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10.1 Introduction

In economics we customarily deal with classical data sets. When we collect
information on a set of variables of interest, either in a cross-sectional or/and
time series framework, our sample information is a collection of data points
{v;},i=1...nor{y},t =1...T where y; or i € R takes a single value in R.
In many instances, the single value is the result of an aggregation procedure,
spatial or temporal, over information collected at a very disaggregated level.
Some pertinent examples follow.

In financial markets the price of an asset (stocks, bonds, exchange rates,
etc.) is observed at a very high frequency, i.e., tick by tick, however there
is a huge number of studies where the analysis is performed at the daily
frequency using the closing price, or even at lower frequencies such as weekly
or monthly. It may be claimed that tick-by-tick pricing will generate a huge
amount of data from which it will be difficult to discriminate information
from noise, but on the other extreme, by analyzing just closing prices we
will be discarding valuable intraday information. We can think of alternative
ways of collecting information, for instance, we can gather the maximum and
minimum prices in a day so that the information to be analyzed will come
in an interval format; or the daily interquartile prices such that the interval
will run from the price at the 25% quartile to the price at the 75% quartile;
or we can construct daily histograms with all the intraday prices. In these
cases the data point is not longer a single value but a collection of values
represented by the daily low/high interval, or the interquartile interval, or
the daily histogram. The intervals or the histograms, when indexed by time,
will constitute an interval time series or a histogram time series.

Another instance refers to the information collected by national statistical
institutes in relation to income and population dynamics. Census surveys pro-
vide socioeconomic information on allindividuals in anation thatis customar-
ily disseminated in an aggregated format, for instance a time series of average
income per capita. The objective of these national surveys is not to follow the
dynamics of single individuals, which most likely will be different from one
period to the next, but the dynamics of a collective. However summarizing
national information by averages, though informative, is a poor approach
that throws away the internal variation provided by the disaggregated infor-
mation about the single units. Once more, disseminating the data in a richer
format such as intervals or histograms will provide a more complete picture
of income and population dynamics. There are many other areas such as mar-
keting, environmental sciences, quality control, medical sciences, etc. in which
the information is rich enough to make the object of analysis not the single-
valued variable but the interval-valued or the histogram-valued variable.

Interval- and histogram-valued data can be classified as symbolic data sets
as opposed to classical data sets. Symbolic data is a proposal to deal with
the massive information contained in nowadays super large data sets found
across many disciplines. While the analysis of these data sets requires some
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summary procedure to bring them to a manageable size, the objective is to
retain as much of their original knowledge as possible. An extensive review of
this new field, which started in the late 1980s and early 1990s, is provided by
Billard and Diday (2003, 2006), who define the complexity of symbolic data,
review the current methods of analysis, and state the challenges that lie ahead.

Economics and business are disciplines in which data sets are becoming
consistently larger due to sophisticated information systems that collect and
store huge amount of data. However, the development of new methodologies
to deal with the characteristics of large data sets is moving at a slower pace.
A case on time is the aforementioned high-frequency financial data and the
challenges brought by it such as irregularly spaced observations with strong
intraday patterns and a complex dependence structure. There are other exam-
plesin the economics literature that emphasize the richness of the data, though
eventually the analysis is performed within the boundaries of classical infer-
ential methods. For instance, the article by Zellner and Tobias (2000) provides
the time series of the median and interquartile range of the industrial pro-
duction growth rates of 18 countries but eventually the authors focus on the
single-valued time series of the median growth rates. The article by Gonzalez-
Rivera, Lee, and Mishra (2008) presents a stylized time series of cross-sectional
returns of the constituents of the SP500 index grouped in histograms. How-
ever, the authors focus on the dependence structure of the single-valued time
series of the time-varying cross-sectional ranks (VCR). Both of these instances
could be viewed from the perspective of symbolic data: in Zellner and Tobias
(2000) the data is an interval-valued time series and in Gonzalez-Rivera, Lee,
and Mishra (2008) is a histogram-valued time series.

There is an emergent literature in economics and statistics dealing with
interval-valued data in a regression framework. Manski and Tamer (2002)
examined a regression model where some regressors are interval-valued, like
interval wealth and income, and some others are point-valued. Lima Neto
and de Carvalho (2010) proposed a constrained linear regression model for
interval-valued data. Maia, de Carvalho, and Ludermir (2008) implemented
ARIMA and neural networks models to forecast the center and radii of inter-
vals. Han et al. (2008) analyzed the sterlling-dollar exchange rate time series
based on an interval linear model. Cheung, Cheung, and Wan (2009) analyzed
the range of daily stock prices by proposing a VECM for the daily interval
of high and low prices. Garcia-Ascanio and Maté (2010) forecast monthly
electricity demand with hourly interval data. A different approach to re-
gression that treats intervals as convex compact random sets is proposed in
GonzéleZ-Rodriguez et al. (2007) and Blanco et al. (2008). Regression models
with histogram-valued data are almost nonexistent so that they offer wide
opportunities for further research.

This chapter focuses on the forecasting of interval and histogram-valued
data. The surveys and review articles by Diday and his coauthors focus on
descriptive and multivariate methods of analysis adapted from the classical
statistical methodology. To our knowledge, the development of forecasting
methods for interval and histogram-valued data is in its infancy so that this
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chapter is a contribution to that end. We start with a preliminary section = Au: Change Ok?
defining the structure of the data and basic descriptive statistics. There are
two main sections, one for interval data and another for histogram data.
In the first, we review how classical regression methods can be adapted to
analyze intervals. The main insight is that the interval can be defined by its
center and radius or by its minimum and maximum, so that we construct
two time series to which classical methods can be applied. In this vein, we
build a system, either VAR or VEC models, from which an interval forecast
will be obtained. In a different approach based on the arithmetic of intervals
and on notions of distances between intervals, we adapt classical filtering
techniques like the exponential smoothing and nonparametric techniques
like the k-NN algorithm to produce the interval forecast. In the second main
section, we deal with histogram-valued data. In this case the object of analysis
is considerably more difficult to analyze and we focus exclusively on the
adaptation of smoothing techniques and the k-NN. To construct a histogram
forecast, we will not base our operations on the arithmetic of histograms but
on the key idea of the “barycentric” histogram as the “average” measure.
We should stress that no attempt has been made, either with a time series of
intervals or histogram, to uncover the data generating mechanism but rather
to forecast the future under the premise that it should not be very far from
some average (weighted or unweighted) of the past.

10.2 Interval Data

In this section, we will define interval data and the interval random vari-
able. As a foundation for the forthcoming analysis, we succinctly introduce
the algebra of intervals. We will focus on the empirical first and second mo-
ments of the interval random variable. The main objective of this section is
to discuss (1) regression analysis with interval data, and (2) the forecasting
problem. A financial application will showcase the contribution of (1) and (2)
to the modeling of economic and financial data. While we will not discuss
the nature of interval data, we acknowledge that there are many reasons why
interval data may arise. Among others, interval data is generated when the
data collection process genuinely produces intervals, or when there are not
exact numerical values to quantify a variable, or when there is uncertainty
of any kind in the values of the variable, or when variability of a variable is
the focus of analysis, or when the measurement tools produce measurement
errors. Regardless of the origin, the researcher will be facing data that comes
with an interval format and this is the primary object of analysis.

10.2.1 Preliminaries

We start with the basic notion of an interval following Kulpa (2006). Let
(E, <) be a partially ordered set. An interval is generally defined as follows:



P1: GOPAL JOSHI
August 12, 2010 21:49 C7035 C7035'C010

Au: Is any symbol
missing at 3 places?

252 Handbook of Empirical Economics and Finance

Definition 10.1 An interval [a] over the base set (E, <) is an ordered pair [a] =
laL, aul, where ar, ay € E are the endpoints or bounds of the interval such that
ap <ay.

The interval is called degenerate when a; = ay;, in which case the interval
reduces to a point. Anintervalis the set of elements bounded by the endpoints,
these ones included, namely, [21] = {e € E | a1 <e < ay}. When the base set
E is the set of real numbers R, the intervals are subsets of the real line R.

An equivalent representation of an interval is given by the center (midpoint)
and radius (half range) of the interval, namely, [a] = (ac, ar), where ac =
(ar +ay)/2and ar = (ay —ar)/2.

10.2.1.1 Basic Interval Arithmetic

In order to proceed with our analysis we need an algebra to operate with
intervals. Basic interval arithmetic (Moore 1966; Moore, Kearfott, and Cloud
2009) is based on the following principle: let [a] and [b] be two intervals and O
be an arithmetic operator, then [2 ][] is the smallest interval which contains
alb, Va € [a] and Vb € [b]. Interval addition, subtraction, multiplication and
division are particular cases of this principle and are defined by

l[a]+[b] = [aL + br, au + bu] (10.1)
[a] = [b] =larL — by, au — bL] (10.2)
[a]-[b] = [min{ar - br, ar - bu, au - br, au - bu}, (10.3)

max{ay - by, ar - by, ay - by, ay - bu}ll

[a]/[b] = [a] - (1/[b]), with 1/[b] = [1/bu, 1/bL]. (10.4)

It is worth noting that interval arithmetic subsumes the classical one, in the
sense that, if the operands are degenerate intervals, the result of interval
operations will be equal to the result obtained by the single number arithmetic.
In interval arithmetic, addition and multiplication satisfy the associative and
commutative properties. The distributive property does now always hold,
but the subdistributive property is satisfied, which is defined as

[a]([b] + [c]) c[allb] + [a][c]. (10.5)

If [a] is a degenerate interval, then this property becomes the distributive
property. The interval arithmetic is key for the development of regression
techniques and for the adaptation of forecasting methods to interval data.

10.2.1.2 Interval Random Variable

We proceed with the definition of an interval random variable. Let (2, F, P)
be a probability space, where €2 is the set of elementary events, F is the o-
field of events and P : 7 — [0, 1] the o-additive probability measure; and
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define a partition of  into sets A(x) such Ax(x) = {w € Q| X(w) = x}, where

x € [xr, xy], then Au: Pls complete the
sentence.

Definition 10.2 A mapping X : F — [x1, xuy] C R, such that forall x € [xr, xy]

there is a set Ax(x) € F, is called an interval random variable.

10.2.1.3 Descriptive Statistics

The descriptive statistics of an interval random variable are proposed by
Bertrand and Goupil (2000). For an interval random variable X, suppose that
we have a sample of m individuals (i = 1,2, ..., m) and for each i, an interval
data point [x]; = [xr;, xui]. A key assumption for the forthcoming descriptive
statistics is that the values in a given interval, i.e., x;; < x < xy;, are uniformly
distributed within the interval. Furthermore, we assume that each individual
has the same probability 1/m of being observed. Then, the empirical density
function fx(x) is a mixture of m uniform distributions

fX(x):% Z le Z ; x €R, (10.6)

[l [x]i m Xui — XLi

ixelx]; ixelx];

where I (x € [x];) is an indicator function that takes the value 1 when x € [x];
and zero otherwise; and || [x]; || is the length of the interval [x];.

Based on the density function (Equation 10.6), the sample mean is obtained
by solving the following integral

= [“xfer= ¥ [T

ixe[x]; Xui = XLi Jxy,

1 1
= om ZZ(in +x1) = - IZXC,,

concluding that the sample mean of an interval random variable is the average
of the centers of the intervals in the sample. Analogously, the sample variance
is calculated by solving the integral

(10.7)

S2 = /_:(x — X) f(x)dx = (fj: xzf(x)dx) - X2, (10.8)

which can be rewritten in terms of the interval bounds as
1 1 ?
Sg( = 3m zi:(xai + xyuixei + x%i) T2 |:Zi:(xw + xLi):| . (10.9)

The sample variance combines the variability of the centers as well as the
variability within each interval. When the interval is degenerate, both sam-
ple moments, the mean and the variance, collapse to the sample mean and
variance of the classical data.
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10.2.2 The Regression Problem

Now suppose that we have two interval random variables Y and X for which
we collect a sample of intervals ([x];, [y];) fori =1, 2, ..., m. Theinterval data
point i is a rectangle centered in the centers of [x]; and [y]; and whose sides
are equal to the length of the respective intervals. A graphical representation
of this data is provided in Figures 10.3, 10.4 and 10.5. In this section, we
review the analysis of a regression model with interval data. The classical
regression model can be adapted to interval data by focusing on the centers of
the interval, or on the maximum and minimum of the interval, or on the center
and radius of the interval. The advantage of this approach is that statistical
inference is readily available.

The simplest approach to estimate a regression model with interval data is
provided by Billard and Diday (2000). It consists of fitting a regression line to
the centers of the intervals, yc; = B'xc; + €ci, so that the objective function to
minimize is

meinzééi = (yei — Bxci)?, (10.10)

the solution to this problem is the classical least squares estimator § =
(X;Xc) ' X Yc and standard statistical inference will apply under the stan-
dard assumptions about the error term of the regression. Though this model
will provide information about the average centrality of the intervals, it dis-
regards the range of the intervals that is an important feature of interval data.
551
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There are several proposals aimed to incorporate the length of the interval
into the analysis. Brito (2007) proposes to minimize the following objective
function

mﬁinz (&1, +8) = Z (vi — B/xu)z + Z (yui — B/in)z, (10.11)

1

which is equivalent to run two constrained (same regression coefficients)
regressions on the lower bounds y;; = B'xy; + €1; and the upper bounds
yui = B'xui + €ui of the intervals. For the case of one regressor model, the
OLS estimators have the following expression

_ Sxr g i (G = D) = V) + (i = X)(yui = V)]
5% 5 2 [ — )2+ (xui — X)?]

Bo=Y-piX

(10.12)

where X and Y are given in Equation 10.7. Brito (2007) calls the numerator Sxy
the co-dispersion measure and the denominator 5% the dispersion measure,
which is different from Equation 10.9. This regression line passes through the
average center (X, Y), but the slope is guided by the range of the intervals,
whose effect is summarized by the sum of the covariance between the lower
bounds of [x]; and [y]; and the covariance between the upper bounds of [x];
and [y];. In other words, the researcher collects a sample of points as (xr;, yr.:)
and (xy;, yyu;) and fits a unique regression line to the full sample. Equivalently,
we can understand Brito’s proposal as a constrained system of equations

X . 10.13
yu_XukE1+gu’ (10.13)

2mx1 2mxk 2mx1

for which the OLS estimator is
Bors = [X) X0 + X Xu] ' [X) Ve + X, V). (10.14)

However, the vector ¢ is likely to be heteroscedastic, i.e., 67 # o,

0'2 ag
Q= ( g Lf) ®I, (10.15)
Oru Oy

where I, is the identity matrix. In this case, the GLS estimator Bors =
[X'Q1X]7 X' 27 1Y] would be more efficient than the OLS. A feasible GLS
estimator will depend on the proposed model of heteroscedasticity. In the
simplest heteroscedastic case, where 62 # o2, the estimated 2 will be ob-
tained by replacing the population moments o7, 67, and o ; with their sample
counterparts.

An alternative proposal by Billard and Diday (2000, 2002) is to estimate two
different regression lines, one for the minima and another for the maxima of
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the intervals with no restrictions across lines as in

Li = BLxLi + €L
g e (10.16)
Yui = Byxui + €ui-

The estimation of the model proceeds by minimizing the following objective
function

min Y (&7, + &%), (10.17)
BL.Bu 5

which is equivalent to perform two separate minimizations, ming, » ; &2 and
ming > &2 because of the absence of cross-equation restrictions. This ap-
proach can also be written as a system of seemingly unrelated regression

equations (SURE)
ol lo e L
= + (10.18)
Yy 0 Xul|Bu €U

2mx1 2mx2k 2kx1 2mx1

that is estimated by GLS, i.e., fcrs = [X'Q'X]'[X'Q1Y]. If Q@ = I the
GLS estimator reduces to the OLS estimator. However, given that y;; < yu;
and x1; < xy, it is very likely that €;; and €y;; will be correlated and Q = I,
thus the GLS estimator will be more efficient than the OLS. The feasible GLS
will be constructed as in the previous approach. In practice, since there are
not restrictions in the system, we could have some observations for which
the estimated dependent variable is such that {;; > #u;, which obviously
contradicts the logic of interval data.

The last approach based on classical regression techniques is proposed by
Lima Neto and de Carvalho (2008). It consists on running two independent
regression models for the center and the radius (or range) of the intervals.
Recall that x¢; = (x1; + xyi)/2 and xg; = (xy; — x1;)/2. The model is

Yci = BeXci +Eci

(10.19)
Yri = BRXRi + €Ri
and the objective function to minimize is
min Y~ (8%; + &%), (10.20)

Be.Br 5

which, in the absence of cross-equation restrictions and with spherical dis-
turbances, is equivalent to perform two separate minimizations, ming_  ; éé
and ming, > ; £%.. The corresponding estimator is the classical OLS but the
properties of the error term may dictate the choice of a GLS estimator, within
a SURE system, as more appropriate than the OLS estimator. Other esti-
mators as MLE or QMLE can also be implemented. However, the radius,
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being strictly positive, will not be normally distributed and a MLE estimator
based on multivariate normality of the vector (€c;, €r;)’ will be at least highly
inefficient.

Figures 10.3, 10.4, and 10.5 describe the graphical differences among the
three regression lines proposed by Billard and Diday (2000, 2002) and Brito
(2007). The proposal by Lima Neto and de Carvalho (2008) cannot be graphed
in the same set of coordinates (X, Y).

10.2.3 The Prediction Problem

In this section, we define an interval-valued time series (ITS), we propose an
approach to measure dissimilarities between intervals in ITS, and we imple-
ment forecasting methods for ITS based on smoothing filters and nonpara-
metric estimators like the k-NN. Neither of these two approaches aims to
specify a model for an ITS that approximates a hidden data generating mech-
anism, but rather they should be viewed as automatic procedures to extract
information from a noisy signal from which eventually we can extrapolate a
future value.

Definition 10.3 An interval-valued stochastic process is a collection of interval
random variables that are indexed by time, i.e., {X;} for t € T C R, with each X;
following Definition 10.2.

Aninterval-valued time series is a realization of an interval-valued stochas-
tic process and it will be equivalently denoted as {[x];} = {[x1¢, xw:]l} =
{(xct, xpe)tfor t=1,2,..., T

10.2.3.1 Accuracy of the Forecast

It is customary in classical time series to assess the forecast as a function of the
difference between the realized value and the forecast value. In ITS, one may
be tempted to calculate the difference [x];11 — [];+1 but, because the interval
difference bounds all the possible results when considering single real num-
bers in the two operands, see property (Equation 10.2), the resulting interval
will have an excessive width and thus, it will not be deemed appropriate to
measure the accuracy of a forecast (Arroyo, Espinola, and Maté 2008). The
following example will clarify this point.

Suppose that [x];+1 = [X]i41 = [aL, aul, aL < ay. Since the realized value is
identical to the forecast, the forecast error must be zero [x];4+1 — [%];41 = [0, 0].
If this difference is the interval difference (Equation 10.2), then it must be the
case that [A] = [a,a] witha € R, which is a contradiction with our assump-
tionar < ay.If[ar, ay]is anondegenerate interval, the result of the difference
is an interval with the center in zero and with a length twice the length of the
interval[a,, ay],ie., if[ar, ay] = [1, 2], [x]: —[]; = [-1, 1]. Given these short-
comings, Arroyo and Maté (2006) propose the use of distances to quantify the
dissimilarity (the forecast error) between the realized and the forecast inter-
vals. The properties of distances, i.e., nonnegativity, symmetry, and triangle
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inequality, make them a suitable tool for this purpose. A distance, proposed
by Gonzalez et al. (2004), is defined as

D ([, [y]) = %Jm T+ (u — ) = e — gl + (xr— 7002,
(10.21)

which can be understood as an Euclidean-like distance considering the de-
scription of the intervals by their minimum and their maximum or, alterna-
tively, by their center and by their radii. There is a large number of distances
proposed in the literature, each with its advantages and disadvantages so that
their use will depend on the needs of the researcher. In the forthcoming sec-
tions we will implement the Euclidean-type distance because of its intuitive
and mathematical appeal.

Now, the assessment of a forecast will proceed by the choice of a distance
measure and a loss function. Given a realized and a forecast ITS, {[x];} and
{[*];} witht =1,..., T, Arroyo, Espinola, and Maté (2008) propose the Mean
Distance Error to quantify the accuracy of the forecast

zle(D”;((T[x]t, [£])) ) " (1022)

MDE1({[x]:}, {[]:}) = (

where Dy is a distance such as Dy in Equation 10.21, and g is the order of
the distance, such that for § = 1 the mean distance error is similar in spirit
to the mean absolute error (MAE) loss function, and for § = 2 to the root
mean squared error (RMSE) loss function. Other loss functions, statistical
or economic/business based, can also be chosen to evaluate a forecast. The
important point is that the quantification of the error should be based on a
distance measure.

10.2.3.2 Smoothing Methods

Smoothing is a filtering technique that consists on averaging values of a time
series, and by doing that, removing noise. These methods are easy to im-
plement and they constitute a benchmark to evaluate the forecasting ability
of more sophisticated methods (Gardner 2006). With the help of the arith-
metic of intervals, it is relatively easy to adapt these smoothing procedures to
ITS (Arroyo, Espinola, and Maté 2008). We begin with exponential smooth-
ing though there is an even simpler smoothing provided by just a moving
average of order g.

10.2.3.2.1 Exponential Smoothing Given an ITS {[x]} for t =1,2,..., T, the
forecast for the t + 1 period of a simple exponential smoothing (in recursive
form) is written as

[(%]t41 = alx]s + (1 — o)[R];, (10.23)

where a € [0, 1]. This representation weights the most recent observation and
its forecast. In classic time series, the simple exponential smoothing can be
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equivalently represented in error correction form. However, with ITS both
representations are not equivalent due to the properties of the interval arith-
metic. To understand this difference, let us write the error correction repre-
sentation

[X]t41 = [®] + ale];, (10.24)

where [e]; would be the interval error in ¢, [e]; = [x]; — [&];. Due to the
subdistributive property (Equation 10.5) of interval arithmetic, the relation
between both expressions is the following

alx]y + (1 — ) [&]; calx]; — a[2]; + [&]; = [&]; + o([x]: — [R]F), (10.25)

which means that the recursive form yields tighter intervals than the error cor-
rection form. Due to this fact, the error correction form should not be consid-
ered in ITS forecasting. In addition, the error correction representation is not
equivalent to the ITS moving average with exponentially decreasing weights,
while the recursive form is. By backward substitution in Equation 10.23, and
for t large, the simple exponential smoothing becomes

t

[£]s1 > ) a(l — o)/ [x]l—j ), (10.26)
j=1

which is a moving average with exponentially decreasing weights.

Since the interval arithmetic subsumes the classical arithmetic, the smooth-
ing methods for ITS subsume those for classic time series, so that if the
intervals in the ITS are degenerated then the smoothing results will be iden-
tical to those obtained with the classical smoothing methods. When using
Equation 10.23, all the components of the interval — center, radius, minimum,
and maximum - are equally smoothed, i.e.,

J’Zr,t+1 = OXT,t + (1 — ()L)J?[‘,t where I' € {L, U, C, R}, (1027)

which means that, in an smoothed ITS, both the position and the width of
the intervals will show less variability than in the original ITS, and that the
smoothing factor will be the same for all components of the interval.

Additional smoothing procedures, like exponential smoothing with trend,
or damped trend, or seasonality, can be adapted to ITS following the same
principles presented in this section.

10.2.3.3 k-NN Method

The k-Nearest Neighbors (k-NN) method is a classic pattern recognition pro-
cedure that can be used for time series forecasting (Yakowitz 1987). The k-NN
forecasting method in classic time series consists of two steps: identification
of the k sequences in the time series that are more similar to the current one,
and computation of the forecast as the weighted or unweighted average of
the k-closest sequences determined in the previous step.
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The adaptation of the k-NN method to forecast ITS consists of the following
steps:

1. ThelTS, {[x];} witht =1, ..., T,isorganized as a series of d-dimensional

interval-valued vectors

[xIf = ([x]s, [xleet, - [X]—-1)s (10.28)

where d € N is the number of lags.

. We compute the dissimilarity between the most recent interval-valued

vector [x]‘% = ([x]7, [x]7=1, - .., [x]7—4+1)" and the rest of the vectors in
{[x]’f}. We use a distance measure to assess the dissimilarity between
vectors, i.e.,

(10.29)

zimeuhfﬂwﬂuﬂn>3
- ,

Di([x]f, [x]f) = (

where D([x]r_i+1, [x]i—i+1) is a distance such as the kernel-based dis-
tance shown in Equation 10.21, q is the order of the measure that has
the same effect that in the error measure shown in Equation 10.22.

. Once the dissimilarity measures are computed for each [x]?, t = T —

1, T-2,...,d,weselect the k-closest vectors to [x]‘% . These are denoted
by [x]7, [x1,, ..., [x]F,.

. Given the k-closest vectors, their subsequent values, [x]7,+1, [X]p+1- - -,

[x]7,41, are averaged to obtain the final forecast
k
[2lr41 =) wp - [x]r, 11, (10.30)
p=1

where [x]r,+1 is the consecutive interval of the sequence [x]’f‘rp, and w, is

the weight assigned to the neighbor p, with w, > 0 and Zl;zl o, = 1.
The average (Equation 10.30) is computed according to the rules of inter-
val arithmetic. The weights are assumed to be equal for all the neighbors
o, = 1/k ¥p, or inversely proportional to the distance between the last

sequence [x]% and the considered sequence [x]’%p
o= =2 (10.31)
2 U

with ¢, = (DTV([x]d, [x]’%p) + & tforp =1,...,k The constant £ =
1078 prevents the weight to explode when the distance between two
sequences is zero.

The optimal values, k and d, which minimize the mean distance error
(Equation 10.22) in the estimation period, are obtained by conducting a two-
dimensional grid search.
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10.2.4 Interval-Valued Dispersion: Low/High SP500 Prices

In this section, we apply the aforementioned interval regression and predic-
tion methods to the daily interval time series of low /high prices of the SP500
index. Wewill denote the intervalas [pr ;, pu,]- Thereis strand in the financial
literature, Parkinson (1980), Garman and Klass (1980), Ball and Torous (1984),
Rogers and Satchell (1991), Yang and Zhang (2000), and Alizadeh, Brandt,
and Diebold (2002) among others, that deals with functions of the range of
the interval, py — pL, in order to provide an estimator of the volatility o of
asset returns. In this paper we do not pursue this route. The object of anal-
ysis is the interval [pr ¢, pu.] itself and our goal is the construction of the
one-step-ahead forecast [P ¢+1, Put+1]- Obviously such a forecast can be an
input to produce a forecast 6¢1 of volatility. One of the advantage of forecast-
ing the low /high interval versus forecasting volatility is that the prediction
error of the interval is based on observables as opposed to the prediction error
for the volatility forecast for which “observed” volatility may be a problem.

The sample period goes from January 3, 2000 to September 30, 2008. We
consider two sets of predictions:

1. Low volatility prediction set (year 2006): estimation period that goes
from January 3, 2000 to December 30, 2005 (1508 trading days) and
prediction period that goes from January 3, 2006 to December 29, 2006
(251 trading days).

2. High volatility prediction set (year 2008): estimation period that goes
from January 2, 2002 to December 31, 2007 (1510 trading days) and
prediction period that goes from January 2, 2008 to September 30, 2008
(189 trading days).

A plot of the first ITS [pr ¢, pu,+] is presented in Figure 10.6.

Following the classical regression approach to ITS, we are interested in the
properties and time series regression models of the components of the inter-
val, ie., pr, pu, pc, and pr. We present the most significant and unrestricted
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time series models for [pr. ¢, pu¢] and (pc,+, pr.+) in the spirit of the regression
proposals of Billard and Diday (2000, 2002) and Lima Neto and de Carvalho
(2008) reviewed in the previous sections. To save space we omit the univari-
ate modelling of the components of the interval but these results are available
upon request. However, we need to report that for p; and py, we cannot
reject a unit root, which is expected because these are price levels of the
SP500, and that pc has also a unit root because is the sum of two unit root
processes. In addition, p; and py are co-integrated of order one with coin-
tegrating vector (1, —1), which implies that pr is a stationary process given
that pr = (pu — pr)/2. Following standard model selection criteria and time
series specification tools, the best model for (Apc, pr ) is a VAR(3) and for
[pLt, put] @ VEC(3). The estimation results are presented in Tables A.1 and
A.2 in the appendix.

In Table A.1, the estimation results for (Apc,;, pr) in both periods are very
similar. The radius pr; exhibits high autoregressive dependence and it is
negatively correlated with the previous change in the center of the interval
Apc -1 so that positive surprises in the center tend to narrow down the inter-
val. On the other hand Apc ; has little linear dependence and it is not affected
by the dynamics of the radius. There is Granger causality from the center
to the radius, but not vice versa. The radius equation enjoys a relative high
adjusted R-squared of about 40% while the center is basically not linearly
predictable. In general terms, there is a strong similarity between the model-
ing of (Apc,t, pr+) and the most classical modeling of volatility with ARCH
models for financial returns. The processes p ; and the conditional variance
of an asymmetric ARCH model, i.e., 0'%‘ i1 =0g+ alsf_1+ €1+ [30%_1 t—2r
share the autoregressive nature and the well-documented negative correla-
tion of past innovations and volatility. The unresponsiveness of the center to
the information in the dynamics of the radius is also similar to the findings
in ARCH-in-mean processes where it is difficult to find significant effects of
volatility on the return process.

In Table A.2, we report the estimation results for [py ¢, pu ] for both periods
2000-2005 and 2002-2007. In general, there is much less linear dependence
in the short-run dynamics of [pyr +, pu ], which is expected as we are mod-
eling financial prices. There is Granger-causality running both ways, from
Apy to Apy and viceversa. Overall, the 2002-2007 period seems to be noisier
(R-squared of 14%) than the 2000-2005 (R-squared of 20%—-16%).

Based on the estimation results of the VAR(3) and VEC(3) models, we pro-
ceed to construct the one-step-ahead forecast of the interval [Pr ¢41¢, Put+1¢]-
We also implement the exponential smoothing methods and the k-NN method
for ITS proposed in the above sections and compare their respective fore-
casts. For the smoothing procedure, the estimated value of a is & = 0.04 in
the estimation period 2000-2005 and & = 0.03 in 2002-2007. We have imple-
mented the k-NN with equal weights and with inversely proportional as in
Equation 10.31. In the period 2000-2005, the numbers of neighbors is k = 23
(equal weights) and k = 24 (proportional weights); in 2002-2007 k = 18 for
the k-NN with equal weights and k = 24 for proportional weights. In both
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TABLE 10.1
Performance of the Forecasting Methods: MDE (g = 2)
Period 2000-2006 Period 2002-2008

Estimation Prediction Estimation Prediction

Models 2000-2005 2006 2002-2007 2008
VAR(3) 9.359 6.611 7.614 15.744
VEC(3) 9.313 6.631 7.594 15.766
k-NN (eq.w.) 9.419 6.429 7.625 15.865
k-NN (prop.w.) 9.437 6.303 7.617 16.095
Smoothing 9.833 6.698 7.926 16.274
Naive 10.171 7.056 8.231 16.549

estimation periods, the length of the vector is d = 2 for the k-NN with equal
weights and d = 3 for the proportional weights. The estimation of «, k, and d
has been performed by minimizing the mean distance MDE (Equation 10.22)
with g = 2. In both methods, smoothing and k-NN, the centers of the in-
tervals have been first-differenced to proceed with the estimation and fore-
casting. However, in the following comparisons, the estimated differenced
centers are transformed back to present the estimates and forecasts in levels.
In Table 10.1 we show the performance of the five models measured by the
MDE (g = 2) in the estimation and prediction periods. We have also added a
“naive” model that does not entail any estimation and whose forecast is the
observation in the previous period, i.e., [PL t+1)t, Put+11¢] = [pPLt puel-

For both low- and high-volatility periods the performance ranking of the
sixmodels is very similar. The worst performer is the naive model followed by
the smoothing model. In 2006, the k-NN procedures are superior to the VAR(3)
and VEC(3) models, but in 2008 the VAR and VEC systems perform slightly
better that the k-NN's. The high-volatility year 2008 is clearly more difficult
to forecast, the MDE in 2008 is twice as much as the MDE in the estimation
period 2002-2007. On the contrary, in the low volatility year 2006, the MDE
in the prediction period is about 30% lower than the MDE in the estimation
period 2000-2005. A statistical comparison of the MDEs of the five models in
relation to the naive model is provided by the Diebold and Mariano test of
unconditional predictability (Diebold and Mariano 1995). The null hypothesis

to testis the equality of the MDE's, i.e., Hy : E( D(Znaive) — D(Zother)) = Qversus Hj :
E(Dfuive) — Dfother)) > 0. If the null hypothesis is rejected the other model is

superior to the naive model. The results of this test are presented in Table 10.2.

In 2006 all the five models are statistically superior to the benchmark naive
model. In 2008 the smoothing procedure and the k-NN with proportional
weights are statistically equivalent to the naive model while the remaining
three models outperform the naive.

We also perform a complementary assessment of the forecasting ability of
the five models by running some regressions of the Mincer-Zarnowitz type.
In the prediction periods, for the minimum p; and the maximum py, we
run separate regressions of the realized observations on the predicted ob-
servations as in prs = ¢ + Bpr, + & and pus = ¢ + Bpu + vr. Under a



P1: GOPAL JOSHI
August 12, 2010 21:49 C7035 C7035'C010

Forecasting with Interval and Histogram Data 265

TABLE 10.2

Results of the Diebold and Mariano Test

T-Test for
Hp : E(D(Znaive) - D(zother)) =0

Models 2006 2008
VAR(3) 2.86 2.67
VEC(@3) 2.26 2.46
k-NN(eq.w.) 3.55 243
k-NN(prop.w.) 4.17 1.79
Smoothing 5.05 1.15

quadratic loss function, we should expect an unbiased forecast, i.e.,, B = 1
and ¢ = 0. However, the processes pr; and p are I(1) and, as expected,
cointegrated, so that these regressions should be performed with care. The
point of interest is then to test for a cointegration vector of (1, —1). To test this
hypothesis using an OLS estimator with the standard asymptotic distribu-
tion, we need to consider that in the I(1) process pr ¢, i.e., pr,t = Prt—1 + Vi,
the innovations €; and v; are not independent; in fact because pr, ; is a forecast
of pr : the correlation p(v¢yi, &) # 0 for i > 0. To remove this correlation,
the cointegrating regression will be augmented with some terms to finally
estimate a regression as pr; = ¢ + Bprt + Y ; YiAPL,i+i + e; (the same ar-
gument applies to py,:). The hypothesis of interest is Hy : B = 1 versus
H : B # 1. A t-statistic for this hypothesis will be asymptotically standard
normal distributed. We may also need to correct the t-test if there is some
serial correlation in e; . In Table 10.3 we present the testing results.

We reject the null for the smoothing method for both prediction periods
and for both p; ; and py + processes. Overall the prediction is similar for 2006
and 2008. The VEC(3) and the k-NN methods deliver better forecasts across
the four instances considered. For those models in which we fail to reject
Hy : B = 1, we also calculate the unconditional average difference between
the realized and the predicted values, i.e, p = >_,(p: — p¢)/T. The magnitude

TABLE 10.3
Results of the t-Test for Co-integrating Vector (1, —1)

Asymptotic (Corrected) t-Test
Hy:B=1versusHi: B #1
pr=c+BPr+ Y i VilAPri +ex

2006 2008
min: pr; max:py: Mminipr; max:pus
VAR(3) 3.744* —1.472 3.024* —2.712*
VEC(3) 1.300 0.742 2.906* —2.106
k-NN (eq.w.) 0.639 —4.191* 1.005 —-2.270
k-NN (prop.w.) 3.151* —2.726* 1.772 -1.731
Smoothing —3.542* —2.544* 2.739* —3.449*

*Rejection of the null hypothesis at the 1% significance level.
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of this average is in the single digits, so that for all purposes, it is insignificant
given that the level of the index is in the thousands. In Figure 10.7 we show
the k-NN (equal weights)-based forecast of the interval low /high of the SP500
index for August and September 2008.

10.3 Histogram Data

In this section, our premise is that the data is presented to the researcher as
a frequency distribution, which may be the result of an aggregation proce-
dure, or the description of a population or any other grouped collective. We
start by describing histogram data and some univariate descriptive statis-
tics. Our main objective is to present the prediction problem by defining a
histogram time series (HTS) and implementing smoothing techniques and
nonparametric methods like the k-NN algorithm. As we have seen in the sec-
tion on interval data, these two methods require the calculation of suitable
averages. To this end, instead of relying on the arithmetic of histograms, we
introduce the barycentric histogram that is an average of a set of histograms.
The choice of appropriate distance measures is key to the calculation of the
barycenter, and eventually of the forecast of a HTS.

10.3.1 Preliminaries

Given a variable of interest X, we collect information on a group of individuals
or units that belong to a set 5. For every element i € S, we observe a datum
such as

hx, = {([x]i1, mi1), ..., ([x)in;, Tin,)}, fori e, (10.32)
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where m;; , j =1,..., n; is a frequency that satisfies m;; > 0 and Y i =
1; and [x];j cRR, Vi, j, is an interval (also known as bin) defined as [x];; =
[xLij/ Xul']‘) with —oco < XLij < Xuij < 00 and Xui j-1 < XLij Vi, j, fOI'j > 2. The
datum hy, is a histogram and the data set will be a collection of histograms
{hX,-/i = l,...,m}.

As in the case of interval data, we could summarize the histogram data set
by its empirical density function from which the sample mean and the sample
variance can be calculated (Billard and Diday 2006). The sample mean is

o 1 &Y%
X=o ; >~ (xuij + xij) i, (10.33)

which is the average of the weighted centers for each interval; and the sample
variance is

m
2
Sx = 3m Z Z xUl] + Xuij¥rij + xLz] mij |:Z Z(JCU,] + xLl])"Tl]:| ’

i=1 j=1 i=1 j=

which combines the variability of the centers as well as the intra-interval
variability. Note that the main difference between these sample statistics and
those in Equations 10.7 and 10.9 for interval data is the weight provided by
the frequency m; ; associated with each interval [x]; ;.

Next, we proceed with the definition of a histogram random variable. Let
(2, F, P) be a probability space, where 2 is the set of elementary events, F is
the o-field of events and P : F — [0, 1] the o-additive probability measure;
and define a partition of Q into sets Ax(x) such Ax(x) = {w € Q| X(w) = x},
wherex € {hx,i=1,..., m}.

Definition 10.4 A mapping hx : F — {hy}, such that, for all x € {hx, i =
1....m} there is a set Ax(x) € F, is called a histogram random variable.

Then, the definition of stochastic process follows as:

Definition 10.5 A histogram-valued stochastic process is a collection of histogram
random variables that are indexed by time, i.e., {hx,} for t € T C R, with each hx,
following Definition 10.4.

A histogram-valued time series is a realization of a histogram-valued
stochastic process and it will be equivalently denoted as {hx,} = {hx, t =
1,2,..., T}

10.3.2 The Prediction Problem

In this section, we propose a dissimilarity measure for HTS based on a dis-
tance. We present two distance measures that will play a key role in the esti-
mation and prediction stages. They will also be instrumental to the definition
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of a barycentric histogram, which will be used as the average of a set of
histograms. Finally, we will present the implementation of the prediction
methods.

10.3.2.1 Accuracy of the Forecast

Suppose that we construct a forecast for {/1x,}, which we denote as {hy). Itis
sensible to define the forecast error as the difference 1y, — f1x,. However, the
difference operator based on histogram arithmetic (Colombo and Jaarsma
1980) does not provide information on how dissimilar the histograms /,
and /iy, are. In order to avoid this problem, Arroyo and Maté (2009) pro-
pose the mean distance error (MDE), which in its most general form is de-
fined as

T ]
i Dy, ﬁxJ) , (1034

MDE({hx,}, thx}) = ( T

where D(hx,, f x,) is a distance measure such as the Wasserstein or the Mallows
distance to be defined shortly and g is the order of the measure, such that for
g = 1 the resulting accuracy measure is similar to the MAE and for g4 = 2 to
the RMSE.

Consider two density functions, f(x) and g (x), with their correspond-
ing cumulative distribution functions (CDF), F (x) and G(x), the Wasserstein
distance between f(x) and g (x) is defined as

1
Dw(f, g) =/0 |F~1(t) — G (1)ldt, (10.35)

and the Mallows as

1
Dwm(f. 8) = / [0 (F1(t) — G1(1))2dt, (10.36)

where F~1(t) and G~!(t) with t € [0, 1] are the inverse CDFs of f(x) and g(x),
respectively. The dissimilarity between two functions is essentially measured
by how far apart their t-quantiles are, i.e., F~1(t) — G~!(#). In the case of
Wasserstein, the distance is defined in the L; norm and in the Mallows in
the L, norm. When considering Equation 10.34, D(hx,, h x,) will be calculated
by implementing the Wasserstein or Mallows distance. By using the defini-
tion of the CDF of a histogram in Billard and Diday (2006), the Wasserstein
and Mallows distances between two histograms hx and hy can be written
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analytically as functions of the centers and radii of the histogram bins, i.e.,

Dw(hx, hy) = Z"‘Tj|ij = Ycjl (10.37)
=1
! 1

Dihs ) = Y-, | Gicy = o) + 3o~ )?| (1039
=1

10.3.2.2 The Barycentric Histogram

Given a set of K histograms hx, withk =1, ..., K, the barycentric histogram
hx, is the histogram that minimizes the distances between itself and all the
K histograms in the set. The optimization problem is

K
min} " [D' (hx,, )], (10.39)
B k=1

where D(hx,, hx,) is a distance measure. The concept is introduced by Ir-
pino and Verde (2006) to define the prototype of a cluster of histogram data.
As Verde and Irpino (2007) show, the choice of the distance determine the
properties of the barycenter.

When the chosen distance is Mallows, for r = 2, the optimal barycentric
histogram 7% has the following center/radius characteristics. Once the k
histograms are rewritten in terms of n* bins, for each bin j =1, ..., n*, the
barycentric center x¢; is the mean of the centers of the corresponding bin in
each histogram and the barycentric radius x%; is the mean of the radii of the
corresponding bin in each of the K histograms,

K .

vy = D5 (10.40)
K .

X = —Z"=Il<x”‘]. (10.41)

When the distance is Wasserstein, for ¥ = 1 and for eachbin j =1, ..., n*,
the barycentric center x{; is the median of the centers of the corresponding
bin in each of the K histograms,

XGi

i= median(xck;) fork=1,..., K (10.42)

and the radius x%; is the corresponding radius of the bin where the median x¢;
falls among the K histograms. For more details on the optimization problem,
please see Arroyo and Maté (2009).

10.3.2.3 Exponential Smoothing

The exponential smoothing method can be adapted to histogram time series
by replacing averages with the barycentric histogram, as it was shown in
Arroyo and Maté (2008).
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Let{hx}t =1, ..., T beahistogram time series, the exponentially smoothed
forecast is given by the following equation

hx., =ahyx, +(1—a)hy, (10.43)

wherea € [0, 1]. Since therighthand side is a weighted average of histograms,
we can use the barycenter approach so that the forecast is the solution to the
following optimization exercise

hx,, =arg min,;XHl (chz(ﬁXHl, hx)+(1—a) Dz(ﬁxm, ﬁxt))l/2 ,  (10.44)

where D(-, -) is the Mallows distance. The use of the Wasserstein distance is
not suitable in this case because of the properties of the median, which will
ignore the weighting scheme (with the exception of a = 0.5) so intrinsically
essential to the smoothing technique.

For t large, the recursive equation (Equation 10.43) can be easily rewritten
as a moving average

t

x, =Y a(l—a)'hy, ., (10.45)
=1

which in turn can also be expressed as the following optimizations problem

t

1/2
hx,, =arg minﬁxm |:Z a(l — o)/ 'D*(hx,,,, hXt(,-l)):| , (10.46)

j=1

with D(-, -) as the Mallows distance. The Equations 10.44 and 10.46 are equiv-
alent.

Figure 10.8 shows an example of the exponential smoothing using Equa-
tion 10.44 for the histograms i x, = {([19, 20), 0.1), ([20, 21), 0.2), ([21, 22], 0.7)}
and fix, = {([0, 3), 0.35), ([3, 6), 0.3), ([6, 9], 0.35)} with « = 0.9 and & = 0.1.
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In both cases, the resulting histogram averages the location, the support, and
the shape of both histograms hy, and /1y, in a suitable way.

10.3.2.4 k-NN Method

The adaptation of the k-NN method to forecast HTS was proposed by Arroyo
and Maté (2009). The method consists of similar steps to those described in
the interval section:

1. TheHTS, {hx,}witht =1, ..., T,isorganized asaseries of d-dimensional

histogram-valued vectors {h‘ég} where
hg(t = (hXt’ hXt—ﬂ ey hXt,(d,l))// (1047)

where d € Nis the number of lagsand t =d, ..., T.

. We compute the dissimilarity between the mostrecent histogram-valued

vector hg’(T = (hx;, hxy s ..., hx ) and the rest of the vectors in {h@l(f }
by implementing the following distance measure

(10.48)

Z?:l (Dq (hXT—i-H ’ hxt—i-H )) ) d
d 7

Dy(h, h,) = (

where DI (hx, ..., hx,_,,,) is the Mallows or the Wasserstein distance of
order g.

. Once the dissimilarity measures are computed for each hdt, t=T—

1, T—-2,...,d,we select the k-closest vectors to h‘%(T. These are denoted
d d d
by hXTl, hXTZ, e, hXTk.

. Given the k-closest vectors, their subsequent values, h X, 17 hXTzﬂ, s,

hx, ., are averaged by means of the barycenter approach to obtain the
final forecast f1x,,, as in

k 1/r
hx,., =arg ming,, |:Z w, D' (fix,,,, hXTpH)i| , (10.49)
p=1

where D(fix,,,, h Xr,+1) 18 the Mallows or the Wasserstein distance, i x;,
is the consecutive histogram in the sequence h‘;’(T ,and w, is the weight
P

assigned to the neighbor p, withw, > 0 and Z];=1 o, = 1. Asin the case
of the interval-valued data, the weights may be assumed to be equal for
all the neighbors w, = 1/k Vp, or inversely proportional to the distance

between the last sequence h‘;’(T and the considered sequence hf;(T .
4

The optimal values, k and d, which minimize the mean distance error
(Equation 10.34) in the estimation period, are obtained by conducting a two-
dimensional grid search.
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10.3.3 Histogram Forecast for SP500 Returns

In this section, we implement the exponential smoothing and the k-NN meth-
ods to forecast the one-step-ahead histogram of the returns to the constituents
of the SP500 index. We collect the weekly returns of the 500 firms in the index
from 2002 to 2005. We divide the sample into an estimation period of 156
weeks running from January 2002 to December 2004, and a prediction period
of 52 weeks that goes from January 2005 to December 2005. The histogram
data set consists of 208 weekly equiprobable histograms. Each histogram has
four bins, each one containing 25% of the firms’ returns.

For the smoothing procedure, the estimated value of ais & = 0.13. We have
implemented the k-NN with equal weights and with inversely proportional
as in Equation 10.31 using the Mallows and Wasserstein distances. With the
Mallows distance, the estimated numbers of neighbors is k = 11 and the
length of the vector is d = 9 for both weighting schemes. With the Wasserstein
distance, k = 12,d = 9 (equal weights), and k = 17, d = 8 (proportional
weights). The estimation of «, k, and d has been performed by minimizing
the Mallows MDE with g = 1, except for the Wasserstein-based k-NN which
used the Wasserstein MDE with g = 1. In Table 10.4, we show the performance
of the five models measured by the Mallows-based MDE (g = 1) in the
estimation and prediction periods. We have also added a “naive” model that
does not entail any estimation and for which the one-step-ahead forecast is
the observation in the previous period, i.e., X = Nx,-

In the estimation and prediction period, the naive model is clearly out-
performed by the rest of the five models. In the estimation period, the five
models exhibit similar performance with a MDE of 4.9 approximately. In the
prediction period, the exponential smoothing and the Wasserstein-based k-
NN seem to be superior to the Mallows-based k-NN. We should note that
the MDEs in the prediction period are about 11% lower than the MDEs in the
estimation period.

For the prediction year 2005, we provide a statistical comparison of the
MDEs of the five models in relation to the naive model by implementing
the Diebold and Mariano test of unconditional predictability (Diebold and

TABLE 10.4
Performance of the Forecasting Methods:
MDE (g =1)

Estimation Prediction
Models 2002-2004 2005
Mall. k-NN (eq.w.) 4.988 4.481
Mall. k-NN (prop.w.) 4981 4475
Wass. k-NN (eq.w.) 4.888 4.33
Wass. k-NN (prop.w.) 4.882 4.269
Exp. Smoothing 4.976 4.344

Naive 6.567 5.609
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TABLE 10.5
Results of the Diebold and Mariano Test
t-Test for
Hp: E(D(naive) - D(other)) =0
Models 2005 Prediction Year
Mall. k-NN(eq.w.) 2.32
Mall. k-NN(prop.w.) 2.69
Wass. k-NN(eq.w.) 2.29
Wass. k-NN(prop.w.) 2.29
Exp. smoothing 3.08

Mariano 1995). The null hypothesis to test is the equality of the MDEs, i.e.,
Hy: E(D(naive) — D(other)) = 0 versus H; : E(D(naive) - D(other)) > 0. If the null
hypothesis is rejected, the “other” model is superior to the naive model. The
results of this test are presented in Table 10.5.

In 2005, all the five models are statistically superior to the benchmark naive
model, though the rejection of the null is stronger for the exponential smooth-
ing and the Mallows-based k-NN models with proportional weights.

In Figure 10.9, we present the 2005 one-step-ahead histogram forecast ob-
tained with the exponential smoothing procedure and we compare it to the
realized value. Overall the forecast follows very closely the realized value
except for those observations that have extreme returns. The fit can be fur-
ther appreciated when we zoom in the central 50% mass of the histograms
(Figure 10.10).
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FIGURE 10.9
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10.4 Summary and Conclusions

Large databases prompt the need for new methods of processing informa-
tion. In this article we have introduced the analysis of interval-valued and
histogram-valued data sets as an alternative to classical single-valued data
sets and we have shown the promise of this approach to deal with economic
and financial data.

With interval data, most of the current efforts have been directed to the
adaptation of classical regression models as the interval is decomposed into
twosingle-valued variables, either the center /radius or the min/max. The ad-
vantage of this decomposition is that classical inferential methods are avail-
able. Methodologies that analyze the interval per se fall into the realm of
random sets theory and though there is some important research on regres-
sion analysis with random sets, inferential procedures are almost nonexistent.
Being our current focus the prediction problem, we have explored two dif-
ferent venues to produce a forecast with interval time series (ITS). First, we
have implemented the classical regression approach to the analysis of ITS,
and secondly we have proposed the adaptation of filtering techniques, such
as smoothing, and nonparametric methods, such as the k-NN, to ITS. The lat-
ter venue requires the use of interval arithmetic to construct the appropriate
averages and the introduction of distance measures to assess the dissimilarity
between intervals and to quantify the prediction error. We have implemented
these ideas with the SP500 index. We modelled the center/radius time series
and the low/high time series of what we called interval-valued dispersion
of the SP500 index and compared their one-step-ahead forecasts to those of
a smoothing procedure and k-NN methods. A VEC model for the low /high
series and the k-NN methods have the best forecasting performance.
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With histogram data, the analysis becomes more complex. Regression anal-
ysis with histograms is in its infancy and the venues for further develop-
ments are large. We have focused exclusively in the prediction problem with
smoothing methods and nonparametric methods. A key concept for the im-
plementation of these two procedures is the introduction of the barycentric
histogram thatis a device that works as an average (weighted or unweighted)
of a set of histograms. As with ITS, the introduction of the appropriate dis-
tances to judge dissimilarities among histograms and to assess forecast errors
are fundamental ingredients in the analysis. The collection over time of cross-
sectional returns of the firms in the SP500 index provides a nice histogram time
series (HTS), on which we have implemented the aforementioned methods to
eventually produce the one-step-ahead histogram forecast. Simple smoothing
techniques seem to work remarkably well.

There are still many unexplored areas in ITS and HTS. A very important
question is the search for a model. This will require the understanding of
the notion of dependence in ITS and HTS. A first step in this direction is
provided in ?) who construct autocorrelation functions for HTS and ITS. From
an econometric point of view, model building requires further research on
identification, estimation, testing, and model selection procedures. Economic
and financial questions will benefit greatly from this new approach to the
analysis of large data sets.

|
Appendix
Estimation Results for ITS SP500 Index

TABLE A.1

Estimation of the VAR(3) Model for the Differenced Center and Radius
Time Series

Estimation Sample 2000-2005 Estimation Sample 2002-2007
VAR D(Cen) Rad VAR D(Cen) Rad
D(Cen(-1)) 0.33218 —0.09764 D(Cen(-1))  0.279225  —0.074092
0.0262 0.00997 0.02619 0.00978

[12.6803] [—9.79410] [10.6611]  [—7.57934]

D(Cen(-2)) —0.181348 —0.001809 D(Cen(-2)) —0.092471 —0.010534
0.02742 0.01043 0.02713 0.01012

[-6.61378] [—0.17332] [—3.40879] [—1.04037]

D(Cen(-3))  0.050564 0.00429 D(Cen(-3)) 0.006178  —0.013364
0.02616 0.00996 0.02629 0.00981

[1.93281]  [0.43091] [0.23500] [—1.36214]
Rad(-1) 0.066659 0.150616 Rad(-1) —0.00284 0.152907
0.06593 0.02509 0.06731 0.02512

[1.01103]  [6.00287] [-0.04219] [ 6.08652]
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TABLE A.1

Estimation of the VAR(3) Model for the Differenced Center and
Radius Time Series (Continued)

Estimation Sample 2000-2005 Estimation Sample 2002-2007
VAR D(Cen) Rad VAR D(Cen) Rad
Rad(-2) —-0.049629 0.313259 Rad(-2)  0.046537 0.27345
0.06319 0.02405 0.0649 0.02422
[—0.78541] [ 13.0270] [0.71705]  [11.2886]
Rad(-3) 0.129442  0.285272 Rad(-3) —-0.01386  0.276629
0.0648 0.02466 0.06635 0.02477
[1.99747]  [11.5678] [—0.20888] [11.1699]
C —1.319847  2.088036 C —0.045805  2.074405
0.60607 0.23064 0.5355 0.19987
[-2.17772]  [9.05315] [—0.08554] [10.3788]
TABLE A.2
Estimation of the VEC(3) Model for Low /High Time Series
Estimation Sample 2000-2005 Estimation Sample 2002-2007
Error Correction: D(Low) D(High) Error Correction: D(Low) D(High)
Co-intEq1 —0.438646  0.007023 Co-intEq1l —0.124897  0.121926
0.05364 0.04758 0.04103 0.03692
[—8.17770]  [0.14761] [—3.04419]  [3.30283]
D(Low(-1)) 0.112549 0.515586 D(Low(-1)) —0.165406  0.425054
0.05429 0.04816 0.0489 0.044
[2.07293] [10.7050] [—3.38238]  [9.66024]
D(Low(-2)) —0.093605  0.193326 D(Low(-2)) —0.314249  0.130253
0.0505 0.0448 0.04863 0.04375
[—1.85344] [4.31532] [—6.46233]  [2.97698]
D(Low(-3)) 0.026446 0.112943 D(Low(-3)) —0.15041 0.061275
0.0396 0.03512 0.0399 0.0359
[0.66790] [3.21547] [-3.76992]  [1.70691]
D(High(-1)) 0.313542  —0.287591  D(High(-1)) 0.524179  —0.221533
0.05905 0.05238 0.05188 0.04668
[6.30959] [—5.49018] [10.1046] [—4.74625]
D(High(-2)) —0.073453 —0.382411  D(High(-2)) 0.248088  —0.239401
0.05604 0.04971 0.05323 0.04789
[-1.31078] [—7.69307] [4.66085]  [—4.99871]
D(High(-3)) 0.04646 —0.065429  D(High(-3)) 0.182654  —0.073329
0.04356 0.03864 0.04262 0.03835
[1.06663] [—1.69337] [4.28593] [-1.91234]
C —0.064365 —0.118124  Co-integrating Eq:  Co-intEql
0.28906 0.25642 Low(-1) 1

[-0.22267] [-0.46068] High(-1) —1.002284
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TABLE A.2
Estimation of the VEC(3) Model for Low /High Time Series (Continued)
Estimation Sample 2000-2005 Estimation Sample 2002-2007
Error Correction: D(Low) D(High) Error Correction:  D(Low)  D(High)
Co-integrating Eq:  Co-intEq1l 0.00318
Low(-1) 1 [—315.618]
High(-1) —1.001255 C 16.82467
0.00268 3.81466
[—373.870] [ 4.41053]
@TREND(1) —0.012818
0.00105
[—12.1737]
C 27.97538
O
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