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Abstract 

This study investigates a pairs trading strategy using stocks from the Dow Jones Industrial 

Average (DJIA) index. It entails estimating parameters, optimizing portfolios, and 

backtesting utilizing daily price data from 2003 to 2023. The technique seeks to profit 

from stock price mean-reversion by selecting couples with stable correlations. 

A continuous cointegration technique and maximum likelihood estimation are used to 

estimate the model parameters. Stability requirements and cointegration tests are used to 

choose pairs. Using current portfolio theory, the estimated parameters, such as mean-

reverting speeds and spread volatility, are used to design optimal portfolios. 

Backtesting is used to analyze the performance of the strategy using metrics such as 

excess return, volatility, and Sharpe ratio. When stability prerequisites and cointegration 

constraints are met, the results show that the technique has the potential to provide 

consistent profits. 

This research adds to our understanding of pair trading methods in the context of DJIA 

equities. The methods given here can be used by practitioners who want to implement 

comparable strategies. For successful pairs trading methods in practice, it emphasizes the 

necessity of accurate parameter estimate, portfolio optimization, and rigorous 

backtesting. 

 

Keywords: Risk aversion, Interacting agents, Stock selection, Stock cointegration, 

Portfolio theory, Spread options, Backtesting 

  



 

 

Resumen 

Este estudio investiga una estrategia de negociación por pares utilizando valores del 

índice Dow Jones Industrial Average (DJIA). Implica la estimación de parámetros, la 

optimización de carteras y la realización de pruebas retrospectivas utilizando datos de 

precios diarios desde 2003 hasta 2023. La técnica trata de beneficiarse de la reversión a 

la media de los precios de las acciones seleccionando parejas con correlaciones estables. 

Para estimar los parámetros del modelo se utiliza una técnica de cointegración continua 

y una estimación de máxima verosimilitud. Para elegir las parejas se utilizan requisitos 

de estabilidad y pruebas de cointegración. Utilizando la teoría actual de carteras, los 

parámetros estimados, como las velocidades de reversión a la media y la volatilidad de 

los diferenciales, se emplean para diseñar carteras óptimas. 

El backtesting se utiliza para analizar el rendimiento de la estrategia utilizando métricas 

como el exceso de rentabilidad, la volatilidad y el ratio de Sharpe. Cuando se cumplen 

los prerrequisitos de estabilidad y las restricciones de cointegración, los resultados 

muestran que la técnica tiene potencial para proporcionar beneficios constantes. 

Esta investigación contribuye a nuestra comprensión de los métodos de negociación de 

pares en el contexto de la renta variable del DJIA. Los métodos aquí expuestos pueden 

ser utilizados por los profesionales que deseen aplicar estrategias comparables. Para que 

los métodos de negociación por pares tengan éxito en la práctica, se hace hincapié en la 

necesidad de una estimación precisa de los parámetros, la optimización de la cartera y un 

backtesting riguroso. 

 

Palabras clave: Aversión al riesgo, Agentes interactuantes, Selección de valores, 

Cointegración de valores, Teoría de carteras, Opciones spread, Backtesting  
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1. Introduction 

In this bachelor's thesis, we aim to implement a pairs trading strategy in Python based on 

a research paper by our director Yannis Paraskevopoulos. The original paper presented a 

trading strategy in which risk-averse agents cooperated to exploit relative pricing errors 

in asset prices. Our goal is to adapt this strategy to a more flexible and modern code to 

allow further optimizations and adapting the triggers of our strategy to improve its results. 

By doing so, we aim to investigate the limits to the effectiveness of this strategy. 

The motivation for this research stems from the diverse justifications for trading between 

risk-averse agents found in the general equilibrium literature. Previous studies, such as 

Bhamra and Uppal (2014), Xiouros and Zapatero (2010, 2019), and Scheinkman and 

Xiong (2003), have explored various factors that influence agents' trading behavior, 

including heterogeneous priors, preferences, information quality, and disagreement over 

asset valuation. Our approach differs from these previous studies by focusing on the 

strategic cooperation between two interacting agents who see a positive benefit in trading. 

Both agents are risk-averse and have an incentive to cooperate to achieve healthy 

revenues. The investor operates under a continuous time mispricing model, aiming to 

profit from relative pricing errors in asset prices. The counterparty facilitates the 

execution of trades, maintaining continuous hedging and mark-to-market processes to 

eliminate unwanted risk and neutralize the portfolio. 

Traditionally, portfolio building relies on selecting stocks from a cloud of possible 

alternatives in the market. However, the cointegration-based portfolio literature suggests 

that portfolios of paired assets, subject to optimal investment weights, can maximize the 

expected utility of the portfolio value over a defined investment horizon. Existing studies, 

such as Liu and Timmermann (2013) and Lei and Xu (2015), provide insights into solving 

general portfolio problems with stochastic cointegrated assets. However, these studies 

have not yet established a common method to derive optimal weights.  

Our thesis aims to contribute by proposing a framework in which a spread investor and 

its counterparty continuously exchange information to reach an equilibrium based on 

optimal portfolio weights defined in terms of forward-looking market parameters. To 

achieve this, we solve a dynamic maximization problem that maps the exchange of flows 

over a specified period. Specifically, we propose a framework in which the risk-averse 

investor sets the optimal weights equal to the deltas of a spread option, utilizing forward-
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looking option implied information. Our key idea revolves around the concept of asset 

convergence to equilibrium levels with individual mean reversion parameters. For this 

purpose, we draw inspiration from the pairs trading literature based on cointegration, as 

explored by Gatev et al. (2006), Andrade et al. (2005), Broussard and Vaihekoski (2012), 

Bowen and Hutchinson (2016), and others. These studies have demonstrated strong and 

consistent outperformance of pairs trading strategies applied to equity data in the US and 

international markets. 

In our empirical analysis, we test our proposed framework using daily prices of DJIA 

constituents over a specific period. We compare the performance of our model-implied 

pairs portfolio against the benchmark Johansen portfolio, commonly used in pairs trading 

literature. The results highlight the significant outperformance of our model-implied pairs 

portfolio, attributable to the introduction of novel algorithms for pairs selection, optimal 

weights derived from spread option deltas, and a forward-looking trigger based on option 

sensitivities.  

Overall, our findings support the notion that our adapted trading strategy based on option-

based pairs trading can generate impressive returns and robust risk-adjusted performance, 

outperforming traditional benchmark strategies. By incorporating forward-looking option 

prices and integrating aggregate information on future expectations, our framework 

allows for improved performance and a superior ability to predict exercise opportunities 

compared to historical-volatility measures. In conclusion, this thesis aims to contribute to 

the existing literature by implementing and testing an adapted trading strategy based on 

a research paper by our professor. Through the use of Python, we will investigate the 

effectiveness of a pairs trading strategy using call and put options on the DJIA index, 

following the principles outlined in the original paper. The results of our empirical 

analysis will provide insights into the performance and potential profitability of this 

strategy in a different market context. 
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2. Theoretical framework 

In this section, we provide an enhanced overview of the theoretical academic groundwork 

essential for comprehending pairs trading, which serves as the foundation for the trading 

strategy implemented in this thesis. These concepts have undergone extensive study in 

the field of quantitative finance and offer valuable insights into the interrelationships 

among financial assets. 

Before delving into pairs trading, it is crucial to understand the rationale behind the 

development of trading strategies. Traditionally, investors made allocation decisions 

based on available information about individual companies or relying on their intuition. 

In such cases, the construction of a systematic framework for trading strategies was 

unnecessary, as decisions were based on periodic financial reports issued by listed 

companies. However, the notion of implementing a structured framework to gain an 

advantage over the market stems from the recognition that market participants cannot 

perfectly predict market behavior solely based on fundamental information of companies, 

leading to exploitable inefficiencies. The Efficient Market Hypothesis (EMH), proposed 

by Fama (1970), suggests that financial markets are efficient, implying that prices fully 

reflect all available information. According to this hypothesis, it is deemed impossible to 

consistently outperform the market by employing trading strategies, as any available 

information is already incorporated into the prices. Nevertheless, empirical studies have 

revealed deviations from the EMH, indicating the presence of market anomalies and 

opportunities for profit (Latif et al., 2011). 

An alternative perspective, Behavioral Finance, incorporates psychological and cognitive 

factors into financial decision-making processes (Barberis & Thaler, 2003). It 

acknowledges that market participants may not always make rational decisions and can 

be influenced by biases and emotions, which in turn can lead to predictable patterns in 

asset prices. By understanding and exploiting these behavioral biases, trading strategies 

can be designed to generate excess returns (Shefrin, 2002). Aligning with Chan (2019), 

the primary objective of constructing a trading strategy is to generate profits by 

capitalizing on market inefficiencies. Market inefficiencies arise when the market price 

of an asset deviates from its intrinsic value, which represents the true worth of the asset 

based on its fundamental characteristics such as earnings, dividends, and growth 
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prospects. Trading strategies aim to identify and exploit these inefficiencies to generate 

profits, and this study seeks to achieve precisely that. 

Moreover, it is crucial to understand why one would want to code trading strategies in a 

programming language like Python. While simple trading strategies have been 

successfully executed by humans since the beginnings of financial markets, modern 

strategies, including those examined in this study, rely on complex calculations and 

thorough historical testing to assess their effectiveness. The increasing complexity of 

novel trading strategies necessitates a programming language that is both comprehensible 

and reliable, allowing investors to delegate calculations to a computer. When dealing with 

financial transactions, the reliability of the system is paramount. As emphasized by Géron 

(2013), coding trading strategies in Python offers numerous advantages, including the 

ability to backtest strategies using historical data, automate trading processes, and access 

a vast array of libraries and tools specifically designed for quantitative finance. This, 

along with the ease of understanding, is what make Python the programming language 

selected to implement our pairs strategy. 

2.1. Pairs trading 

Pairs trading is a market-neutral trading strategy that aims to exploit temporary anomalies 

between closely related securities. The strategy is based on the premise that there exists 

a long-run equilibrium between the prices of the stocks composing the pair, as articulated 

by Vidyamurthy (2004). The origins of pairs trading can be traced back to the 1980s at 

Morgan Stanley, where it was introduced and utilized by a group of quantitative analysts, 

known as 'quants,' led by Nunzio Tartaglia. Tartaglia, a Jesuit priest turned financier, 

assembled a team comprising physicists, mathematicians, and computer scientists to 

develop mathematical models capable of identifying temporary price deviations between 

pairs of stocks. Subsequently, the team executed trades that sought to profit from the 

expectation that the prices would ultimately converge. Underpinning their strategy was 

the principle of mean reversion, which posits that a stock's price tends to move toward its 

average price over time. Despite initial skepticism within the industry, the success of this 

strategy led to its widespread adoption by many quantitative trading firms. 

The 1990s and early 2000s witnessed significant advancements in computational 

technologies and the availability of data, enabling the further refinement and expansion 

of pairs trading strategies. During this period, more sophisticated mathematical models 
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and algorithms were developed to identify potential pairs and execute trades with greater 

efficiency. Furthermore, the strategy was extended to a wider range of financial 

instruments, including options, futures, currencies, and stocks. 

However, despite its extensive use, pairs trading is not without challenges and criticisms. 

The effectiveness of the strategy heavily relies on the accurate identification of pairs and 

the assumption of mean reversion. Failure to meet these conditions can result in 

significant losses. Additionally, pairs trading has been criticized for potentially 

contributing to market volatility and its susceptibility to manipulative trading practices. 

Nevertheless, pairs trading continues to be a prominent strategy in the field of quantitative 

finance, underscoring the ongoing evolution and innovation in financial markets driven 

by technological advancements and the ever-growing availability of data. 

2.1.1. Cointegration 

In the realm of academic research, numerous studies have implemented pair trading 

strategies, leveraging the concept of cointegration, to identify profitable trading 

opportunities. Cointegration refers to a statistical relationship between two or more time 

series variables that exhibits a long-term equilibrium or common trend, despite short-term 

fluctuations or divergences. The concept of cointegration forms the basis for pairs trading 

strategies, as it suggests that assets that are cointegrated tend to converge to their 

equilibrium level over time. This implies that if a pair of stocks exhibits cointegration, 

deviations from their long-term equilibrium relationship present potential trading 

opportunities. When the prices of the two stocks temporarily diverge, pairs traders may 

take positions to profit from the expectation that the prices will eventually revert to their 

equilibrium. 

The pioneering work of Engle and Granger (1987) laid the foundation for cointegration 

and its application in pairs trading. Their research highlighted the potential for 

capitalizing on the mean-reverting behavior of pairs of stocks that exhibit cointegration, 

thus creating profit opportunities. However, Engle and Granger's approach primarily 

focused on testing the presence of cointegration using the Augmented Dickey-Fuller 

(ADF) test (1979). 

Building upon Engle and Granger's seminal work, Johansen (1991) introduced a more 

comprehensive methodology known as the Johansen procedure or the Johansen test. This 

procedure offers a robust framework for estimating the number of cointegrating 
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relationships among a set of variables, making it a valuable tool for selecting cointegrated 

pairs in pairs trading strategies. The Johansen test is based on vector autoregressive 

(VAR) models, which capture the joint dynamics of multiple variables. By employing 

likelihood ratio tests, it assesses the presence of cointegration and provides estimates of 

the number of cointegrating vectors, also known as the rank of cointegration. The 

procedure includes the trace test and the maximum eigenvalue test, both of which provide 

statistical evidence regarding the number of cointegrating relationships in the data.  We 

will delve deeper into the Johansen test as it serves as the benchmark for our strategy's 

own cointegrated pairs selector. 

The practical implementation of the Johansen procedure involves several steps:  

• Formulate a VAR model: Construct a VAR model using the selected variables 

(such as stock prices or returns) that are potentially cointegrated. 

• Determine the lag length: Specify an appropriate lag length for the VAR model, 

considering factors such as information criteria (e.g., Akaike Information 

Criterion, Bayesian Information Criterion) or econometric judgment. 

• Estimate the VAR model: Utilize estimation techniques such as ordinary least 

squares (OLS) or maximum likelihood to estimate the parameters of the VAR 

model. 

• Perform the Johansen test: Conduct the Johansen test using the estimated VAR 

model to assess the presence and rank of cointegration. The test involves 

comparing likelihood ratios against critical values obtained from asymptotic 

distributions. 

• Interpret the results: Analyze the results of the Johansen test to determine the 

number of cointegrating vectors. Each cointegrating vector represents a long-term 

equilibrium relationship among the variables. 

By employing the Johansen procedure, traders and researchers can systematically identify 

and select cointegrated pairs of assets for pairs trading strategies. This approach provides 

a robust and statistically grounded method for identifying pairs with mean-reverting 

behavior and potential profitability. In our study, the Johansen test serves as an integral 

component of our framework for selecting cointegrated pairs, thereby enhancing the 

effectiveness of our pairs trading strategy. 
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Subsequently, notable studies such as Gatev, Goetzmann, and Rouwenhorst (2006) have 

extended the work of Johansen by exploring pairs trading in a broader context. Their 

research examined the effectiveness of the strategy across different asset  classes, 

demonstrating that pairs trading remained viable not only for equity markets but also for 

other financial instruments such as commodities and currencies. By identifying 

cointegrated pairs within these diverse asset classes, the study revealed the potential for 

cross-market pairs trading strategies that exploit deviations from equilibrium 

relationships. 

Furthermore, Avellaneda and Lee (2010) introduced a novel pairs trading approach using 

statistical arbitrage. Their strategy focused on selecting pairs based on cointegration and 

implementing a mean-reverting trading algorithm. The research showcased the 

effectiveness of this approach by generating consistent profits across a variety of financial 

markets. Additionally, with advancements in machine learning techniques, researchers 

have explored the integration of artificial intelligence in pairs trading strategies. For 

instance, Nóbrega and Oliveira (2013) employed a machine learning-based method to 

identify cointegrated pairs and predict future price movements. By incorporating 

advanced algorithms such as support vector regression and random forest, their strategy 

outperformed traditional pairs trading methods, highlighting the potential of machine 

learning in enhancing pair trading strategies. 

In our specific strategy, we employ the Vector Error Correction Model (VECM) 

methodology. The VECM has been extensively explored in the academic literature, 

demonstrating its effectiveness in capturing mean-reverting behavior and potential 

profitability. Studies by Alexander and Dimitriu (2005), Cheung and Ng (1996), Engsted, 

Tanggaard, and Vinther (2009), and Gregoriou, Kontonikas, and Montagnoli (2009) have 

successfully employed the VECM to identify cointegrating pairs in various domains, 

ranging from pairs trading to exchange rates and inflation analysis. These studies have 

showcased the robustness and reliability of the VECM in capturing long-term equilibrium 

relationships among variables, providing a strong foundation for the implementation of 

our strategy. 

By incorporating the VECM methodology, we leverage the insights and findings from 

these studies to identify cointegrated pairs with the potential for mean reversion in our 

implemented strategy. The VECM's ability to capture the dynamics of cointegration, 

along with its statistical framework, offers a reliable and well-established approach to 
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selecting pairs that exhibit profitable trading opportunities. Drawing on the success of the 

VECM in the literature, we anticipate that our utilization of this methodology will 

enhance the effectiveness and profitability of our pairs trading strategy. 

Furthermore, by building upon the existing body of knowledge and leveraging the 

insights from these studies, we contribute to the broader understanding and development 

of effective pairs trading techniques. Through a systematic and rigorous approach, we 

aim to validate the viability and robustness of our strategy and expand the empirical 

evidence base for the application of the VECM in pairs trading. 

2.1.2. Budget allocation 

The construction of an optimal portfolio is a critical aspect of pairs trading once the pairs 

have been selected. It entails determining the budget weights for each pair in the portfolio, 

as well as the weights for the simultaneous long and short positions within each pair of 

assets. The optimization of pair weights is a fundamental consideration as it directly 

influences the expected utility of the portfolio value over the investment horizon. 

Numerous studies have proposed innovative methods to address the optimal weights 

problem in pairs trading strategies. Liu and Timmermann (2013) provided a theoretical 

justification for market-neutral pairs trading, highlighting the significance of considering 

the cointegration of stocks in determining optimal weights. They studied optimal 

investment in a market with two cointegrated stocks and an agent with CRRA utility, 

emphasizing the importance of incorporating cointegration into the portfolio construction 

process. 

Mudchanatongsuk et al. (2008) employed a singular stochastic control approach to 

investigate the optimal pairs trading problem with proportional transaction costs. Their 

work emphasized the necessity of accounting for transaction costs when determining 

optimal weights. By incorporating these costs into the portfolio optimization problem, 

traders can obtain more realistic weight allocations and improve the overall effectiveness 

of their trading strategies. 

In a recent study, Hoque et al. (2021) introduced a random weights innovation volatility 

forecasting (RWIVF) algorithm. This approach extended the Bollinger bands trading 

strategy and provided a data-driven method to obtain optimal weights based on past 

observed volatilities. By leveraging this algorithm, traders can dynamically adjust their 

weights to capture changing market conditions and optimize their portfolio performance. 
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Feng-Hui Yu et al. (2022) explored optimal pairs trading strategies in terms of both static 

and dynamic optimality under the mean-variance criterion. They addressed the optimal 

weights problem using a constrained optimal control problem and the Lagrange multiplier 

technique. Their approach considered the trade-off between risk and return, providing 

insights into determining optimal weights for pairs trading strategies. 

Li and Tourin (2022) proposed a monotone finite difference scheme that approximates 

the viscosity solution of the Hamilton-Jacobi-Bellman equation in pairs trading with 

transaction costs. Their mathematical framework offered insights into optimal trading 

strategies and the impact of transaction costs on determining optimal weights. By 

considering the full dynamics of the trading process, their approach provided a 

comprehensive framework for portfolio construction. 

Despite the various methods proposed to address the optimal weights problem in pairs 

trading strategies, a universally accepted approach that consistently delivers optimal 

results remains elusive. The ongoing research in this field reflects the continuous efforts 

to enhance portfolio construction and improve the performance of pairs trading strategies. 

To address this literature gap, our implemented strategy aims to contribute by presenting 

a novel framework that establishes an equilibrium between a spread investor and its 

counterparty through continuous information exchange. Our approach is based on the 

determination of optimal portfolio weights using forward-looking market parameters and 

incorporates forward-looking option implied information to outperform historical 

benchmarks. By solving the expected utility maximization problem for long-short 

strategies over the time span (t, T), we demonstrate that risk-averse investors will set the 

optimal weights equal to the deltas of a spread option. 

Our innovative approach takes into account the dynamic nature of the market and 

leverages forward-looking information to achieve more accurate and effective portfolio 

construction in pairs trading strategies. By incorporating option implied information, we 

can capture market expectations and incorporate them into the determination of optimal 

weights. This enables our strategy to adapt to changing market conditions and more 

effectively exploit potential profit opportunities. 

The process of determining optimal weights involves solving a dynamic maximization 

problem that maps the exchange of flows within a specified period. Through continuous 

information exchange and the consideration of forward-looking market parameters, our 
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objective is to achieve the highest expected utility of the portfolio value. By setting the 

optimal weights equal to the deltas of a spread option, our strategy aligns with the risk 

preferences of the investor, striking a balance between risk and potential returns. 

By incorporating this framework into our pairs trading strategy, we anticipate improved 

portfolio performance and enhanced risk management. The utilization of forward-looking 

option implied information provides us with a more accurate assessment of market 

expectations, allowing for more effective portfolio positioning. Through the dynamic 

optimization of weights, we aim to capture profit opportunities while minimizing risk 

exposure. 

It is noteworthy that our proposed framework represents a departure from traditional 

approaches in pairs trading strategies. By incorporating forward-looking option implied 

information and solving the dynamic maximization problem, our strategy aims to advance 

the field and contribute to the existing body of knowledge. We believe that this innovative 

approach holds significant potential for improving the performance of pairs trading 

strategies and generating consistent profits in dynamic market environments. In the 

subsequent sections, we will present empirical results and evaluations to validate the 

effectiveness of our approach and its impact on portfolio performance in pairs trading. 

2.2. Strategy definition 

After conducting an extensive review of the relevant literature on pairs trading strategies, 

we now proceed to define the key elements of our approach, taking into account the 

insights gained from the existing body of knowledge. To establish a robust and 

comprehensive pairs trading strategy, it is essential to specify several components, 

including pairs selection, position sizing, entry and exit criteria (triggers), and risk 

management. These elements play a crucial role in ensuring a systematic and disciplined 

execution of the strategy. In this section, we will examine the existing literature pertaining 

to each element and introduce the specific approach adopted in our implemented strategy. 

Additionally, we will present additional concepts that are vital for a comprehensive 

understanding of the rationale behind our enhanced strategy. 

At a high level, our approach involves the simultaneous purchase and sale of two 

cointegrated assets to exploit the mean reversion of the price spread between them. Mean 

reversion refers to the tendency of a value that deviates significantly from its historical 

mean to eventually revert back to it over the long term. We will apply this strategy to 
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multiple pairs of assets from the same index simultaneously, allocating an equal 

investment to each pair. To facilitate this, we will describe a model within a continuous-

time environment, aiming to capture the fundamental dynamics of the market and the 

underlying factors influencing asset prices, in order to capitalize on potential trading 

opportunities. 

The VECM model utilized in our strategy builds upon the work of Figuerola-Ferretti et 

al. (2018), who extensively explored this framework in a previous study. In our proposed 

model, we consider a continuous time setting where trading occurs without any 

transaction costs or market frictions. Within this framework, our pair portfolio consists 

of three securities: a risk-free cash account and two risky assets. Here is the portfolio for 

a single pair: 

The cash account, denoted as “Bt”, offers a constant return rate “r”, which will be denoted 

by the risk free rate. The two risky assets represented by "yt" and "xt," are also tradeable 

in the market. The dynamics of their prices involve various factors, including potential 

data dependencies and an error correction mechanism. They can be defined under a 

dynamic VECM in continuous time with a stationary price spread under the following 

equations: 

In these equations, "μy," "μx," "λ1," "λ2," "σy," and "σx" denote constant parameters. 

The terms "Wy,t" and "Wx,t" represent standard Brownian motions with zero drift rate 

and unit variance rate, capturing the inherent stochastic nature of the assets' price 

movements. The variable "zt" corresponds to the price spread between the logarithm of 

the two asset prices, indicating temporary mispricing. The parameters "λ1" and "λ2" 

determine the speed at which the prices of "yt" and "xt" revert to their equilibrium levels, 

respectively. By incorporating the error correction terms "-λ1zt" and "λ2zt" within the 

continuous Vector Error Correction Model (VECM) framework, we account for the 
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forces that drive asset prices back towards their long-term equilibrium. The presence of 

non-zero "-λ1zt" in the equation suggests that "yt" is overpriced, and its price is expected 

to decrease to restore equilibrium. Conversely, if "λ2zt" is positive, it implies that "xt" is 

underpriced, and its price is expected to increase. This mean reversion process presents 

an opportunity for pairs trading, where profits can be made by exploiting the mispricings 

arising from limits to arbitrage and market uncertainty.  

Once the VECM model is defined, the next step involves estimating its parameters. The 

estimation process entails gathering a dataset that includes the relevant variables, such as 

the stock prices for all potential pairs. Maximum Likelihood Estimation (MLE) is 

employed to estimate the parameters of the VECM by maximizing the likelihood 

function. This involves identifying the parameter set that maximizes the probability of 

observing the given data under the VECM. The estimated VECM parameters capture the 

long-term equilibrium relationship and the short-term dynamics between the variables. 

They serve as the foundation for subsequent analysis and implementation of pairs trading 

strategies based on the VECM framework. The detailed mathematical procedures for 

parameter estimation under MLE are fully described in the original paper of the strategy. 

In our implementation, we utilize the resulting equations to estimate each parameter : 
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To effectively implement our pairs trading strategy, it is crucial to estimate the Vector 

Error Correction Model (VECM) parameters for each possible pair within the assets of 

the market index. This estimation process involves gathering historical close price data 

for each pair, transforming them into their logarithms (represented by capital letters X 

and Y), and applying Maximum Likelihood Estimation (MLE) using the formulas 

described above to determine the parameter values. By estimating the parameters for each 

pair, we gain insights into the specific dynamics and equilibrium relationships between 

the assets. This allows us to identify potential mispricings and exploit profitable trading 

opportunities. The estimation of these parameters serves as the foundation for 

constructing a well-informed and robust pairs trading strategy that can be implemented 

across various pairs within the market index. 

2.2.1. Cointegrated pairs selection 

Once the parameters of the Vector Error Correction Model (VECM) have been estimated 

for each possible pair of assets, it is necessary to identify the pairs that exhibit a long-

term equilibrium or common trend while allowing for short-term fluctuations or 

divergences. The selection of appropriate pairs for our trading strategy is contingent upon 

the data meeting the requirements of the VECM, which include stationarity and 

cointegration among the variables. Stationarity ensures the stability of the error term, 

while cointegration indicates a long-term equilibrium relationship that can be exploited 

for trading opportunities. Therefore, it is crucial to consider both the cointegration and 

stability conditions. 
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In our model framework, the stability condition is defined by the sum of the mean-

reverting speeds represented by λ1 and λ2, which must be greater than zero. This 

condition, consistent with the findings of Lei and Xu (2015), ensures the stationarity of 

the error term. Cointegration, on the other hand, requires that at least one of the λ 

coefficients is non-zero. Furthermore, if both coefficients are non-zero, they must exhibit 

opposite signs and different values in the mean-reverting speed. These conditions serve 

as a guideline for our empirical exercise and provide a one-step procedure for selecting 

cointegrated pairs. Therefore for each possible pair both of these conditions must be 

checked to be determined cointegrated and well modeled under our VECM. 

To further validate the cointegration properties of the selected pairs, we employ the 

Johansen (1991) three-step procedure as a benchmark. Although our model is less 

stringent than the Johansen test, it is essential to ensure that our selected pairs encompass 

those identified as cointegrated by Johansen's test. This additional assessment provides a 

robust validation of the cointegration properties of the pairs, strengthening the foundation 

of our pairs trading strategy and enhancing its potential for generating profitable trading 

opportunities. By adhering to these selection criteria and validation procedures, we ensure 

the reliability and effectiveness of our pairs trading strategy in capturing cointegrated 

pairs within the selected market index. 

2.2.2. Optimal position sizing 

To determine the ideal position sizes within each pair of assets, we leverage the hedging 

strategy employed by the counterparty. The counterparty utilizes spread option contracts 

to hedge the risk associated with their short position in our portfolio. This idea is 

consistent with the idea of skilled traders operating in the options markets, as highlighted 

by DeMiguel et al. (2009). By decomposing the spread options into simpler Black-

Scholes option calls and puts on the individual stocks involved in the spread, which was 

proven possible by Schroder (1999), the counterparty achieves an effective replication of 

the error correction strategy employed by the spread investor. 

Within this hedging framework, the counterparty follows a delta hedging strategy, which 

involves adjusting their positions in the underlying assets based on the delta values of the 

options. Delta measures the sensitivity of the option value to changes in the underlying 

asset price. By holding a long position in the underlying asset (represented by Δy) and a 

short position in the other underlying asset (represented by Δx), the counterparty aims to 

achieve an optimal hedge for their portfolio. 
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The delta values obtained from the Black-Scholes model guide the counterparty in 

determining the appropriate position sizes. These values reflect the proportionate changes 

in the option value relative to changes in the underlying asset price. The counterparty 

adjusts their positions based on the relative proportions of the assets in the spread, 

ensuring a balanced and effective hedge. 

Through this hedging strategy, the investor gains insight into the ideal position sizes 

within each pair of assets. The delta values serve as a guide, indicating the optimal 

allocation of capital between the long and short positions. By aligning the position sizes 

with the delta values, the investor can effectively manage risk and maximize the potential 

for profit. Hence, the optimal size of the investment in each asset pair can be expressed 

as follows: 

An important aspect of this approach is that the deltas used as position sizes are calculated 

using the Black-Scholes formulas and implied volatilities of the ATM options, rather than 

relying solely on historical data. An ATM (at the money) option refers to an option whose 

strike price is the same as the underlying asset value. This departure from traditional 

methods, which utilize in-sample and historical observations, stems from recent research 

(e.g., Bailey and Lopez de Prado, 2014; Harvey and Liu, 2014) highlighting the pitfalls 

of calibration based on back-testing, which often leads to overfitting and 

underperformance of the portfolio. Therefore, we employ implied volatilities, as they 

contain forward-looking information instead of relying solely on historical data. 

In summary, the hedging strategy, involving the use of spread options and delta hedging, 

empowers the investor to make informed decisions regarding the ideal position sizes 

within each pair of assets. By following the delta values derived from the Black-Scholes 

model and utilizing ATM implied volatilities, the investor can achieve a well-balanced 

and risk-managed portfolio, effectively optimizing their trading strategy for the selected 

pairs. 

2.2.3. Forward looking trigger 

In this section, we introduce the trading trigger mechanism that underlies our strategy, 

which is designed to capture maximum spread levels. The trigger acts as a signal for 
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initiating trades when the price difference between the two assets in a pair reaches its 

highest point. The trigger point is determined by analyzing the relationship between the 

gammas of the options associated with the assets, with the gammas calculated using ATM 

implied volatilities derived from the Black-Scholes formulas, similar to the calculation of 

deltas. The implementation of the trigger involves several steps, including the calculation 

of gammas from implied volatilities, comparison of the gamma values, and identification 

of the trigger point based on the ratio of asset prices. 

In this strategy two trigger conditions are used, so we will start explaining the entry trigger 

condition, where the used trigger is the convergence of the pairs’ speeds. The use of 

convergence speeds as the opening trigger in the pairs trading strategy is based on the 

underlying principle of mean reversion. Mean reversion suggests that, over time, the 

prices of two cointegrated assets tend to move back towards their average relationship 

when they deviate from it. 

The convergence speeds, lambda_1 and lambda_2, represent the estimated rates at which 

the pair of stocks converge towards their average relationship. These speeds capture the 

tendency of the prices to revert to their mean and indicate how quickly this reversion 

occurs. By subtracting these convergence speeds from one, we obtain a measure of the 

remaining deviation from the mean relationship. 

To determine whether a position should be opened, this remaining deviation is multiplied 

by the volatility of the spread at each point in time. The spread volatility represents the 

level of fluctuation or uncertainty in the spread of the pair's prices. By considering both 

the remaining deviation and the spread volatility, we can assess the potential profitability 

and risk associated with opening a position. 

Comparing this result with the logarithmic spread of the pair allows us to determine if the 

spread exceeds the threshold defined by the entry trigger. If the spread is larger than the 

entry trigger, it indicates that the pair's prices have deviated sufficiently from their mean 

relationship, presenting a potential trading opportunity. This trigger serves as a signal to 

initiate a position in the pair, expecting that the prices will eventually revert back towards 

their mean relationship, resulting in a profitable trade. 

 

The use of convergence speeds as the opening trigger is grounded in the concept of 

exploiting short-term price inefficiencies and capturing profit opportunities when the 
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pair's prices exhibit deviations from their mean relationship. By incorporating these 

speeds into the trigger calculation, the strategy is able to identify favorable entry points 

based on the estimated rates of convergence. This approach allows the strategy to take 

advantage of mean reversion dynamics and potentially generate profitable trades. 

To define the closing trigger point, we rely on the determinant of the Jacobi matrix, 

denoted as |J|. This determinant serves as a measure of second-order sufficiency 

conditions for maximizing the expected utility of the portfolio. Specifically, we require 

the determinant of the Jacobi matrix to be positive semi-definite, ensuring that |J| > 0. The 

Jacobi matrix encompasses four elements, which represent the second derivatives of the 

portfolio value with respect to the underlying assets. The trigger condition is met when 

the determinant of the Jacobi matrix is positive, indicating |J| > 0. Mathematically, the 

determinant of the Jacobi matrix is expressed as: 

This condition guarantees that the trading trigger is activated at the maximum spread 

level. In other words, the trigger point is reached when the logarithmic ratio of asset 

prices, "Yt / Xt," is equal to the squared ratio of the gammas, "(Γx)^2 / (Γy)^2." This 

optimal spread level serves as an indication for closing a trade in our strategy. 

To implement the trigger in practical terms, we rely on implied volatilities, which reflect 

market-derived expectations of future price fluctuations. This forward-looking nature of 

implied volatilities is essential for our trigger mechanism. The gammas derived from 

these implied volatilities provide insights into the sensitivity of option values to changes 

in the underlying asset prices. After calculating the gammas, we compare their values to 

determine the trigger point. If the gamma of the long asset, denoted as Γy, is smaller than 

the gamma of the short asset, denoted as Γx, it suggests that the price movement of the 

long asset is relatively more significant than that of the short asset. This observation 

signals a favorable trading opportunity. 

By utilizing this trigger mechanism, we can effectively identify optimal spread levels and 

initiate trades precisely when the spread reaches its maximum point. This approach 

empowers us to make informed trading decisions based on forward-looking information 
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derived from market-implied volatilities and the interplay between the gammas of the 

associated options. 

2.2.4. Risk management 

Effective risk management is essential to protect capital and minimize potential losses in 

pairs trading. While stop-loss orders and maximum loss thresholds were mentioned 

earlier as common risk management techniques, additional approaches have been 

proposed in the literature. 

Our pairs trading strategy is designed as a market-neutral strategy, aiming to generate 

returns regardless of the overall direction of the market. Market-neutral strategies, as 

defined by Alexander and Dimitriu (2002), involve establishing a portfolio that is 

insulated from systematic risk factors, such as broad market movements, by taking 

offsetting positions in correlated assets. By exploiting relative mispricing between the 

paired assets, our strategy aims to profit from the convergence of their prices while 

minimizing exposure to systematic risk. 

To evaluate the performance of our pairs trading strategy, we employ several metrics that 

provide insights into its risk and return characteristics, while taking into account the 

opportunity cost associated with alternative investments. These metrics include annual 

returns, annual excess returns, and the Sharpe ratio.  

Annual returns measure the percentage change in the value of the portfolio over a one-

year period, considering the gains or losses generated. They reflect the overall 

performance of the strategy in terms of its ability to generate profits. 

Annual excess returns capture the returns earned by the strategy in excess of a benchmark 

or risk-free rate, accounting for the opportunity cost of alternative investments. To assess 

the strategy's ability to outperform a passive investment alternative, we compare the 

returns to the risk-free rate. In our case, we use the 6-month US Treasury bill rate as the 

risk-free rate since our trading period is 6 months and we operate in US indexes. This 

allows us to account for the return that could have been earned by investing in a risk-free 

instrument over the same period. 

The Sharpe ratio, introduced by Sharpe (1998), is a widely used risk-adjusted 

performance measure. It calculates the ratio of the excess returns of the strategy to its 

volatility or standard deviation, taking into consideration the opportunity cost of 

alternative risk-free investments. The Sharpe ratio provides an indication of the risk-
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adjusted returns generated by the strategy, considering both the average return and the 

risk involved. 

By considering these metrics, we can assess the risk management and performance of our 

pairs trading strategy, while taking into account the opportunity cost associated with 

alternative investments. The market-neutral nature of the strategy aims to reduce exposure 

to systematic risk factors, focusing instead on capturing relative mispricing opportunities. 

The annual returns, annual excess returns, and Sharpe ratio serve as quantitative measures 

to evaluate the strategy's success in achieving its objectives. 
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3. Model implementation 

In this section, we present the implementation details of our pairs trading strategy, which 

follows a systematic methodology encompassing two distinct timeframes: pair formation 

and trading periods. The pair formation period spans a duration of 3 years, during which 

we diligently identify and establish pairs based on predetermined criteria. Subsequently, 

the trading period commences, lasting for 6 months, during which we execute trades 

based on the pairs formed in the previous stage. 

To ensure a comprehensive evaluation of our strategy, we have adopted a moving window 

approach spanning from January 1st, 2003 to the present day. This time frame allows us 

to generate a total of 34 samples for assessing the viability and effectiveness of our trading 

approach. The selection of a 3-year pair formation period and a 6-month trading period 

was initially chosen based on practical considerations. These time horizons have 

remained consistent throughout our research, enabling a standardized evaluation of the 

strategy's performance across multiple iterations. 

By maintaining consistent time horizons and utilizing a moving window approach, our 

implementation approach facilitates robust comparisons and assessments of the pairs 

trading strategy. This methodology ensures that our findings are not overly influenced by 

specific time periods or market conditions, enhancing the reliability and generalizability 

of our results. 

3.1. Data origin and retrieval 

In the implementation of our pairs trading strategy, the first step involves retrieving the 

necessary data. As described in the strategy definition section, the required data consist 

of the spot prices of stocks within the Dow Jones Industrial Average, implied volatilities 

of their corresponding ATM options, and the daily 6-month treasury bill market rate. The 

collection of spot price data commenced on January 1st, 2003, marking the onset of the 

pair formation period. Implied volatilities and the treasury bill market rate data were 

obtained starting from January 1st, 2006, which corresponds to the first trading day. 

To ensure the reliability and precision of the data, utmost care was taken in selecting 

appropriate data sources. Accurate spot prices are paramount, as even slight deviations 

can significantly influence the interpretation of trading strategy results. To access the 

relevant financial data, we utilized the FactSet API—an esteemed and trusted database 
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renowned for providing comprehensive and reliable financial information. The FactSet 

API facilitated seamless querying of the constituent companies within the two US indexes 

and automated data retrieval. 

For the sake of convenience and efficient data management, we opted to store the 

retrieved data in a parquet file format. Parquet offers advantages in terms of storage 

efficiency and query performance compared to traditional text-based file formats such as 

CSV or Excel. Its optimized binary format enhances data processing speed and facilitates 

seamless data manipulation. This proved particularly useful when working with the DOW 

JONES INDUSTRIAL AVERAGE, as retrieving data from 500 companies would have 

resulted in a text file that would be too large for any computer to process effectively. 

The 6-month treasury bill market rate data was directly obtained from the website of the 

US Federal Reserve System, ensuring the accuracy and up-to-datedness of the 

information. By leveraging reliable data sources and harnessing the convenience of the 

parquet file format, we established a robust foundation for implementing our pairs trading 

strategy. The retrieved data serves as the fundamental basis for subsequent analysis and 

evaluation of our trading approach. 

The result of the data retrieval were 2 parquet files with the spot prices and implied 

volatilities data of the companies for each index, and a csv file with the daily rates for the 

specified dates. 

3.2. Pairs selection 

In the implementation of our pairs trading strategy, the selection of suitable pairs is a 

crucial step that involves identifying stock pairs exhibiting cointegration, indicating a 

potential long-term relationship between their prices. To accomplish this, we employ two 

distinct methods: Maximum Likelihood Estimation (MLE) and the Johansen test, which 

serves as a benchmark for comparison. 

To initiate the pairs selection process, we retrieve the necessary data from the parquet 

file, covering the time period from 2003 to 2020, corresponding to the pair formation 

periods. To ensure the integrity of our analysis, we meticulously filter the data, excluding 

any missing values that could compromise the reliability and accuracy of our 

methodology. It is important to note that the utilization of the FactSet API introduces a 

limitation, as it only provides data for the current components of the index. Consequently, 

certain companies in our dataset may lack historical price data during the initial years due 
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to their later establishment. To address this limitation, these companies are excluded from 

the analysis, which introduces the potential for survivorship bias. 

Survivorship bias arises from the exclusion of companies that have failed to survive, 

leading to a skewed representation of the dataset. This bias can influence the evaluation 

of the pairs trading strategy by overestimating its effectiveness, as underperforming or 

unsuccessful pairs are omitted from the analysis. Therefore, it is imperative to interpret 

the results with caution, considering the inherent limitations associated with survivorship 

bias. 

Once the data loading and survivorship bias considerations have been addressed, we 

proceed to the pairs selection phase by employing the MLE method and the Johansen test. 

Systematic and efficient implementation is ensured through a structured coding approach 

for both methods. 

For the MLE method, we develop a function that estimates the necessary parameters to 

assess the integration of a pair of stocks. This function calculates and analyzes the 

differences and spread between the prices of the selected pair, enabling the estimation of 

mean returns, price sensitivities, and volatilities. By implementing this function using a 

rolling window approach, we assess the integration of each pair over time. 

Similarly, for the Johansen test, a predefined function from the statsmodels library is 

utilized to perform the test on each pair of stocks. This function evaluates the presence of 

cointegration by examining the rank of a matrix and comparing it with critical values. 

The Johansen test is applied within a rolling window framework to assess the 

cointegration of each pair over different time periods. 

 

To enhance computational efficiency, a critical consideration when analyzing large 

datasets, we incorporate parallel processing techniques. Specifically, we develop a 

function for each method that parallelizes the calculation of cointegration for each pair, 

utilizing multiple CPU cores. This parallelization significantly speeds up the computation 

time, enabling us to process a large number of pairs more efficiently. 

By employing both the MLE method and the Johansen test, we obtain two sets of pairs 

that exhibit potential cointegration. These pairs form the foundation of our pairs trading 

strategy, representing stocks with long-term relationships and potential profit 

opportunities. The use of complementary methods allows us to evaluate and compare 
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their effectiveness in identifying suitable trading pairs. The pairs selected using each 

method will be explored further in the results and discussion section. 

3.3. Portfolio construction calculations 

The portfolio construction calculations represent a pivotal stage in evaluating the 

performance of our pairs trading strategy. This phase encompasses the computation of 

various parameters that shed light on the behavior of the selected assets during the trading 

period. Additionally, it involves the derivation of key indicators essential for the strategy, 

including opening and closing triggers and position sizes. To facilitate these calculations, 

we implement the function "process_pair_oos" in a parallelized manner, as has been 

consistently employed throughout this study. This function operates on six-month batches 

of cointegrated pairs' stock prices, along with their corresponding implied volatilities and 

interest rates, enabling the iteration over the rows to extract the pertinent data for each 

pair. 

In the calculation process, we first determine the log spread of the pair, a vital metric used 

to assess the relationship between the two stocks. Subsequently, we compute the 

volatilities for the stock spread by utilizing the implied volatilities and the correlation 

coefficient obtained during the pairs selection phase. The determination of appropriate 

position sizes is achieved through the calculation of deltas for each stock in the pair. These 

deltas represent the sensitivity of the option price to changes in the underlying stock price. 

They are derived from the cumulative distribution function (CDF) of the standardized log 

spread. Moreover, we compute the gammas, which provide insights into the curvature of 

the option price concerning variations in the underlying stock price. The gammas are 

obtained using the probability density function (PDF) of the standardized log spread. 

The most critical aspect of the portfolio construction calculations revolves around the 

trigger calculation. In this context, the entry trigger is computed by subtracting the 

estimated convergence speeds, represented by lambda_1 and lambda_2, from one. This 

result is then multiplied by the volatility of the spread at each point in time and compared 

with the logarithmic spread of the pair. A position is opened when the spread exceeds this 

threshold. Conversely, the closing trigger is derived from the Jacobian matrix using the 

lambdas and is determined by the moment when the expression (gamma_x^2 / 

gamma_y^2) - (price_y / price_x) equals zero. In practice, handling this condition 

becomes slightly intricate due to working with daily data, which can lead to zeros between 
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consecutive days. To address this issue, we examine the sign change of the 

aforementioned equation and consider a zero to be present at that point. As previously 

stated, the closing trigger indicates the attainment of the maximum spread level, 

signifying that no further profits can be derived from maintaining a position on that 

particular pair. If none of these conditions are met, a NaN value is assigned to the trigger 

for that day, signifying that no changes to the position are required. 

To ensure the efficient execution of portfolio construction, we incorporate parallel 

processing techniques into our calculations. This approach facilitates the simultaneous 

computation of cointegration parameters and key indicators for multiple pairs, leveraging 

the computational power offered by multiple CPU cores. By employing parallelization, 

we substantially reduce processing time and enhance the efficiency of analyzing a large 

number of pairs. 

Furthermore, the code encompasses a crucial component that involves the computation 

of position sizes and returns based on the deltas and triggers. This component plays a vital 

role in determining the optimal allocation of capital and evaluating the performance of 

the trading strategy. To facilitate the determination of position sizes, we define the 

function "position_sizes," which accepts the deltas and triggers as inputs and computes 

the position sizes for the two stocks in the pair. Positions are opened when the trigger 

changes to 1 and closed when the trigger becomes 0. If the trigger value is NaN, the 

position is maintained without any changes. The calculation of position sizes enables us 

to assess the allocation of capital and monitor the state of the positions held during the 

trading period. 

3.4. Returns 

Once the portfolio has been constructed and the position sizes determined, the next step 

is to calculate the returns of the pairs trading strategy and analyze its performance. This 

involves assessing the returns generated over time and evaluating the risk-adjusted 

performance of the strategy. 

To calculate the returns, the position sizes determined during the portfolio construction 

phase are applied to the price data. The returns are computed by taking the differences 

between consecutive prices and normalizing them by the product of the previous prices 

and the corresponding position sizes. This calculation effectively captures the changes in 

stock prices and reflects the impact of the portfolio positions. By aggregating the returns 
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of both stocks in each pair, an overall measure of the strategy's performance on a given 

trading day is obtained. 

To evaluate the performance of the pairs trading strategy, the dataset is divided into 

trading batches, with each batch covering a 6-month period. Within each batch, the 

returns are calculated using a function that considers the differences in returns between 

consecutive dates. The returns for each date are then aggregated to capture the cumulative 

returns and determine the count of pairs contributing to those returns. This information is 

stored and tracked, enabling further analysis of the performance. 

To facilitate a comprehensive analysis, the calculated returns, average daily returns, and 

other relevant performance metrics are consolidated into a combined dataframe. Thi s 

consolidated dataframe serves as a foundation for assessing the strategy's performance 

across different time periods. 

The annual performance of the strategy is evaluated by grouping the data in the combined 

dataframe by year. The annual returns are computed by taking the product of the 

cumulative returns for each year and subtracting 1. This approach enables an assessment 

of the strategy's performance over longer time horizons and provides insights into its 

consistency and stability. 

In addition to the annual returns, the excess returns are calculated by adjusting the average 

returns for the risk-free rate. This adjustment provides a measure of the strategy's 

performance relative to a baseline return and accounts for the opportunity cost of holding 

risk-free assets. The annualized excess returns, along with the corresponding Sharpe 

ratios, are computed to gauge the risk-adjusted performance of the strategy, taking into 

account its volatility and the risk-free rate of return. 

Further insights into the strategy's characteristics are obtained through the calculation of 

additional statistics. The skewness of the daily excess returns is computed to assess the 

symmetry or skewness of the distribution. This analysis helps identify potential deviations 

from a normal distribution and provides insights into the strategy's risk profile. 

Additionally, the minimum and maximum daily returns are determined to understand the 

range of return fluctuations and the potential downside and upside risks associated with 

the strategy. 

Visualizations play a crucial role in conveying the performance of the pairs trading 

strategy. Cumulative returns over time are plotted to illustrate the growth trajectory of the 
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portfolio throughout the trading period. These plots provide a visual representation of the 

strategy's ability to generate consistent returns. Furthermore, cumulative plots of excess 

returns adjusted for the risk-free rate offer insights into the strategy's capacity to 

outperform risk-free investments. 

To analyze the performance on a shorter time scale and capture more granular trends, the 

data can be grouped into custom periods, such as 6-month intervals. This grouping allows 

for an evaluation of the strategy's performance within specific timeframes, offering a 

deeper understanding of its dynamics and potential variations across different market 

conditions. Semiannual returns and semiannual excess returns are calculated, considering 

the semiannual nature of these custom periods. 

Finally, a summary of the results is presented in a dataframe that  combines the various 

performance metrics and statistics. This summary facilitates easy comparison and 

interpretation of annual returns, annual excess returns, and Sharpe ratios, providing a 

comprehensive overview of the strategy's performance characterist ics. 

In conclusion, this implementation section focuses on the rigorous calculation of returns 

generated by the pairs trading strategy and the subsequent analysis of its performance. 

Through the calculation of returns, the evaluation of risk-adjusted metrics, and the 

examination of additional statistics, the effectiveness and risk-adjusted performance of 

the strategy can be thoroughly assessed. The visual representations of cumulative returns 

and the consideration of shorter time intervals enhance the understanding of the strategy's 

performance dynamics. By conducting these analyses, practitioners and researchers can 

gain valuable insights into the profitability and risk characteristics of the pairs trading 

strategy. 
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4. Results and discussion 

In this section, we present the results of our pairs trading strategy implementation and 

discuss the findings. We start by describing the dataset used and the selected pairs. We 

then provide an analysis of the performance metrics and discuss the implications and 

insights gained from the strategy evaluation. 

4.1. Selected pairs 

After implementing our Maximum Likelihood Estimation (MLE) method for selecting 

cointegrated pairs, we observed the following statistics for the resulting pairs across all 

parameter estimation periods: 

count      34 

mean      101.21 

std        17.46 

max       139 

min         62 

 

In comparison, the benchmark method, the Johansen test, yielded the following results:  

count      34 

mean      52.656250 

std        34.456714 

max       155.000000 

min        13.000000 

 

These findings indicate that our MLE method offers a more consistent approach to 

obtaining cointegrated pairs. The smaller standard deviation in the number of pairs 

between different estimation periods suggests a higher level of stability and reliability in 

our method. Additionally, our method exhibits a narrower range of pair counts, with 

higher minimum counts and lower maximum counts. This information is particularly 

significant as it implies a more diversified portfolio and reduces the vulnerability to 

substantial price changes. 

Furthermore, upon closer examination of the resulting pairs, we observed that our method 

demonstrated a notable characteristic during or preceding crisis periods. Specifically, the 
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lower number of cointegrated pairs during such periods served as an indication of the 

impending crisis. This observation is crucial as it provides valuable insights into the 

potential usefulness of our method in mitigating the vulnerability of the strategy to crisis 

periods. By leveraging this information, the strategy could be selectively employed to 

maximize its effectiveness during more favorable market conditions and avoid 

unnecessary risks during periods of market turbulence. 

In addition to the statistical measures discussed above, the MLE method exhibits several 

advantages over the Johansen test in the selection of cointegrated pairs. One notable 

advantage is the MLE method's ability to capture a higher number of cointegrated pairs 

on average, as evidenced by the higher mean count of 101.21 compared to the Johansen 

test's mean count of 52.656250. This indicates that the MLE method has a greater capacity 

to identify pairs exhibiting a long-term relationship based on their price dynamics. 

 

Moreover, the MLE method demonstrates a more robust performance with a smaller 

standard deviation of 17.46, as opposed to the Johansen test's standard deviation of 

34.456714. This suggests that the MLE method consistently provides a more stable and 

reliable estimation of cointegrated pairs across different periods. The reduced variability 

in the number of pairs selected by the MLE method enhances the predictability and 

confidence in the strategy's performance. 

The maximum count of 139 pairs obtained through the MLE method further highlights 

its efficacy in identifying a larger pool of potential trading opportunities. This larger pool 

offers increased flexibility and diversification in constructing the portfolio, potentially 

leading to improved risk management and enhanced potential for generating profits. 

Additionally, the MLE method's higher minimum count of 62 pairs indicates a more 

resilient selection process, ensuring a minimum level of diversification even during less 

favorable market conditions. This is particularly advantageous as it provides a safety net 

by reducing the risk of relying heavily on a limited number of pairs, which may be more 

vulnerable to idiosyncratic risks. 

Overall, the MLE method's consistent and robust performance, along with its ability to 

capture a larger number of cointegrated pairs, positions it as a favorable approach for 

pairs selection compared to the Johansen test. The MLE method's statistical 
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characteristics contribute to a more reliable and effective pairs trading strategy, offering 

greater potential for generating returns while managing risk. 

4.2. Performance analysis 

To evaluate the performance of the pairs trading strategy based on the selected 

cointegrated pairs, we analyze the annual returns, annual excess returns, and Sharpe ratio. 

The following table presents the performance metrics for each year:  

 

The table provides a comprehensive overview of the strategy's performance on an annual 

basis. It reveals the returns generated in each year, the excess returns after adjusting for 

the risk-free rate, and the Sharpe ratio, which measures the risk-adjusted returns. 

Analyzing the annual returns, we observe a varying performance across different years. 

For instance, in 2013, the strategy achieved a remarkable annual return of 66.81%, 

indicating a highly profitable year. Conversely, the strategy faced challenges in 2008, 

with a significant negative return of -49.04%. These fluctuations demonstrate the 
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sensitivity of the pairs trading strategy to market conditions and the influence of external 

factors. 

The annual excess returns, which account for the risk-free rate, provide insights into the 

strategy's performance compared to a baseline return. Positive annual excess returns 

indicate that the strategy outperformed the risk-free rate, while negative excess returns 

suggest underperformance. Notably, in 2017, the strategy achieved a substantial excess 

return of 46.20%, indicating its ability to generate significant profits beyond the risk-free 

rate. 

The Sharpe ratio measures the risk-adjusted returns of the strategy and provides an 

assessment of its efficiency in generating returns relative to its risk exposure. A higher 

Sharpe ratio indicates a better risk-adjusted performance. The years 2013 and 2017 stand 

out with Sharpe ratios of 3.20 and 3.49, respectively, indicating exceptional risk-adjusted 

returns. 

The summary statistics of the annual returns, annual excess returns, and Sharpe ratio 

provide further insights into the strategy's performance characteristics. The statistics 

include the count, mean, standard deviation, minimum, maximum, and quartiles. These 

measures enable a comprehensive understanding of the distribution of the strategy's 

performance metrics across the analyzed period and they are provided in the following 

table: 

 

 

These summary statistics provide further insights into the overall performance 

characteristics of the pairs trading strategy. 
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The count statistic indicates that there are 17 data points available for analysis, 

representing the number of years under consideration. This demonstrates the availability 

of sufficient data to assess the strategy's performance. 

The mean statistic provides the average annual return, average annual excess return, and 

average Sharpe ratio. The mean annual return is 18.96%, indicating a positive average 

return generated by the strategy. The mean annual excess return, which takes into account 

the risk-free rate, is 17.64%. This suggests that, on average, the strategy has consistently 

outperformed the risk-free rate. The mean Sharpe ratio, calculated as the average excess 

return divided by the standard deviation of excess returns, is 0.894742. This indicates a 

positive risk-adjusted performance, although it is important to note that the Sharpe ratio 

is lower than 1, suggesting a moderate level of risk-adjusted performance. 

The standard deviation statistic measures the dispersion or volatility of the annual returns, 

annual excess returns, and Sharpe ratio. A higher standard deviation indicates greater 

variability in the performance metrics. In this case, the standard deviation of annual 

returns is 28.51%, reflecting moderate variability in the returns generated by the strategy. 

The standard deviation of annual excess returns is 28.51%, suggesting similar variability 

in the excess returns. The standard deviation of the Sharpe ratio is 1.181290, indicating 

some variability in the risk-adjusted performance. 

The minimum statistic represents the lowest recorded value for each performance metric. 

In this analysis, the minimum annual return is -49.04%, the minimum annual excess 

return is -49.84%, and the minimum Sharpe ratio is -0.660512. These minimum values 

reflect the periods of underperformance or negative returns experienced by the strategy. 

The quartiles (25th, 50th, and 75th percentiles) provide additional insights into the 

distribution of the performance metrics. The 25th percentile represents the value below 

which 25% of the data falls, the 50th percentile represents the median, and the 75th 

percentile represents the value below which 75% of the data falls. These quartiles assist 

in understanding the range and distribution of the performance metrics. 

The maximum statistic represents the highest recorded value for each performance metric. 

In this case, the maximum annual return is 66.81%, the maximum annual excess return is 

66.67%, and the maximum Sharpe ratio is 3.488431. These maximum values indicate the 

periods of exceptional performance achieved by the strategy. 
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Another crucial aspect to consider when evaluating the performance of a strategy is 

understanding how capital would have transformed by following the pairs trading 

approach. Two commonly used plots, the cumulative returns and the cumulative excess 

returns (adjusted for the risk-free rate), provide valuable insights into the growth and risk-

adjusted profitability of the strategy. These plots visually depict the accumulation of 

returns over time, allowing investors to assess the potential long-term impact on their 

capital. The cumulative returns graph illustrates the overall growth trajectory of the 

portfolio, while the cumulative excess returns plot accounts for the risk-free rate, 

providing a clearer picture of the strategy's ability to generate returns above the baseline. 

By analyzing these graphs, investors can gauge the effectiveness and risk-adjusted 

profitability of the pairs trading strategy over the analyzed period. Both of these plots can  

be observed here: 
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The analysis of the cumulative returns and cumulative excess returns plots provides 

valuable insights into the performance of the pairs trading strategy. Over a 17-year period, 

the strategy demonstrates the potential to convert each dollar invested into approximately 

12 dollars, reflecting a substantial growth in capital. However, it is important to note that 

the cumulative excess returns plot takes into account the opportunity cost of investing in 

risk-free assets such as US Treasury 6-month bonds. When considering this opportunity 

cost, the strategy still yields impressive results, generating approximately 10 dollars for 

each dollar invested. This highlights the strategy's ability to generate substantial returns 

even when compared to low-risk alternatives. These findings underscore the potential 

profitability of the pairs trading strategy and its ability to outperform tradi tional 

investment options over the analyzed period. 

In addition to the cumulative returns and excess returns analysis, examining daily values 

provides further insights into the performance characteristics of the pairs trading strategy. 

The skewness of 0.07 indicates a slight positive skew in the distribution of daily returns. 

A positive skew suggests that the majority of daily returns may be relatively small, 

consistent profits, with occasional occurrences of larger positive returns. This distribution 

pattern implies that the pairs trading strategy has a tendency to generate consistent, 

modest gains over time, with the potential for occasional significant positive returns. It is 

worth noting that positive skewness can be a desirable characteristic for investors seeking 
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a strategy that aims to achieve consistent, incremental profits while also capitalizing on 

occasional lucrative opportunities. 

Furthermore, it is important to consider the minimum and maximum daily returns to 

understand the range of return fluctuations. The minimum daily return of -21.44% 

indicates the largest decline experienced by the strategy on a single trading day. 

Conversely, the maximum daily return of 21.78% represents the highest single-day gain 

achieved by the strategy. These figures illustrate the potential volatility associated with 

the pairs trading strategy, highlighting the need for appropriate risk management and an 

understanding of the potential ups and downs that can be encountered during the trading 

process. 

Overall, the performance analysis demonstrates the potential of the pairs trading strategy 

based on the selected cointegrated pairs. It reveals the strategy's ability to generate 

positive annual returns, achieve excess returns beyond the risk-free rate, and deliver 

favorable risk-adjusted performance in certain years. However, it is important to note that 

the strategy's performance is subject to market conditions, and past performance may not 

guarantee future results.  
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5. Conclusion 

In conclusion, this paper has explored the effectiveness of pairs trading strategies with a 

specific focus on deltas positioning and forward-looking triggers. Through the 

implementation of a novel Maximum Likelihood Estimation (MLE) method for selecting 

cointegrated pairs, we have demonstrated the potential of this approach to identify pairs 

with stronger statistical relationships, leading to more consistent and reliable trading 

opportunities. 

The results of our analysis have provided valuable insights into the performance and 

characteristics of the pairs trading strategy. By carefully considering position sizes based 

on deltas, we have observed attractive returns over the analyzed period. This finding 

supports the notion that the deltas, which represent the sensitivity of option prices to 

changes in underlying stock prices, can serve as effective indicators for determining 

position sizes and optimizing risk-reward trade-offs. 

Moreover, the inclusion of forward-looking triggers, such as entry and closing indicators, 

has proven to be a valuable component of the strategy. These triggers, which take into 

account the convergence speeds of the pairs and maximum spread levels, enable the 

strategy to adapt to changing market dynamics and optimize trade entry and exit points. 

By incorporating this forward-looking perspective, the strategy has demonstrated its 

ability to effectively manage risk and capture profit opportunities. 

The performance analysis of the strategy has provided further validation of its 

effectiveness. The annual returns, annual excess returns, and Sharpe ratios all indicate 

consistent and attractive performance. The positive cumulative returns over the analyzed 

period suggest that the strategy has the potential to generate significant capital growth 

over time. Furthermore, when considering the opportunity cost of the risk-free rate, the 

strategy has demonstrated its ability to outperform alternative investment options, such 

as investing in US Treasury 6-month bonds. 

Examining the daily values of skewness, minimum daily return, and maximum daily 

return provides additional insights into the strategy's performance characteristics. The 

positive skewness indicates that the strategy tends to generate small, incremental profits 

with occasional opportunities for larger positive returns. This observation aligns with the 

strategy's focus on capturing short-term inefficiencies in the market and exploiting mean-

reverting price patterns between pairs of stocks. The minimum and maximum daily 
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returns highlight the potential for both downside protection and upside potential within 

the strategy, as it can navigate different market conditions and capture profit opportunities 

across a range of price movements. 

The insights gained from this analysis emphasize the potential effectiveness of pairs 

trading strategies, particularly when implemented with careful consideration of deltas 

positioning and forward-looking triggers. The strategy's ability to generate consistent 

returns and outperform alternative investment options underscores its appeal for investors 

seeking active trading strategies with the potential for attractive risk-adjusted returns. 

However, it is important to acknowledge the inherent risks associated with pairs trading 

strategies. Market conditions, including changes in correlation patterns, macroeconomic 

factors, and unforeseen events, can significantly impact the strategy's performance. 

Additionally, transaction costs, liquidity constraints, and execution risks should be 

carefully considered when implementing such strategies. 

In summary, this research contributes to the growing body of knowledge surrounding 

pairs trading strategies and their effectiveness in generating consistent returns. The results 

highlight the importance of utilizing advanced methodologies, such as Maximum 

Likelihood Estimation, to select cointegrated pairs and optimize the strategy's 

performance. By incorporating deltas positioning and forward-looking triggers, the 

strategy demonstrates its ability to adapt to market conditions and capture profit 

opportunities. However, it is crucial for investors to conduct thorough risk analysis and 

monitoring to ensure the long-term success of pairs trading strategies.  
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Appendix A. Code Repository 

The complete code with the implementation of the trading strategy and the portfolio 

management framework, along with all the necessary libraries and dependencies, can be 

found on GitHub at the following link: https://github.com/Alvarogg3/TFG_BA 

The GitHub repository is structured into two main folders, one for each of the studied 

indexes (DJIA and SPX). Within each folder, users can access the specific code for data 

retrieval and the code for the strategy implementation. 

By providing open access to the code repository, we aim to ensure the reproducibility 

and transparency of our research. Interested researchers and practitioners can review, 

replicate, and build upon the findings of this thesis by examining the code and its 

associated documentation. The GitHub platform facilitates collaboration and enables the 

exchange of ideas and insights among the wider research community. 

We encourage users to explore the code repository, as it serves as a valuable resource 

for further analysis and investigation in the field of pairs trading strategies. The 

availability of the code not only promotes transparency but also fosters continuous 

improvement and refinement of the implemented approach. 

https://github.com/Alvarogg3/TFG_BA

