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Abstract
We investigate the alterations of functional networks of patients suffering from mild cognitive
impairment and Alzheimer’s disease (AD) when compared to healthy individuals. Departing from
the magnetoencephalographic recordings of these three groups, we construct and analyse the
corresponding single layer functional networks at different frequency bands, both at the sensors
and the regions of interest (ROI) levels. Different network parameters show statistically significant
differences, with global efficiency being the one having the most pronounced differences between
groups. Next, we extend the analyses to the frequency-band multilayer networks (MN) of the same
dataset. Using the mutual information as a metric to evaluate the coordination between brain
regions, we construct the αβ MN and analyse their algebraic connectivity at baseline λ2−BSL (i.e.,
the second smallest eigenvalue of the corresponding Laplacian matrices). We report statistically
significant differences at the sensor level, despite the fact that these differences are not clearly
observed when networks are obtained at the ROIs level (i.e., after a source reconstruction
procedure). Next, we modify the weights of the inter-links of the multilayer network to identify the
value of the algebraic connectivity λ2−T leading to a transition where layers can be considered to be
fully merged. However, differences between the values of λ2−T of the three groups are not
statistically significant. Finally, we developed nested multinomial logistic regression models (MNR
models), with the aim of predicting group labels with the parameters extracted from the MN
(λ2−BSL and λ2−T). Using these models, we are able to quantify how age influences the risk of
suffering AD and how the algebraic connectivity of frequency-based multilayer functional
networks could be used as a biomarker of AD in clinical contexts.

1. Introduction

Network Neuroscience [1] consists of the analysis of structural and functional networks coming from different
brain recording modalities. The rationale behind this approach is based on the fact that the brain is a complex,
nonlinear, dynamical system where neural populations are constantly coupling and decoupling over differ-
ent spatial and temporal scales with the aim of transmitting and processing information. Importantly, brain
functions emerge from these interactions, from basic biological regulation to highly complex cognitive abil-
ities. Network neuroscience is a suitable tool to study these processes, where nodes can be single neurons
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(at the microscale), cortical columns (mesoscale) or large neuronal populations (macroscale). Nowadays,
we can track these interactions experimentally at different time scales, i.e. microseconds using electro- or
magneto-encephalography (EEG and MEG, respectively) or seconds using, for example, functional magnetic
resonance imaging (fMRI). This perspective has revolutionised the field of neuroscience, leading to great
advances in the understanding of the healthy and diseased brain [2, 3]. The analyses of how functional brain
networks organise to transmit and process information have shown an emerging hierarchical topology, with
massively connected areas (hubs) and communities of highly connected nodes [4]. Under this new perspective,
the picture drawn on different psychiatric disorders has changed dramatically, revealing important changes in
the topological organisation of functional networks [3], and helping to develop new biomarkers based on
network parameters, useful to classify patients and predict their evolution [5, 6].

Although the analysis of functional networks is still a hot topic and provides answers to many unresolved
questions, most of the studies collapse all the information contained at different scales into one single network,
having profound consequences on the conclusions one can draw [7]. In this sense, the multilayer formal-
ism is more realistic to describe the transmission of information in the brain, whose general framework was
described some years ago [8–10], along with the generalisation of some quantities from single layer networks
to multilayer networks (MN) [11].

Functional brain networks are constantly changing over time. Tracking the evolution of the topology’s
dynamics across multiple scales during the execution of a task or following development and ageing is an
interesting scientific quest, impossible to tackle with single layer networks, which are temporal snapshots of
brain activity. To overcome this issue, some authors have proposed time-evolving multiplex networks, where
layers represent whole-brain connectivity at different time steps [12, 13]. Recent generalisations of the modu-
larity parameter Q to MN allow for graph partitions across layers [14], enabling the study of modules stability
through different time scales (applied in [12, 13] during a learning task and training). However, how to quantify
the weights of the past dynamics in a multilayer brain network is still an open question.

On the other hand, we must take into account that cross-frequency interactions are of major importance
for information integration [15–18]. Fast oscillations allow precise timing of events in small neuronal popula-
tions, while slow ones recruit larger populations in long-range communication [18]. These interactions have
been observed empirically in two distinct modes: phase-amplitude-coupling (PAC) and amplitude-envelope
correlations (AEC) [15]. It is still a matter of debate if both occur at the same time and how they coordinate
during different cognitive operations. In any case, it has been hypothesised that such mechanisms are behind
information binding to form coherent cognitive percepts (for example, integrating different features of the
same visual stimuli), movement coordination and memory consolidation. To study how different frequency
bands interact, some authors propose the application of the multilayer framework, where each layer accounts
for a different frequency band. Brookes et al [19] used this approach to analyse a visuomotor task recorded with
MEG, studying differences between patients suffering from schizophrenia and healthy individuals. They mea-
sured the connectivity within layers with the envelope correlation and found that it correlates with the severity
of the persistent symptoms. Yu et al [20], analysed MEG registers from subjects with Alzheimer’s disease (AD)
and controls, finding several ‘multilayer hubs’ affected by the disease that were not detected in the individual
layers. These hubs (left hippocampus, posterior areas from the default mode network and occipital regions)
showed different connectivity patterns and their vulnerability correlated with disturbances in the cognitive
function and abnormal cerebrospinal fluid amyloid-β . Similarly, De Domenico et al [21] identified hubs in a
frequency band multiplex network built from fMRI, improving notably the detection of schizophrenic patients.
These findings reflect that multilayer hubs might not be the same as single layers hubs, drawing a much more
complex picture of the functional role of highly connected nodes.

A novel question posed in frequency bands multilayer/multiplex networks concerns the level of interde-
pendence between layers, which determines how information flows from any node to the rest of the network
across layers. It can be studied in terms of the second smallest eigenvalue of the Laplacian matrix, λ2, associ-
ated to the Fiedler vector. The λ2 has been typically studied in networks to explore diffusive processes [22],
synchronisation and robustness [23] (directly related to graph partitioning problems). It has been proven ana-
lytically that the behaviour of λ2 in multiplex networks is a function of the number of identical, diagonal
interlinks [24], enabling supperdiffusion (diffusion faster than that of any of the layers considered individu-
ally), at least for some range of the diffusive constant D [22]. This behaviour seems to be ubiquitous in MN,
regardless of the topology of each individual network, at least for classical network science models (i.e., ran-
dom regular, Barabási–Albert, Watts–Strogatz and lattices), as demonstrated numerically in [25]. In all cases,
for two-layer multiplex networks with identical interlayer links, λ2 follows two distinct regimes. While lay-
ers are sufficiently independent and act as distinct entities, the value of λ2 is independent of the structure
of the two layers. As more interlayer links are added, the network undergoes a sharp structural transition
[24], and λ2 stabilizes at (1/2)(LA + LB), half the eigenvalue corresponding to the superposition of both layers
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(λS/2) [22]. In this regime, the network acts as a whole [24]. This finding enables new strategies to build net-
works maximising λ2, as applied in [26], and can be useful in clinical contexts. With this regard, Tewarie et al
analysed the λ2 from resting state MEG recordings (healthy subjects) and compared the empirical results to
those obtained from a biophysical model [27]. Interestingly, they conclude that the healthy brain works at the
transition point between the aforementioned regimes, and hypothesise that such a state could promote layers
integration and segregation processes. A more recent work has extended this notion to the case of MN with
heterogeneous interlayer links, focussing on the impact of missing links on the value of the λ2, and observing
both regimes in synthetic signals and in real, resting state MEG registers [28].

In this paper, we analysed the single layer and the MN of patients suffering from mild cognitive impairment
(MCI) and AD, and compared their structure with the equivalent networks obtained from healthy individuals.
Using MEG recordings, we quantified, for every subject, the coordination between every pair of brain regions
at the sensors and regions of interest (ROIs) level, but also at each frequency band and between frequency
bands. To that end, we chose mutual information (MI) [29] as the connectivity metric. The reason behind
this choice is the fact that, at the cost of no clear interpretation in physiological terms, MI is agnostic to the
underlying statistical structure of the data. Hence, we can apply the same measure to quantify intra-layer and
inter-layer links, ensuring both types of links are in the same range, and without any assumption regarding
the mode of cross-frequency interaction (PAC/AEC). First, we obtained different network parameters (aver-
age shortest-path, weighted clustering coefficient, local and global efficiency and network outreach) at each
individual frequency band (δ, θ, α and β), each of them leading to an independent single layer network. Next,
we constructed the frequency-based MN by connecting the α and β layers through inter-layer links assessing
the level of coordination between the two frequency bands. We investigated the role of λ2 in the αβ MN as
a possible biomarker in AD and MCI. Following references [24, 28], we hypothesised that, as the condition
advances, we might be able to observe differences in the interaction between frequency bands, especially in α

and β bands, since (i) they are the ones accumulating more power in the spectrum, (ii) they have been shown to
display significant differences in the statistical complexity and entropy [30], and (iii) they have been reported
to be the frequency bands with the highest impairment [31].

2. Methods

2.1. Recruitment, data acquisition and preprocessing
We analyse resting-state MEG recording from 111 elder adults, recruited from the Center for Prevention of
Cognitive Impairment, the Seniors Center of Chamartín District and the Hospital Clínico San Carlos Neurol-
ogy Department in Madrid (Spain). The Hospital Clínico San Carlos Ethics Committee approved the study.
Accordingly to their cognitive status, 48 participants were classified as healthy controls (control group (CG),
46 met the criteria for amnestic MCI, and the remaining 17 received the diagnostic of dementia due to AD.
The complete protocol, including diagnostic and excluding criteria, can be found in [30]. Tables 1–3 in the
appendix (section 4) summarise demographic information and mini-mental state examination (MMSE) scores
for each participant.

We recorded 4 min of resting state brain’s magnetic activity through a 306 channel vectorview MEG system
from each subject. Due to the tSSS filtering procedure, signals recorded by magnetometers and gradiometers
are highly correlated and redundant [32]; thus, only data coming from the 102 magnetometers were employed
for further analyses. Ocular, muscular and jump artefacts were removed automatically and visually confirmed
later by an MEG expert. Additionally, ocular and electrocardiographic contributions to the MEG signal were
discarded via independent component analyses. Clean data were segmented into 4 s epochs, and the resulting
dataset comprised 29 epochs (samples) from each subject. Clean epochs for each subject were band-pass filtered
between 1 and 45 Hz so that low frequency and power line artefact contributions were discarded. A realistic
model using a single-shell was employed to generate the forward model of a 1 cm spacing grid with 2459
sources inside the brain. Magnetic activity at the brain level was reconstructed in each of the nodes by using
linearly constrained minimum variance beamformer [33]. Once time series for all of the 2459 sources were
calculated, a representative time-course for each cortical region of a reduced version of the Harvard–Oxford
atlas [34] was chosen by selecting the centroid source of each region. We retained 62 ROIs at each sample for
every subject. More details on the procedure can be found in [30].

Lastly, for all subjects in both modalities (sensors and ROIs), we conducted a frequency decomposition
of all signals to get an estimate of each time series into four classical frequency bands: δ : 1–4 Hz; θ : 4–8 Hz;
α : 8–13 Hz and β : 13–31 Hz. In order to estimate the signal for each frequency band, we simply computed the
Fourier transform of the signal and reconstructed it via inverse Fourier transform in the range of frequencies
specified above. γ band was disregarded for all subjects due to lack of power in this specific frequency range
(31–50 Hz).
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2.2. Network construction
For each subject and sample in both modalities, we constructed two types of functional networks. On the one
hand, four single-layer networks, one for each frequency band, and on the other, oneαβ multilayer network. To
unify our analyses we estimated the functional connectivity in every network in terms of MI, either it be single
layer (evaluated at each frequency band separately) or multilayer (evaluated in α and β bands and between
them). MI works comparing the amount of shared information between any two variables. In our case, these
two variables are time series (in sensors or ROIs space), either from the same layer (α or β), or from different
layers (one from α and one from β). Being X and Y any two time series, the MI between them is defined as:

MI(X;Y) =
∑

x∈X,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

where p(x, y) stands for the joint probability of X = x and Y = y, and p(x), p(y) their individual probabilities.
To estimate probabilities we chose the Freedman–Diaconis rule [35], which performs reasonably good without
assuming normality on the data [36].

Note that the multilayer network will be composed of two layers, α and β, and that we allow interlayer links
(obtained through the MI) connecting any two nodes from any two layers. In this sense, our networks follow
a complete multilayer architecture, not a multiplex one [28].

To test the statistical significance of the weight of every link, we applied an edge-level nonparametric scheme
based on circular shifting, a method of the family of permutation testing. To that end, we generated new sur-
rogate data under the null hypothesis of no temporal correlation [37] for each pair of time series considered
[38]. We kept the original value of MI obtained, and then we followed an iterative procedure to test if it was
statistically significant or not: (i) we kept one of the time series untouched, while in the other, (ii) we shifted a
collection of consecutive points to its end, and (iii) we got the MI between both time series (the original and
the shifted one). Repeating this process 200 times gave us an ad hoc null distribution of no temporal correla-
tion for that particular pair of time series, against which we test our original estimation of MI. We set every
comparison with a significance level of α′ = 0.01 and kept the original estimation of MI if and only if its prob-
ability of appearance in the null distribution was lesser than α′. Otherwise, we set it to zero. This method is
preferred over other normalisation schemes due to its ability to control for multiple comparisons at any desired
level of significance α′, making no assumptions about the underlying distribution [37]. Also, circular shifting
preserves the inner autocorrelation structure of the time series [38]. The length of each shifted segment ls is
adjusted for each frequency band across all subjects and samples, as the frequency component will determine
the prototypical cycle of autocorrelation. In time points (tp), we chose δ = (1, 4) Hz, ls = 40 tp, θ = (4, 8) Hz,
ls = 20 tp, α = (8, 13) Hz, ls = 10 tp and β = (13, 31) Hz, ls = 5 tp.

In contrast to other synchronization measures, MI has no upper bound, potentially biasing any further
comparison relying on the strength of the network. To avoid this issue, we normalised all the weights in every
network by linearly rescaling it between 0 and 1:

pij =
MIij − min[MIij]

max[MIij] − min[MIij]
, (2)

where max[MIij](min[MIij]) indicates the largest (smallest) weight (i.e., MI) in the network. Note that this step
is carried out for every network before any further calculation. Hence, it will differ depending on the network
under consideration. In αβ MN, we consider all links (inter and intralayer), while in single layer networks, the
procedure is conducted over intralayer links (as layers are isolated).

2.3. Multilayer analyses
To study the dependency between layers, we first obtained the Laplacian matrix L from each αβ multilayer
network, whose elements are:

lij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

si if i = j

−1 if i �= j and there is an edge from vertex i to j

0 otherwise,

(3)

where si =
∑

i �=j pij is the strength of a node i. Then, solving the eigenvector equation:

Lv = λv (4)

results in N eigenvalues and their associated eigenvectors, where N is the number of nodes in the net-
work (62 ROIs × 2 frequency bands → NROI = 124; 102 sensors × 2 frequency bands → Nsensor = 204).
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Figure 1. Evolution of λ2, λ3 and Δ as a function of p, following the heterogeneous (a) and homogeneous (b) strategies. The
transition point occurs when eigenvalues cross, changing in direction, which is reflected in local minima in Δmin. This example
has been obtained from a random, control subject.

The second smallest eigenvalue λ2 (i.e., algebraic connectivity) is associated with the structure of the net-
work, and in the multilayer/multiplex case, it undergoes a phase transition when layers become structurally
dependent [22, 24, 28]. Given the fact that the evolution of the disease involves massive synapse loss and brain
areas disconnection, we hypothesise that, functionally, this should be reflected in the integration between fre-
quency bands, particularly between α and β. Particularly, we expect layers to be more disconnected than what
we expect in a normal state (CG). Therefore, we will test (a) if the integration between bands, as quantified by
the algebraic connectivity, is altered in MCI and AD at baseline (λ2−BSL) and (b) how far each group is from
the transition point, where λ2 undergoes the transition typically observed in multilayer/multiplex networks
when layers are structurally merged (λ2−T).

The former test is achieved simply by comparing the values of λ2 obtained from each network between
groups, which we will call λ2−BSL from now on. Bear in mind that this nomenclature (baseline) is simply
used to differentiate the values of λ2 when obtained empirically from every network in every subject. The
latter, however, requires simulating how the network would evolve towards the transition and the calculation
of λ2 at that point, which we will call λ2−T. We followed two different strategies to obtain λ2−T, resembling
the approach presented in [28]. In each αβ network, we (a) multiplied every interlayer link by a constant
(p; heterogeneous strategy), or (b) we first added the mean strength of the interlayer quadrant of the network
and then multiplied every interlayer link by a constant (p; homogeneous strategy). We explored values of p from
0.1 to 70, obtaining the Laplacian matrix and its associated eigenvalues at each step. To detect the transition
point, we obtained the absolute difference of λ2 and λ3 as a function of p(Δ(p) = |λ2 − λ3|). Local minima
in Δ(p) indicate crossing points between eigenvalues; we were interested in the first minimum, where λ2 and
λ3 cross, reflecting the structural transition in the multilayer. For illustrative purposes, figure 1 shows one
example of λ2, λ3 and Δ(p) as a function of p, for the heterogeneous (a) and homogeneous (b) strategies,
obtained from a random control subject.

Note that eigenvalues (λ2 and λ3) increase faster in the homogeneous strategy, as we are adding the average
interlayer strength to all interlayer links before multiplying by the constant. As with λ2−BSL, we will compare the
values obtained from both the heterogeneous (λ2−T1) and homogeneous (λ2−T2) strategies between groups.
Given that groups are not balanced, we had to implement an iterative strategy that uses all the information
available in the trials/samples, ruling out any effect of inter-sample variability, and any group difference in such
variability (iterative two-way ANOVA).

Lastly, we fitted a multinomial logistic regression model to the data, trying to predict group labels. This
procedure allowed us to quantify a conversion rate to AD, taking into account λ2−BSL, λ2−T, age and sex. To
fit the model, we previously averaged values of λ2−BSL and λ2−T across samples. A schematic representation of
the pipeline to conduct our multilayer analyses can be found in the appendix (section 4, figure 7).

2.4. Single layer analyses
For each layer network (coming from sensors or ROIs) we obtained its weighted clustering coefficient [39],
local and global efficiency [40], shortest path and outreach [5]. In unweighted networks, the clustering coeffi-
cient, also known as transitivity, measures the ratio of neighbours of a node that are also neighbours between
them, or equivalently, the number of triangles in the graph. Its average, hence, quantifies the cliquishness of
the network [41]. In weighted networks, the weighted clustering coefficient measures the local cohesiveness
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taking into account the intensity of the interactions present on the local triplets [39]:

cw(i) =
1

si(ki − 1)

∑
j,h

(wij + wih)

2
aijaihajh. (5)

The normalisation factor (si(ki − 1)) ensures that cw(i) is bounded between 0 and 1, accounting for the
weight of each link times the maximum number of possible triplets.

To measure the local and global efficiency, we followed to the formulation proposed by [40], considering
the ability of connecting nodes in a low number of steps at each scale (local and global):

Eg =
1

N(N − 1)

∑
i�=j

1

dij
, (6)

where dij is the shortest topological distance between nodes i and j, computed using the Dijkstra’s algorithm
[42]. In this sense, the global efficiency is the harmonic mean of the inverse of the characteristic path length.
Local efficiency, on the other hand, is obtained as:

El =
1

N

∑
i∈G

E(Gi), (7)

where Gi is the subgraph formed by the neighbours of i without i. This property is local in the sense that it is
obtained at each node as the inverse of the average shortest path of the neighbours of i if that node were not
present in that subgraph. In biophysical terms, the efficiency of the network reflects a trade-off between the
cost of the paths connecting different nodes and its performance in carrying out a given task.

Lastly, the outreach parameter, formulated originally in [5], can be obtained as:

O(i) =
∑

j∈V(i)

wijrij, (8)

where rij is the physical distance between nodes and V(i) is the subgraph of nearest neighbours of i. To obtain
rij, we compute the Euclidean distance of the three spatial coordinates, which are given by the position of each
sensor over the scalp or by the position of each ROI’s centroid. The average outreach over all nodes reflects the
dominance of long-range (high outreach) or short-range (low outreach) connections, and has been found to
be altered in MCI and Alzheimer patients [5, 43].

2.5. Group comparisons: methodological considerations
Groups are not balanced: control and MCI groups are more populated (N = 48 and 46, respectively) than
AD (N = 17). Also, we count with 29 trials/samples from each individual. Irrespective of the level of the type
of network (multilayer or single layer), any group comparison entails the methodological drawback of differ-
ent sample sizes. Under this circumstance, we can either average the parameter across samples, or treat trials
from each subject as different observations (realisations) of the parameter from each group. In the former,
every test would imply comparing three vectors of sizes 48, 46 and 17 and necessarily drawing upon non-
parametric statistics, with more relaxed assumptions on the data (normality is not required, and violating the
assumption of homoscedasticity is not as dramatic as in parametric tests), at the cost of less sensitivity to real
group differences. In the latter, vectors to compare would be of length 48 × 29 = 1392, 46 × 29 = 1334 and
17 × 29 = 493, which allow us to make use of parametric statistics. Nonetheless, we face a possible problem
of intra-subjects variability. Hence, we claim that to test for groups differences, the statistical approach should
(i) take into account all sources of variability: between samples, in each individual; between subjects, in each
group; and between groups, (ii) track the (possible) interactions between variability sources, (iii) be as sensitive
as possible to group differences while (iv) using as much available data as possible.

Considering all together, each comparison was conducted with an iterative two-way ANOVA. The analysis
of variance is parametric, thus more sensitive to real differences in the data in comparison to nonparametric
approaches, and it is able to take into account the variability from samples, as well as the interaction between
sample variability and group belonging. In each realisation, we subsampled 17 individuals from the control
and MCI groups at random, thus ensuring the design is balanced. For each subject, we kept the value of the
parameter under consideration in every sample (that is, 29 values for each subject) and performed a two-way
ANOVA. We set GROUP and SAMPLE as factors for the analysis (analogous to a repeated measures ANOVA),
where the main effects will be differences between groups and differences between samples. The interaction
(GROUP× SAMPLE) would indicate that the variability in samples is group dependant and not homogeneous.

P-values indicate significant differences, but do not inform about the practical significance of results, some-
thing far more important in empirical studies [44]. At each step, then, we also estimated the size of each
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effect, as measured by the partial eta squared (η2
p), a common measure in mixed effects designs that relate

to the amount of variance explained by the factor in consideration. We repeated the process (iterative two-
way ANOVA, also calculating the effect size for each comparison) 100 times, with a different subsample in
each iteration, ensuring the maximal efficiency in statistical terms, as we were using all available information
from every subject. We were especially interested in observing group differences (main effect of group), and
expected that the main effect due to samples, as well as the interaction between group and samples remained
non-significant. In this regard, we considered that an effect was significant if and only if 90 out of 100 iterations
were significant, evaluating in each case its associated p-value after correcting for multiple comparisons with
FDR. In such cases, the final effect size was the average over the significant iterations.

3. Results

Every group comparison has been conducted with the iterative two-way ANOVA explained above. For every
test, we provide p-values, always meeting the criteria established before (90 out 100 iterations reaching that
p-value after FDR correction). We focussed on the results for the main effect of group, as our goal is to demon-
strate differences that depend on the stage of the disease. Note that, in any of our analyses, the main effect of
sample and the interaction between sample and group were significant, indicating that we can safely attribute
differences to group belonging and not to variability in the samples. Additionally, we qualified each result
with its corresponding size effect (η2

p). Recall that the effect size quantifies the amount of variance in the data
explained by the effect under consideration (group membership, samples or interaction between them). To
grasp the implications of a particular value, it would be preferable to relate our results to previous literature
[45], but given the lack of studies in which effect sizes are reported, we will follow the general recommendations
originally provided by Cohen [46] to define small (η2

p = 0.01), medium (η2
p = 0.06) and large (η2

p = 0.14)
effects.

3.1. Single layer analyses
We carried out a single layer analysis of each of the four main frequency bands of the human brain, obtaining
an independent network for each frequency. Networks were obtained in two modalities, at the (i) sensor level
and (ii) the ROIs level (using the Harvard–Oxford atlas). Next, we calculated five network parameters for each
modality and group, namely the weighted clustering coefficient, the global efficiency, the local efficiency, the
outreach, and the shortest path.

Figure 2 shows, for every frequency layer (δ, θ, α and β), the comparison between one of these parameters,
the shortest path, for the MCI, AD and control groups at two scales. At the global level, parameters are averaged
over all nodes (or edges if it is an edge-level metric), yielding one single value for each sample and layer. Bars
(with corresponding standard error) indicate the average in that layer for each group, with asterisks indicating
the p-value of the comparison after FDR correction only if that p-value is met in 90 out of 100 iterations ((a)
and (c) in the figure for sensors and ROIs respectively). At the local (node) level, results are illustrated over
scalp plots (sensors, (b)) or cortical surface plots (ROIs, (d)), with the average value of η2 colour-coded. In
that case, we set to 0 the value of η2 if that comparison is not significant, or take the average over all significant
iterations if it is (p < 0.05 after FDR correction in at least 90% iterations).

In this example, we illustrate the results found in shortest path, showing that in sensors there are significant
global differences between controls and AD, and between MCI and AD (figure 2(a)) in δ (p < 0.001 in both
cases, η2

p = 0.047 5); θ (p < 0.05 and p < 0.001, η2
p = 0.042 2);α (p < 0.001 in both cases, η2

p = 0.075 4) and
β (p < 0.001, both cases η2

p = 0.083 8). In this regard, there is an effect of group in all bands, with sizes being
small in δ and θ and medium in α and β, which is coherent with previous reports indicating that these last
two bands are the most affected. The effect of samples and the interaction with group were not significant in
any comparison. Note how, in any case, the effects are smoothed when taken globally: when we make com-
parisons at the node level, local alterations show greater effect sizes (figure 2(b)), specially in temporo-parietal
areas (right hemisphere, α, η2

p ≈ 0.1), and temporo-parietal, frontal and occipital areas, again with a right
hemisphere preference in β band (η2

p ≈ 0.14).
In ROIs, global alterations are less pronounced, as we only found differences in β band between controls

and AD (p < 0.001) and between MCI and AD (p < 0.001), with a medium effect size (η2
p = 0.086 6). Local

differences are coherent with sensors: we find small effect sizes in δ and θ (η2
p ≈ 0.02) corresponding to alter-

ations in the parietal cortex (somatosensory association cortex), supramarginal gyrus, and entorhinal cortex.
In the α band, the significantly affected areas (η2

p ≈ 0.04) are: the orbitofrontal prefrontal cortex, and specially
cuneus, precuneus, superior, and medial orbitofrontal cortex, as well as the cingulate cortex. Nonetheless, the
largest effects, as in sensors, are found in the β band, including all previously mentioned areas, but including
broader regions (prefrontal cortex) and lingual gyrus (η2

p ≈ 0.15). Interestingly, in α and β, the alteration is
bilateral, not confined to one hemisphere.
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Figure 2. Comparison of the shortest path both at global ((a) and (c); left side bar plots) and local levels (b and d; right-hand
topological plots), for sensors ((a) and (b), upper plots) and ROIs ((c) and (d), bottom plots). Every comparison is obtained by
computing a two-way ANOVA over 100 subsampling iterations. Global level results correspond to the average across all nodes and
edges in the layer under consideration (δ, θ, α or β), indicated with a bar and its standard error. Asterisks indicate significant
differences in at least 90% of the iterations: ∗ : p < 0.05, ∗∗ : p < 0.01 and ∗∗∗ : p < 0.001 (FDR corrected). Local-level results
correspond to the average across edges in a single node. The colour code printed on sensors ((b), scalp) or ROIs space ((d),
cortical sources) represents the amount of variance explained by group membership, as quantified by partial η2.

Next, we calculated the weighted clustering (equation (5); figures 3(a) and (b)), the local efficiency
(equation (7); panels (c) and (d)), the outreach (equation (8); panels (e) and (f)) and the global efficiency
(equation (6); panels (g) and (h)). See section 2.3 for more details on the equations to obtain every mea-
sure. Interestingly, the weighted clustering coefficient on sensors was significantly different between CG–AD
(p < 0.001) and MCI–AD (p = 1e − 06) in the δ band. We also found differences in θ but only between
CG–AD (p < 0.001, η2

p = 0.029). When the same analysis is translated to the ROIs level differences are
reported at higher frequency bands: the θ layer showed differences between CG and AD (p < 0.05, η2

p = 0.023),
as well as the α layer (CG–AD, p < 0.001, η2

p = 0.036). Finally, the β layer is the one showing more differences
both at CG–AD (p = 1e − 06) groups and MCI–AD (p = 1e − 05, η2

p = 0.093). We found a similar trend
in the local efficiency (only δ being significant in sensors, and β in ROIs). The outreach parameter showed
differences between the analysis at the sensor and the ROIs level as well. Again, δ and θ layers are the ones
showing statistical significant differences between CG–AD and MCI–AD, while at the ROIs level differences
appear at layers α and β, i.e. move to higher frequencies and only between MCI–AD (α) and CG–AD (β).
Only global efficiency was consistent in both modalities, with all bands showing differences between controls
and AD group, and between MCI and AD group. Note that global efficiency is the only measure that works at
a global scale by construction, while the rest has been calculated at the node level and averaged over the whole
network.

3.2. Multilayer analyses
Next, we investigated the differences between groups and modalities when αβ MN are constructed (see section
methods) and analysed. First, we checked whether network density and strength (i.e., the sum of the links’
weights) differ between groups. As shown in figures 4(a) and (b), we could not find any difference between
groups in density, regardless of the modality. The effect of the samples and the interaction between group and
samples were not significant either. Figures 4(c) and (d) compares the strength between groups. In this case, any
tested effect was statistically significant for sensors (main effects of group and sample, and interaction between
them). On the contrary, we found a significant difference between MCI and AD groups (p < 0.05), with a small
effect size (η2

p = 0.046) in ROIs. This could be due to the normalisation procedure (circular shifting) or due
to real differences in strength, derived from the disease. Take into account that, although the effect is small
(around 4.6% of the variance in strength is attributable to the clinical condition), this difference could bias
further analyses.
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Figure 3. Group comparison of average weighted clustering (a) and (b), local efficiency (c) and (d), outreach (e) and
(f) and global efficiency (g) and (h) for the CG, MCI group (MCI) and AD group in sensors ((a), (c), (e) and (g)) and ROIs
((b), (d), (f) and (h)) for δ, θ, α and β bands. Asterisks show the cases in which more than 90% of the iterations where significant
in the two-way ANOVA with ∗ p < 0.05, ∗∗ p < 0.01 and ∗∗∗ p < 0.001 (FDR corrected).

Figure 4. Network density (a) and (b) and strength (c) and (d) for the CG, MCI and AD, for sensors (a) and (c) and ROIs
(b) and (d). Comparisons were conducted with a two-way ANOVA iterating over 100 different subsamples. None of the effects
tested (group and sample) were significant when comparing network densities. The only statistical significant difference (90%
iterations) was reported at the network strength of MCI and AD at the ROIs level.

Next, we compared the values of λ2 at baseline and at the transition point, the latter obtained from the
homogeneous and heterogeneous strategies (see methods), using the iterative two-way ANOVA. It is worth
noting that, as a consequence of the normalisation scheme applied (circular shifting), it is possible that in
some cases a network is disconnected, leading to an algebraic connectivity (λ2) equal to zero. None of the
networks built from sensors met this condition, whereas in ROIs, this was the case of the 14.5% of networks
in the CG, 15.97% in MCI and 9.13% in AD. All disconnected networks were discarded for further analyses.

We found significant differences between controls and MCI (p < 1e − 06) and between MCI and AD
(p < 0.05) in λ2 at baseline (figure 5), with a small size effect (η2

p = 0.046 5). The effect of samples and the
interaction between group and sample were not significant. Although the group effect could explain around
4.6% of the variance in λ2, it is indicating that as the disease progresses, α and β bands become more indepen-
dent, given that at each group, the average decreases. This might be reflecting a loss in the ability of layers to
interact between them, which might be paramount for the brain to work properly. Interestingly, this tendency
is also observed in ROIs, although in this case, differences are not statistically significant. Take into account
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Figure 5. Comparison of λ2−BSL between CG, MCI and AD, for sensors (left) and ROIs (right), with an iterative two-way ANOVA
(described in main text). P-values (FDR corrected) are met in at least 90 out 100 iterations.

Figure 6. Comparison of λ2−T between CG, MCI and AD, for sensors (a) and (c) and ROIs (b) and (d), with an iterative two-way
ANOVA. In (a) and (b), we use a heterogeneous strategy, while the homogeneous strategy is implemented in (c) and (d).

that this could be a side effect of the missing values reported before (as we are excluding some data from the
analyses due to network disconnection).

Next, we investigate what the value of λ2 would be when reaching the transition point. With this aim,
we increase the weight of the inter-layer links, as explained in the method section, using (i) a homogeneous
strategy and (ii) a heterogeneous strategy. Both approximations to reach the transition point are consistent
in each modality (sensors/ROIs), albeit results are opposite (figure 6): in sensors (panels (a) and(c)), for both
approaches, the AD group had a smaller λ2 when reached the transition point, followed by CG, with MCI hav-
ing the largest. On the contrary, in ROIs (panels (b) and (d)), AD had the highest values of λ2 when compared
to the other two groups, and MCI the smallest. However, none of these differences was statistically significant.

Finally, we tried to fit different, nested multinomial logistic regression models (MNR models), with the
aim of predicting group labels with the parameters extracted from the MN (λ2−BSL and λ2−T). Importantly,
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we first averaged the parameters across samples with the consequent information and predictive power loss.
Nonetheless, this step is necessary to conduct the logistic regression, as keeping all samples would incur in
overfitting. In the context of linear regressions, keeping all samples would be analogous to duplicate subjects,
increasing the percentage of cases correctly classified artificially.

MNR models are a special case of generalised linear models (GLM), with the particularity that, instead
of predicting probabilities, they predict the logarithm of the odds of a certain category (relative risk), using
the logit function as the canonical link function [47]. This makes them especially suitable to classify subjects
and have been extensively used in machine learning approaches. In our case, the advantage of applying an
MNR model is that it enables us to give a probability of membership to each group depending on the values of
each parameter. Hence, we could predict a conversion ratio if any of those parameters change beyond a given
value. The goal was to keep the most parsimonious model, i.e. keeping the smallest number of terms while
explaining as much variance as possible. Thus, we proceeded iteratively, adding one extra term (parameter) at
each step. In all cases, being πk the theoretical probability associated to each category in the response variable
(CG/MCI/AD), and taking the CG as the reference category, K, we can define K − 1 non-redundant equations
of the form:

ln
πk

πK
= β0k + β1kX1 + β2kX2 + · · ·+ βjkXj + βpkXp, (9)

where K is the reference category (CG) and k any of the other two (MCI/AD). Each regression coefficient had
one subindex (j = 1, 2, . . . , p) for each of the p independent variables (parameters added to the model) and
another one (k = 1, 2, . . . , K − 1) to identify each equation. As we only had three categories, every model con-
sidered was composed of two equations, each one describing the relative risk of one subject being MCI(AD)
with respect to CG, and containing a coefficient for the intercept and a separate slope on each predictor (param-
eter). To decide which model is preferred over the others, we observe how adding or removing a parameter
reduces the deviance from the fit, calculated as:

dev = 2
n∑
i

n∑
j

(yij) log

(
yij

π̂ijmi

)
=

n∑
i

rdi, (10)

where yij is the ith observation in the jth category (group), π̂ij its categorical, estimated probability and mi its
corresponding sample size. The deviance parameter is obtained in GLM as the difference in the fit between
the full and reduced models [48]. The full model uses a separate parameter for each sample, hence having
as many parameters as subjects (it is also called ‘complex model’). The reduced model includes only a set of
parameters and, although its fit is always worse in comparison to the full model, it does not require as many
parameters. In the case of logistic (either binary or multinomial) regression models, the deviance parameter
is estimated comparing the maximum likelihood of the full model with the likelihood of the reduced one, and
asymptotically follows a χ2 distribution [49]. As mentioned above, at each step, we added one term (variable)
and compared it with the previous model to test if adding one extra term reduces the deviance of the fit. To
compare between models, we simply subtracted their deviances and checked the cumulative probability of
the result under its χ2 distribution with degrees of freedom equal to the difference of each model’s degrees
of freedom. A significant (1 − P(dev1−dev2) < α) indicates that the coefficient of the new term is significantly
different from zero, and we can safely include it in the model, reducing its deviance.

We first defined a simple model (mdl(1)) containing only demographic variables (age and sex) to pre-
dict group labels. More details regarding their deviances and values for the coefficients can be found in the
appendix, section 4. We depart from this model, adding more terms for each parameter under considera-
tion. From all the other models we have fitted, the best scores are obtained when we only add one extra term
for λ2 at baseline, in both modalities. This is expected, as λ2−BSL was the only parameter showing significant
group-dependent differences (statistically significant in sensors and with a clear tendency in ROIs).

The model for sensors (mdl(2S)) is:

ln
πMCI

πCG
= −1.3938 − 11.9491 × λ2−BSL + 0.0554 × age − 0.2331 × sex (11)

ln
πAD

πCG
= −15.7062 − 29.3990 × λ2−BSL + 0.288 6 × age − 0.917 0 × sex (12)

with devmdl(2S) = 197.2716. For the first equation, the p-values associated to each term were (from left to
right), p = 0.7089, p = 0.1271, p = 0.2385, p = 0.5827. For the second, p = 0.0161, p = 0.0247, p = 0.0003,
p = 0.1856. In this case, every coefficient in the first equation (relative risk of MCI over CG) was not sig-
nificant; while the intercept, and the effects associated to λ2−BSL and age must be taken into account when
comparing AD and CG. If we take dev1vs2S = devmdl(1) − devmdl(2S) → 203.8440 − 197.2716 = 6.5724, and
given that dev1vs2S ∼ χ2(dfe1 − dfe2S = 2), we can state that the new model adds significant information, as

11



J.Phys.Complex. 2 (2021) 045020 (17pp) I Echegoyen et al

1 − χ2
6.5724(2) = 0.0374. This result indicates that, in principle, λ2−BSL could be a useful biomarker in clinical

contexts.
The model for ROIs (mdl(2R)) is:

ln
πMCI

πCG
= −1.590 7 − 6.497 3 × λ2−BSL + 0.061 9 × age − 0.2496 × sex (13)

ln
πAD

πCG
= −19.2093 − 11.1362 × λ2−BSL + 0.3171 × age − 0.7697 × sex (14)

with devmdl(2R) = 197.9304, and associated p-values (first equation) p = 0.6556, p = 0.0708, p = 0.1858,
p = 0.5584 and (second equation) p = 0.0015, p = 0.0357, p = 0.0001, p = 0.2469. Results were consis-
tent with the model for sensors data, with first equation’s coefficients being not statistically significant,
and intercept, λ2 and age effects being relevant. Comparing the deviance with the simplest model gave us
1 − χ2

5.9136(2) = 0.0520, indicating that adding the new term does not reduces the deviance of the fit signifi-
cantly. Nonetheless, the intercept and the coefficient of λ2 were significant in the second equation (AD vs CG),
which again is expected given that these groups should be the most different.

4. Conclusions

In this paper, we first investigated the differences between single layer functional networks of patients suffering
from MCI and AD. Next, we extended our analysis to frequency-band MN and presented an application of the
algebraic connectivity (λ2) as a biomarker of AD in a clinical context.

We provided a complete analysis of single layer networks, focussing on the shortest-path parameter but also
analysing differences between groups in the weighted clustering coefficient, the global and local efficiency and
the outreach. It is worth noting that path length-based metrics are hard to interpret [50, 51], but we included
them as an initial step before analyzing the multilayer structure. We found that each parameter had its own
distribution over sensor and ROI space, consistent between modalities, that strongly depended on the band
and group under consideration. Take into consideration that each rhythm has its own functional role, spa-
tial pattern of synchronization [52] and complexity/entropy distribution [30]. While all network parameters
showed some statistically significant differences between controls and AD, the global efficiency was the one
showing more differences, both at the sensor and ROIs level. Interestingly, we reported difference between the
network parameters when both modalities were compared with a particular (and general) pattern: at the sen-
sor level, differences between groups are more significant at networks related to low-frequency bands, while at
the ROIs level, differences are more significant at higher frequencies. Note that every measure used to analyse
MEG/EEG signals is affected by signal leakage and source reconstruction [53–55], which may introduce spu-
rious estimates of functional connectivity, biasing the estimation of the network topology. Although there are
different algorithms and atlases at disposal to project brain activity, all of them have advantages and pitfalls;
thus, some degree of error in the estimation of the network parameters is unavoidable. It is precisely in this
regard that we analysed the functional networks obtained at the sensor and ROIs level, with the aim of detect-
ing differences between both projections of the brain activity. Furthermore, we applied the method of circular
shifting, ensuring that every weight in the network is significant in comparison to a data-driven null model of
connectivity. In this regard, the choice of MI over other FC metrics less sensitive to signal leakage comes from
the fact that it enables us to estimate intra and interlayer connectivity in the same scale, and under the same
assumptions. Given that we expect leakage to affect the three groups similarly, we consider that results won’t
be biased in any direction.

Concerning the multilayer analysis, we focussed on algebraic connectivity, a parameter related to the struc-
tural and dynamic properties of MN. We constructed the αβ MN, computed their algebraic connectivity and
simulated the value of this parameter at the transition point where the MN suffer a well-known transition
where layers are structurally merged. We reported significant differences between controls, MCI and AD in
sensors and a strong (but not statistically significant) tendency in ROIs, consistent with the former. Our inabil-
ity to prove these differences at the ROIs level might come from missing values that correspond to disconnected
networks (where λ2 = 0), as such cases were discarded from our analyses. Nonetheless, both modalities were
consistent, and the underlying differences in λ2 were informative when trying to classify subjects, as predicted
by our logistic regression model presented in section 3. We conclude that in the biological progression of the
disease, α and β bands tend to disconnect, losing the optimal level of communication. In this direction, clini-
cal approaches might focus on reconnecting functionally these layers. Nonetheless, more data, preferably from
follow-up sessions of the same subjects, could improve our statistical power and give new hints on how this
parameter evolves with the disease progression. Our goal was to explore if the interdependency between bands
is associated with the disease and if it could be used as a biomarker in AD. Thus, our model included only this
term along with demographic variables. In the future, we could connect this finding with other biomarkers
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Table 1. Table with demographic information from the CG.
MMSE = mini-mental state examination. Sex: 1 = Male; 2 = female.

ID Group Age Sex MMSE

1 CG 67 1 30
2 CG 72 1 30
3 CG 78 2 29
4 CG 77 1 28
5 CG 70 2 30
6 CG 70 2 30
7 CG 72 1 27
8 CG 69 1 28
9 CG 66 2 29
10 CG 70 1 28
11 CG 69 1 30
12 CG 71 2 30
13 CG 68 2 27
14 CG 65 2 27
15 CG 66 1 30
16 CG 76 2 30
17 CG 73 2 29
18 CG 77 1 27
19 CG 78 1 30
20 CG 65 2 30
21 CG 73 2 30
22 CG 69 2 30
23 CG 75 1 27
24 CG 74 1 29
25 CG 67 2 30
26 CG 71 1 30
27 CG 73 2 28
28 CG 75 1 27
29 CG 65 2 28
30 CG 73 1 29
31 CG 72 1 27
32 CG 80 1 27
33 CG 73 2 30
34 CG 68 2 28
35 CG 70 2 28
36 CG 68 2 30
37 CG 70 1 30
38 CG 75 2 28
39 CG 80 2 27
40 CG 71 1 30
41 CG 70 2 30
42 CG 75 1 27
43 CG 69 2 30
44 CG 74 2 30
45 CG 65 2 30
46 CG 75 2 28
47 CG 60 2 30
48 CG 70 1 27

MEAN 71.23 1.56 28.83
SD 4.31 0.50 1.26

found in the literature, and formulate a model that includes more terms from different sources: single layer
network measures that differ between groups, along with MMSE scores and physiological variables, in line
with previous literature aiming at quantifying the MCI–AD conversion rate [56–61].

Regarding our simulations on the transition point of the algebraic connectivity (λ2−T), we could not find
any remarkable difference, regardless of the strategy followed (homogeneous or heterogeneous). This could
reflect an ill-posed formulation of the problem, and alternative strategies might be more successful. Note that
the phase transition in λ2 has been only observed in ideal setups, where all interlayer weights have the same
value, and density is fixed for every network.

Finally, it is worth noting that we consider the current study just as a starting point. We believe that more
research is needed to have a full description of the problem, with longitudinal data and more patients in each
group, to unveil differences to this level of detail. Also, this circumstance points towards a crucial weakness of
our study in particular and many others in general: the small sample sizes, especially in the AD group. Despite
the fact that two-way ANOVA revealed systematically that the effect of samples (and the interaction with group)

13



J.Phys.Complex. 2 (2021) 045020 (17pp) I Echegoyen et al

Table 2. Table with demographic information from the MCI group.
MMSE = mini-mental state examination. Sex: 1 = Male; 2 = female.

ID Group Age Sex MMSE

49 MCI 72 2 28
50 MCI 79 2 28
51 MCI 77 1 28
52 MCI 73 2 28
53 MCI 67 1 26
54 MCI 81 1 18
55 MCI 72 2 27
56 MCI 69 1 28
57 MCI 78 2 22
58 MCI 68 2 29
59 MCI 75 2 23
60 MCI 72 2 25
61 MCI 81 2 26
62 MCI 77 2 27
63 MCI 74 1 26
64 MCI 64 2 27
65 MCI 69 2 26
66 MCI 73 1 30
67 MCI 81 2 27
68 MCI 73 2 28
69 MCI 75 2 25
70 MCI 79 2 29
71 MCI 66 2 29
72 MCI 72 1 27
73 MCI 68 2 28
74 MCI 67 2 27
75 MCI 74 2 29
76 MCI 69 2 24
77 MCI 76 1 29
78 MCI 66 1 26
79 MCI 69 1 23
80 MCI 72 1 23
81 MCI 78 1 28
82 MCI 77 2 27
83 MCI 69 1 29
84 MCI 69 2 28
85 MCI 78 2 20
86 MCI 73 1 28
87 MCI 66 1 30
88 MCI 66 1 27
89 MCI 71 1 30
90 MCI 72 1 27
91 MCI 68 1 28
92 MCI 69 1 29
93 MCI 73 1 27
94 MCI 71 1 27

MEAN 72.35 1.52 26.76
SD 4.56 0.50 2.53

was not significant, and hence we could safely compare all datum from every subject, we require more data
to give robustness to our conclusions. In future studies, it would be interesting to explore differences in the
interplay between other frequency bands, building MN comprising other combinations of layers, or possibly
including all of them. In our study, we chose α and β because those ranges accumulate more power in the
spectrum, show clear differences in complexity and entropy [30] and have been identified as the ones with
highest impairment in AD [31].

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons
but are available from the corresponding author on reasonable request.
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Table 3. Table with demographic information from the AD.
MMSE = mini-mental state examination. Sex: 1 = Male; 2 = female.

ID Group Age Sex MMSE

95 AD 77 2 18
96 AD 74 1 29
97 AD 70 1 28
98 AD 80 1 17
99 AD 77 1 23
100 AD 79 1 25
101 AD 63 1 28
102 AD 80 2 16
103 AD 73 2 18
104 AD 80 2 20
105 AD 83 2 21
106 AD 76 1 25
107 AD 81 2 23
108 AD 82 2 20
109 AD 77 2 17
110 AD 76 1 19
111 AD 87 1 23

MEAN 77.35 1.47 21.76
SD 5.46 0.51 4.16

Figure 7. Schematic representation of the pipeline followed to conduct multilayer analyses. Raw data (1) obtained from sensors is
curated (2), estimated in ROIs space (3) and filtered in frequency bands (4). The connectivity (5) in α and β bands, and between
them, is obtained with MI, corrected with a circular permutation scheme that retains only significant values under a null model of
no temporal correlation, and then bounded between 0 and 1. Lastly (6), the graph Laplacian Lαβ is extracted from each supra
adjacency matrix Mαβ , and the interdependence between layers is obtained with its second smallest eigenvalue, or algebraic
connectivity, λ2.

Appendix A

A.1. Demographic information
See tables 1–3

A.2. Multilayer pipeline analysis
See figure 7
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A.3. Null model for λ2

The simplest model (mdl(1)) containing only demographic variables (age and sex) to predict group labels
reads:

ln
πMCI

πCG
= −3.64 + 0.053 8 × age − 0.17 × sex (15)

ln
πAD

πCG
= −22.6304 + 0.3032 × age − 0.6336 × sex. (16)

The deviance of the model is devmdl(1) = 203.8440. The coefficients express both the effects of the predictor
variables on the relative risk and the logarithmic odds of being in one category versus the reference category
(CG). Intercepts were −3.64(p = 0.2760) and −22.6304(p = 0.0001), with coefficients 0.0538(p = 0.2397)
and 0.3032(p = 0.0001) for age and −0.1700(p = 0.6836) and −0.6336(p = 0.3265) for sex. Note how the
intercept in the first equation and the coefficients for sex in both equations were not statistically significant,
while the intercept and effect of age was statistically significant only when we compare AD and CG groups
(second equation), which makes sense if we take into account that these two groups should differ more. With
this model, we could safely state that the relative risk of being AD versus CG increases exp(0.3032) = 1.3542
times for each year increase, given that the rest of the variables are equal. Interpretations regarding sex must
be taken with caution, given that the coefficients associated with this effect are not significant. Nonetheless, we
will keep this term for practical purposes.
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