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a b s t r a c t 

We investigated the particular organization of Guardiola’s F.C. Barcelona during season 2009/2010, us- 

ing datasets from the Spanish National League La Liga . Specifically, we constructed the corresponding 

pitch networks, obtained from all passes successfully performed by a team during a football match. Pitch 

networks are composed of nodes consisting of particular subdivisions of the field, which are connected 

through links whose weight ω i,j corresponds to the number of passes made from region i to region j . 

We performed a multi-scale analysis focused on evaluating the properties of pitch networks at different 

scales, from a partition of the pitch into 2 × 2 to 10 × 10 areas. For each scale, we calculated a diversity 

of network parameters of F.C. Barcelona and its opponents during the whole season. Next, we compared 

the properties of F.C. Barcelona pitch networks with the networks of its rivals. Our results show how, de- 

pending on the spatial scale, there are statistically significant differences between F.C. Barcelona and the 

rest of the teams of the Spanish league. These differences are particularly significant at the clustering co- 

efficient, the network average shortest-path, and the number of nodes occupied by a team for partitions 

with a high number of subdivisions. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Football is probably the sport that has benefited the most from

he application of Network Science [1,2] to team sports, where the

oordination between a group of players plays a crucial role. As

ong as there is a diversity of interacting systems and a way of de-

ermining a particular connection or interaction between them, it

s possible to construct a network based on experimental observa-

ions and analyze its structure to understand the processes occur-

ing in the network. Basketball [3] , rugby [4] , or baseball [5] are

xamples of how it is possible to translate an activity related to

 particular sport into a network, obtaining a different point of

iew of specific problems, such as the understanding of team per-
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ormance, player evaluation or outcome prediction. However, the

ay of constructing networks relies both on (i) the system itself

nd (ii) the availability of datasets. For example, in [3] , the au-

hors evaluated ball movements during a basketball match. In this

ase, the nodes of the network consisted of different game ac-

ions (inbounds, rebounds, shots, fouls, turnovers, ...). Next, the ball

ow through all these actions allowed to create weighted-directed

etworks of actions occurring during the match. Finally, the role

layed by each action (node) was determined in terms of its im-

ortance in the whole network. 

We can find many other ways of obtaining sports networks if

e turn our attention to football. For example, in [6] authors in-

estigated the structure of the transfer network, where nodes con-

isted of football clubs and connections between them were cre-

ted when a player was transferred from one club to another.

sing a dataset that contained close to 50 0.0 0 0 transfers along

https://doi.org/10.1016/j.chaos.2020.109934
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109934&domain=pdf
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Table 1 

Example of the dataset structure. Time, in minutes and seconds, corresponds to 

the moment at which each pass was made. Player 1 and player 2 are, respectively, 

the sender and receiver of the pass, while x 1,2 and y 1,2 are the coordinates of both 

players, in field units (bounded, at both axis, between 0 and 100). 

Time Team Player 1 x 1 y 1 Player 2 x 2 y 2 

... ... ... ... ... ... ... ... 

17:31 FCB Piqué 13.30 51.30 Busquets 32.03 48.80 

17:34 FCB Busquets 35.00 50.10 Xavi 48.10 64.90 

17:39 FCB Xavi 51.15 60.20 Iniesta 66.40 55.50 

... ... ... ... ... ... ... ... 
26 years, it was possible to obtain a weighted-directed network,

whose in-degree (number of incoming players), out-degree (num-

ber of outgoing players), and weight distribution were analyzed to

detect the role of clubs in the transfer market. A complementary

approach was followed by Maimone and Tasseri to assess the pre-

dictability of football using network science [7] . In this case, the

authors analyzed the results of 11 major European leagues for 26

years. Again, football clubs where the nodes of the network, how-

ever, links consisted of arrows departing from the loser team of

a match to the winner, disregarding ties. The computation of the

eigenvector centrality [8] , a network-based metric that quantifies

the importance of a node in a network, showed that the inequality

of teams has dramatically increased during the last years, increas-

ing predictability of football results. 

Other approaches introduced player-oriented networks, such as

linking players who have worked at the same club at the same

time, leading to a player co-working network [9] . 

However, the most extended way of transforming football

datasets into a network is the construction of passing networks

[10] . This approach, introduced in the late seventies by Gould and

Gatrell [11] , considers the players of a team to be linked through

the passes they make during the match. In this way, it is possi-

ble to obtain weighted-directed networks, where nodes are play-

ers of a team, and links are arrows whose weight accounts for the

number of passes between the players they are connecting. Pass-

ing networks have been used to quantify the role of players in a

team [12,13] , the organization of teams both at spatial and tempo-

ral scales [14] and, ultimately, team performance [15,16] . 

However, there is an alternative way of obtaining passing net-

works that puts the focus on the space instead of the player: pitch

passing networks . In this kind of networks, nodes consist of differ-

ent areas of the pitch that pass the ball between them. For exam-

ple, in [17] , authors evaluated the performance of teams at the Ital-

ian National League and the teams playing at FIFA World Cup 2014

by constructing pitch networks of 10 × 10 regions (i.e., 100 nodes).

Based on the parameters of the resulting networks, authors ob-

tained an indicator of team performance that correlated well with

the outcomes of matches both at the Italian National League and

the 2014 World Cup. Note that this kind of approach disregards the

importance of a given player in a team, putting the attention to the

collective behavior in terms of the spatial distribution of its passes.

There are also hybrid approaches where nodes are the combi-

nation of a player and its position on the pitch [13] . Using this

methodology, a player can be present at different nodes of the net-

work as long as he/she passes from different regions of the pitch.

Narizuka et al. [18] followed this latter approach combining the 11

players of a team with 18 different pitch positions, leading to net-

works of 18 × 11 nodes. Furthermore, authors also considered a

sliding window of 15 minutes to capture the changes in the orga-

nization of the pitch-player networks and how they were related to

the phases of the game. They showed the existence of the small-

world property [19] , i.e., a network with a combination of a high

clustering coefficient and a low average path between nodes. Fi-

nally, the authors designed a Markov chain model that was able

to reproduce the statistical properties of the real player-pitch net-

work, namely the clustering coefficient and the average shortest

path. 

However, the Achilles’ heel of the partitions of the pitch con-

sidered in the literature is that they are quite subjective. The di-

mensions of the partitions are based on the previous experience of

the researchers, which results on partitions of different sizes such

as (3 × 3) 9 divisions in [13,20] , 18 (6 × 3) divisions in [18] or 100

(10 × 10) in [17] . 

In this paper, we analyzed the organization of the pitch net-

works of F.C. Barcelona (FCB) when it was coached by Pep Guardi-

ola, a football team considered as one of the most significant ref-
rences in football history [21,22] . Pep’s FCB was a team charac-

erized by a particular way of playing where having the ball was

he main priority. The advantage over the rival team was based on

i) the construction of a dense network of passes between players

ith the aim of generating disequilibria in the opponent and (ii) a

igh pressure after loosing the ball (in order to recover it as soon

s possible) [23] . This historic Catalan team has been already ana-

yzed under the scope of Network Science showing statistically sig-

ificant differences in a series of network parameters. Buldú et al.

24] , constructed player networks using the information (space and

ime) of all passes made by FCB during the 2009/2010 season of

he National Spanish League (which we will refer to from now on

s La Liga) and, next, analyzed the structure of these passing net-

orks during a match, focusing on the fluctuations of their param-

ters and those of its rivals. Authors found differences in a series

f network parameters that were related to a higher/lower proba-

ility of scoring/receiving a goal [24] . 

Here, we have gone one step beyond and analyzed the structure

f the pitch-networks of FCB and its rivals during the 2009/2010

eason of La Liga . The purpose was to identify what differences

xisted between Guardiola’s team and the rest, trying to extract

onclusions about the spatial organization of FCB passing networks

nd how they were related to Guardiola’s way of understanding

ootball. The crucial point about our analysis is that we did not

ocus on a single spatial scale of pitch-networks. On the contrary,

e investigated how network parameters changed when the spa-

ial scale at which pitch-networks are constructed was reduced,

eading to subdivisions of the pitch with a smaller area and, as

 consequence, increasing the number of nodes in the network.

e observed how classical parameters such as the clustering co-

fficient or the shortest-path length [19] had statistical significant

ifferences between FCB and the rest of the teams of La Liga , no

atter what spatial scale was considered. However, other network

arameters such as the largest eigenvalue of the adjacency matrix

1] , the algebraic connectivity [25] or the percentage of occupied

odes drastically depended on the spatial scale, both for FCB and

ts rivals. 

. Methodology 

itch networks 

Datasets, provided by Opta [26] , consisted of all passes com-

leted during the 38 matches played by FCB during the season

009/2010 of ( “La Liga”). From each completed pass, we collected

i) the player who passed the ball, (ii) the player who received the

all, (iii) the position ( x and y coordinates) of the sender/receiver

layers and (iv) the time at which the pass was made (see Table 1

or an illustrative example). It is worth noting that the dimensions

f the different fields of La Liga are not the same. For this rea-

on, we normalized all pitches to be bounded between the inter-

al [0,100] both for the x and y coordinates. In this way, spatial

nits were called “field units” (f.u.) and, as a rule of thumb, one
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Fig. 1. Example of pitch networks at different scales for the match between FCB (home) and Real Madrid (away) during the season 2009/2010. Upper panel, plots of FCB’s 

pitch networks for three different sizes: (left) N = 9 (3 × 3) , (middle) N = 30 (5 × 6) and (right) N = 100 (10 × 10) . Bottom panel correspond to the pitch networks of Real 

Madrid. 
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eld unit in the x direction, i.e., the direction towards the oppo-

ent’s goal, corresponded to approximately 1.05 meters, while one

eld unit in the y direction (parallel to the opponent’s goal) was

round 0.68 meters. The use of field units allows a more intuitive

nterpretation of the spatial coordinates where, for example, the

osition [50,50] is the center of the pitch and coordinates [100,50]

orrespond to the center of the opponent’s goal. 

Using these datasets, we constructed pitch networks by parti-

ioning the pitch into N = h × v patches; where N is the number

f nodes (pitch areas), h is the number of horizontal subdivisions

 x direction) of the pitch and v is the number of vertical subdivi-

ions ( y direction). Note that a network with N = 6 can have two

ifferent partitions: 3 × 2 and 2 × 3. A link from a node i to a

ode j is created when a pass is made from region i to j and has

 weight that quantifies the total number of completed passes. In

his way, we obtained weighted-directed networks with an adja-

ency matrix that was not symmetric. We built a total of M = 81

etworks per match and team, resulting from the ordered combi-

ation of h and v , both variables taking values from 2 to 10. The

mallest networks had a size of N = 4 (2 × 2), while the largest

etworks were of size N = 100 (10 × 10). As an example, Fig. 1

as pitch networks at three different scales (left: 3 × 3 = 9 ; mid-

le: 5 × 6 = 30 and right: 10 × 10 = 100 ) for the match between

CB (home team) and Real Madrid (away team) played during the

009/2010 season. Pitch partitions are highlighted by red dotted

ines. Nodes were placed at the center of each pitch subdivision,

nd they are proportional to their importance in the passing net-

ork. Precisely, importance is measured using the eigenvector cen-

rality [8] , a measure of node importance that takes into account

he number of passes received and, in turn, the importance of the

egions from where these passes were made. 

As we can see, splitting the pitch into divisions of different

izes leads to different networks. As a consequence, a series of

atural questions arise: How are the properties of these pitch net-

orks and how are they related? Are there any scales related be-

ween them? Furthermore, are there fundamental differences be-

ween teams depending on the specific scale? In what follows, we

ddressed these questions; however, let us first introduce the net-

ork parameters that we calculated and explain what information

e can extract from each of them. 
i
efinition of network parameters 

eighted adjacency matrix 

The weighted adjacency matrix W contains the weights of the

inks that go from any node i to any node j . Its elements w i, j are

roportional to the number of passes made from region i to re-

ion j . Specifically, we first obtained L , which is the total number

f completed passes of a team during a match. Next, we counted

ll passes ( p i,j ) made between any pair of regions i and j and fi-

ally we divided it by the total number of passes in order to ob-

ain w i, j = p i, j /L . Using this normalization, if we define the net-

ork strength S as the sum of the elements of the adjacency ma-

rix W , it will be 1 in all cases, no matter the number of passes

ade by a team. In this way, if we find differences between two

eams in the network parameters, they could not be attributed to

he number of passes, but to the differences in the organization of

asses between the regions of the pitch. 

lustering coefficient 

When links between networks do not have weights, the local

lustering coefficient of a node i is commonly obtained as the per-

entage of the nodes directly connected to i that, in turn, are con-

ected between them. In other words, it measures the probabil-

ty of finding triangles around a given node. This measure can be

veraged along the N nodes of the network to obtain the aver-

ge clustering coefficient [1] . However, in our particular case, pitch

etworks are weighted and directed. For this reason, we used the

eighted-directed version of the clustering coefficient of a node i ,

sing the formula [27] : 

 w 

(i ) = 

1 
2 

[(W + W 

T )(A + A 

T ) 2 ] ii 

s tot 
i 

( d tot 
i 

− 1) − 2 s ↔ 

i 

, (1) 

here W 

T is the transpose of the weighted adjacency matrix W; A

s the unweighted adjacency matrix, which is the binary version of

 (i.e, a i, j = 1 if w i, j > 0 and a i, j = 0 otherwise); s tot 
i 

is the total

trength of node i ( s tot 
i 

= s in 
i 

+ s out 
i 

= 

∑ 

j � = i (a ji w ji + a i j w i j ) ) and s ↔ 

i 
ccounts for the bidirectional links between the node i and its ad-

acent nodes ( s ↔ 

i 
= 

∑ 

j � = i a i j a ji (w i j + w ji ) / 2 ). Finally, the weighted

lustering coefficient of the whole network is obtained by averag-

ng C w 

( i ) over all nodes, i.e., C = 

1 ∑ N 
i =1 C w 

(i ) . 
N 
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Shortest-path length 

In pitch networks, the shortest-path length SP is the minimum

number of nodes (areas of the pitch) that must be crossed by the

ball to go from one sector of the pitch to any other. Since pitch

networks are weighted (i.e., the number of passes involving a pitch

division is different), we have to take into account the different

weights of the links, considering that, the higher the number of

passes between two areas (nodes), the higher the weight of the

link and the shorter the “topological distance” between two nodes.

Therefore, the topological length l ij of the link between two pitch

areas i and j is defined as the inverse of the link weight, l i j = 1 /w i j .

Besides, the shortest-path length between a pair of nodes may not

be a direct link, since there could exist a shorter path by combin-

ing two (or more) alternative links. Therefore, we computed the

minimal shortest-path p ij between all pairs of nodes using the Di-

jkstra’s algorithm [28] . Next, we defined the average shortest-path

SP of each pitch network as: 

SP = 

1 

N(N − 1) 

∑ 

i, j i � = j 

p i j (2)

where N is the total number of nodes of the pitch network. Note

that, the lower the value of SP , the better connected pitch areas

are, in terms of the number of steps required by the ball to reach

any given area. 

Largest eigenvalue of the adjacency matrix 

The largest eigenvalue λ1 of the weighted adjacency matrix W

of a pitch network is a measure of its strength [29] in terms of

robustness. The largest eigenvalue of W is bounded by the aver-

age strength of pitch areas 〈 s 〉 , as λ1 ≥ 〈 s 〉 , in the way s max ≥
λ1 ≥ max (〈 s 〉 , √ 

s max ) [30] , where s max is the highest strength of

all areas (i.e., max (s (i ) = 

∑ N 
j=1 w j,i ) ). As a rule of thumb, networks

with higher number of non-zero links (passes) have a higher λ1 

and networks with the important nodes connected between them

also have a higher λ1 than networks where the hubs (i.e., highly

transited areas) are not directly connected between them. 

Algebraic connectivity 

The algebraic connectivity ˜ λ2 corresponds to the second small-

est eigenvalue of the Laplacian matrix ˜ L , which is defined as ˜ L =
S − W , with W being the weighted adjacency matrix and S is a di-

agonal matrix whose i -element is the sum of the outgoing weights

of area i . Algebraic connectivity is closely related to both structural

and dynamical properties of networks [1,30,31] . On the one hand,

the algebraic connectivity is an indicator of the modular struc-

ture of a network [32] : The lower the ˜ λ2 , the more independent

groups inside the network, with the limit value of ˜ λ2 = 0 indicat-

ing the existence of, at least, two completely disconnected groups.

On the other hand, 1 / ̃ λ2 is proportional to the time required to

reach equilibrium in a linear diffusion process [33] . Additionally,

the time t sync to reach synchronization of an ensemble of phase

oscillators that are linearly and diffusively coupled is also propor-

tional to 1 / ̃ λ2 [34] . 

Pitch coverage 

The coverage parameter measures the percentage of areas of the

pitch that are actually used by a team making passes. In this con-

text, a node is “used” when it has at least one link with w i, j > 0

and the coverage parameter is computed as the percentage: 

cov erage = 100 × number of nodes with at least one link 

number of possible nodes for a given scale 

(3)

Note that, when all areas have a pass inside them, the coverage

is 100%. However, when the pitch is divided into smaller areas, the
robability of finding an empty region (i.e., a region without any

ass) increases, leading to a decrease of the coverage parameter.

lso note that the higher the number of passes made by a team,

he higher the probability of covering more areas. 

itch occupation 

Since the coverage is highly dependent on the total number of

asses, we can normalize its value in order to quantify the efforts

f a team to distribute a limited number of passes through more

egions of the pitch. With this aim, we defined the occupation pa-

ameter of each area as: 

 

i 
in = 

p i 
in 

L 
− 1 

N 

, (4)

here i is each of the subdivisions of the pitch (i.e., each node of

he network), p i 
in 

is the number of incoming passes of a region

, L is the total number of passes made by a team, and N is the

umber of divisions of the pitch. Note that 
p i 

in 
L accounts for the

robability of finding a pass entering a region i computed from the

ctual distribution of passes, while 1 
N is the probability that a pass

s entering to region i at random. In this way, o i 
in 

is indicating if the

ctual occupation of a region i is higher ( o i 
in 

> 0 ) or lower ( o i 
in 

< 0 )

han what would be expected if passes were randomly distributed.

Finally, the occupation parameter of the pitch is calculated as

 in = 

√ ∑ N 
i =1 

(
o i 

in 

)2 
. On one hand, when the pitch is used homo-

eneously by a team, i.e. all divisions receive the same number of

asses, we obtain O in ~ 0; on the other hand, when the use of the

itch is highly heterogeneous, O in increases until reaching the ex-

reme value of O in ~ 1 for a large enough N . 

tatistical analysis 

To compare each network metric between groups (as seen in

igs. 2–7 ), we computed a non parametric test (Wilcoxon ran-ksum

est) at each partition of the field. Each partition defined a net-

ork from which we obtained the parameter under study for each

atch, leading to 38 values per group. Assuming data is normally

istributed is too risky with such small sample sizes, and it is safer

urning to non-parametric approaches. The Wilcoxon ranksum test

oes not assume any underlying distribution, and compares me-

ians instead of means, yielding a probability associated to the

ifference. Given the number of comparisons, we corrected all p-

alues following the common false discovery rate procedure de-

eloped by Benjamin and Yekutieli ( [35] ), setting α = 0 . 01 . Follow-

ng this procedure ensured that all statistical comparisons met the

ost strict criteria, at the cost of not detecting subtler differences

etween groups. As we have shown in the Results section, this

ethodology does not prevent us from finding differences in vari-

us parameters for different partition schemes. 

. Results 

We computed a series of network and pitch attributes in order

o characterize the differences between FCB and its rivals for the

8 matches played during the 2009/2010 season of the Spanish

ational league. In Fig. 2 we plot the weighted clustering coeffi-

ient C of the pitch networks as a function of the different parti-

ions considered for FCB (blue) and all its rivals (red). Labels of the

orizontal axis indicate the type of partition, with the total num-

er of nodes of the partition increasing to the right. Results are

lotted using a box and whiskers representation that contains the

edian and the interquartile range IQR (i.e., the box), whose bor-

ers are the (lowest) 25 th percentile, and the (highest) the 75 th

ercentile. The whiskers are calculated as the first percentile mi-

us 1.5 times the IQR (low) and the third percentile plus 1.5 times

he IQR. Outliers are those values that fall outside these limits.
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Fig. 2. Clustering coefficient ( C ) of pitch networks vs the size of the partition for FCB (blue) and its rivals during the season 2009/2010 (red). Measures highlighted with 

a grey background indicate that differences between FCB and its rivals are statistically significant. In this particular case, all scales (except the first pitch division) show 

statistically significant differences. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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inally, those values having statistically significant differences are

ighlighted with a grey shadowed background. 

We can observe how, for all considered partitions, except the

rst-one (2 × 2), the clustering coefficient shows significant statis-

ical differences between FCB and its rivals. Interestingly, FCB has a

arger C in all cases, indicating that the number of triangles of the

itch passing networks is higher. Triangles are indicators of loops

etween three regions of the pitch and are related to a circulation

f the ball between them. 

In Fig. 3 , we show the corresponding average shortest-path

ength SP of the aforementioned pitch networks. As in Fig. 2 there

re significant statistical differences between FCB and its rivals at

he different scales. 

Interestingly, while the rivals increase their SP with the parti-

ion, FCB maintains its value for all partitions. This behavior of SP

hows how tightly connected FCB remains, regardless of the scale

f partition, i.e., the ball arrives from any region of the field to any

ther in a lower number of “topological” steps. 

However, not all network metrics showed clear differences. In

ig. 4 , we plot λ1 as a function of the partition size. We can ob-

erve how, no matter the team, the value of λ1 decreases mono-

onically as the number of nodes increases. This fact is a conse-

uence of increasing the number of nodes (regions) while main-

aining the number of links (passes). For a given number of passes,

he lower the number of regions, the more connected they will

e. Interestingly, we can observe how statistically significant differ-

nces only appear for certain partitions, which mainly have inter-

ediate sizes. In these cases, it is FCB who has the higher value of

1 , indicating that its passing networks are more robust than those

f its rivals, since λ1 is an indicator of the robustness of a network

n terms of keeping its connectedness when links are removed. The
 i  
lgebraic connectivity ˜ λ2 has a behaviour similar to λ1 . As shown

n Fig. 5 , only certain partitions show statistically significant dif-

erences. Furthermore, for pitch divisions implying a high number

f nodes, the value ˜ λ2 goes to zero due to a fragmentation of the

etworks (since ˜ λ2 = 0). Again, in those cases where there are sta-

istically significant differences, the value of ˜ λ2 is higher in FCB,

ndicating that its passing networks are less prone to be splited

nto two disjoint sets than the networks of its rivals. 

Now, let us take a closer look at the distribution of passes along

he pitch. In Fig. 6 we show the coverage of the pitch networks as

hey are split into a larger number of areas. For small partitions,

oth FCB and its rivals cover the whole pitch; i.e., all nodes of

he corresponding networks have at least one link (i.e., pass). As

 consequence, there are no statistical differences between them,

ince the pitch coverage only measures the percentage of con-

ected nodes in the network. However, as the number of partitions

ncreases, the FCB’s rivals begin to have some areas of the pitch

isconnected from the rest of the network, while FCB is still able

o cover the whole pitch. Finally, for a sufficiently large number of

artitions of the pitch, FCB fails in completing a pass from all areas

f the pitch, and the coverage decreases below 100%. However, it

s always higher than the average coverage of its rivals. 

The higher values of the coverage reported in FCB may be sim-

ly explained by the higher amount of passes made by FCB during

he season (see [24] for details). Therefore, we tried to quantify

hether the coverage of the field is just related to the “quantity”

f passes or it also includes their “quality”. With this aim, we cal-

ulated the occupation parameter O in , which, in a few words, con-

ists of a normalized version of the coverage, where the impact of

he number of passes has been neutralized. The closer to zero O in 

s, the more homogeneous the occupation of the pitch. Fig. 7 shows
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Fig. 3. Average shortest path length ( SP ) of pitch networks vs the size of the partition for FCB (blue) and its rivals during the season 2009/2010 (red). Measures highlighted 

with a grey background indicate that differences between FCB and its rivals are statistically significant. As in the case of the clustering coefficient, all scales (except the first 

pitch division) show statistically significant differences. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 4. Largest eigenvalue ( λ1 ) of the adjacency matrix of pitch networks vs the size of the partition for FCB (blue) and its rivals during the season 2009/2010 (red). Measures 

highlighted with a grey background indicate that differences between FCB and its rivals are statistically significant. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 5. Algebraic connectivity ( ̃ λ2 ) of pitch networks vs the size of the partition for FCB (blue) and its rivals during the season 2009/2010 (red). Measures highlighted with 

a grey background indicate that differences between FCB and its rivals are statistically significant. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 6. Coverage of pitch networks vs the size of the partition for FCB (blue) and its rivals during the season 2009/2010 (red). Measures highlighted with a grey background 

indicate that differences between FCB and its rivals are statistically significant. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 7. Occupation parameter 〈 O in 〉 of pitch networks vs the size of the partition for FCB (blue) and its rivals during the season 2009/2010 (red). Measures highlighted with 

a grey background indicate that differences between FCB and its rivals are statistically significant. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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how for partitions with intermediate to high number of divisions,

O in is smaller for FCB, indicating that it occupies the pitch more

homogeneously than its rivals. In turn, the high values of O in of the

rivals show that they are prone to confine themselves into given

zones of the pitch. Since O in does not take into account the total

number of passes, we can conclude that the style of playing devel-

oped by FCB leads to occupy more space in the pitch. 

4. Conclusions 

Football datasets can be translated into a diversity of different

networks whose nodes can be, for example, teams [7] , players [24] ,

areas of the pitch [17] or actions carried out during a match [36] ,

while links between nodes can be inferred from the result of a

match [7] , players exchanged by teams [6] , the number of passes

between players [12] or regions of the pitch [17] . Here, we made

use of Network Science to analyze the structure of F.C. Barcelona

(FCB) during the season 2009/2010, when Pep Guardiola coached

it. From the diversity of approaches, we decided to focus on pitch

passing networks, paying special attention to the importance of

the spatial scale when dividing the pitch into subdivisions. Using

this methodology, we reported statistically significant differences

between the network parameters of Guardiola’s team and the rest

of its rivals in the Spanish national league. Two of the most stud-

ied network parameters, the clustering coefficient and the average

shortest path length, showed that FCB was better organized than

its rivals. The reason is twofold; on one hand, FCB created a higher

number of triangles between areas of the pitch, which is related to

the high robustness of networks at local scales. The reason is that,

in a triangle, when one of the possible connections is cut, there is
lways an alternative path to reach any of the three nodes belong-

ng to the triangle. Furthermore, networks with a high clustering

oefficient have been demonstrated to enhance the transmission

f information at global scales [37] , a fact that, translated to pitch

assing networks, would indicate that the ball better reaches all ar-

as of the pitch. On the other hand, the lower values of the short-

st path length indicate that the number of subdivisions that the

all crossed to go from an area of the pitch to any other was lower

or FCB when compared to its rivals. This fact is good news for

uardiola’s team since it demonstrates that the team, as a whole,

as better connecting the field through the network of passes. 

We also analyzed the spatial distribution of passes at different

cales. Two parameters, the coverage and the occupation of the

eld, showed that FCB better used space than its rivals. Impor-

antly, FCB made more passes from different locations or, in other

ords, it played over a larger field than its rivals. Both parameters

ndicate that FCB made more passes from different locations or, in

ther words, it played over a larger field than its rivals. However,

his merit is not just a matter of making more passes since the oc-

upation parameter is normalized to be independent of the total

umber of completed passes. Furthermore, the larger the number

f subdivisions of the field, the higher the difference between FCB

nd its rivals. 

It is worth noting that Guardiola’s FCB had been previously an-

lyzed using network science. In [24] , it was shown that player-

assing networks of FCB had much better indicators from those of

ts rivals in terms of robustness and connectivity between players.

owever, the use of pitch-passing networks puts the role of space

t the forefront. In this way, we were able to (i) relate the dif-

erences between network parameters with the spatial scales and
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ii) we could detect the higher occupation of the pitch made by

CB. Both observations would not be made using player-passing

etworks. 

Finally, two of the network parameters, the largest eigenvalue

f the adjacency matrix and the algebraic connectivity, did not

how as many differences between FCB and its rivals as the rest

f the parameters. Only some particular divisions of the pitch

howed statistically significant differences. However, when these

ifferences existed, they always were in favor of FCB, showing a

ore united and robust network of passes in the Catalan team.

iven all, we believe that the use of pitch passing networks can be

 useful way of analyzing team organization in football and team

ports in general. For example, in sports like basketball or hockey,

here passing networks could be constructed, our methodology

ould be applied directly as long as the position of all passes had

een recorded. If it is so, it would be possible to identify the scales

nd areas of the field where teams are more different from each

ther and to use this information to identify the particular spatial

eatures of teams. 
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