
1

TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT

FOR OBSTACLE AVOIDANCE AND TRANSFERRING IT TO A

REAL MOBILE ROBOT

Author: Carrera Fresneda, Javier

Co-Director: Boal Martín-Larrauri, Jaime

Co-Director: Zamora Macho, Juan Luis

ABSTRACT

In a world with drones becoming a common sight in our skies and roads increasingly shared with

autonomous vehicles, the quest for efficiency, safety, and innovation takes center stage.

The increasing demand for autonomous mobile robots (AMRs) across diverse sectors such as industrial

automation, healthcare, and military has pushed the development of intelligent algorithms that enable these

systems to navigate and execute tasks in varying environments without human intervention. Reinforcement

learning can provide the backbone for these systems to traverse complex environments, recognize obstacles,

detect anomalies, and adapt in real-time to varying situations.

However, the path to creating these systems is filled with challenges, primarily due to the complexities and

risks of experimenting in real-world environments. This is where the value of simulation to reality (sim-to-

real) becomes pronounced. Developing, testing, and refining autonomous algorithms in simulated

environments presents numerous advantages, including accelerated development, cost efficiency, and

safety. This thesis aims to explore the application of reinforcement learning to the development of

autonomous navigation behaviors in a differential vehicle and a drone, addressing the simulation-to-real

gap and providing insights into the challenges and complexities of real-world navigation.

I. INTRODUCTION AND CONTEXT

This section discusses the significance of

reinforcement learning in addressing the

challenges and complexities of real-world

navigation. In the realm of mobile robotics, the

unique challenges that reinforcement learning can

tackle are highlighted, and its position relative to

other techniques is assessed. By showcasing how

each segment of a robotic system relates to

reinforcement learning principles, this section

sets the groundwork for the detailed discussions

on methodologies and results in the following

sections.

State of the Art

Autonomous mobile robots (AMRs) have been

gaining rapid traction in diverse sectors due to the

significant advantages they bring in terms of

efficiency, precision, and safety. They leverage

sensors, actuators, and intelligent algorithms to

navigate and execute tasks in varying

environments without human intervention.

TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT FOR OBSTACLE AVOIDANCE

AND TRANSFERRING IT TO A REAL MOBILE ROBOT

2

Industrial Automation and Manufacturing

AMRs are used for material handling, picking,

and sorting, increasing the speed and accuracy of

production lines [1].

Healthcare

Patient Assistance: Robots in hospitals can help

in transporting medicines, meals, or lab

specimens [2].

Disinfection: Given the current global health

scenario, robots equipped with UV lights or liquid

disinfectants have been used in hospitals and

public places to prevent the spread of contagious

diseases [3].

Military and Defense

Reconnaissance: Robots can be used for

surveillance purposes, scouting areas without

putting human lives in danger [4].

Bomb Disposal: Specialized robots can be

utilized to defuse or safely detonate explosive

devices [5].

Other Sectors

Among the aforementioned sectors, AMRs

provide versatile solutions in warehouse and

logistics for inventory management [6] and

material handling [7], search and rescue [8],

agriculture for precision farming [9] and

harvesting [10], maintenance and inspection

[11] and space exploration [12].

Reinforcement learning provides the backbone

for these systems to navigate complex

environments, recognize obstacles, detect

anomalies and adapt in real-time to varying

situations. However, the path to creating these

systems is filled with challenges, primarily due to

the complexities and risks of experimenting in

real-world environments.

This is where the value of simulation to reality

(sim-to-real) [13] becomes pronounced.

Developing, testing, and refining autonomous

algorithms in simulated environments presents

numerous advantages such as accelerated

development, cost efficiency and safety.

General Scheme of Reinforcement Learning

Basic Components of the Process

Agent: This refers to the learner or decision-

maker that interacts with the environment.

Environment: The environment is everything

that the agent interacts with and learns from. It

provides feedback to the agent based on the

agent's actions.

Actions: Actions represent the set of all possible

moves that the agent can make. These can be

discrete, continuous, or a combination of both.

States: The state of an environment at any given

time refers to the current configuration or

situation of that environment.

Rewards: Rewards are feedback from the

environment based on the agent's actions. A

positive reward indicates a favorable action,

whereas a negative reward indicates an

unfavorable action. The goal of the agent is to

maximize its cumulative reward over time.

Fundamental Concepts

Policy (π): A policy defines the agent's behavior.

It is a mapping from states to actions, determining

what action the agent should take in each state.

The policy can be deterministic or stochastic. A

deterministic policy provides a specific action for

each state, while a stochastic policy provides a

probability distribution over actions for each

state. Neural networks can be used to

approximate these deterministic policies.

Figure 1: Reinforcement Learning General Scheme

Image Source: 2103.15781.pdf (arxiv.org)

https://arxiv.org/pdf/2103.15781.pdf

3

Value Function: The value function

approximates the expectation of cumulative

future rewards a particular agent can expect to

receive starting from a given state or state-action

pair. In deep reinforcement learning deep neural

networks are employed to represent and

approximate this function due to their capability

to generalize and handle large or continuous state

spaces.

Episode: An episode refers to a sequence of

states, actions, and rewards that ends in a terminal

state or after a given number of steps.

Markov Decision Processes (MDPs): To apply

reinforcement learning algorithms to an

environment, it must satisfy the Markov property.

According to this property, all subsequent states

following a given state are dependent solely on

that state and the action taken. Therefore,

knowing the current state eliminates the need to

consider the previous history of states to make an

optimal decision.

Exploration vs. Exploitation: Exploration refers

to the act of an agent trying out different actions,

especially ones it is not certain about, in order to

gather more information about its environment.

Exploitation refers to the act of an agent selecting

the action it believes will yield the highest reward

based on its current knowledge. In continuous

spaces, the balance between exploration and

exploitation becomes crucial. Strategies like

Epsilon-greedy , Softmax action selection or

adding noise to the actions can help in efficient

exploration.

Comparison and Synergy with Other

Techniques

Traditional Control Algorithms: Traditional

control algorithms like PID controllers [14] ,

LQRs (Linear Quadratic Regulators) [15], and

MPC (Model Predictive Control) [16] have been

standard tools in mobile robotics for years. These

methods generally rely on mathematical models

of the system and the environment. While they

are robust and well-understood, they might not

handle complex environments or unexpected

scenarios as effectively as RL. However, the

synergistic combination of these methods with

RL can provide the reliability of traditional

controllers with the adaptability of reinforcement

learning. For example, a PID controller might

maintain the stability of a drone, while the RL

agent learns to navigate in complex

environments.

Genetic Algorithms (GAs): GAs are

optimization techniques inspired by the process

of natural selection. In the context of mobile

robotics, GAs might be employed to optimize

certain parameters of an agent's operation. While

GAs are excellent for optimization, RL focuses

on learning through interaction. When combined,

GAs might determine optimal hyperparameters

for an RL agent, while the agent learns the best

policy through interaction with the environment.

Project Objectives

Development of Autonomous Behaviors: To

design and develop autonomous navigation

behaviors for both a differential vehicle and a

drone using reinforcement learning.

Simulation-to-Real Transition: To validate the

trained models in a simulated environment and

then successfully transition and adapt them for

real-world deployment.

Integration of Technologies: Seamless

integration of technologies such as Unity,

Simulink, ROS2, Docker, and reinforcement

learning frameworks to achieve a holistic system

that can function in both simulated and real-world

settings.

II. SIMULATION METHODOLOGY

In the realm of autonomous systems, simulation

serves as the foundation upon which real-world

implementations are built. This section delves

into the technologies and tools employed to

simulate and train the autonomous differential

vehicle and drone. The deep reinforcement

learning algorithm used, the Distributed

TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT FOR OBSTACLE AVOIDANCE

AND TRANSFERRING IT TO A REAL MOBILE ROBOT

4

Distributional Deep Deterministic Policy

Gradient (D4PG) is then discussed. The chapter

then transitions into the modeling and

implementation of the environments,

distinguishing between the Unity and Python

sides, and contrasting the simplified environment

with the more realistic one implemented in

MATLAB and Simulink.

Description of the Technologies

Simulation Software

Unity: Chosen for its versatility in 3D

simulations, Unity provided the platform for

sensor and actuator implementations. It offers an

intuitive interface, advanced physics simulations,

and real-time visualization.

Simulink: While Unity serves as a primary

interface for visualization and high-level

dynamics, Simulink complements it by offering

realistic physics simulations, especially for the

control aspect. Simulink provides a robust

platform for implementing low-level controls

seamlessly.

Technologies and Tools

ROS2: The Robot Operating System, version 2,

facilitates the communication between different

application modules, acting as a middleware.

Given the complexity of autonomous systems

where various modules and components need to

communicate in real-time, ROS2 becomes an

indispensable tool.

Docker: To ensure the developed application's

reproducibility and compatibility across various

platforms, Docker has been used for

containerization. Docker encapsulates the

application and its dependencies into a 'container'

that can run uniformly on any machine, which is

critical for collaborative projects and real-world

deployment.

Reinforcement Learning Frameworks

PyTorch with low-level D4PG implementation

[17]: PyTorch was the framework of choice due

to its dynamic computational capacities and

intuitive design which makes custom

implementations, like D4PG, more

straightforward and customizable. The D4PG

(Distributed Distributional Deterministic Policy

Gradients) algorithm, given its nature, fits well

with complex tasks like autonomous navigation

which requires both continuous action spaces and

distributional value estimates.

Programming Languages

Python: Given its simplicity and wide array of

support libraries, Python was used primarily for

reinforcement learning, data analysis, and general

scripting.

C#: As Unity's primary scripting language, C#

was employed for implementing the logic within

the 3D simulation environment.

MATLAB and Simulink: Primarily for control

system design and low-level dynamics

simulations.

System Description

Differential Vehicle System

The differential vehicle system follows a

conventional architecture. As seen from the

simulation perspective, it consists of two primary

elements:

Mathematical Model: The mathematical model

replicates the physical design of the vehicle,

which features two motorized wheels at the back

that deliver the required torque for movement.

Additionally, a stabilizing wheel at the front

ensures three contact points, and therefore

stability.

Control Mechanism: The vehicle's motion is

governed by two conventional PID controllers,

one for linear velocity (with a nominal velocity of

0.4 m/s) and the other for angular velocity (with

a nominal value of π rad/s). This dual PID control

structure facilitates precise control over both

speed and direction.

5

Actuators: The actuators for the differential

vehicle system are the two motorized wheels

located at the back. By individually controlling

the speed and direction of each motorized wheel,

the differential vehicle can achieve both forward

motion and turning actions.

Drone System

The simulation of the drone follows the design of

a quadrotor in a '+' structure. The primary

components of the drone are:

Mathematical Model: The mathematical model

of the drone is carefully designed to emulate a

quadrotor's dynamics, with smooth movements

ensuring that pitch and roll angles remain close to

zero. This simplification facilitates ease of

control by considering the system as holonomic,

allowing for more intuitive control over the

vehicle.

Control Mechanism: The control system for the

drone is more intricate, cascading three distinct

control loops:

o Angle Control Loop: A low-level control

loop responsible for maintaining the drone's

orientation.

o Linear Velocity Control Loop: This loop

controls the linear velocities of the drone,

allowing for controlled movements in various

directions.

o Position Control Loop: The top-level

control loop utilizes an LQR (Linear

Quadratic Regulator) architecture to manage

the three-dimensional positioning of the

drone.

Actuators: For the quadrotor drone system, the

actuators are its four rotors. Each rotor is powered

by a dedicated motor that provides thrust. Two

diagonally opposite rotors spin in one direction

and the other two in the opposite direction. The

collective thrust from all rotors allows the drone

to ascend or descend, while the differential thrust

between them enables controlled movements in

pitch, roll, and yaw.

Sensors

Motion Capture Cameras: These cameras are

utilized to obtain accurate positioning data,

including both position and orientation. The

cameras track specific markers or features within

the environment.

Inertial Measurement Unit (IMU): The IMU

integrates accelerometers and gyroscopes to

measure the vehicle's specific force and angular

rate. This aids in stability and navigation.

LiDAR: LiDAR sensors emit laser beams to

measure distances to objects within their range. In

the context of this project, a 2D rotatory LiDAR

is used for both the vehicle and drone, providing

a two-dimensional "slice" of the surrounding

environment. This technology is vital for obstacle

detection and avoidance.

Definition of the Deep Reinforcement

Learning Algorithm

The complexity of continuous action spaces and

the need for stable convergence require the use of

advanced reinforcement learning algorithms. The

Deep Deterministic Policy Gradient (DDPG) [18]

is designed explicitly for environments with

continuous action spaces, making it suitable for

real-world problems like these autonomous

systems. However, while DDPG offers a robust

solution, advancements in the field have led to the

development of an even more refined algorithm:

the Distributed Distributional Deep Deterministic

Figure 2: Differential Vehicle Simulation Model Figure 3: Drone Simulation Model

TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT FOR OBSTACLE AVOIDANCE

AND TRANSFERRING IT TO A REAL MOBILE ROBOT

6

Policy Gradient (D4PG) [19]. D4PG not only

inherits the strengths of DDPG but also

introduces several enhancements that make it

particularly well-suited for this project's

requirements. The following sections will present

the details of DDPG and subsequently explore the

improvements introduced by D4PG.

Deep Deterministic Policy Gradient (DDPG)

Actor-Critic Architecture: The actor defines the

policy of the agent and therefore is responsible for

determining the best action given a particular

state. The actor takes the current state as input and

outputs a continuous action or a set of continuous

actions in multi-dimensional action spaces. The

critic evaluates the action taken by the actor based

on the current state and provides a value estimate

(Q-value). This value estimate is used to update

both the actor and the critic.

Off-Policy Learning: DDPG learns from past

experiences stored in a replay buffer. This buffer

stores tuples of experiences (state, action, reward,

next state). During training, random samples are

drawn from this buffer to update the networks,

decoupling the correlation between consecutive

experiences and stabilizing the learning process.

Deterministic Policy Gradient: Unlike

traditional policy gradient methods that work

with stochastic policies, DDPG uses a

deterministic policy gradient. This means that for

any given state, the actor outputs a specific action

without any randomness.

Exploration vs. Exploitation: Since DDPG is

designed for continuous action spaces, traditional

exploration methods like epsilon-greedy can't be

applied. Instead, DDPG adds noise to the policy,

typically Ornstein-Uhlenbeck noise is used due to

its temporally correlated nature.

Target Networks and Soft Updates: DDPG

employs the concept of target networks,

borrowed from DQN, to stabilize learning. There

are target versions of both the actor and critic

networks. Instead of copying the weights directly

from the main networks to the target networks,

DDPG uses "soft updates." This means the target

network weights are a blend of the main network

weights and their own, ensuring smooth

transitions and further stabilizing the learning.

Distributed Distributional Deep Deterministic

Policy Gradient (D4PG)

Distributed Experience Gathering: D4PG

modifies the standard training procedure to

distribute the process of gathering experience.

Multiple actors operate in parallel, all

contributing to a centralized replay table. A

learner process then samples from this replay

table, ensuring efficient and diverse data for

network updates.

Distributional Perspective: D4PG adopts the

distributional perspective on reinforcement

learning, a paradigm shift from the traditional

approach of estimating the expected value of

future rewards to modeling the entire distribution

of these rewards. This means that for a given

state-action pair, instead of a single value

estimate, a distribution over all possible returns is

maintained. By modeling the full distribution,

this technique captures the inherent randomness

and uncertainty in the environment's dynamics.

Modeling of the Environments

The modeling of the environments is divided into

two implementations: a simplified environment

and a realistic environment. The simplified

environment serves as a proof of concept,

allowing for quick testing and validation of the

fundamental ideas. It is designed with lower

computational demands, enabling parallelization.

The realistic environment builds upon the

simplified environment, incorporating more

complex dynamics and control systems to

simulate a more realistic scenario. It integrates

with an existing system [20] implemented in

Matlab and Simulink, providing a more accurate

representation of the vehicle's dynamics and

control systems.

7

Environment and Environment Replicator

Classes: The EnvironmentReplicator class is

responsible for creating multiple parallelized

instances of a given environment. The

environment acts as a container GameObject.

Within this container, other GameObjects reside,

which allocate the scripts responsible for sensors,

actuators, and controls. When the

EnvironmentReplicator creates replicas of the

environment, it inherently replicates all the

contained logic, ensuring that each environment

operates independently and in parallel.

Sensor and Actuator Classes: The Sensor and

Actuator classes represent generic sensor and

actuator components within the Unity

environment. They are designed to be versatile,

allowing for the creation of various sensor and

actuator types by extending this base class. The

sensor communicates with ROS to publish its

data while the actuator communicates with ROS

to receive actuation commands.

Control Class: The Control class serves as a base

class for all controls within the Unity

environment. It is responsible for managing the

communication with the Robot Operating System

(ROS) to receive control references and reset

commands.

Obstacle Manager Class: The ObstacleManager

class is designed to manage and generate

obstacles within a simulated environment. The

primary objective of this class is to ensure that the

agent does not overfit to a specific environment

configuration. By introducing variability and

randomness in the environment, especially in the

placement and type of obstacles, the agent is

encouraged to learn more generalized strategies

that are robust to changes.

V. SIMULATION RESULTS ANALYSIS

This chapter offers a comprehensive analysis of

the simulation results for two agents, by

examining the evolution of rewards, the

convergence of loss functions, and the overall

success rates in different environments. The

chapter also includes an analysis of the success

rates in agent deployment in both simplified and

realistic environments.

Regarding the following presented graphs, it is

essential to clarify the distinction between the

steps in the reward function and the steps in the

loss function. The steps in the reward function

represent episode steps for the exploitation

worker, while the steps in the loss function

represent learning steps. These two metrics are

not directly comparable and have no established

conversion ratio.

Figure 4: System Implementation Block Diagram

Simulation Environment Visualization

TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT FOR OBSTACLE AVOIDANCE

AND TRANSFERRING IT TO A REAL MOBILE ROBOT

8

Rewards Evaluation and Policy Validation

Differential Vehicle

The reward evolution graph for the differential

vehicle provides a visual representation of the

agent's learning progress over time. As the agent

interacts with the environment and learns from its

experiences, the reward value increases. By 500

steps, the reward reaches a value of 2.0,

suggesting that the agent has quickly adapted to

the environment and is making decisions that

align with the desired outcomes.

The loss function graph for the differential

vehicle provides insights into the convergence of

the D4PG algorithm. As the agent learns and

updates its policy, the loss value decreases,

showing a downward trend. This suggests that the

agent's predictions are becoming more aligned

with the target Q-values over time.

Drone

The reward evolution graph for the drone, similar

to the differential vehicle, starts at 0.0, indicating

that the agent begins with no prior knowledge of

the environment. Despite a sudden drop that

could be attributed to the agent exploring a new

strategy that did not yield favorable results, the

reward graph shows an upward trend, indicating

that the agent is gradually improving its

performance and learning to make better

decisions.

The drone's loss function graph shows a general

downward trend, indicating the convergence of

the D4PG algorithm. This trend suggests that as

the drone continues its interactions with the

environment, its predictions of Q-values become

increasingly accurate, aligning more closely with

the target Q-values.

Differential Vehicle's Mean Reward per Episode Step

Differential Vehicle's Loss per Training Step

Drone's Mean Reward per Episode Step

Drone's Loss per Training Step

9

Success Rates in Agent Deployment

In this section, the success rates of the differential

vehicle and the drone in both the simplified and

realistic environments for a total of 120 episodes

in each environment for each vehicle are

analyzed. The success rates are evaluated based

on four criteria:

o Target Reached: The agent successfully

navigated to the target without any collisions.

o Collision with Static Obstacle: The agent

collided with a static obstacle.

o Collision with Moving Obstacle: The agent

collided with a moving obstacle.

o Maximum Time Reached: The agent took

the maximum allowed time for an episode

without reaching the target.

In the simplified environment, the differential

vehicle achieved a success rate of 83.33%, which

slightly decreased to 78.33% in the realistic

environment. Collisions with static and moving

obstacles were relatively low in the simplified

environment but saw a slight increase in the

realistic setting.

Differential Vehicle's Success Rates in the Simplified Env.

Criteria Epis. %

Target Reached 100 83.33

Static Obstacle Collision 2 1.67

Moving Obstacle Collision 6 5.00

Maximum Time Reached 12 10.00

Differential Vehicle's Success Rates in the Realistic Env.

Criteria Epis. %

Target Reached 94 78.33

Static Obstacle Collision 4 3.33

Moving Obstacle Collision 10 8.33

Maximum Time Reached 12 10.00

The drone exhibited a higher success rate in the

simplified environment, reaching the target in

90% of the episodes. However, this rate dropped

to 76.67% in the realistic environment. Notably,

the drone experienced a more significant increase

in collisions with moving obstacles in the realistic

environment compared to the differential vehicle.

Drone's Success Rates in the Simplified Env.

Criteria Epis. %

Target Reached 108 90.00

Static Obstacle Collision 2 1.67

Moving Obstacle Collision 4 3.33

Maximum Time Reached 6 5.00

Drone's Success Rates in the Realistic Env.

Criteria Epis. %

Target Reached 92 76.67

Static Obstacle Collision 6 5.00

Moving Obstacle Collision 14 11.67

Maximum Time Reached 8 6.67

IV. REAL-WORLD METHODOLOGY

AND EXPERIMENTAL RESULTS

In the real-world implementation, the differential

vehicle is equipped with two Raspberry Pi units,

one dedicated to the control system and the other

for communication purposes, interfacing with

ROS2. The vehicle's perception of its

environment is enabled by the LiDAR sensor,

which provides a two-dimensional "slice" of the

surrounding environment, essential for obstacle

detection and avoidance. Additionally, external

motion capture cameras are employed for

accurate pose estimation. The control systems

manage the vehicle's linear and angular

velocities.

TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT FOR OBSTACLE AVOIDANCE

AND TRANSFERRING IT TO A REAL MOBILE ROBOT

10

 Real-World Experimental Results

In the real-world experimental phase, the

vehicle's performance was evaluated based on its

ability to navigate autonomously, avoid obstacles,

and reach the target destination within a specified

time frame. The results of the real-world

experiments revealed a success rate of 73.33% in

reaching the target without collisions. The

vehicle's trajectories were recorded and analyzed,

revealing smooth and direct paths towards the

destination in successful episodes. However, in

episodes where collisions occurred, the

trajectories indicated the vehicle's inability to

navigate around obstacles effectively. The

observed discrepancies can be attributed to

several factors, including differences in obstacle

geometry, vehicle geometry and dimensions,

sensor noise, and the inherent complexities of the

real world.

Success Rates in Agent Deployment

The differential vehicle was subjected to a total of

15 episodes within the real-world environment

and successfully navigated to the target without

any collisions in 11 episodes, translating to a

success rate of 73.33%.

Differential Vehicle's Success Rates in the Real Env.

Criteria Epis. %

Target Reached 11 73.33

Collision with Obstacle 3 20.00

Maximum Time Reached 1 6.67

Analysis of the Trajectories

Throughout the testing phase, the vehicle's

trajectory was recorded. These trajectories were

plotted on an xy plane for the most representative

episodes.

V. CONCLUSIONS AND FUTURE

WORK

This project successfully demonstrated the

feasibility of using reinforcement learning for the

development of autonomous navigation

behaviors in both a differential vehicle and a

drone. The project also addressed the simulation-

to-real gap, with the differential vehicle

successfully transitioning to the real-world

environment. The integration of various

technologies, including Unity, Simulink, ROS2,

Docker, and reinforcement learning frameworks,

facilitated the development and simulation phases

and ensured reproducibility and compatibility

across platforms.

Real-World Environment Setup

Episode Trajectories Where Target Was Reached

Episode Trajectory Where

Collision Occurred

Episode Trajectory Where

Maximum Time Was Reached

11

Future Work

Integration of Additional Sensors:

Incorporating cameras as additional sensors could

provide richer sensory data, enabling the agents

to better perceive their environment. This would

imply the use of Convolutional Neural Networks

(CNNs) to process the image data and extract

relevant features.

Advanced Neural Network Architectures:

Introducing Long Short-Term Memory (LSTM)

or transformer architectures for the actor and

critic networks could enhance the agents' ability

to learn and remember temporal dependencies in

the environment, potentially improving decision-

making in dynamic environments.

Real-World Drone Implementation:

Transferring the drone agent to a real-world

environment would provide valuable information

into the challenges and complexities of real-

world aerial navigation. This would also validate

the methodologies used for the drone in a real-

world context and allow for a direct comparison

of the performance of the differential vehicle and

the drone in real-world settings.

ANNEX I: ALIGNMENT WITH THE

SUSTAINABLE DEVELOPMENT GOALS

Industry, Innovation, and Infrastructure: This

project promotes innovation and the adoption of

intelligent and sustainable technologies within

the industry. The development of autonomous

systems, such as drones and differential vehicles,

capable of navigating efficiently and safely, can

find broad applications across various industries.

This includes logistics, agriculture, infrastructure

inspection, surveillance, and more. By fostering

these advancements, the project contributes to

building resilient infrastructure, promoting

inclusive and sustainable industrialization, and

supporting innovation.

Sustainable Cities and Communities:

Autonomous systems have the potential to

enhance the sustainability of cities and

communities. For instance, drones can be

employed for goods delivery, reducing the

reliance on ground vehicles, thereby decreasing

traffic congestion and greenhouse gas emissions.

Autonomous differential vehicles can be

employed for sustainable mobility applications.

By integrating these technologies, the project aids

in making cities and human settlements inclusive,

safe, resilient, and sustainable.

Partnerships for the Goals: By utilizing open-

source platforms and collaborating across various

disciplines, this project encourages cooperation

and knowledge and technology exchange. The

employment of reinforcement learning

techniques and collaboration with the artificial

intelligence community contributes to the

development of novel solutions and technologies.

REFERENCES

[1] Guizzo, E. (2018) “How Robots Are Grasping

the Art of Grip,” IEEE Spectrum. Institute of

Electrical and Electronics Engineers (IEEE). doi:

10.1109/mspec.2018.8405398.

[2] Broadbent, E. (2017) “Interactions with

Robots: The Truths We Reveal About Ourselves,”

Annual Review of Psychology. Annual Reviews,

68(1), pp. 627–652. doi: 10.1146/annurev-psych-

010416-044021.

[3] Yang, G. Z. et al. (2020) “Combating COVID-

19—The role of robotics in managing public

health and infectious diseases,” Science Robotics.

American Association for the Advancement of

Science (AAAS), 5(40). doi:

10.1126/scirobotics.abb5589.

[4] Murphy, R. R. (2014) “Disaster Robotics,”

IEEE Intelligent Systems. Institute of Electrical

and Electronics Engineers (IEEE), 29(4), pp. 25–

29. doi: 10.1109/mis.2014.48.

[5] Murphy, R. R. (2011) “Human–Robot

Interaction in Rescue Robotics,” IEEE

Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews). Institute of

TRAINING A VIRTUAL REINFORCEMENT LEARNING AGENT FOR OBSTACLE AVOIDANCE

AND TRANSFERRING IT TO A REAL MOBILE ROBOT

12

Electrical and Electronics Engineers (IEEE),

41(2), pp. 138–153. doi:

10.1109/tsmcc.2010.2046732.

[6] Wurman, P. R., D’Andrea, R. and Mountz, M.

(2008) “Coordinating Hundreds of Cooperative,

Autonomous Vehicles in Warehouses,” AI

Magazine. Association for the Advancement of

Artificial Intelligence, 29(1), pp. 9–20. doi:

10.1609/aimag.v29i1.2062.

[7] Guizzo, E. (2018) “How Robots Are Grasping

the Art of Grip,” IEEE Spectrum. Institute of

Electrical and Electronics Engineers (IEEE). doi:

10.1109/mspec.2018.8405398.

[8] Li, C., Chen, L. and Chen, B. (2022)

“Analyzing tracked search and rescue robots,” in

El-Hashash, A. (ed.) International Conference on

Biomedical and Intelligent Systems (IC-BIS

2022). SPIE. doi: 10.1117/12.2661488.

[9] Weyler, J. et al. (2023) “Towards domain

generalization in crop and weed segmentation for

precision farming robots,” IEEE robotics and

automation letters. Institute of Electrical and

Electronics Engineers (IEEE). doi:

10.1109/lra.2023.3262417.

[10] Rong, J. et al. (2022) “Fruit pose recognition

and directional orderly grasping strategies for

tomato harvesting robots,” Computers and

electronics in agriculture. Elsevier BV. doi:

10.1016/j.compag.2022.107430.

[11] Disyadej, T. et al. (2020) “Smart

Transmission Line Maintenance and Inspection

using Mobile Robots,” Advances in Science

Technology and Engineering Systems Journal.

ASTES Journal. doi: 10.25046/aj050361.

[12] van Hecke, K. et al. (2017) “Self-supervised

learning as an enabling technology for future

space exploration robots: ISS experiments on

monocular distance learning,” Acta astronautica.

Elsevier BV. doi:

10.1016/j.actaastro.2017.07.038.

[13] Zhao, W. et al. (2021) “Sim-to-Real Transfer

in Deep Reinforcement Learning for Robotics: a

Survey” arXiv [cs.CL]. Available at:

https://arxiv.org/abs/2009.13303.

[14] Arab, K. and Mp, A. (2012) “PID Control

Theory,” in Introduction to PID Controllers -

Theory, Tuning and Application. InTech. doi:

10.5772/34364.

[15] Chen C. and Holohan, A. (2016) “Stability

robustness of linear quadratic regulators”,

International journal of robust and nonlinear

control. Wiley, 26(9), pp. 1817–1824. doi:

10.1002/rnc.3362.

[16] Schwenzer, M. et al. (2021) “Review on

model predictive control: an engineering

perspective,” perspective,” The international

journal of advanced manufacturing technology.

Springer Science and Business Media LLC, 117(5–

6), pp. 1327–1349. doi: 10.1007/s00170-021-

07682-3.

[17] D4PG PyTorch Implementation. Available

at: https://github.com/schatty/d4pg-pytorch.

[18] Silver, D. et al. (2016) “Continuous control

with deep reinforcement learning,” arXiv

[cs.LG]. Available at:

https://arxiv.org/abs/1509.02971.

[19] Barth-Maron, G. et al. (2018) “Distributed

distributional deterministic policy gradients,”

arXiv [cs.LG]. Available at:

http://arxiv.org/abs/1804.08617.

[20] Cubillo Llanes, D. et al. (2022) “Navegación

autónoma de un vehículo terrestre mediante una

cámara lidar”. Repositorio Universidadd

Pontificia Comillas. Available at:

http://repositorio.comillas.edu/jspui/handle/1153

1/62114.

https://arxiv.org/search/cs?searchtype=author&query=Zhao%2C+W
https://arxiv.org/abs/2009.13303
https://github.com/schatty/d4pg-pytorch
https://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1804.08617
http://repositorio.comillas.edu/jspui/handle/11531/62114
http://repositorio.comillas.edu/jspui/handle/11531/62114

