

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Electric power systems	
Código	MEPI-512	
Título	Máster Universitario en Sector Eléctrico / the Electric Power Industry por la Universidad Pontificia Comillas	
Impartido en	Master in the Electric Power Industry [Primer Curso]	
Nivel	Postgrado Oficial Master	
Cuatrimestre	Semestral	
Créditos	6,0 ECTS	
Carácter	Obligatoria	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Responsable	Luis Rouco Rodríguez	
Horario	Lunes de 19::00 a 20:40 y miércoles de 19:00 a 20:40	
Horario de tutorías	Por cita concertada por correo electrónico	

Datos del profesorado		
Profesor		
Nombre	Damien Laloux Dallemagne	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	Alberto Aguilera 25 [D-513 bis]	
Correo electrónico	dlaloux@iit.comillas.edu	
Profesor		
Nombre	Luis Rouco Rodríguez	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	Francisco de Ricci, 3 [D-122]	
Correo electrónico	Luis.Rouco@iit.comillas.edu	
Teléfono	6109	
Profesor		
Nombre	Michel Luis Rivier Abbad	
Departamento / Área	Departamento de Ingeniería Eléctrica	
Despacho	Santa Cruz de Marcenado 26 [D-504]	
Correo electrónico	Michel.Rivier@iit.comillas.edu	
Teléfono	6111	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

El objetivo general del curso es que el estudiante conozca la estructura física y funcional de los sistemas de energía eléctrica y los métodos para analizar y controlar los sistemas eléctricos. Los objetivos específicos del curso son:

- Comprender la estructura física y funcional de los sistemas eléctricos
- Ser capaz de analizar los circuitos en corriente continua y en corriente alterna (monofásicos y trifásicos)
- Comprender los controles principales de los sistemas eléctricos (control de frecuencia y de tensión) y ser capaz de analizarlos utilizando modelos matemáticos apropiados
- Comprender los modelos de régimen permanente de los sistemas eléctricos (flujos de cargas) y resolver problemas de flujos de cargas utilizando diferentes métodos y modelos

Prerequisitos

Los alumnos que tomen este curso deben haber tener nociones de álgebra lineal y cálculo.

Competencias - Objetivos

Competencias

Competencias		
GENERALES		
CG01	Haber adquirido conocimientos avanzados y demostrado, en un contexto de investigación científica y tecnológica o altamente especializado, una comprensión detallada y fundamentada de los aspectos teóricos y prácticos y de la metodología de trabajo en uno o más campos de estudio.	
ESPECÍFICAS		
CE01	Tener una visión general de la estructura y funcionamiento de los sistemas de energía eléctrica, así como de cuáles son las tendencias futuras desde la perspectiva tecnológica en los sistemas de energía eléctrica.	
CE02	Conocer los modelos de los componentes del sistema de energía eléctrica (generadores, transformadores y líneas) y de las técnicas apropiadas para el análisis de los sistemas eléctricos en régimen permanente y transitorio.	

Resultados de Aprendizaje	
RA1	Comprender la importancia de la estructura física de los sistemas de energía eléctrica
RA2	Comprender la importancia de la estructura funcional de los sistemas de energía eléctrica
RA3	Ser capaz de analizar los circuitos de CA, monofásicos y trifásicos
RA4	Comprender los mecanismos de control de frecuencia de los sistemas de energía eléctrica y sus detalles de implementación
RA5	Comprender los mecanismos de control de tensión de los sistemas de energía eléctrica y sus detalles de implementación

RA6	Comprender la lógica de los flujos de energía en los sistemas de energía eléctrica
RA7	Ejecutar simulaciones de flujo de cargas

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES			
Sesiones prácticas: bajo la supervisión del profesor, los alumnos aplicarán los conceptos y técnicas cubiertos en las clases. Las sesiones tendrán lugar en laboratorios.	Clases magistrales y discusiones en clase: Presentación de los principales conceptos y procedimientos por parte del profesor y, en muchas ocasiones, profesionales del sector eléctrico. Incluirán estudios de casos, presentaciones dinámicas, participación de los alumnos en discusiones de contenidos en clase e interacciones grupales.		
6.00	54.00		
HORAS NO PRESENCIALES			
Lectura de artículos: lecturas de artículos científicos que se asignarán a los alumnos y que se presentarán durante el curso, para lo cual se requerirá lectura individual y / o trabajo grupal y estudio fuera del aula.	Estudio personal: Estudio personal del contenido del curso. Dentro de esta actividad individual, los alumnos revisarán y analizarán los contenidos proporcionados como material básico con los que podrán prepararse para discutir con otros alumnos, profesores y conferenciantes en el aula.	Tutoría: Actividad realizada por el profesor con los alumnos fuera de clase de forma individual o en grupos previa solicitud por éstos.	
20.00	90.00	10.00	
CRÉDITOS ECTS: 6,0 (180,00 horas)			

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

Parte I: Introducción a los sistemas de energía

- Estructura física y funcional de los sistemas de energía eléctrica.
- Descripción funcional de sistemas de energía léctrica.
- Futuras tendencias.
- Herramientas básicas de análisis del sistemas de energía.

Parte II: Análisis técnico de sistemas de energía eléctrica

- Control de Frecuencia.
- Control de tensión.
- Flujo de cargas.

Parte I: Introduccion a los sistemas eléctricos

Capítulo 1. Estructura física y funcional de los sistemas eléctricos

- 1. Demanda
- 2. Generación

- 3. Transporte y distribución
- 4. Operación del mercado y del sistema eléctrico
- 5. Comercialización

Capítulo 2. Descripción funcional de los sistemas eléctricos

- 1. Escalas de tiempo
- 2. Planificación de la expansión
- 3. Planificación de la explotación
- 4. Excplotación
- 5. Supervisión y control
- 6. Protección

Capítulo 3. Tendencias futuras

- 1. Nuevas tecnologías de transporte y distribución
- 2. Integración de fuentes de energía renovable
- 3. Redes inteligentes

Capítulo 4. Herramientas básicas de análisis de circuitos eléctricos

- 1. Circuitos en corriente continua
- 2. Circuitos monofásicos en corriente alterna
- 3. Circuitos trifásicos en corriente alterna
- 4. Magnitudes unitarias

Parte II: Análisis técnico de los sistemas eléctricos

Capítulo 5. Control de frecuencia

- 1. Principios de sistemas de control
- 2. Principios de control de frecuencia
- 3. Regulación primaria
- 4. Regulación secundaria

Capitulo 6. Control de tensión

- 1. Principios de control de tensión
- 2. Control de tensión y compensación de potencia reactiva de cargas
- 3. Control de tensión de líneas de transporte
- 4. Control de tensión por control de la excitación de generadores
- 5. Control de tensión por control de cambiadores de tomas de transformadores

Capítulo 7. Flujo de cargas

- 1. Modelos de los componnentes del sistema eléctrico
- 2. Modelo de la red
- 3. Formulación del problema de flujo de cargas
- 4. Solución por el método de Newton
- 5. Solución del flujo de cargas con elementos de control

- 6. Flujo de cargas desacoplado
- 7. Flujo de cargas en corriente continua
- 8. Análisis de contingencias por el flujo de cargas en corriente continua
- 9. Flujo de cargas óptimo

Laboratorio

Sesión de laboratorio # 1. Control de frecuencia

Regulación de la carga. Regulación primaria. Regulación secundaria.

Sesión de laboratorio # 2. Control de tensión

Control de tensión de un generador síncrono en vacío. Control de tensión de un generador síncrono conectado a una red de potencia infinita por control de la excitación y por control del cambiador de tomas en carga.

Sesión de la laboratorio # 3. Flujo de cargas

Estructura de datos de entrada y solución de un flujo de cargas en corriente alterna. Control de la tensión del los generadores. Análisis de contingencias. Flujo de cargas óptimo.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Este curso proporcionará a los alumnos los conceptos y herramientas que necesitarán en otros cursos. Para alcanzar una buena compresión de los diferentes conceptos es preciso combinar teoría con práctica. Los alumnos tendrán que asimilar muchos conceptos complicados en un corto espacio de tiempo. Por tanto, el compromiso de los alumnos es esencial.

Metodología Presencial: Actividades

Clases magistrales y discusiones en clase (54 horas): Presentación de los principales conceptos y procedimientos por parte del profesor y, en muchas ocasiones, profesionales del sector eléctrico. Incluirán estudios de casos, presentaciones dinámicas, participación de los alumnos en discusiones de contenidos en clase e interacciones grupales.

CG01, CE01, CE02

Sesiones prácticas (6 horas): bajo la supervisión del profesor, los alumnos aplicarán los conceptos y técnicas cubiertos en las clases. Las sesiones tendrán lugar en laboratorios

CG01, CE01, CE02

Metodología No presencial: Actividades

Estudio personal (90 horas): Estudio personal del contenido del curso. Dentro de esta actividad individual, los alumnos revisarán y analizarán los contenidos proporcionados como material básico con los que podrán prepararse para discutir con otros alumnos, profesores y conferenciantes en el aula

CG01, CE01, CE02

Lectura de artículos (20 horas): lecturas de artículos científicos que se asignarán a los alumnos y que se presentarán durante el curso, para lo cual se requerirá lectura individual y / o trabajo grupal y estudio fuera del aula.

CG01, CE01, CE02

Tutoría (10 horas): Actividad realizada por el profesor con los alumnos fuera de clase de forma individual o en grupos previa solicitud por éstos.

CG01, CE01, CE02

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
Exámenes	 Comprensión de conceptos Aplicación de conceptos a la resoluciónde problemas prácticos. 	90
Informes	 Aplicación de conceptos a la resoluciónde problemas prácticos. Análisis e interpretación crítica de los resultados obtenidos en los trabajos. Presentación y comunicación escrita. 	10

Calificaciones

Los exámenes representan el 90% de la calificación:

- Primer examen: estructura del sistema eléctrico y descripción funcional hasta decisiones de medio plazo (13/60)
- Segundo examen: descripción funcional y circuitos en corriente continua y corriente alterna monofásicos y trifásicos (13/60)
- Tercer examen: control de frecuencia (10/60)
- Cuarto examen: control de tensión (14/60)
- Quinto examen: flujo de cargas(10/60)

Los exámenes será combinación de test de varias opciones y problemas.

Los trabajos representan el 10% restante de la calificación. Hay tres trabajos que se realizarán en grupo: control de frecuencia, control de tensión y flujo de cargas. La evaluación de los trabajos será por medio de entrevista del grupo con el profesor.

Para aprobar es necesario que la nota de los exámenes sea mayor o igual a 5.

El examen de recuperación representará el 90% de la calificación. Los informes de los trabajos representan el 10% de la calificación de recuperación. Para aprobar la recuperación es necesario que la nota del examen de recuperación sea mayor o igual a 5.

La asistencia a clase es obligatoria de acuerdo con el artículo 93 del Reglamento General de la Universidad.

Las Normas Académicas de las ETS de Ingeniería ICAI establecen que el incumplimento de la norma de asistencia a clase tendrá las siguientes consecuencias:

- Los alumnos que faltaren al más del 15% de las clases podrán no ser admitidos al examen de la convocatoria ordinaria.
- Los alumnos que faltaren al más del 15% de las sesiones de laboratorio podrán no ser admitidos al examen de la convocatoria ordinaria.

Los alumnos que cometan algún fraude en un examen o trabajo suspenderán la convocatoria ordinaria con cero y perderán la convocatoria extraordinaria (Artículo 168 del Reglamento General de la Universidad).

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Primer examen: Estructura del sistema eléctrico y descripción funcional hasta decisiones de medio plazo	13/10/2021	13/10/21
Segundo examen: Descripción funcional y circuitos en corriente continua y corriente alterna monofásicos y trifásicos	8/11/2021	8/11/2021
Tercer examen: Control de frecuencia	22/11/2021	22/11/2021
Cuarto examen: Control de tensión	10/1/2022	10/1/2022
Quinto examen: flujo de cargas	31/1/2022	31/1/2022

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- D. Laloux & M. Rivier, "Technology and Operation of Electric Power Systems", in Regulation of the Power Sector, J.I. Pérez Arriaga, Ed. (p. 1-46), Springer, 2013.
- A. Gómez Expósito, A. J. Conejo, C. Cañizares, Electric Energy Systems: Analysis and Operation, CRC Press, 2009.

Bibliografía Complementaria

- A.J. Wood & B.F. Wollenberg, Power Generation, Operation and Control (2nd ed.). John Wiley & Sons, 1996.
- O. I. Elgerd, Electric Energy Systems Theory: An Introduction, 2nd ed., Mc Graw Hill, 1982.
- A. R. Bergen & V. Vittal, Power System Analysis, 2nd ed., Prentice Hall, 2000.
- J. J. Grainger & W. D. Stevenson, Power System Analysis, Mc Graw Hill, 1994.
- P. Kundur, Power System Stability and Control, Mc Graw Hill, 1994.

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792