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ABSTRACT 

In a world with drones becoming a common sight in our skies and roads increasingly shared with 

autonomous vehicles, the quest for efficiency, safety, and innovation takes center stage. 

The increasing demand for autonomous mobile robots (AMRs) across diverse sectors such as industrial 

automation, healthcare, and military has pushed the development of intelligent algorithms that enable these 

systems to navigate and execute tasks in varying environments without human intervention. Reinforcement 

learning can provide the backbone for these systems to traverse complex environments, recognize obstacles, 

detect anomalies, and adapt in real-time to varying situations. 

However, the path to creating these systems is filled with challenges, primarily due to the complexities and 

risks of experimenting in real-world environments. This is where the value of simulation to reality (sim-to-

real) becomes pronounced. Developing, testing, and refining autonomous algorithms in simulated 

environments presents numerous advantages, including accelerated development, cost efficiency, and 

safety. This thesis aims to explore the application of reinforcement learning to the development of 

autonomous navigation behaviors in a differential vehicle and a drone, addressing the simulation-to-real 

gap and providing insights into the challenges and complexities of real-world navigation. 

 

 

I. INTRODUCTION AND CONTEXT 

This section discusses the significance of 

reinforcement learning in addressing the 

challenges and complexities of real-world 

navigation. In the realm of mobile robotics, the 

unique challenges that reinforcement learning can 

tackle are highlighted, and its position relative to 

other techniques is assessed. By showcasing how 

each segment of a robotic system relates to 

reinforcement learning principles, this section 

sets the groundwork for the detailed discussions 

on methodologies and results in the following 

sections. 

State of the Art 

Autonomous mobile robots (AMRs) have been 

gaining rapid traction in diverse sectors due to the 

significant advantages they bring in terms of 

efficiency, precision, and safety. They leverage 

sensors, actuators, and intelligent algorithms to 

navigate and execute tasks in varying 

environments without human intervention. 
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Industrial Automation and Manufacturing 

AMRs are used for material handling, picking, 

and sorting, increasing the speed and accuracy of 

production lines [1]. 

Healthcare 

Patient Assistance: Robots in hospitals can help 

in transporting medicines, meals, or lab 

specimens [2]. 

Disinfection: Given the current global health 

scenario, robots equipped with UV lights or liquid 

disinfectants have been used in hospitals and 

public places to prevent the spread of contagious 

diseases [3]. 

Military and Defense 

Reconnaissance: Robots can be used for 

surveillance purposes, scouting areas without 

putting human lives in danger [4]. 

Bomb Disposal: Specialized robots can be 

utilized to defuse or safely detonate explosive 

devices [5]. 

Other Sectors 

Among the aforementioned sectors, AMRs 

provide versatile solutions in warehouse and 

logistics for inventory management [6] and 

material handling [7], search and rescue [8], 

agriculture for precision farming [9] and  

harvesting [10], maintenance and inspection 

[11] and  space exploration [12]. 

Reinforcement learning provides the backbone 

for these systems to navigate complex 

environments, recognize obstacles, detect 

anomalies and adapt in real-time to varying 

situations. However, the path to creating these 

systems is filled with challenges, primarily due to 

the complexities and risks of experimenting in 

real-world environments. 

This is where the value of simulation to reality 

(sim-to-real) [13] becomes pronounced. 

Developing, testing, and refining autonomous 

algorithms in simulated environments presents 

numerous advantages such as accelerated 

development, cost efficiency and safety. 

General Scheme of Reinforcement Learning 

Basic Components of the Process 

Agent: This refers to the learner or decision-

maker that interacts with the environment. 

Environment: The environment is everything 

that the agent interacts with and learns from. It 

provides feedback to the agent based on the 

agent's actions. 

Actions: Actions represent the set of all possible 

moves that the agent can make. These can be 

discrete, continuous, or a combination of both. 

States: The state of an environment at any given 

time refers to the current configuration or 

situation of that environment. 

Rewards: Rewards are feedback from the 

environment based on the agent's actions. A 

positive reward indicates a favorable action, 

whereas a negative reward indicates an 

unfavorable action. The goal of the agent is to 

maximize its cumulative reward over time. 

 

Fundamental Concepts 

Policy (π): A policy defines the agent's behavior. 

It is a mapping from states to actions, determining 

what action the agent should take in each state. 

The policy can be deterministic or stochastic. A 

deterministic policy provides a specific action for 

each state, while a stochastic policy provides a 

probability distribution over actions for each 

state. Neural networks can be used to 

approximate these deterministic policies. 

Figure 1: Reinforcement Learning General Scheme 

Image Source: 2103.15781.pdf (arxiv.org) 

https://arxiv.org/pdf/2103.15781.pdf
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Value Function: The value function 

approximates the expectation of cumulative 

future rewards a particular agent can expect to 

receive starting from a given state or state-action 

pair. In deep reinforcement learning deep neural 

networks are employed to represent and 

approximate this function due to their capability 

to generalize and handle large or continuous state 

spaces. 

Episode: An episode refers to a sequence of 

states, actions, and rewards that ends in a terminal 

state or after a given number of steps. 

Markov Decision Processes (MDPs): To apply 

reinforcement learning algorithms to an 

environment, it must satisfy the Markov property. 

According to this property, all subsequent states 

following a given state are dependent solely on 

that state and the action taken. Therefore, 

knowing the current state eliminates the need to 

consider the previous history of states to make an 

optimal decision. 

Exploration vs. Exploitation: Exploration refers 

to the act of an agent trying out different actions, 

especially ones it is not certain about, in order to 

gather more information about its environment. 

Exploitation refers to the act of an agent selecting 

the action it believes will yield the highest reward 

based on its current knowledge. In continuous 

spaces, the balance between exploration and 

exploitation becomes crucial. Strategies like 

Epsilon-greedy , Softmax action selection or 

adding noise to the actions can help in efficient 

exploration. 

Comparison and Synergy with Other 

Techniques 

Traditional Control Algorithms: Traditional 

control algorithms like PID controllers [14] , 

LQRs (Linear Quadratic Regulators) [15], and 

MPC (Model Predictive Control) [16] have been 

standard tools in mobile robotics for years. These 

methods generally rely on mathematical models 

of the system and the environment. While they 

are robust and well-understood, they might not 

handle complex environments or unexpected 

scenarios as effectively as RL. However, the 

synergistic combination of these methods with 

RL can provide the reliability of traditional 

controllers with the adaptability of reinforcement 

learning. For example, a PID controller might 

maintain the stability of a drone, while the RL 

agent learns to navigate in complex 

environments. 

Genetic Algorithms (GAs): GAs are 

optimization techniques inspired by the process 

of natural selection. In the context of mobile 

robotics, GAs might be employed to optimize 

certain parameters of an agent's operation. While 

GAs are excellent for optimization, RL focuses 

on learning through interaction. When combined, 

GAs might determine optimal hyperparameters 

for an RL agent, while the agent learns the best 

policy through interaction with the environment. 

Project Objectives 

Development of Autonomous Behaviors: To 

design and develop autonomous navigation 

behaviors for both a differential vehicle and a 

drone using reinforcement learning. 

Simulation-to-Real Transition: To validate the 

trained models in a simulated environment and 

then successfully transition and adapt them for 

real-world deployment. 

Integration of Technologies: Seamless 

integration of technologies such as Unity, 

Simulink, ROS2, Docker, and reinforcement 

learning frameworks to achieve a holistic system 

that can function in both simulated and real-world 

settings. 

 

II. SIMULATION METHODOLOGY 

In the realm of autonomous systems, simulation 

serves as the foundation upon which real-world 

implementations are built. This section delves 

into the technologies and tools employed to 

simulate and train the autonomous differential 

vehicle and drone. The deep reinforcement 

learning algorithm used, the Distributed 
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Distributional Deep Deterministic Policy 

Gradient (D4PG) is then discussed. The chapter 

then transitions into the modeling and 

implementation of the environments, 

distinguishing between the Unity and Python 

sides, and contrasting the simplified environment 

with the more realistic one implemented in 

MATLAB and Simulink. 

Description of the Technologies 

Simulation Software 

Unity: Chosen for its versatility in 3D 

simulations, Unity provided the platform for 

sensor and actuator implementations. It offers an 

intuitive interface, advanced physics simulations, 

and real-time visualization.  

Simulink: While Unity serves as a primary 

interface for visualization and high-level 

dynamics, Simulink complements it by offering 

realistic physics simulations, especially for the 

control aspect. Simulink provides a robust 

platform for implementing low-level controls 

seamlessly. 

Technologies and Tools 

ROS2: The Robot Operating System, version 2, 

facilitates the communication between different 

application modules, acting as a middleware. 

Given the complexity of autonomous systems 

where various modules and components need to 

communicate in real-time, ROS2 becomes an 

indispensable tool. 

Docker: To ensure the developed application's 

reproducibility and compatibility across various 

platforms, Docker has been used for 

containerization. Docker encapsulates the 

application and its dependencies into a 'container' 

that can run uniformly on any machine, which is 

critical for collaborative projects and real-world 

deployment. 

Reinforcement Learning Frameworks 

PyTorch  with low-level D4PG implementation 

[17]: PyTorch was the framework of choice due 

to its dynamic computational capacities and 

intuitive design which makes custom 

implementations, like D4PG, more 

straightforward and customizable. The D4PG 

(Distributed Distributional Deterministic Policy 

Gradients) algorithm, given its nature, fits well 

with complex tasks like autonomous navigation 

which requires both continuous action spaces and 

distributional value estimates. 

Programming Languages 

Python: Given its simplicity and wide array of 

support libraries, Python was used primarily for 

reinforcement learning, data analysis, and general 

scripting. 

C#: As Unity's primary scripting language, C# 

was employed for implementing the logic within 

the 3D simulation environment. 

MATLAB and Simulink: Primarily for control 

system design and low-level dynamics 

simulations. 

System Description 

Differential Vehicle System 

The differential vehicle system follows a 

conventional architecture. As seen from the 

simulation perspective, it consists of two primary 

elements: 

Mathematical Model: The mathematical model 

replicates the physical design of the vehicle, 

which features two motorized wheels at the back 

that deliver the required torque for movement. 

Additionally, a stabilizing wheel at the front 

ensures three contact points, and therefore 

stability. 

Control Mechanism: The vehicle's motion is 

governed by two conventional PID controllers, 

one for linear velocity (with a nominal velocity of 

0.4 m/s) and the other for angular velocity (with 

a nominal value of π rad/s). This dual PID control 

structure facilitates precise control over both 

speed and direction. 
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Actuators: The actuators for the differential 

vehicle system are the two motorized wheels 

located at the back. By individually controlling 

the speed and direction of each motorized wheel, 

the differential vehicle can achieve both forward 

motion and turning actions. 

 

Drone System 

The simulation of the drone follows the design of 

a quadrotor in a '+' structure. The primary 

components of the drone are: 

Mathematical Model: The mathematical model 

of the drone is carefully designed to emulate a 

quadrotor's dynamics, with smooth movements 

ensuring that pitch and roll angles remain close to 

zero. This simplification facilitates ease of 

control by considering the system as holonomic, 

allowing for more intuitive control over the 

vehicle. 

Control Mechanism: The control system for the 

drone is more intricate, cascading three distinct 

control loops: 

o Angle Control Loop: A low-level control 

loop responsible for maintaining the drone's 

orientation. 

o Linear Velocity Control Loop: This loop 

controls the linear velocities of the drone, 

allowing for controlled movements in various 

directions. 

o Position Control Loop: The top-level 

control loop utilizes an LQR (Linear 

Quadratic Regulator) architecture to manage 

the three-dimensional positioning of the 

drone. 

Actuators: For the quadrotor drone system, the 

actuators are its four rotors. Each rotor is powered 

by a dedicated motor that provides thrust. Two 

diagonally opposite rotors spin in one direction 

and the other two in the opposite direction. The 

collective thrust from all rotors allows the drone 

to ascend or descend, while the differential thrust 

between them enables controlled movements in 

pitch, roll, and yaw. 

 

Sensors 

Motion Capture Cameras: These cameras are 

utilized to obtain accurate positioning data, 

including both position and orientation. The 

cameras track specific markers or features within 

the environment. 

Inertial Measurement Unit (IMU): The IMU 

integrates accelerometers and gyroscopes to 

measure the vehicle's specific force and angular 

rate. This aids in stability and navigation. 

LiDAR: LiDAR sensors emit laser beams to 

measure distances to objects within their range. In 

the context of this project, a 2D rotatory LiDAR 

is used for both the vehicle and drone, providing 

a two-dimensional "slice" of the surrounding 

environment. This technology is vital for obstacle 

detection and avoidance. 

Definition of the Deep Reinforcement 

Learning Algorithm 

The complexity of continuous action spaces and 

the need for stable convergence require the use of 

advanced reinforcement learning algorithms. The 

Deep Deterministic Policy Gradient (DDPG) [18]  

is designed explicitly for environments with 

continuous action spaces, making it suitable for 

real-world problems like these autonomous 

systems. However, while DDPG offers a robust 

solution, advancements in the field have led to the 

development of an even more refined algorithm: 

the Distributed Distributional Deep Deterministic 

Figure 2: Differential Vehicle Simulation Model Figure 3: Drone Simulation Model 



TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT FOR OBSTACLE AVOIDANCE 

AND TRANSFERRING IT TO A REAL MOBILE ROBOT 

6 

 

Policy Gradient (D4PG) [19]. D4PG not only 

inherits the strengths of DDPG but also 

introduces several enhancements that make it 

particularly well-suited for this project's 

requirements. The following sections will present 

the details of DDPG and subsequently explore the 

improvements introduced by D4PG. 

Deep Deterministic Policy Gradient (DDPG) 

Actor-Critic Architecture: The actor defines the 

policy of the agent and therefore is responsible for 

determining the best action given a particular 

state. The actor takes the current state as input and 

outputs a continuous action or a set of continuous 

actions in multi-dimensional action spaces. The 

critic evaluates the action taken by the actor based 

on the current state and provides a value estimate 

(Q-value). This value estimate is used to update 

both the actor and the critic. 

Off-Policy Learning: DDPG learns from past 

experiences stored in a replay buffer. This buffer 

stores tuples of experiences (state, action, reward, 

next state). During training, random samples are 

drawn from this buffer to update the networks, 

decoupling the correlation between consecutive 

experiences and stabilizing the learning process. 

Deterministic Policy Gradient: Unlike 

traditional policy gradient methods that work 

with stochastic policies, DDPG uses a 

deterministic policy gradient. This means that for 

any given state, the actor outputs a specific action 

without any randomness. 

Exploration vs. Exploitation: Since DDPG is 

designed for continuous action spaces, traditional 

exploration methods like epsilon-greedy can't be 

applied. Instead, DDPG adds noise to the policy, 

typically Ornstein-Uhlenbeck noise is used due to 

its temporally correlated nature. 

Target Networks and Soft Updates: DDPG 

employs the concept of target networks, 

borrowed from DQN, to stabilize learning. There 

are target versions of both the actor and critic 

networks. Instead of copying the weights directly 

from the main networks to the target networks, 

DDPG uses "soft updates." This means the target 

network weights are a blend of the main network 

weights and their own, ensuring smooth 

transitions and further stabilizing the learning. 

Distributed Distributional Deep Deterministic 

Policy Gradient (D4PG) 

Distributed Experience Gathering: D4PG 

modifies the standard training procedure to 

distribute the process of gathering experience. 

Multiple actors operate in parallel, all 

contributing to a centralized replay table. A 

learner process then samples from this replay 

table, ensuring efficient and diverse data for 

network updates. 

Distributional Perspective: D4PG adopts the 

distributional perspective on reinforcement 

learning, a paradigm shift from the traditional 

approach of estimating the expected value of 

future rewards to modeling the entire distribution 

of these rewards. This means that for a given 

state-action pair, instead of a single value 

estimate, a distribution over all possible returns is 

maintained. By modeling the full distribution, 

this technique captures the inherent randomness 

and uncertainty in the environment's dynamics. 

Modeling of the Environments 

The modeling of the environments is divided into 

two implementations: a simplified environment 

and a realistic environment. The simplified 

environment serves as a proof of concept, 

allowing for quick testing and validation of the 

fundamental ideas. It is designed with lower 

computational demands, enabling parallelization. 

The realistic environment builds upon the 

simplified environment, incorporating more 

complex dynamics and control systems to 

simulate a more realistic scenario. It integrates 

with an existing system [20] implemented in 

Matlab and Simulink, providing a more accurate 

representation of the vehicle's dynamics and 

control systems. 
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Environment and Environment Replicator 

Classes: The EnvironmentReplicator class is 

responsible for creating multiple parallelized 

instances of a given environment. The 

environment acts as a container GameObject. 

Within this container, other GameObjects reside, 

which allocate the scripts responsible for sensors, 

actuators, and controls. When the 

EnvironmentReplicator creates replicas of the 

environment, it inherently replicates all the 

contained logic, ensuring that each environment 

operates independently and in parallel. 

Sensor and Actuator Classes: The Sensor and 

Actuator classes represent generic sensor and 

actuator components within the Unity 

environment. They are designed to be versatile, 

allowing for the creation of various sensor and 

actuator types by extending this base class. The 

sensor communicates with ROS to publish its 

data while the actuator communicates with ROS 

to receive actuation commands. 

Control Class: The Control class serves as a base 

class for all controls within the Unity 

environment. It is responsible for managing the 

communication with the Robot Operating System 

(ROS) to receive control references and reset 

commands. 

Obstacle Manager Class: The ObstacleManager 

class is designed to manage and generate 

obstacles within a simulated environment. The 

primary objective of this class is to ensure that the 

agent does not overfit to a specific environment 

configuration. By introducing variability and 

randomness in the environment, especially in the 

placement and type of obstacles, the agent is 

encouraged to learn more generalized strategies 

that are robust to changes. 

 

V. SIMULATION RESULTS ANALYSIS 

This chapter offers a comprehensive analysis of 

the simulation results for two agents, by 

examining the evolution of rewards, the 

convergence of loss functions, and the overall 

success rates in different environments. The 

chapter also includes an analysis of the success 

rates in agent deployment in both simplified and 

realistic environments. 

Regarding the following presented graphs, it is 

essential to clarify the distinction between the 

steps in the reward function and the steps in the 

loss function. The steps in the reward function 

represent episode steps for the exploitation 

worker, while the steps in the loss function 

represent learning steps. These two metrics are 

not directly comparable and have no established 

conversion ratio.  

 

Figure 4: System Implementation Block Diagram 

Simulation Environment Visualization 
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Rewards Evaluation and Policy Validation 

Differential Vehicle 

 

The reward evolution graph for the differential 

vehicle provides a visual representation of the 

agent's learning progress over time. As the agent 

interacts with the environment and learns from its 

experiences, the reward value increases. By 500 

steps, the reward reaches a value of 2.0, 

suggesting that the agent has quickly adapted to 

the environment and is making decisions that 

align with the desired outcomes. 

 

The loss function graph for the differential 

vehicle provides insights into the convergence of 

the D4PG algorithm. As the agent learns and 

updates its policy, the loss value decreases, 

showing a downward trend. This suggests that the 

agent's predictions are becoming more aligned 

with the target Q-values over time. 

 

 

 

Drone 

 

The reward evolution graph for the drone, similar 

to the differential vehicle, starts at 0.0, indicating 

that the agent begins with no prior knowledge of 

the environment. Despite a sudden drop that 

could be attributed to the agent exploring a new 

strategy that did not yield favorable results, the 

reward graph shows an upward trend, indicating 

that the agent is gradually improving its 

performance and learning to make better 

decisions. 

 

The drone's loss function graph shows a general 

downward trend, indicating the convergence of 

the D4PG algorithm. This trend suggests that as 

the drone continues its interactions with the 

environment, its predictions of Q-values become 

increasingly accurate, aligning more closely with 

the target Q-values. 

 

 

Differential Vehicle's Mean Reward per Episode Step 

Differential Vehicle's Loss per Training Step 

Drone's Mean Reward per Episode Step 

Drone's Loss per Training Step 
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Success Rates in Agent Deployment 

In this section, the success rates of the differential 

vehicle and the drone in both the simplified and 

realistic environments for a total of 120 episodes 

in each environment for each vehicle are 

analyzed. The success rates are evaluated based 

on four criteria: 

o Target Reached: The agent successfully 

navigated to the target without any collisions. 

o Collision with Static Obstacle: The agent 

collided with a static obstacle. 

o Collision with Moving Obstacle: The agent 

collided with a moving obstacle. 

o Maximum Time Reached: The agent took 

the maximum allowed time for an episode 

without reaching the target. 

In the simplified environment, the differential 

vehicle achieved a success rate of 83.33%, which 

slightly decreased to 78.33% in the realistic 

environment. Collisions with static and moving 

obstacles were relatively low in the simplified 

environment but saw a slight increase in the 

realistic setting. 

Differential Vehicle's Success Rates in the Simplified Env. 

Criteria Epis. % 

Target Reached 100 83.33 

Static Obstacle Collision 2 1.67 

Moving Obstacle Collision 6 5.00 

Maximum Time Reached 12 10.00 

 

Differential Vehicle's Success Rates in the Realistic Env. 

Criteria Epis. % 

Target Reached 94 78.33 

Static Obstacle Collision 4 3.33 

Moving Obstacle Collision 10 8.33 

Maximum Time Reached 12 10.00 

 

The drone exhibited a higher success rate in the 

simplified environment, reaching the target in 

90% of the episodes. However, this rate dropped 

to 76.67% in the realistic environment. Notably, 

the drone experienced a more significant increase 

in collisions with moving obstacles in the realistic 

environment compared to the differential vehicle. 

Drone's Success Rates in the Simplified Env. 

Criteria Epis. % 

Target Reached 108 90.00 

Static Obstacle Collision 2 1.67 

Moving Obstacle Collision 4 3.33 

Maximum Time Reached 6 5.00 

 

Drone's Success Rates in the Realistic Env. 

Criteria Epis. % 

Target Reached 92 76.67 

Static Obstacle Collision 6 5.00 

Moving Obstacle Collision 14 11.67 

Maximum Time Reached 8 6.67 

 

IV. REAL-WORLD METHODOLOGY 

AND EXPERIMENTAL RESULTS 

In the real-world implementation, the differential 

vehicle is equipped with two Raspberry Pi units, 

one dedicated to the control system and the other 

for communication purposes, interfacing with 

ROS2. The vehicle's perception of its 

environment is enabled by the LiDAR sensor, 

which provides a two-dimensional "slice" of the 

surrounding environment, essential for obstacle 

detection and avoidance. Additionally, external 

motion capture cameras are employed for 

accurate pose estimation. The control systems 

manage the vehicle's linear and angular 

velocities. 
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 Real-World Experimental Results 

In the real-world experimental phase, the 

vehicle's performance was evaluated based on its 

ability to navigate autonomously, avoid obstacles, 

and reach the target destination within a specified 

time frame. The results of the real-world 

experiments revealed a success rate of 73.33% in 

reaching the target without collisions. The 

vehicle's trajectories were recorded and analyzed, 

revealing smooth and direct paths towards the 

destination in successful episodes. However, in 

episodes where collisions occurred, the 

trajectories indicated the vehicle's inability to 

navigate around obstacles effectively. The 

observed discrepancies can be attributed to 

several factors, including differences in obstacle 

geometry, vehicle geometry and dimensions, 

sensor noise, and the inherent complexities of the 

real world. 

Success Rates in Agent Deployment 

The differential vehicle was subjected to a total of 

15 episodes within the real-world environment 

and successfully navigated to the target without 

any collisions in 11 episodes, translating to a 

success rate of 73.33%. 

Differential Vehicle's Success Rates in the Real Env. 

Criteria Epis. % 

Target Reached 11 73.33 

Collision with Obstacle 3 20.00 

Maximum Time Reached 1 6.67 

 

Analysis of the Trajectories 

Throughout the testing phase, the vehicle's 

trajectory was recorded. These trajectories were 

plotted on an xy plane for the most representative 

episodes. 

 

V. CONCLUSIONS AND FUTURE 

WORK 

This project successfully demonstrated the 

feasibility of using reinforcement learning for the 

development of autonomous navigation 

behaviors in both a differential vehicle and a 

drone. The project also addressed the simulation-

to-real gap, with the differential vehicle 

successfully transitioning to the real-world 

environment. The integration of various 

technologies, including Unity, Simulink, ROS2, 

Docker, and reinforcement learning frameworks, 

facilitated the development and simulation phases 

and ensured reproducibility and compatibility 

across platforms. 

 

Real-World Environment Setup 

Episode Trajectories Where Target Was Reached 

Episode Trajectory Where 

Collision Occurred 

Episode Trajectory Where 

Maximum Time Was Reached 
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Future Work 

Integration of Additional Sensors: 

Incorporating cameras as additional sensors could 

provide richer sensory data, enabling the agents 

to better perceive their environment. This would 

imply the use of Convolutional Neural Networks 

(CNNs) to process the image data and extract 

relevant features. 

Advanced Neural Network Architectures: 

Introducing Long Short-Term Memory (LSTM) 

or transformer architectures for the actor and 

critic networks could enhance the agents' ability 

to learn and remember temporal dependencies in 

the environment, potentially improving decision-

making in dynamic environments. 

Real-World Drone Implementation: 

Transferring the drone agent to a real-world 

environment would provide valuable information 

into the challenges and complexities of real-

world aerial navigation. This would also validate 

the methodologies used for the drone in a real-

world context and allow for a direct comparison 

of the performance of the differential vehicle and 

the drone in real-world settings. 

 

ANNEX I: ALIGNMENT WITH THE 

SUSTAINABLE DEVELOPMENT GOALS 

Industry, Innovation, and Infrastructure: This 

project promotes innovation and the adoption of 

intelligent and sustainable technologies within 

the industry. The development of autonomous 

systems, such as drones and differential vehicles, 

capable of navigating efficiently and safely, can 

find broad applications across various industries. 

This includes logistics, agriculture, infrastructure 

inspection, surveillance, and more. By fostering 

these advancements, the project contributes to 

building resilient infrastructure, promoting 

inclusive and sustainable industrialization, and 

supporting innovation. 

Sustainable Cities and Communities: 

Autonomous systems have the potential to 

enhance the sustainability of cities and 

communities. For instance, drones can be 

employed for goods delivery, reducing the 

reliance on ground vehicles, thereby decreasing 

traffic congestion and greenhouse gas emissions. 

Autonomous differential vehicles can be 

employed for sustainable mobility applications. 

By integrating these technologies, the project aids 

in making cities and human settlements inclusive, 

safe, resilient, and sustainable. 

Partnerships for the Goals: By utilizing open-

source platforms and collaborating across various 

disciplines, this project encourages cooperation 

and knowledge and technology exchange. The 

employment of reinforcement learning 

techniques and collaboration with the artificial 

intelligence community contributes to the 

development of novel solutions and technologies. 
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