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A B S T R A C T

This paper proposes a novel anomaly detection methodology for industrial systems based on Digital Twin (DT)
ecosystems. In addition to DTs, conceived as a digital representation of a physical entity, this paper proposes
a new concept of DT focused on modeling connections between physical behaviors. This new DT concept
is called Snitch Digital Twin (SDT). The scope of the SDT is the study of variations between behaviors and
support the detection of anomalies between them. The behavior of each physical entity is characterized by
three spatiotemporal features computed from each collected measurement. Behavioral anomalies are identified
and quantified through modular patterns based on quantile regression and behavioral indexes. Finally, the
robustness of the proposed methodology is assessed by comparing it with the other two commonly used
algorithms based on Kernel Principal Component Analysis (KPCA) and One-Class Support Vector Machines
(OCSVM) in a case study application. The case study is based on the diagnosis of the cooling system of a power-
generator diesel engine. The results obtained prove the advantages and goodness of this novel methodology
compared to the two traditional algorithms.
1. Introduction

Some of the most challenging areas within the paradigm of In-
dustry 4.0 and the Internet of Things (IoT) aim to achieve better
asset management based on data-driven solutions (Leukel et al., 2021).
Predictive Maintenance (Zonta et al., 2020) and Prognosis and Health
Management (PHM) (Guo et al., 2020) are some of the areas with
a higher interest in Industry due to the repercussions that a system
failure or unplanned downtimes have on their activities. These areas
require more and more effective anomaly detection methods based
on Machine Learning (ML) algorithms. These types of algorithms are
gaining popularity in anomaly detection for data-driven applications.

ML techniques rely on the information collected by sensors and
controllers of the system. Nevertheless, one of the paradoxes of mod-
ern systems is the rapid obsolescence of data due to the short-term
operating conditions of the system. This fact limits the validity of the
models, which become rapidly outdated when the Operating Conditions
change or after running a maintenance task. Within the framework of
Industry 4.0, and thanks to the vast amount of data provided by IoT
and Supervisory Control And Data Acquisition (SCADA) systems, it is
possible to compute a digital replica of a physical entity. Such a model
is a characterization of behaviors defined by the variables registered
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during the operation of the system. Models are used to identify and
differentiate anomalous behaviors from normal ones.

Anomalies are also known as outliers, abnormalities, or deviants;
and could be classified in the following categories (Chandola et al.,
2009):

• Contextual anomalies: anomalous data detected in a specific con-
text only, meaning that, in all other situations they would be
perceived as normal;

• Collective anomalies: a group of related data points is anomalous
compared to the reference dataset; the individual data points
could represent normality, while it is their actual sequence that
represents an anomaly.

Anomaly detection methods range from conventional techniques
(statistical methods, time-series analysis, signal processing, etc.) to
data-driven strategies (supervised/semi-supervised/unsupervised learn-
ing, reinforcement learning, deep learning, etc.) (Erhan et al., 2021).

This study proposes a novel methodology for anomaly detection
based on collaborative models. The method relies on ‘‘elementary" DTs
as agents of the system. The collaboration between ‘‘elementary" DTs
allows for the detection of anomalies and assesses their severity. This
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Fig. 1. Implementation levels of Digital Twins (Melesse et al., 2021).

collaboration between DTs aims to improve the detection of contextual
and collective anomalies, which are more challenging to be identified
using self-reference models.

The initial conceptualization of DTs was proposed by (Grieves,
2007) and defined later by the National Aeronautics and Space Admin-
istration (NASA) as a multiphysics, multiscale, probabilistic simulation
that uses physical models, sensor updates, fleet history, etc., to mirror
the life and behavior of its twin (Huang et al., 2021a). This article
focuses on detecting anomalies in multiple agents’ behaviors (DTs)
based on the information collected from sensors and SCADA systems.
The scope of this study is the definition of a data-driven anomaly
detection framework without considering other DT applications related
to CAD models (Lu et al., 2020), DT communication networks (Li et al.,
2020), DT control applications (He et al., 2019), digital representations
of real assets (Schluse et al., 2018), or any other type of physics
models (Guo et al., 2018).

DT can be implemented at different levels, including component,
asset, system, or process as it is shown in Fig. 1.

Among the types of DTs and their applications are remarkable
those related to decision support, maintenance, plant and machinery
optimization, (Melesse et al., 2021; Alves de Araujo Junior et al., 2021;
Falekas and Karlis, 2021; Kunath and Winkler, 2018), among others.
This study proposes an anomaly detection methodology for decision
support and diagnosis applications.

An anomaly detection algorithm implemented within a DT ecosys-
tem has to be compatible with:

• Modular structure, disposable and scalable: DT applications are
commonly built upon independent agents subject to changes or
replacements. The anomaly detection algorithm has to be compat-
ible with partial modifications in the architecture of the model.

• Flexible and dynamic: DT applications are characterized by their
flexibility when it comes to representing the changing conditions
of the assets. These changes must also be included in the anomaly
detection model updating their parameters.

• Near Real-time runtime: DT applications can be synchronized in
real-time (Uhlemann et al., 2017; Xu et al., 2021) or detached
(not synchronized) to the actual systems they are replicating. DT
ecosystems might present online and offline interactions during
its lifecycle (Khan et al., 2020; Moyne et al., 2020), therefore it is
desirable (but not crucial) that the anomaly detection algorithm
may be compatible with a near real-time runtime.

• Heterogeneous sources of knowledge. The integration of data
analysis and Knowledge-Based Models in the composition of
DTs might improve the characterization of processes and sys-
tems (Vogel-Heuser et al., 2021).

Based on the requirements of DT ecosystems, this study presents
different contributions. Contributions regarding the architecture of the
2

methodology:
• The anomaly detection methodology proposed in this study is
fully compatible with a DT implementation: Modularity and scal-
ability (agents can be easily removed or added from the model),
flexibility (new index patterns can be easily removed if outdated
or added to the model), and speed (compatible with on-line
runtime applications).

Contributions regarding the behavior characterization:

• Three features are proposed for the characterization of behaviors.
Density distribution, slope, and intercept values.

– Density distribution analysis identifies biased deviations,
outliers, and unusual values.

– Slope analysis identifies deviation trends and provides a
rough estimation of future values.

– Middle intercept point analysis weights the variations de-
tected as sharp transitions produced by changes in the op-
erating conditions, maintenance tasks, etc.

Contributions regarding the anomaly detection:

• The proposed method allows for detecting contextual and collec-
tive anomalies thanks to the modeling of behaviors by collabora-
tive networks based on DTs and SDTs.

• The methodology proposed is able to identify, quantify and assess
the anomaly. Identify, it checks which features present variations
regarding their reference value; quantify, it measures the size
of the variation between test and reference; assess, determines
whether an anomaly is very probable or unlikely based on the
number of variations detected in the SDTs models.

• The methodology proposed is specially oriented to anomaly de-
tection applications with scarce training sets or fast-changing
working conditions.

This study is structured as follows. In Section 2, related works are
presented and discussed. Section 3.1 introduces the multiple agents
that make up the DT ecosystem and the structure of the methodology
proposed. In Section 3.2, the features and elements applied in the
characterization of behaviors are presented. At the end of this section,
in Section 3.3, the anomaly detection process is described. Section 4
describes the implementation of the proposed methodology and the two
existing ones in a real-case study. The results obtained are presented
and discussed at the end of this section, in Section 4.4. Finally, the
conclusions of this study are presented in 6. A brief description of KPCA
and OCSVMs algorithms can be found as part of the Appendix, at the
end of the document.

2. Related works

According to Leukel et al. (2021), the most frequently adopted
algorithms in anomaly detection applications are Random Forests (RF),
Support Vector Machines (SVM), and Artificial Neural Networks (ANN).

Complex models based on Deep Learning (DL) architectures and
ANN usually have to tackle some drawbacks related to the requirements
of extensive training sets (Xia et al., 2021), and the low physical
interpretability of the parameters of such models (Abid et al., 2020).

RF, One-Class Support Vector Machines (OCSVM), and Kernel Prin-
cipal Component Analysis (KPCA) are well-known algorithms with
proven effectiveness in the detection of anomalies (Kerpicci et al., 2021;
Barbado et al., 2022; Sun et al., 2020).

Other approaches based on Hierarchical Clustering modeled as RFs
can be found in the literature. Kerpicci et al. (2021) proposes an
anomaly detection methodology taking into account the sequentiality
of samples. Cheng et al. (2021) takes into account spatiotemporal cor-
relations for data recovery applications. Other statistical correlations,
such as Spearman Correlation Coefficient, are used (Cheng et al., 2021).

In Mensi and Bicego (2021) an algorithm based on Isolation, Forests are
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proposed including an aggregation function of tree scores and weighted
paths to obtain a more detailed anomaly score. An extended version of
Isolation Forest was proposed in Hariri et al. (2021) allowing for the
slicing of the data to use hyperplanes with random slopes and intercept
points.

The slicing data process in Hierarchical Clustering is crucial for the
accuracy of this type of algorithm. In Saeed et al. (2021), Cheng et al.
(2021) the authors propose extremely randomized splitting as their best
approach. In Kerpicci et al. (2021) the authors propose a novel splitting
process based on optimized Kernel Density Estimators.

In Simmini et al. (2021), a KPCA algorithm is proposed for the
anomaly detection of cooling systems. The authors, as in the present
study, propose the slope and intercept point extracted through a sliding
windows method as features to assess multiple operating conditions.
Such a study only takes into account steady-state conditions. Whereas
the present study aims to compare the effectiveness of KPCA with the
proposed methodology for the assessment of steady-state and dynamic
working conditions which are the most frequent scenarios for online
applications.

In Dhiman et al. (2021), a linear kernel SVM is proposed for the
detection of anomalies in gearbox systems based on thermal measure-
ments. The detection of anomalies includes the assessment of variations
between measurements. These variations are modeled as the difference
between two variables. The present study proposes not only the assess-
ment of variations between thermal variables but also between agents.
In addition, a linear kernel SVM is implemented to be compared with
the proposed methodology.

DT ecosystems are widely implemented in anomaly detection appli-
cations. In Piltan and Kim (2021), a DT-driven anomaly detection based
on support vector algorithms is implemented in the detection of defects
in bearing systems. Guo et al. (2021) proposes a hierarchical anomaly
detection based on DT systems implemented for production lines anal-
ysis. Oluwasegun and Jung (2020) proposes the implementation of DTs
in a PHM methodology using SVMs as classifiers and anomaly detectors
of the Control Element Drive Mechanism of a nuclear plant. Studies
like (Gaikwad et al., 2020) have implemented DTs with a linear kernel
SVM for the detection of failures in Additive Manufacturing processes.

In comparison to other studies in anomaly detection methods,
(Lindemann et al., 2019) implements k-means clustering methods,
but such an approach usually requires additional assessment methods
such as density distributions (Calvo-Bascones et al., 2021) or isolation
forests (Castellani et al., 2021). The proposed method deals with this
purpose in one step using quantiles as landmarks (clusters) and density
indicators.

Li et al. (2021) proposes the use of encoders for anomaly classifica-
tion, the encoder proposed aims for binary classifications of anoma-
lies based on labels without assessing the severity of the anomalies
detected. The present study proposes an encoder that classifies and
assesses the severity of the anomalies detected in an unsupervised
manner

Saez et al. (2020) proposes the definition of Global Operation
States (GOS) to determine the limits of the acceptance thresholds based
on contextual properties. Such contextual properties are determined
locally for each variable and do not consider a multivariate GOS
definition. The present study considers, by design, all the variables of
the agents that make up the DT ecosystem in the definition of each
Operation State condition.

None of the previous works take into account the study of in-
teractions between agents for the assessment of local and collective
behaviors. The study of these interactions is carried out through the
analysis of variations between behaviors through a new type of DT.
The purpose of this new type of DT is not the virtualization of an
asset, but the virtualization of variations between behaviors. The in-
tegration of this new type of knowledge in the assessment of anomalies
presents multiple improvements in the characterization and assessment
of anomalies as it is shown in subsequent sections.

Considering all these previous works, the next section presents the
3

methodology proposed and its main elements.
3. Anomaly detection methodology based on collaborative net-
works of DTs

The present study proposes an anomaly detection methodology
compatible with a DT ecosystem. Two kinds of DT models are proposed
in the definition of the anomaly detection framework: standard DTs and
Snitch Digital Twins (SDTs).

3.1. Snitch Digital Twins concept

Standard DT behavior models focus on the virtualization of physical
entities’ behavior. An entity’s behavior is usually computed from inde-
pendent variables, e.g., temperature, pressure, speed, etc. The variables
and features that define a model are called attributes.

Entities that belong to the same system frequently present linked
behaviors. The study of variations between linked behaviors is a power-
ful source of knowledge, especially in anomaly detection. The standard
concept of DT does not include the virtualization of linked behaviors
as they (linked behaviors) do not represent a physical entity. Modeling
linked behaviors as synthetic physical entities define the concept of
Snitch Digital Twins.

The features of elementary DTs are based on sensor measurements,
physical equations, digital visualizations, or any other source of knowl-
edge used to create a virtual replica of a physical entity. The features
of SDTs are based on comparisons between sources of knowledge
from multiple DTs. This comparison aims to replicate, in this case,
not a physical agent but its interactions with other agents and their
operation context. The study of such interaction is the basis of con-
textual and collective behaviors which play a crucial role in anomaly
detection applications. Tripathi and Baruah (2020) asserts that the lack
of contextual information within the existing framework is one of the
major factors that result in a high false alarm rate when applied to
detect anomalies in the areas that involve contextual information while
making decisions.

Let us suppose a system (an engine) is made up of multiple entities
(cylinders), for the sake of simplicity, only two entities are considered.
The attributes of each entity are defined by three variables (v1, v2,
and v3). Each variable represents a relevant attribute to be considered
in the assessment of the entities’ behavior.

A basic DT ecosystem only comprises two DTs with three indepen-
dent attributes. The proposed ecosystem includes, in addition to the two
DT models for each physical entity (DT1 and DT2), two types of SDTs.
The first type of SDT comprises the variations between attributes of the
same physical entity, (SDT1 and SDT2). The second type comprises the
variations between the attributes of two physical entities (SDT1,2).

A comparison of a basic DT ecosystem and the proposed DT ecosys-
tem including SDTs is shown in Fig. 2.

The main difference between DT and STD is the nature of their
attributes. DT attributes are defined by individual variables obtained
from sensor measurements. SDT attributes are defined by variations
between variables within the same entity or between two different
entities. The purpose of DTs is the characterization of local behaviors,
whereas the main contribution of the SDTs is the characterization of
contextual and collective behaviors.

Variations between variables are studied taking into account their
nature. Two variables share the same nature when they describe similar
physical processes. For example, the exhaust gas temperatures from two
different cylinders of an engine share the same nature. The exhaust gas
temp. and in-take gas temp. do not share the same nature regardless
they belong to the same cylinder or not.

Variations between two variables are obtained as the absolute value
of their difference. For instance, the variation between variables 𝑋 and
𝑌 is obtained as stated in Eq. (1):
𝑉𝑋,𝑌 = 𝑉𝑌 ,𝑋 = |𝑋 − 𝑌 | (1)
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Fig. 2. Comparison of model attributes between a basic DT ecosystem and a DT ecosystem with SDTs.
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Comparing two variables of different nature requires a previous
caling of their values. Although the most frequent normalization is a
in–max scaling, this type of normalization presents some weaknesses
hen the min and max reference values change or outlier samples
re included as part of the reference data set. This study proposes a
ero mean and unit variance scaling (z-score or standard score). The
quation of the standard score of a sample 𝑥 is shown in Eq. (2):

𝑥′ =
𝑥 − 𝜇𝑋
𝜎𝑋

(2)

here 𝜇𝑋 and 𝜎𝑋 are the mean and the standard deviation, respec-
ively, of variable 𝑋. Even though the output of this type of scaling
s not limited between 0 and 1, the obtained values share the same
rder of magnitude based on the principle of the three Sigma Cri-
erion (Pukelsheim, 1994). The purpose of scaling is to transform
eterogeneous orders of magnitude into measurements of the same
rder of magnitude.

The equation of the variation between two variables of different
ature is (3):

𝑋,𝑌 = 𝑉𝑌 ,𝑋 =
|

|

|

|

𝑋 − 𝜇𝑋
𝜎𝑋

−
𝑌 − 𝜇𝑌
𝜎𝑌

|

|

|

|

(3)

where 𝜇𝑋 and 𝜇𝑌 are the mean values, and 𝜎𝑉𝑋 and 𝜎𝑉𝑌 are the
tandard deviations of variables 𝑋 and 𝑌 , respectively. Both, 𝜇 and 𝜎

are computed from the reference data set, assuming that both features
remain significant for the test data.

3.2. Characterization of behaviors

The variations between two variables have to be processed using
different types of features commonly applied to the characterization
of anomalies. This study proposes three behavioral features obtained
through sliding time windows:

• Density distribution based on quantiles: This feature allows for
identifying which values are more frequent, how they are dis-
tributed, and their dispersion level (spatial feature).

• Slope of best-fit line: This feature assesses the trend of the values
registered and how they evolve throughout the time window
(temporal feature).

• Intercept point of best-fit line: This feature determines the refer-
ence value of the best-fit line obtained for a specific time window
4

(spatial–temporal feature).
Distribution Functions (DF) are commonly used in the characteriza-
tion of behaviors for anomaly detection applications (Calvo-Bascones
et al., 2021; Gil et al., 2018). DFs are highly dependent on the band-
width values of their kernel functions (Calvo-Bascones et al., 2021)
and can be easily simplified into a one-dimensional non-parametric
estimation using quantiles as distribution and density features (Akbari
et al., 2019). Two distributions can be easily compared through their
quantile values, see Fig. 3. The first distribution is made up of three
normal distribution of 100 samples each, with mean (𝜇) and standard
deviation (𝜎), 𝑛(𝜇, 𝜎). The second distribution is made up of only two
different normal distributions with 150 samples each.

The use of quantiles in this study has a double aim: 1) Quantiles
used as density feature, 2) Quantiles used in the feature segmentation
process.

For each sliding window
{

𝜔1, 𝜔2,… , 𝜔𝑤,… , 𝜔𝑊
}

, a set of distribu-
tion quantiles 𝜇𝑞,𝑤, a 𝛼𝑤 slope value and a 𝜌𝑤 intercept point value are
btained. An example of these features is shown in Fig. 4, taking the
ive quartiles as distribution quantiles.

A Hierarchical Clustering can be obtained by splitting the feature
alues based on their density. Density values are defined through
uantiles tagged as 𝛩 for distribution quantiles (𝜇), A for slope values
𝛼), and 𝛶 for intercept points (𝜌). An example of the splitting process
s shown in Fig. 5.

Once reference density split quantiles are defined, input features can
e matched as shown in Fig. 6. The matching process is based on the
uclidean distance between the test feature value, and the reference
ensity split quantile value.

Studies like (Kerpicci et al., 2021) highlight the importance of the
ensity splitting process for anomaly detection applications. The opti-
al level of partitions might not be fixed but time-varying, especially

or systems with complex dynamics. Moreover, the same study defends
hat simpler partitions with a less number of regions are advantageous
or short time series, whereas deeper partitions are needed as more data
ecome available.

The present study proposes a method to determine the number of
ensity splits. This approach is based on the analysis of the standard
eviation of 𝐾 standard deviations (𝜎𝑘) computed for each of the

𝐾 regions defined by (𝐾 − 1) equally distanced quantiles. Equally
distanced quantiles mean that the number of samples (𝑛) between
two consecutive quantiles is the same for each pair of quantiles. The
standard deviation of each region 𝑘 is determined by:

=
∑𝑛

𝑖=1
(

𝑥𝑖 − 𝜇𝑘
)2

(4)
𝑘 𝑛
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Fig. 3. Two distributions can be easily compared through their quantile values.
Fig. 4. Example of feature extraction through sliding windows.
where 𝑛 is the number of samples within the region 𝑘 and 𝜇𝑘 is the mean
value of such samples. The standard deviation of the local standard
deviations (𝜎𝜎) if obtained for each region as:

𝜎𝜎 =
∑𝐾

𝑘=1
(

𝜎𝑘 − 𝜇𝜎
)2

𝐾
(5)

where 𝜇𝜎 is the mean value of all the standard deviations corresponding
to each region.

The first difference of 𝜎𝜎 is computed by:

𝛥𝜎𝜎 ,𝑖 = 𝜎𝜎 ,𝑖 − 𝜎𝜎,𝑖−1 (6)

Where 𝑖 is the index of number of regions.
Four different scenarios were identified and presented in Fig. 7. The

basic case a) shows 7 regions clearly identified. The value of 𝜎𝜎 shows a
local minimum that coincides with the number of regions. A new local
minimum appears periodically. Case b) shows how local minimums
soften as distributions start overlapping themselves. Case c) shows a 𝜎𝜎
graph without a local minimum. For this case, the first difference of 𝜎
5

𝜎

is computed, taking as the best solution the global minimum of the first
derivative. In case the first derivative does not show a global minimum,
the optimal solution would be its first local minimum. Case d) shows
the most common shape with a strong overlap between distributions.
For this case, a peak (5 regions) appears in the 𝜎𝜎 graph. The optimal
solution would be the closest previous point to the peak, whose first
couple (x2 its value) shows a higher 𝜎𝜎 value. In this case, point B is
the closest point to the peak, but Bx2 has a lower 𝜎𝜎 value; A, on the
contrary, has a couple with a higher value; therefore, A is a locally
optimal solution. If none of the lower-than-the-peak values fulfill the
previous condition or the number of regions must be greater than two,
the optimal number of regions is calculated similarly to case c) for
regions larger than the peak value (5 regions).

Each density split quantile has an index linked to its value. The
lowest index corresponds to the lowest density split quantile value, and
the highest index corresponds to the highest split quantile value. In the
case of the distribution feature, indexes are sorted based on the mean
value of the sequence of density split quantiles. The conversion from
split quantile values to indexes is carried out through an encoder.



Computers in Industry 144 (2023) 103767P. Calvo-Bascones et al.

s
d
[

Fig. 5. Example of feature clustering after being extracted through sliding windows.
Fig. 6. Example of computation of cluster indexes from the feature values of a window.
In order to illustrate how indexes are computed and sorted, a
implified example is shown in Fig. 8. This examples is made up of:
ensity split quantiles [𝛩0.25, 𝛩0.5 and 𝛩0.75] for distribution quantiles
𝜇0.25 and 𝜇0.5], density split quantiles [A0.25, A0.5 and A0.75] for slope

values (𝛼) and density split quantiles [𝛶0, 𝛶0.25, 𝛶0.5 and 𝛶0.75] for
intercept points (𝜌).

The task of the encoder is the conversion from a density split
quantiles value to their corresponding index. An example based on the
6

previous scenario is shown in Fig. 9.
All the indexes obtained from DT and SDT at the same sample time,
make up an index pattern. The stack of indexes defines the DT network.

An example of a DT network made up of index patterns is shown in
Fig. 10:

The architecture of the index patterns allows for adding new DTs
and SDTs without needing to update the rest of the network. This
feature makes this methodology scalable when it comes to adding new
agents to the network of DTs, and flexible when it comes to updating

the indexes of a particular entity.
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Fig. 7. Optimal partition depth based on the topology of the time series.
Fig. 8. Example of how a map of indexes is obtained from density split quantiles.

Fig. 9. An encoder converts density split quantile values into indexes.
7

Fig. 10. Example of a DT network.

In case an entity is disconnected or removed from the DT network,
all DTs and SDTs related to this entity can be easily removed from the
network.
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Fig. 11. Example of a matching process with singularities.

.3. Detection of anomalies

After computing a reference DT network, it is possible to diagnose
ehavioral anomalies by comparing index patterns. The assessment
rocess between indexes is carried out through an integer matching
rocess. The first condition to detect an anomaly is that the number
f equal indexes between test and reference patterns has to be higher
han the number of different indexes. Otherwise, a new index pattern
s detected. If the test pattern presents the same number of equal
ntegers to two or more reference patterns, the closest pattern is chosen
ased on the city block distances (L1 norm) between indexes with
ifferent values. L1 norm presents a balanced weighting of variations,
n comparison to other distances, such as L2 norm (Euclidean), in
hich large variations between indexes have a greater weight than the

mall ones. In case two reference patterns present the same minimum
istance to the test pattern, such a test pattern can be considered as a
ew reference pattern. One example is shown in Fig. 11.

Variations are computed as shown in Eq. (7):

𝑖 = 𝑇𝑖 − 𝐵𝑖 (7)

here 𝑖 is the index of the feature to be compared, 𝑇 is the index under
ssessment, and 𝐵 is the reference index.

This methodology allows for identifying the location of the anomaly
ased on the location of variations and quantifying their magnitude
ased on the size of the variations detected in SDTs. The sign of
ariation indicates whether the value registered is below or above its
eference.

The detection of anomalies is based on the ‘‘collaboration’’ between
Ts. Anomaly detection is supported by a network of behaviors linked
etween them. These links are modeled as part of the variables of
DTs. Variations in the indexes of SDTs are only considered when the
orresponding DT has previously detected a variation in their indexes.

The steps to detect anomalies are the following:

• Identify which DTs present variations.
• Identify which SDTs present variations.
• The more linked anomalous SDTs a DT has, the higher the likeli-

hood of such an anomaly is.

Anomalies are detected individually for each of the three features
o achieve a more accurate anomaly characterization.

. Application to the cooling system of a diesel engine

The proposed methodology is applied to a real system in order to
nvestigate and validate its capabilities for the detection of anomalies.
8

he system under assessment corresponds to the cooling system of o
diesel engine generator. Older studies like (Manders et al., 2000),
roposed an anomaly detection methodology for an engine cooling
ystem based on traditional statistical indicators. Other studies (Twid-
le and Jones, 2002) proposed an anomaly detection method based
n fuzzy models of an engine cooling system. More recent studies
ike (Huang et al., 2021b), implemented an online DT-driven anomaly
etection framework based on Gradient Boosting Decision Trees for
ooling systems.

.1. System description

The system under assessment corresponds to the diesel engine gen-
rator of a power plant made up of nine cylinders. This diesel generator
as a two-stroke combustion cycle with a power generation of around
200 kW.

Each one of the nine cylinders is endowed with a set of temperature
ensors that provide a detailed view of the state of each cylinder. A
implified scheme of the gas–water recirculation system is presented in
ig. 12.

The scope of this study is the analysis of the state of the nine
ylinders through the temperature measurements obtained from its
ooling system. The cooling system of the diesel engine presents a gas
ircuit, shown in gray, and a water circuit, shown in blue. The critical
art of the cooling system is located in the cylinders of the engine,
here the greatest amount of thermal energy has to be evacuated. The
ther three main heat exchanger systems are located at the beginning
f the water circuit (heat exchanger) and between the gas and water
ircuits, such as the inter-cooler and the Exhaust Gas Recirculation
EGR) system. These components are crucial in the cooling process of
ny engine.

An exceeding temperature operating condition extended over a long
eriod might cause severe damage to cylinders and liners. Cooling
ystem failures might be produced by:

• Cooling system is not completely filled with coolant.
• Air pockets within the cooling system.
• Thermostat malfunction.
• Faulty coolant pump.
• Broken cooling fins.
• Cooling fan malfunction.
• Sleepy or broken belt.

The behavior of the cylinders is defined by their (1) sweeping
ir temperature, (2) exhaust gas temperature, and (3) exhaust water
emperature, including the gross power generated by the engine. (1,2,3)
orrespond to the tags of Fig. 12. The available variables are:

• Gross power demanded and generated: Power demanded and gen-
erated by the engine (MW). This variable allows for determining
the operation state of the engine.

• Sweeping air temperature: temperature of the air before entering
the combustion chamber of each cylinder. (◦C).

• Exhaust gas temperature: temperature of the gas leaving the
combustion chamber (◦C) after the diesel pressure ignition.

Sweeping air and exhaust gas temperatures are crucial to character-
ze the behavior of each cylinder as they provide relevant information
bout the inner conditions of each cylinder.

• Exhaust water temperature: temperature of the cooling water (◦C)
after surrounding the cylinder liners.

The temperature of the exhaust water provides an overview of the
eneral state of the cooling system. Water temperatures show higher
nertia against abrupt changes compared to other gas temperature
easurements. Therefore, it is a meaningful indicator to know the state
f the cylinder based on its cooling system.
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Fig. 12. Simplified scheme of the cooling system of a diesel engine.
Fig. 13. Concise root cause analysis based on the three temperatures considered.

Table 1
Applied filter values to the input data.

A concise root cause analysis based on the previous measurements
is shown in Fig. 13.

Based on the anomalies detected, the root cause analysis allows
for identifying which problems are more likely to be present in the
operating conditions of the system.

4.2. Sensor measurements preprocessing

Different filters were applied to the input dataset to filter out those
samples that are considered irrelevant or outliers for this study. The
filters applied are shown in Table 1.

Samples outside of these filters were considered outliers or transient
states that correspond to the start or stop of the engine.
9

4.3. Real case application

A real case is proposed to assess the effectiveness of the method-
ology proposed in comparison to the other two traditional algorithms.
The purpose is to perform an effective anomaly detection from a small
training set. This case comprises 2639 samples, where 1173 are used for
the training set. The sampling rate is 1 sample per hour grouped into
sliding windows of 168 samples (one week of measurements) to reduce
variations derived from different days of the week. Maintenance tasks
are carried out every 2500 h.

The main events of this dataset are the following:

• A maintenance inspection task is registered between samples
1500 and 2000. There is no information about which components
were repaired, cleaned, or replaced.

• A short stop is registered around 2200.
• From sample 2300 on, no more events are registered; the system

runs under normal operating conditions.

4.3.1. Anomaly detection setting for SDTs
To determine when a feature (Density, Slope, or Intercept) of a

temperature variable (EW, EA, SA) in a cylinder (C1, C2, . . . , C9)
presents a deviation, the following two conditions must be fulfilled:

1. The feature of a temperature variable of a cylinder DT presents
a deviation regarding its expected behavioral index.

2. More than 50% of the SDTs, which include the same cylinder
temperature feature, present deviations.

This study is carried out for each feature type separately. This
means that density feature indexes are only considered for density
assessments, slope feature indexes for slope assessments, etc.

Once all the deviations have been identified, anomalous behaviors
are determined by combining three feature deviation conditions.

• The Density index deviation has to be greater or equal to one.
• The slope index deviation has to be greater or equal to one or its

index has to be equal to its highest index.
• The intercept value index deviation has to be greater than one or

its index has to be equal to its highest index.

These conditions assure:

• The correlation between temperatures from different cylinders
is broken due to the fact that the corresponding DT presents a
deviation and more than 50% of the SDTs related to that DT also
present deviations.

• The trend of the temperature is higher than expected or maxi-
mum.
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Fig. 15. Five regions are determined by the five quartiles.

• The temperature is above its expected value or belongs to the
region of maximum temperatures.

The number of optimal density split quantiles are obtained ac-
ording to the method explained and scenarios presented in Fig. 7.
he results obtained for the features computed for the Exhaust Water
emperature are shown in Fig. 14.

Exhaust Water temperature Distribution Quantiles show a topology
ype (d), Slope values show a topology type (c) and Intercept values
resent a topology type (b). The number of optimal regions determined
or the three features of the Exhaust Water temperature is between 6
nd 4. Similar results were obtained for Exhaust gas and Sweeping air
emperatures. The final number of equally-sized regions was averaged
o 5. This means that the features are split into five regions based on
he euclidean distances to the five quartiles, as shown in Fig. 15, where
0 and 𝑄4 are minimum and maximum values, respectively.

Anomalous temperatures are potentially harmful when they are
bove their reference or expected values. The discrimination of higher-
han-expected and lower-than-expected values is critical in the de-
ection of anomalous temperatures. To reduce the influence of low
emperatures in the detection of anomalies, R1, R2, and R3 are merged
nto a single region. This is, 𝑄0 and 𝑄1 are discarded.

The results obtained for five quantile splits are shown in Fig. 16.
ncreasing the number of split quantiles to seven, the number of anoma-
ies detected rises, as shown in Fig. 17. With seven split quantiles,
eviations start appearing in Sweeping Air temperatures. According
o the expert’s assessment, no anomalous behaviors were identified in
hese temperatures; therefore, they can be considered as false positives.
educing the number of split quantiles to three, no anomalous behav-

ors are identified in all the temperatures. Based on the results obtained,
he optimum configuration chosen is five split quantiles based on the
xpert’s assessment and events registered.
10
The results obtained through the SDTs can be summarized as:

• The maintenance task produced variations in water and air ex-
haust temperatures. An increment in C1 and a decrement in
C6 temperatures were detected. It is possible that during the
cleaning process of C6, the increment of temperature in C1 can
be produced by a fix of its fuel injectors.

• A stop in the system produced a cooling down in the Exhaust
Water Temperatures, reducing the anomalies detected in this
variable.

• In the last period C6, C7, C8, and C9 show a fast temperature
increment, but only C7, C8, and C9 showed an anomalous incre-
ment in their temperatures. C6 remains without presenting any
anomaly as its temperatures remain below its training set refer-
ence values due to the effects of the previous maintenance task.
This gradual increment is frequently produced by dirt particles
derived from the piston skirt scuffing.

4.3.2. Anomaly detection setting for KPCA
An anomaly is detected when 𝑇 2 and 𝑆𝑃𝐸 (see Appendix) val-

es exceed the maximum value obtained from the preprocessed raw
ariables of the training set. The number of principal components used
an be chosen, defining a threshold of the Cumulative Percent Variance
CPV) determined by:
∑𝑝

𝑗=1 𝜆𝑗
∑𝑚

𝑗=1 𝜆𝑗
> 𝑡ℎ𝐶𝑃𝑉 (8)

where 𝑝 is the number of components selected from a maximum num-
ber of 𝑚, which coincides with the size of the sliding window. 𝜆 is the
corresponding eigenvalue of each principal component.

The threshold value chosen is 0.999 due to the fact that for lower
threshold values, most of the variables were decomposed into a single
principal component reducing its detection capabilities.

4.3.3. Anomaly detection setting for OCSVM
The implementation of the OCSVM is based on Libsvm (Chang and

Lin, 2011), the authors of which recommend using polynomial kernels
of a small dimension, stating: ‘‘if the number of features is large, one
may not need to map data to a higher-dimensional space. That is,
the nonlinear mapping does not improve the performance". The results
obtained using non-linear kernels such as Sigmoid functions or Radial
Basis Functions (RBFs) were contrasted with the events registered
(maintenance tasks, stop times, and sharp temperature increments),
showing no correlation between them.

The parameters required for a polynomial OCSVM setting are the
degree of the polynomial and 𝜈, which is an upper bound on the fraction
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Fig. 16. Results obtained through SDTs. The anomaly score (0,1,2) corresponds to the variation registered in the feature-slope within anomalous behavior conditions.
of training errors and a lower bound on the fraction of support vectors.
Finally, the configuration applied to the OCSVM is a polynomial kernel
of 2nd degree. In this case, as the training set is considered free of
anomalies, the value of 𝜈 was set to 0.999. Increasing the degree of
the polynomial to higher degrees produced the same results obtained
with a 2nd-degree polynomial kernel.

Due to the fact that there is not an overall ‘‘ground truth" in
the characterization of the behaviors registered. The selection of the
11
optimum parameters of the OCSVM was carried out taking into account
the temperature logs, the assessment of the expert technicians, and the
main events registered throughout the assessment period.

4.4. Results and discussion

The results obtained for each algorithm are presented in Fig. 18.
Such results show how the proposed method (Snitch Twins) and the two
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Fig. 17. Results obtained through SDTs increasing the number of equally spaced split quantiles to seven. 𝑄0, 𝑄1, and 𝑄2 which correspond to 𝑄0, 𝑄0.17, and 𝑄0.33 were discarded
to improve the detection of higher-than-expected temperatures.
Table 2
Comparison of algorithms.

existing algorithms aim to identify anomalous behaviors. The results
obtained present a higher similarity between SDTs and OCSVMs than
KPCA.

Taking into account the events registered throughout the assessment
period (presented at the beginning of Section 4.3), the results obtained
through the Snitch Twins are more representative than the ones ob-
tained through KPCA and OCSVM, confront with Fig. 16. This means
that the results obtained explain more clearly and understandably the
effects that the events registered had over the behavior of the nine
cylinders, identifying which cylinders are in a more critical state from
a short-term point of view.

A comparison of the algorithms presented in this study is shown in
Table 2:

The main differences between these three algorithms are:

• Compatibility with one-sample features. OCSVM and SDT are
compatible with learning and processing features of one dimen-
sion, e.g. slope or intercept values.

• Physical interpretation of the anomaly detection conditions. In an
SDT model, the rules and parameters that determine whether a
sample is anomalous or not can be easily tuned and understood
12

from a physical point of view.
• Non-binary anomaly characterization. Only SDT allows for iden-
tifying (through binary indicators) and quantifying (through non-
binary indicators) anomalies. OCSVM identifies as anomalous any
sample outside of the reference hyperplane, and KPCA identifies
as anomalous any sample with a 𝑇 2 or 𝑆𝑃𝐸 above the acceptance
threshold value.

• Relative value analysis. Only SDT allows for determining whether
a sample is below, equal, or above its expected value.

• Contextual behavioral analysis. Only SDT allows for including
contextual information obtained from collective behaviors reduc-
ing the number of false positives detected.

• Detailed shape analysis. For those applications in which the shape
of the time series is critical in the detection of anomalies, KPCA
is the most suitable approach. Although this type of assessment
produces a higher ratio of false positives in systems with complex
behavioral dynamics.

4.5. Improvements achieved in the detection of anomalous behaviors

The proposed SDT method presents multiple improvements in com-
parison to the two alternative methods proposed in the literature. Three
different scenarios were identified in which the proposed algorithm
presented a better performance in the characterization of anomalous
and normal behaviors. The anomalous behaviors are marked with a red
bar. The evaluation of anomalies is carried out based on the assessments
of an expert. The scenarios and results presented can be confronted with
the results shown in previous Figs. 16 and 18.

The first scenario shown in Fig. 19 presents two cases in the exhaust
air temperature of Cylinder 1 (C1_EA).

(a) Shows an abrupt increment in C1_EA. Temperature values are
within normal operating ranges but the rest of the cylinders
do not show any increment or abrupt change related to the
one registered in C1_EA; therefore, it is considered an incipient
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Fig. 18. Comparison of the results obtained with KPCA, OCSVM, and SDTs.
anomalous behavior. This anomalous behavior was detected by
SDTs and categorized as a warning condition.

(b) C1_EA presents an unusual temperature profile, but its negative
trend corresponds to a cooling behavior after an abrupt incre-
ment of the temperature. This second scenario can be considered
13
as a false positive raised by KPCA as cooling temperatures are
part of normal behaviors.

The second scenario shown in Fig. 20 presents one case in the
exhaust air temperature of Cylinder 6 (C6_EA).
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(a) KPCA, and OCSVM present limitations in classifying sharp tran-
sition related to cooling temperatures. This case corresponds to
cooling behaviors in the exhaust air temperature of cylinder
C6. SDT is capable of identifying faster this type of transition,
whereas OCSVM requires a longer period to recognize a normal
behavior after the sharp transition took place.

The third scenario shown in Fig. 21 presents how contextual and
collective anomalies can influence the assessment of behaviors. In
this third scenario KPCA, OCSVM and SDT obtained similar results
assessing the Exhaust Water Temperature of Cylinders 7, 8, and 9
(C7_EW, C8_EW, and C9_EW, respectively), except two particular cases
in which SDT presents slight variations taking into account collective
and contextual behaviors:

(a) SDT is capable of considering collective deviations in several
cylinders produced by high-stress conditions. This case of col-
lective deviations is part of a contextual working condition and
is not considered an anomalous behavior by the SDT, which is
able to identify that the change in the temperature trends is
produced by contextual working conditions instead of multiple
local deviations.

(b) SDT is also capable of recognizing other contextual conditions.
In this case, although temperatures are slightly higher than
the ones observed in the training set, the trends registered
belong to stable (low stress) conditions. Later, steeper trends
start appearing raising again the anomalous behavior signals.

According to the results obtained, KPCA shows a higher ratio of
false-positive anomalies than OCSVM and SDTs. Only SDT was able to
efficiently manage contextual and collective behaviors, improving the
characterization of behaviors tagged as anomalous by the other two
14
algorithms. The results obtained were contrasted with the assessment of
an expert shown in Fig. 22 in order to evaluate the effectiveness of the
algorithms presented corresponding to the variables C7_EW, C8_EW,
C9_EW, C6_E in which several anomalous behaviors were identified.

The numerical assessment of each approach is based on the amount
of True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) samples. Each approach is assessed through its
True Positive Ratio (TPR), True Negative Ratio (TNR), False Positive
Ratio (FPR), False Negative Ratio (FNR), and Accuracy (ACC). The
formulation and the results obtained for each metric, temperature
variable, and method are shown in Table 3.

The results obtained show an outstanding improvement in the accu-
racy achieved through SDT, around 14% in comparison to the second
best method based on OCSVM. These results prove the soundness of the
methodology proposed and its benefits in comparison to other common
approaches.

5. Future contributions

SDT is an open methodology in which future contributions can
be considered to improve the characterization of behaviors. The first
aspect to be considered in future works is the integration of addi-
tional features. A good starting point would be considering some of
the features presented in Barandas et al. (2020) grouped into Tem-
poral domain, Statistical domain, and Spectral-domain features. This
contribution might be complemented with dimensionality reduction
techniques applied to the reference index patterns used to define the
behaviors within the DT ecosystem. A second contribution might be
the study of behavior-data augmentation applied to the field of missing
behaviors reconstruction based on the information provided by linked
SDTs.
Fig. 19. Improvements in the detection of sharp transitions.
Fig. 20. Improvements in anomaly detection based on relative values.
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Fig. 21. Improvements in the detection of anomalous behaviors based on collective and contextual knowledge.
Fig. 22. Identification of anomalous behaviors determined by an expert technician.
Table 3
Comparison of accuracies of the three different methods proposed.
15
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6. Conclusions

This paper proposes a novel methodology of anomaly detection
compatible with Digital Twin applications. This methodology is based
on the characterization of behaviors based on DT networks. The con-
cept of Snitch Digital Twins, which are behavior models used to identify
variations between other DT’s behaviors, is proposed for the identi-
fication of contextual behaviors which are especially relevant for the
detection of anomalies in multi-agent systems. The features proposed to
characterize a behavior are its density distribution based on quantiles,
slope, and intercept values. This study presents a comparison of the
goodness of this methodology regarding other traditional algorithms
based on Kernel Principal Component Analysis and One-Class Support
Vector Machines. This comparison is presented through a real case
focused on the thermal diagnosis of a diesel engine. The results ob-
tained show the goodness and advantages of the proposed methodology
compared to other traditional approaches.
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Appendix

Two existing anomaly detection algorithms are Kernel Principal
Component Analysis (KPCA) and Once Class Support Vector Machines
(OCSVM).

A.1. KPCA

PCs are defined as orthogonal linear transformations of the data into
a new coordinate system. Each axis of the new coordinate system is
perpendicular to the rest of the axis, maximizing the variance of the
data projected on each of the new axes. The directions of the axes
are determined by the eigenvectors obtained from the original space,
and the variance of each axis is proportional to the eigenvalue of each
eigenvector.

Studies like (Sun et al., 2020), propose an anomaly detection
method based on a KPCA approach. The commonly used fault detection
indexes in PCA are the Hotelling 𝑇 2 and the Squared Prediction Error
(SPE) indicators:

⎧

⎪

⎨

⎪

⎩

𝑇 2 = [𝑡1, 𝑡2,… , 𝑡𝑑 ]𝛬−1[𝑡1, 𝑡2,… , 𝑡𝑑 ]𝑇

𝑆𝑃𝐸 =
𝑚
∑

𝑖=1
𝑡𝑖
2 −

𝑑
∑

𝑖=1
𝑡𝑖
2

(9)

where 𝛬 = diag(𝜆1,… , 𝜆𝑑 ) are the eigenvalues obtained for a set of
eigenvectors [𝛼1, 𝛼2,… , 𝛼𝑑 ]. [𝑡1, 𝑡2,… , 𝑡𝑑 ] which are the projection of the
original samples [𝑡1, 𝑡2,… , 𝑡𝑚] into the space defined by the eigenvectors
obtained. The maximum values obtained throughout the training set
determine reference threshold values for 𝑇 2 and 𝑆𝑃𝐸.

A.2. OCSVM

OCSVM is an unsupervised learning method based on SVMs. The
task of an OCSVM is the projection of a set of samples into a higher
dimensional space. A hyperplane or hypersphere is used to determine
the limits of the projected samples minimizing the volume of the hyper-
sphere or the distance of the hyperplane to the reference points. Those
points at the other side of the hyperplane or outside the hypersphere
are considered anomalous. In Schölkopf et al. (2001) can be found a
detailed description of the algorithm and in Ghafoori et al. (2018) an
effective tuning process of the parameters of the hyperplane.

OCSVMs implementations based on Libsvm (Chang and Lin, 2011)
16

can be found in previous studies such as Tian et al. (2011).
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