor better explains the matching of short term system 
dynamics. 

Here, it is also important to make a distinction between the data used for 
model identification and the data used for validation. The criterion (5.3) can be 
obtained in both cases, but if the identification set is used, the criterion can show 
misleading high values indicating a good fit which are caused by overfitting. 
Therefore the recommended practice is to use half of the data for identification 
and half for validation. Once the model order is decided, the identification can be 
carried out one more time using the whole data set in order to increase the 
accuracy of the identified model.  

5.3 Case Studies 
5.3.1 Study using the KTH Nordic 32 Test System 

This section shows results obtained using the KTH Nordic 32 test system. All 
simulations have been performed using 3000 data samples which correspond to 
10 minutes of measurements at 5 Hz sampling frequency (downsampled and pre-
processed original PMU stream). In this example, it is assumed that reactive 
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power injection in bus 41 is the input signal, whereas the measured voltage 
magnitude at bus 48 is considered as the output.  

Fig. 5.2-Fig. 5.5 show the autocorrelation sequences of the identification 
residuals (upper part of the figures) and the cross-correlations between the 
residuals and input signals (lower parts of the figures). The autocorrelation and 
cross-correlation sequences are plotted with the time lag (number of samples) as 
an independent variable. 

 
Fig. 5.2 Autocorrelation of ( )tε  and cross-correlation between ( )tε and ( )u t

for model order 6. 

Good identification results correspond to very small values in the auto and 
cross-correlation sequences except at the zero-lag element in the autocorrelation 
sequence (the residual is supposed to be white noise). An adopted threshold for 
which the value can be considered small corresponds to 99 % confidence interval 
(corresponds to the range of residual values with a specific probability of being 
statistically insignificant for the system). The numerical value of the threshold is 
around 0.05 and it is marked with a yellow strip in Fig. 5.2. Fig. 5.3 shows that 
this criterion is satisfied for model order 12. 
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Fig. 5.3 Autocorrelation of ( )tε  and cross-correlation between ( )tε and ( )u t

for model order 12. 

 
Fig. 5.4 Autocorrelation of ( )tε  and cross-correlation between ( )tε and ( )u t

for model order 18. 

0 5 10 15 20 25
-0.5

0

0.5

1
Correlation function of residuals. Output y1

lag

-25 -20 -15 -10 -5 0 5 10 15 20 25
-0.05

0

0.05
Cross corr. function between input u1 and residuals from output y1

lag

0 5 10 15 20 25
-0.5

0

0.5

1
Correlation function of residuals. Output y1

lag

-25 -20 -15 -10 -5 0 5 10 15 20 25
-0.05

0

0.05
Cross corr. function between input u1 and residuals from output y1

lag

 
 



120 CHAPTER 5.    MODEL ORDER SELECTION 

 
Fig. 5.5 Autocorrelation of ( )tε  and cross-correlation between ( )tε and ( )u t

for model order 22. 

The singular values, obtained using the MOESP subspace identification 
algorithm, are presented in  Fig. 5.6. This figure shows how an increase in model 
order contributes to a better data fit. In other words, a smaller last singular value 
(with corresponding model order) implies a better fit between the model and the 
underlying process). However, the model orders higher than 18 do not lead to any 
visible improvement, while the computational burden is increased.  
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  Fig. 5.6 Singular values obtained from the MOESP subspace identification 

algorithm (KTH Nordic 32 test system). 

A similar approach can be used in analyzing the Akaike Information Criterion 
(AIC). Fig. 5.7 also shows calculated AIC for different model orders. In addition 
it shows the effect of the penalizing factor that leads to the criterion increase for 
model orders higher than 30. What can be seen from the results in Fig. 5.6 and 
Fig. 5.7 is that both, the Akaike Information Criterion and singular values provide 
slightly less conclusive results than the residual analysis.  

-1.27

-1.28
-1.29
-1.30
-1.31
-1.32
-1.33
-1.34
-1.35

x 104

5 10 15 20 25 30 35 40 45 50
Model order  

Fig. 5.7 Akaike Information Criterion (AIC) for different model orders (KTH 
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The next model order selection method that is applied is the Variance-
Accounted-For (VAF). Four types of this indicator have been calculated and 
shown in Table 5.1. First, the VAF is computed using the data that are used for 
the identification process and the one-step ahead predictor (data obtained from the 
model). This value provides information on how good the fit is between the model 
and the dataset. Second, instead of using the data used during identification, an 
independent dataset is used (validation set). This value of VAF gives more 
information about the fit between the model and the actual underlying process. 
The third and fourth indicators are computed using fully simulated data in contrast 
to the one-step ahead predictor. These indicators say more about how good the 
model fit is over a longer period of time.  

Table 5.1 Model fitting criteria for different model orders. 

Model 
order 

One step ahead VAF Simulated VAF 
Identif. 

data 
Validation 

data 
Identif. 

data 
Validation 

data 
6 96.94 96.84 82.07 81.21 
12 98.02 97.99 94.97 94.63 
18 98.04 97.84 95.44 94.36 
22 98.06 98.03 95.01 94.71 

 

The obtained results suggest that model orders higher than 18 do not 
contribute to better mode estimation (the validation data VAF does not increase 
significantly when the model order is higher than 18). In addition, it should be 
noted that smaller model orders are more appealing because they will result in a 
faster estimator response, as well as increased computational efficiency. 
Therefore, it can be concluded that a model order of 12 can be chosen without 
substantial change or improvements in the estimation accuracy. 

5.3.2 Study using the IEEE Test System with 145 buses 
and 50 generators 

In this subsection a test system with 145 buses and 50 generators is used to 
evaluate the performance of the model order selection methods [234],[235]. The 
reactive power injection at bus 111 is selected as input and the voltage magnitude 
of bus 59 is selected as output. Similar studies have been conducted as in the case 
of the KTH Nordic 32 test system, and the results are reported in Fig. 5.8-
Fig. 5.12. and Table 5.2. 
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Fig. 5.8 Autocorrelation of ( )tε  and cross-correlation between ( )tε  and 

( )u t  for model order 18. 

 
Fig. 5.9 Autocorrelation of ( )tε  and cross-correlation between ( )tε  and 

( )u t  for model order 22. 
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Fig. 5.10 Autocorrelation of ( )tε  and cross-correlation between ( )tε and 

( )u t for model order 6. 

 
Fig. 5.11 Autocorrelation of ( )tε  and cross-correlation between ( )tε and 

( )u t for model order 12. 
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Fig. 5.12 Singular values obtained from the MOESP subspace identification 

algorithm (IEEE 145 bus test system). 

  
Fig. 5.13 Akaike Information Criterion (AIC) for different model orders (IEEE 

145 bus test system). 
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Table 5.2 Model fitting criteria for different model orders 

Model 
order 

One step ahead VAF Simulated VAF 
Identif. 

data 
Validation 

data 
Identif. 

data 
Validation 

data 
6 97.89 97.75 87.23 86.52 
12 98.44 98.35 87.91 84.55 
18 98.89 98.82 93.92 93.18 
22 98.86 98.85 94.41 94.37 

 

As in the previous case, the Akaike Information Criterion generally provides 
less conclusive results. The results presented indicate that a model order of 20 
describes sufficiently well the system dynamics, whereas a lower model orders 
(around 18) can be selected if faster mode estimation results are required. This is a 
bit higher model order in comparison to the KTH Nordic 32 test system. This 
result is understandable taking into account that the system is more complex 
(contains more dynamics). 

5.4 Summary 
This chapter presented the application of four methods for optimal model 

order selection for probing based mode estimation. A careful consideration of the 
results obtained by the described methods provides good insight into the nature of 
the process that generates low frequency oscillations in the system. However, 
none of the described methods provides a unique solution to select the best model 
order. Instead, each method contributes to a better understanding of the 
underlying process. Therefore, a detailed analysis of all the obtained results 
should lead to a set of rules that can be used to derive a fully automatized model 
order selection algorithm, which is a topic of future research. 
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   Chapter 6
6 Test jkkj 

Implementation of a Real-Time Tool for 
Mode Estimation 
 

6.1 Introduction 
In addition to the theoretical development of methods for mode estimation 

[200], it is important to test an integrated solution for mode estimation including 
measurement data acquisition. This includes physical Phasor Measurement Units 
(PMUs) and the Information & Communication Technologies (ICT) systems that 
support the mode meter application. 

This chapter presents a mode meter application that integrates the entire Wide 
Area Measurements Systems (WAMS) ICT infrastructure [215],[236]. Statnett’s 
Synchrophasor Software Development Kit (SDK), which allows fast prototyping 
and testing of the integrated WAMS solution [237], is used here as a key 
software building block for developing the mode estimator. The SDK extracts 
synchrophasor data received in the IEEE C.37.118 protocol and converts them to 
a more convenient form (LabVIEW signals). The mode estimator is implemented 
in the LabVIEW environment using state machine logic [238]. This architecture 
enables easy modifications and further developments to the estimator. 
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6.2 Mode Estimation Algorithm 
In order to demonstrate the real-time application of a mode estimation tool, a 

method based on the Yule-Walker’s equations was used. In the sequel, this 
method is shortly described. 

During (quasi) steady state operation, it can be assumed that the power system 
is mainly disturbed by small random load variations. These load variations are 
caused by the random behavior of individual consumers at different voltage 
levels. Because these random load changes are small in magnitude, the power 
system behavior can be described by a linear model. Therefore, the power system 
model can be written as follows: 

( ) ( ) ( )j j jω ω ω= ⋅Y H U , (6.1) 

where: 

( )jωY – vector of measured electric variables; 

( )jωH – transfer function matrix of the power system; 

( )jωU – vector of inputs (load variations). 

In order to demonstrate the mode estimation algorithm’s principle, a single 
input-single output system is used [239]. Assuming that the individual load 
behavior is random and independent from other loads, the (input) load variations 
can be represented by white noise. Keeping in mind that the frequency spectrum 
of white noise is a constant function, it follows that the spectrum of the measured 
signal is proportional to the amplitude response of the system (| ( ) |)H jω . 
Therefore, the mode estimation algorithm determines the coefficients of a 
rational transfer function whose amplitude response is proportional to the 
spectrum of the measured signal. This can be written in the discrete time domain 
as: 

1 0
( ) ( ) ( )

p q

i j
i j

y k a y k i b u k j
= =

= − − + −∑ ∑ ,  (6.2) 

where:  

( )y k  – measured output signal at time point k; 

( )u k  – random load input at time point k (assumed to be white noise); 

ia , jb  (i=1,…, p, and j=0,…, q) – unknown coefficients of the rational 
transfer function; 
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p, q – orders of the numerator and denumerator of the estimated rational 
transfer function, respectively. 

Multiplying both sides of (6.2) by ( )y k n l− − , taking the expected value and 

using the definition of autocorrelation (r) [218], the following matrix equation 
can be written (known as modified Yule-Walker equations) [240]: 

1( ) ( 1) ( 1)

( 1) ( ) ( )p

r q r q p a r q

r q p r q a r q p

 − + +   
    = −    
    + − +    



   



. (6.3) 

Note that the following property is used in the derivation: 

{ ( ) ( )} 0E u k j y k j l− ⋅ − − = , for l=1,..,p. (6.4) 

The autocorrelations in (6.3) are estimated using (6.5): 
1

0

1( ) ( ) ( )
N n

k
r n y k n y k

N

− −

=

= +∑ . (6.5) 

The solutions of the equation system in (6.3) are the autoregressive (AR) 
coefficients of the model, which are sufficient to compute the modes of the 
system. In case that the moving average (MA) part is required, it can be 
computed using Durbin’s method [48]. 

The characteristic equation of the system is defined by the computed AR 
coefficients as follows: 

11 ... 0pa a+ + + = . (6.6) 

The roots of the characteristic equation represent the modes of the system in 
the z-domain. These modes (denoted by z) can be transformed easily to the s-
domain using: 

1 ln( )
s

j
T

= + =s σ ω z , (6.7) 

where Ts is the signal’s sampling period. σ  and ω  are real and imaginary 
components of the modes in the s-domain (s), respectively. Once the s-domain 
modes of the system are calculated, the damping ratio of the i-th pole ( iζ ) is 
computed using the following formula: 

2 2

i
i

i i

σ
ζ

σ ω

−
=

+
, (6.8) 
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where iσ and iω  are the i-th elements in σ  and ω , respectively. 

6.3 Synchrophasor Software Development Kit (SDK) 
Statnett’s Synchrophasor Software Development Kit (SDK) enables easy real-

time access to PMU and Phasor Data Concentrator (PDC) data streams [237]. 
The LabVIEW platform provides easy integration with different hardware 
equipment as well as an intuitive graphical programing language (G language). 
The main benefit of the software development toolkit is that it exempts a 
developer of complicated synchrophasor data handling. Instead, the developer is 
required only to set the appropriate PDC connection parameters such as PDC ID, 
PDC host address and the port number to connect to the PDC stream. 

The general architecture of the SDK is shown in Fig. 6.1. 
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Data

Data 
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Data extractor (LabView PMU control)

• Time step
• Voltage Phasor
• Current Phasor
• Frequency

PRL Library

Queue Handler

 
Fig. 6.1 Statnett's SDK architecture. 

The SDK has two major components, Data Collector and Data Extractor. 

6.3.1 Data collector 

The Data Collector reads the data from the PDC/PMU and stores them in 
configurable buffers. This component uses a Dynamic Link Library (DLL) 
developed in the C++ programming language to connect to the PDC stream via 
the IEEE C37.118.2 protocol. In addition, the DLL reads the configuration data 
of the PDC stream, such as channel names, scaling and number of the measured 
signals by type (analog, phasors or digital signals).  

The incoming data from the DLL are received in the Live Buffer. When the 
Live buffer is full the data is put in the Access Buffer, where data of arbitrary 
length can be stored. The user (custom application) receives the data using the 
Queue Handler (which reads data directly from Live Buffer), or using the Buffer 
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Handler, which reads an arbitrary amount of data from the Access Buffer (this 
option is used in the mode meter application development).  

6.3.2 Data extractor – LabVIEW PMU control   

The data extractor is a collection of LabVIEW routines or Virtual Instruments 
(VIs) that allows the user to access the buffers and queues in the Data Collector. 
It reads the data from the buffers and provides the user with control over the data 
streams in a form suitable for further processing in the main application (as a 
signal data type in LabVIEW). The interface of this VI is shown in Fig. 6.2.  

Other parameters such as PMU selection, data length, and others, are set in an 
auxiliary user interface. Additional LabVIEW VIs are provided in the SDK for 
data handling and processing.  

 
Fig. 6.2 LabVIEW PMU Control block. 

6.4 Mode Meter Software Architecture 
The state machine architecture [238] is chosen for the development of the 

mode meter application. This architecture allows to decouple different tasks and 
to develop them independently. The block diagram of the state machine is given 
in Fig. 6.3: 
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Fig. 6.3 Global block diagram of the implemented mode meter. 
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The software’s structure, which is typical for real-time applications, consists 
of an initialization step and a main loop.  

The initialization step is performed only once and it sets all variables to their 
initial values, as well as populating initial settings such as data source, refresh 
rate, etc. After the initialization step the program enters the main loop which 
consists of four blocks, namely: data acquisition, preprocessing, estimation of the 
ARMA coefficients and reports. 

6.4.1 Data acquisition  

Data acquisition imports a parcel of data which is used for mode estimation. 
The length of parcel is defined in the software’s options and usually is in the 
range of 10-15 min. There are two operating modes of data acquisition:  

1) Acquisition through a PDC and Statnett’s SDK. The signal used for mode 
estimation is selected among the available real-time measurements in 
Statnett’s SDK interface [237]. 

2) Acquisition from an internal data generator. The internal data generator 
provides Gaussian white noise filtered by a linear IIR filter. The 
coefficients of the IIR filter are set manually by the user in the Testing tab. 

Software modularity is achieved through a standardized interface among the 
blocks. The following interface is adopted and implemented using a “type 
definition” LabVIEW structure (Fig. 6.4): 

 
Fig. 6.4 Common data structure. 

This user defined type consists of 6 elements, namely: 

1) Waveform – Data parcel with corresponding time stamps;  

2) AR Order – Order of the estimated autoregressive part of the model; 

3) MA Order – Order of the estimated moving average part of the model; 

4) Sampling frequency - Sampling frequency of the signal; 

5) AR Coefficients – Calculated autoregressive coefficients; 

6) MA Coefficients – Calculated moving average coefficients. 

This user defined type is sufficient for the communication between different 
blocks. This means that the block’s functionality is well defined and it is easy to 
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maintain the interfaces between blocks. This also means that each individual 
block can be developed independently, thus making software maintenance easier.  

6.4.2 Preprocessing 

After the data parcel is imported, the parcel is preprocessed in order to make it 
more adequate to apply the mode estimation algorithm. This includes signal 
downsampling, mean and outlier removal. Downsampling greatly improves the 
accuracy of the estimation algorithm because only the frequency range of interest 
is considered, i.e. the estimator is not constrained by fitting dynamics at higher 
frequencies. Also, in the case of high sampling frequency data, the modes in the 
z-domain tend to be grouped around point (1,0) in the complex plane, which 
creates numerical difficulties. More details can be found in [216]. 

6.4.3 Estimation of ARMA coefficients 

A preprocessed signal is fed into the main computation block, which 
calculates the ARMA coefficients of the stochastic process. The algorithm used 
in this block was described before. This block does not perform any further 
computation because it is important to keep it independent from other blocks in 
order to make the core algorithm easy to update or replace. The computed 
ARMA coefficients are stored in the interface structure (Fig. 6.4.). The 
coefficients are later used to compute the estimation results presented to the user. 

6.4.4 Reports 

The computed ARMA coefficients are used in the Report block to present 
results to the user. This block computes the spectrum, and the poles in the 
discrete and continuous domain (described by (6.7) and (6.8)). Furthermore, this 
block buffers results from previous iterations. Each of these calculations are 
performed in sub-routines (sub VIs).  

The algorithm described is executed in a timed loop, and paused after the 
Report block has been executed. The next iteration starts at the time specified in 
the settings of the timed loop. 

Note that overlapping in the algorithm is defined by the loop period and the 
data parcel length.  

6.5 User Interface 
The user interface is designed to provide relevant information about the 

estimated modes of the system. There are two main parts of the interface: 1) 
Time domain signal plots (upper part) and 2) Computed results and estimator’s 
settings (lower part). 

In the upper part, the measured signal is shown in the time domain, as well as 
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the signal which is obtained after preprocessing (Fig. 6.5). 

 

 
Fig. 6.5 Time domain signal presentation. 

The lower part is composed of five parts (tabs), namely: 

1) Main Results tab (Fig. 6.6). This tab shows the estimated location of the 
modes in the complex plane as well as the history of estimated damping 
ratios. In addition, the frequency and damping ratio of the most critical 
mode are shown. 

 
Fig. 6.6 Main results interface14. 

2) Spectra tab (Fig. 6.7). Shows the measured signal in the frequency domain. 
The spectrogram also gives information on how the spectrum has changed 
over time.  

14 The red lines in Fig. 6.6 and Fig. 6.7 were added to show important values (results) obtained 
from the tests and they are not part of the application interface. 

 
 

                                                           



6.6    EXPERIMENTAL RESULTS  135 

 
Fig. 6.7 Spectral estimation results 

3) Numerical results tab. This tab presents numerical estimation results that 
are required for detailed analysis. 

4) Test tab. Defines the parameters of the IIR filter of the data generator that is 
used in the simulation operating mode. 

5) Options tab (Fig. 6.8). Defines the parameters of the estimator such as data 
length, etc. 

 

 
Fig. 6.8 Options tab of the mode estimator. 

6.6 Experimental Results 
The developed mode meter is first tested in the KTH SmartTS Lab using real-

time hardware-in-the-loop simulation with Opal-RT’s simulator and physical 
PMUs connected to it [241]. In the second test, a PMU connected to a low 
voltage grid is used for mode estimation in the Nordic grid. 

6.6.1 Real-time hardware-in-the-loop test 

Opal-RT’s simulator is used for the hardware-in-the-loop (HIL) simulation of 
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the KTH Nordic 32 test system [212]. This system has a dominant mode at 
0.4987 Hz with 3.5223 % damping ratio (computed using classical small signal 
stability analysis). The ambient response of the system is simulated by imposing 
random load variations in all load buses. It is assumed that these variations are 
described by Gaussian white noise. The phasor voltage magnitudes at bus No. 49 
are chosen for mode estimation because that bus has the highest observability of 
the dominant mode [242]. The simulated signals (three-phase voltage 
waveforms) go through a digital to analog interface and are fed into a National 
Instruments PMU implemented in the CompactRIO platform_[243]. The PMU is 
interfaced with a PDC that forwards the computed phasors to the application. 
The data parcel length used for estimation is chosen to be 10 minutes of the bus 
frequency as computed by the PMU. 

 
Fig. 6.9 Mode estimation results using signals generated through RT HIL 

simulation. 

The results of this test are depicted in Fig. 6.8 and Fig. 6.9. It can be noticed 
that the estimator finds the 0.5 Hz mode to be the most critical with damping 
ratio oscillating around 4 %. Because this is a stochastic process (estimation), 
these results are not sufficient for a full assessment of the estimator’s 
performance. To gain better insight into the estimator’s performance, a large 
number of estimates (120 estimates obtained from 120 different 10-minutes data 
parcels) is recorded and the mean value and variance of the estimates are 
computed from: 
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where x  is the mean value of the all estimates and N is the number of estimates 
(N=120). 
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Fig. 6.10 Spectrum of the signal generated by the real-time hardware-in-the-

loop simulation. 

Further, these results are compared against an off-line mode estimator 
implementation in MATLAB, without physical PMUs involved (no HIL). This 
means that it is possible to discern between the error caused by the estimator 
itself and the errors from the measurement system (there are no measurement 
errors within the MATLAB (No HIL) simulation environment).  

Table 6.1 Stochastic properties of the mode estimator. 

 Hardware in the loop Software simulation 
Mean {f} [Hz] 0.5073 0.4985 
Mean {ξ} [%] 4.0910 3.6905 

Var {f} 1.1037e-04 7.5797e-05 
Var {ξ} 1.9088 1.7184 

It can be seen that the HIL test introduces additional error which can be 
explained by the imprecision of the HIL chain, including the limits of the PMU’s 
accuracy. 

6.6.2 Test using measurements from the Nordic grid 

After having validated the software in the laboratory, the software was tested 
using real-time measurements from a PMU in the Nordic grid. The results from 
this test are shown in Fig. 6.5-Fig. 6.7, whereas the options used are shown in 
Fig. 6.8. Several oscillatory modes can be observed in Fig. 6.6 and Fig. 6.7. The 
most critical mode has a frequency of around 0.39 Hz and damping around 9 % 
(in average). Other modes that are observable appear at 0.2 Hz, 1 Hz and 1.4 Hz, 
while a 0.5 Hz mode sporadically appears as a poorly damped mode. These 
estimates are quite in accordance with the results reported in_[244]. Also, the 
mode with frequency of 1 Hz has been reported in [245] and (presumably) it can 
be classified as a forced oscillation.  
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6.7 Summary 
This chapter presented a real-time mode meter software implementation and 

its testing in real-life operating conditions. The mode meter uses the well-known 
methodology based on the Yule-Walker equations. The performed tests show 
that the tool provides results comparable to those obtained in the software 
simulation mode. In addition, this chapter demonstrates that with the tools used, 
a powerful real-time WAMS application can be developed in relatively short 
time.  

In addition to intrinsic errors caused by estimation algorithms, mode estimates 
are affected by errors originating in the WAMS. The WAMS errors might have 
different effects depending on the mode estimation algorithm used. This is a 
reason why all mode estimators should be tested in an integrated environment 
(with WAMS) to better understand the actual mode estimation performance.  

In order to make full use of the ambient data-based mode estimation approach, 
further improvements to the tool are necessary. In addition to the implementation 
of more sophisticated and precise mode estimation algorithms, one of the main 
requirements is that the algorithm provides confidence intervals for the 
estimates. Confidence intervals are necessary for operators to take corrective 
actions initiated by the mode estimator results. Furthermore, the tool should be 
able to use all the available synchrophasor signals. 

 

 

 
 



 

 
 
 

   Chapter 7
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Conclusions 
 

It is widely accepted that mode estimation is one of the most important 
applications of wide area monitoring systems. However, despite the fact that a 
large number of mode estimation methods have been developed, the results 
obtained are not sufficiently robust and reliable to be used as a critical decision 
support tool in every day operation. The main goal of this thesis was to improve 
the process of mode estimation by closely identifying the causes of possible 
errors in the overall process. The second goal was to provide a comprehensive 
guide for the implementation of the mode estimation tool by tackling 
implementation issues that are traditionally unjustifiably neglected in the 
literature, such as model order selection and optimal signal selection, as well as 
hardware and software design considerations for such tools. 

The thesis is composed of six chapters, a list of references and conclusions. 
Introductory remarks, a detailed literature review and the main points of the 
thesis were provided in Chapter 1. Chapter 2 provided a solution for the first 
problem that the operators face in the implementation of mode estimation tools, 
i.e. the question of which signals should be used as the input. This chapter 
proposed a criterion for signal selection providing a tool for systematic and 
quantitative analyses. This is useful because the previous methods for signal 
selection were mostly based on heuristics or on observability analysis that has 
been proved to be inadequate. It has been shown that not only the power system 
model affects the decision on signal selection, but also the characteristics of the 
ambient noise excitation that is neglected in the observability based methods. In 
addition, it was shown that signal selection is similar to the PMU placement 
problem for this particular application, which means that the proposed solution 
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provides a way of including mode estimation requirements into the global PMU 
placement formulation.  

The important phenomenon of forced oscillations and of random non-white 
noise load changes was addressed in Chapter 3. By exploiting the intrinsic power 
system property that the characteristics of electromechanical modes are 
predominately determined by the transmission part of the system, a new mode 
estimation algorithm was formulated. The proposed estimator is capable of 
minimizing the effect of forced oscillation on mode estimation results. 

In Chapter 4, it was shown that the accuracy of probing methods can be 
radically improved simply by shaping the frequency spectrum of the probing 
signal, instead of giving the same importance to all the probing signal’s 
frequencies. Namely, the results showed an improvement of 4-5 times in mode 
estimation accuracy when the probing signal was optimally shaped according to 
the proposed methodology. Also, it is important to note that improved accuracy 
comes without compromising the disturbance level or the cost of generating the 
probing signal. The proposed method for optimal probing signal design is 
formulated as a low order Linear Matrix Inequality optimization problem, which 
makes it numerically efficient. In addition, the probing signal with the optimal 
spectrum was generated considering arbitrary time domain signal constraints, 
which can be imposed by various probing signal generating devices. 

Detailed models of power systems typically have a very large number of 
states/parameters and identifying such complex models from measurements is 
typically not feasible. This is the main reason for using reduced model orders for 
measurement based modeling. However, there is no unique answer to the 
problem of determining the optimal reduced model order because it represents a 
trade-off between the level of modeling detail and accuracy. In order to 
determine the best possible model order it is necessary to analyze different 
model reduction aspects. These analyzes were carried out in Chapter 5, where 
different methods for optimal model order selection were analyzed.  

Finally, Chapter 6 has provided a description of the practical implementation 
of a real-time mode estimation tool. This includes a presentation of the used 
hardware for real-time hardware-in-the-loop testing of the software prototype, 
the software’s architecture, graphical user interface, as well as details of the most 
important software components, such as the Statnett’s SDK that allows easy 
access to synchrophasor data streams. 

The basis for the presented methods and analyses was found in the theory of 
the prediction error system identification methods. Even though prediction error 
methods are generally not considered the most computationally efficient, they 
were selected as a basis because they provide deep insight in the system 
identification process through formal mathematical optimization. 
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The fundamental contributions of the thesis are mathematical expressions 
presented, which explain the nature of mode estimation uncertainty. These 
expressions were used throughout the thesis for solving different problems that 
affect classical mode estimators. This theory was used to derive a quality metric 
for each measured synchrophasor signal, which was later used as a solution for 
the signal selection problem. Furthermore, prediction error theory was used to 
establish a relationship between probing signals and mode estimation 
uncertainty, which allowed deriving a solution to determine the optimal spectrum 
of the probing signal. The same theory was also used to formulate a method to 
determine optimal order of the identified model. 

In addition to these theoretical results, the thesis provides a clear guidance 
how the theory can be applied in practice. For instance, the signal selection 
problem was solved using efficient numerical algorithms that are suitable for 
real-time applications; probing signals were designed considering general time 
domain constraints that can be different for each probing device; and finally, a 
prototype software implementation of the mode estimation application that can 
be run using real-time measurements has been developed and described in detail. 
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