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a  b  s  t  r  a  c  t

This  paper  describes  a new  methodology  that  aims  to  cover  a  gap  detected  in  the area  of  detection
of anomalies  and  diagnosis  of  industrial  component  behaviors:  there  is  a need  of robust  procedures
compatible  with  dynamic  behaviors  and  degradations  that  evolve  over  time.  The  method  proposed  is
based  on  the  creation  of  behavior  patterns  of  industrial  components  using  well-known  unsupervised
machine  learning  algorithms  such  as K-means  and  Self-Organizing  maps  (SOMs)  as  a  starting  point.
An  algorithm  based  on  local  Probability  Density  Distributions  (PDD)  of  the clusters  obtained  is used
to  enhance  the characterization  of patterns.  The  joint  use  of  these  algorithms  facilitates  a  new  way  to
Anomaly detection
pattern discovery
normal behavior characterization
maintenance assessment
self-organizing maps
k-means

detect  anomalies  and the  surveillance  of  their  progress.  The  paper  includes  an  example  of  an  application
of  the method  proposed  for monitoring  the  bearing  temperature  of  a turbine  in a hydropower  plant
showing  how  this  method  can be applied  in  behavior  and  maintenance  assessment  applications.  The
results  obtained  prove  the  advantages  and  possibilities  that  the  proposed  methodology  has  on  real  world
applications.
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1. Introduction

Prognostics and health management (PHM) of industrial sys-
tems has been one of the leading research areas over the last
decades due to the remarkable advances in the field of the Internet
of Things (IoT) (Sisinni et al., 2018). The aim of health manage-
ment is to collect (relevant) data from various sensor sources
and carry out the necessary processing including the extraction of
key features, fault diagnosis and prognosis, etc. in which a wide
range of Artificial Intelligence (AI) algorithms can be applied (Khan
and Yairi, 2018). Different approaches are proposed in the liter-
ature about PHM carried out through behavior/failure patterns
based on mathematical models and AI techniques (Diez-Olivan

et al., 2019). Health management can be addressed from multiple
points of view depending on its application: prediction/prognosis
of the remaining useful life (Stetter, 2020); reliability and failure
detection (Vieira and Sanz-Bobi, 2013), component degradation
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ssessment (Alaswad and Xiang, 2017), normal behavior assess-
ent (Gil et al., 2018), etc.
This paper proposes a new approach in the field of health

anagement based on behavior patterns. A behavior pattern is a
haracterization of the response of the system under specific work-
ng conditions (Zhao et al., 2020). Detecting deviations between the
xpected and the real behavior is the initial step in the detection
f failures, anomalies, etc. Among the multiple AI algorithms that
an be found in the literature (Khan and Yairi, 2018; Diez-Olivan
t al., 2019; Ahmed et al., 2019), this study proposes the use of a
pecific type of unsupervised learning algorithms, in particular two
lustering algorithms: K-means, for their short training times; and
elf Organizing Maps (SOMs) characterized for their capability of
rganizing vast and complex data sets without loosing visibility of
he data mapping process (Khan and Yairi, 2018), this means that
he mapping process is not a black box method, allowing the user
nderstanding and visualizing the multiple steps taken along the
lustering process. Another advantage of using unsupervised clus-

ering algorithms is their capability of clustering features without

 previous knowledge about the dataset to be clustered. These two
roperties are essential in behavior patterns.

In comparison to other studies in the literature, behavior
nomalies and failures are frequently detected through statisti-
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cal indicators (Vieira and Sanz-Bobi, 2013; Gil et al., 2018; Rauber
et al., 2015; Gonzalez et al., 2015; Liang et al., 2019); this paper
proposes an additional indicator based on Probability Density Func-
tions (PDFs), also Probability Density Distributions (PDDs), as part
of the reference behavior pattern. This contribution improves sig-
nificantly the characterization of the component behavior and the
detection of failures and anomalies.

Literature in PHM and Condition Based Maintenance (CBM), typ-
ically focuses on providing an overview of multiple approaches in
behavior assessment (Tautz-Weinert and Watson, 2017; Gil et al.,
2018); health monitoring (Zhao et al., 2019; Kang et al., 2019);
strategies in CBM (Olde Keizer et al., 2017); degradation assessment
(Alaswad and Xiang, 2017), etc. but they do not make any allusion
about possible strategies in maintenance quality assessment. This
paper aims to assess system behaviors, but also quantify the effec-
tiveness and quality of the maintenance tasks carried out in the
system. The proposed strategy in maintenance quality assessment
focuses on evaluating the behavior of a component before and after
it goes through a maintenance task allowing for an assessment of
the efficacy of such maintenance task regarding a previous normal
reference behavior.

In order to illustrate the efficacy and usefulness of this novel
methodology for anomaly detection in industrial components, this
paper sets forth a case study of the Bergenshalvøens Kommunale
Kraftselskap’s (BKK) Nygard plant located north-east of the city
of Bergen. This hydropower plant is in the Modalen river system,
located together with several dams and three other hydropower
plants (BKK, 2019). Nygard is a pumped storage power plant with
two different operating modes:

• Pumping mode: Nygard is pumping from the reservoir
Stølsvatnet up to the reservoir Skjerjevatnet.

• Power generation mode: Water is taken from the reservoir Skjer-
jevatnet through Nygard power plant and Steinsland power plant.
This means that the water is not discharged back to Stølsvatnet,
but directly after going to the Nygard power plant it passes to the
Steinsland power plant and discharges into the (not regulated)
lake Steinslandsvatnet and further downstream to the connected
rivers and lakes in the Modalen valley.

The example used to illustrate the methodology proposed is
oriented to the anomaly detection in the bearings (Liang et al.,
2019) of the hydropower plant from the information provided by its
Supervisory Control And Data Acquisition (SCADA) system. SCADA
systems are still widely used in industry (Boyes et al., 2018), (Kwon
et al., 2016) although the transition towards modern IoT systems
combined with analytics is more and more consolidated in appli-
cations in industry (Sisinni et al., 2018; Lee et al., 2018) and society
(Andreev et al., 2019).

This paper is organized as follows. Section 3 describes the
methodology proposed to compose a behavior pattern and the
information self-contained in each of these patterns. This section
also includes two different strategies to compare behavior patterns
and a description of two indicators used in the assessment of pat-
terns. At the end of this section some strategies used to detect
deviations from the reference pattern are also briefly indicated.
Section 4 presents a real case-study in which the methodology
proposed is applied to a hydropower plant behavior. This section

states the type of assessment carried out for this case study. Sec-
tion 5 presents the results obtained in the behavior assessment, and
finally, Section 6 states the conclusions reached from the method-
ology proposed and its results in the case study of the hydropower
plant.
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. Motivation and statement of the problem

After a deep review of the state-of-the-art, this paper describes a
ew method that attempts to cover an important gap discovered in
he field of automatic anomaly detection in industrial components.
he implementation of different types of methods and algorithms
or anomaly detection in industry is not new, several approaches
ave been implemented and successfully reported. However there

s a lack of guidance to update or adapt an implemented method
f anomaly detection once it is running for a long time. It seems
hat once the method is in operation, it is valid forever. However,

ost part of industrial components have degradations over time
hat can be detected as anomalies. This is correct, but once the
omponent is not as good as new, over the pass of time its behav-
or can be lightly deviated with respect to this expected behavior
ue to common age degradation, but it is still in good condition to
evelop its mission. This means that a model for anomaly detection

mplemented some time ago can successfully alert, for example, to
ertain degradation observed due to ageing, but once this degra-
ation is reported and the most convenient actions are taken, is
he model used for anomaly detection still useful? This is a ques-
ion that few studies in scientific literature have explored and our
roposed method seeks to contribute to. Another advantage pro-
osed is the immediate identification of the variable or variables
hat could explain the origin of the anomaly detected enhancing the
apability to become alert earlier. The next sections will describe
he details of the method proposed.

. Methodology

This section describes the methodology proposed in this paper
or anomaly detection. This methodology is divided into two main
tages, the preparatory stage and the behavior assessment stage.
he preparatory stage starts with the composition of a reference
attern based on a SOM algorithm, an unsupervised algorithm that
llows the reduction of data to a set of clusters obtaining groups
f similar observations without previous knowledge required. The
umber of clusters is decided by the application of the Elbow cri-
erion (Ketchen and Shook, 1996; Kodinariya and Makwana, 2013)
ased on another unsupervised algorithm such as K-means. The
ooperation of both algorithms is widely known (Mulliez et al.,
018; Van Laerhoven, 2001). This step will be described in Section
.3 as part of the application of the methodology in a real case study.
ach cluster obtained in the SOM represents an Operation Mode.
peration Modes are behavior patterns defined by variables shar-

ng similar feature values. This and other concepts, will be described
n this section. In addition, for each Operation Mode several features
re measured, in particular, the methodology includes a special
eature based on the computation of local probability density dis-
ributions for each one of the Operation Modes. All these features
ontribute strongly to the novelty of the application and will be
escribed in Section 3.1. This methodology focuses on the study of
omponent behaviors comparing a reference pattern with another
attern or using test observations. The strategy applied is chosen
t the end of this first stage.

After the Operation Modes and their characteristics have been
efined in the reference pattern, the procedure for anomaly detec-
ion starts at stage two. The detection of anomalies can be carried
ut comparing two behavior patterns as explained in Section 3.2.1;

r comparing a reference pattern with discrete observations as
escribed in Section 3.2.2. After the matching process carried out at
tage two, discrepancies are quantified numerically at stage three
sing indicators. The two indicators proposed in this methodology
re described in Sections 3.3.1 and 3.3.2. Both indicators can be
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Fig. 1. Stages of the methodology proposed for ano
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within the map.
Fig. 2. Scheme of the procedure proposed for the generation of patterns from the
measured variables of a component.

used jointly to enhance the detection of anomalies as described in
Section 3.3.3.

The stage four of the methodology is the analysis of the results
obtained. Two analysis are proposed. The first, based on the assess-
ment of transitions between patterns of behavior, described in
Section 3.4. The second, based on the assessment of deviations
quantified numerically through the indicators previously proposed,
described in Section 3.5.

The stages of the methodology proposed are represented in
Fig. 1.

Section 4 describes how this methodology has been imple-
mented in the assessment of certain components in a turbine of
a hydropower plant and Section 5 describes the results obtained
and how they can be interpreted showing the true potential of this
novel methodology.

The behavior of an industrial component is defined by the
Observations (Os) collected during the operation of the component.
Similar Os lead to the definition of Operation Modes (OM) under-
stood as the most predominant Os within a particular component
behavior.

In the context of this paper each Os and OM are defined by the
group of features used to characterize the behavior of the com-
ponent. Once the OMs  of a component are identified, they make
up the component behavior pattern. Detecting changes in the OMs
(changes in the behavior) gives rise to multiple applications such
as failure identification, component degradation quantification or
the detection of changes in OCs.

In order to explain the methodology proposed, it is necessary to
state the elements involved in this approach. The component C is
the element under assessment. Components are defined by Ci or C

depending on the number of components under assessment.

A scheme of the procedure proposed is shown in Fig. 2. The
variables shown in this figure are:

i
f

3

maly detection based on behavior patterns.

Ci: Component to be studied. E.g. Bearing cooling unit, particle
filter, transformer, etc.
OCi,t: Observations of the component behavior collected at time
t by sensors or SCADA systems.
F{1. . .y}: Features chosen to define the behavior of the component.
The values of the features are obtained from the observations
registered. E.g. relative temperature, pressure, voltage, etc.
OMn,Ci

: Operation Modes that define the behavior pattern of com-
ponent Ci, being n the total number of OMs

The first step is the extraction of features from the observa-
ions through an unsupervised clustering algorithm followed by the
omposition of the behavior pattern P of n Operation Modes OMn,Ci.
ach pattern is made up of the set of clusters obtained determined
y the feature values observed over a period of time t.

A behavior pattern can be obtained through different unsu-
ervised learning algorithms such as Self-Organizing Maps (SOM),
-means or any other clustering technique. The following sub-
ections explain the information contained in a pattern and how
his information can be extracted and used in the assessment of a
omponent behavior.

.1. Initial reference behavior pattern

A deviation can only be quantified with regard to a reference
alue. To detect deviations in patterns, it is necessary to define a ref-
rence obtained from normal behavior observations. As said before,
ne of the strategies proposed to model the behavior of a com-
onent is through Self-Organizing Maps (SOMs) (Kohonen, 1982,
006) proposed by Kohonen as an alternative clustering technique.
OMs have been widely used in the characterization of industrial
ystems and components behaviors (Li et al., 2018; Khan and Yairi,
018; Gil et al., 2018).

SOM models allow for classifying the behavior of a component
nd identifying new OMs automatically, adding them or updating
he ones already observed. This first step of clustering is not the
ovelty of the methodology proposed, but it is essential to start its
eployment. In order to understand the similarities between a SOM
Once the clusters were obtained, the methodology proposed
s focused on the information inside each cluster focusing on the
ollowing four main elements:
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t make up a behavior pattern.

Fig. 4. Maximum and minimum values of the PDF.
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Fig. 3. Main elements tha

• Features: Attributes/variables that define the OMs of each
pattern. The number of attributes/variables that define the
dimensions of each OM.

• Centroids: Centroids are the most representative and character-
istic values within each OM. They are also understood as the
“gravity center” of the observations that belong to the same OM.

• Feature Probability Density Functions (feature PDF): Provide
information about how observations are distributed within each
OM.

• Statistical Features: Standard deviation explains how much the
observations of the same cluster differ from the centroid of the
group. The number of hitting samples per OM, provides informa-
tion about which OMs are more frequent or more relevant within
the overall pattern.

Some of these elements are depicted in Fig. 3 which shows a
real example of the hydropower plant behavior modeled through
a SOM.

Each OM feature PDF is computed through the Parzen windows
technique, also know as kernel density estimation (Parzen, 1962)
which states that the probability density function of n observations{

v1, . . .,  vi, . . .,  vn

}
of a variable V can be computed as:

PV (vx) = 1
n · h

n∑
i=1

K
( vx − vi

h

)
(1)

where PV (vx) is the value that an observation vx of V has within the
PDF; h is the bandwidth estimator obtained according to the rule
of thumb stated by Silverman (Silverman, 1986) as:

h =
(

4 �̂5

3 · K

) 1
5

≈ 1.06 �̂n−1.5 (2)

where K is in both Eqs. (1) and (2) the Gaussian kernel used to
compute the probability distribution:

K
(

x|�, �2
)

= 1√
2��2

e
− (x−�)2

2�2 (3)

being �̂ the standard deviation and � the mean value of the n
observations of V.

In the next step, the PDF is computed along an uniformly spaced

vector E of size d from PDFF,min to PDFF,max, where PDFF,min and
PDFF,max are the values in which the probability distribution goes
below the probability threshold Tp. Tp allows for the definition of
the length of the tails of the PDF for feature F in a general manner.
The maximum value of the PDF is normalized to 1 to permit the

h

E
s
m

4

ig. 5. Probability density functions for different bandwidth values, where hS is the
andwidth obtained using the rule of thumb of Silverman.

omparison of maximum probability values between features. See
ig. 4.

Fig. 5 shows how the PDF varies depending on the value of
 applied. Where h is the value obtained through the rule of
humb of Silverman stated in Eq. (2). Small values of h provide

 more detailed representation of the PDF, however if the val-
es of h are too small they might lead to over-fitting issues.
he example of the PDF shown in this figure corresponds to the
nion of two normal distributions: N (� = 1, � = 0.5, n = 20) ∪
(� = 3, � = 0.2, n = 20) shown as blue dots. Function tails (not

hown in the figure) are monotonically decreasing curves with a
orizontal asymptote in P = 0.
The elements above mentioned make up a behavior pattern.
ach pattern can be compared with other patterns or directly with a
et of observations. These two methodologies based on the assess-
ent of patterns are some of the novelties proposed in this article.
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reference pattern.
Fig. 6. Strategy followed in the behavior assessment “Pattern vs. Pattern”. A refer-
ence and a test pattern are matched regarding the OMs  to be compared.

Section 3.2 is entirely devoted to the explanation of these two  types
of assessment methods.

3.2. Behavior assessment

This section covers two of the main contributions of this paper.
After computing a behavior pattern, it is necessary to know and
understand how they can be used to get the most from the informa-
tion self-contained in each pattern. In Section 3.1 pattern elements
have been presented. In this section, such elements will be matched
and compared according to a novel methodology that tackles this
assessment from two different points of view. The first one, focused
on the assessment and comparison of two different behavior pat-
terns, presented in Section 3.2.1. The second one, focused on the
assessment of a set of observations comparing them with a ref-
erence behavior pattern, presented in Section 3.2.2. These two
strategies are not complementary. The assessment of patterns is
based on the study of their features using two indicators: similarity
and deviation, explained in detail in Section 3.3. The implementa-
tion of one strategy instead of the other depends on the type of
application defined by the user. Both strategies are described in
detail including the main advantages and disadvantages of each
strategy. For a clear understanding, the algorithm steps are sum-
marized at the end of the sections of both strategies.
3.2.1. Strategy 1 – behavior assessment “Pattern vs. Pattern”
This method focuses on comparing two behavior patterns. A

scheme of this approach can be seen in Fig. 6. Deviations are quan-
tified comparing the OMs of both patterns. Reference patterns are

•

5

Computers in Industry 125 (2021) 103376

ade up of feature values obtained from normal behavior obser-
ations. Test patterns are made up of feature values obtained from
he observations under assessment.

Each OM in the test pattern is compared with their nearest OM
n the reference pattern based on the Euclidean distance between
M feature centroid values. Fig. 7 shows an example in which a

eference pattern (behavior in 2011) and a test pattern (behav-
or in 2012) are matched. The features that define both patterns
re: active power [MW]  (power generated or consumed by the
ydropower plant), percentage of the guide vane opening [%]
related to flow rate) and temperature of the bearings of the turbine
◦C] (related to the working conditions of the bearings). Through
hese three features the behavior of the hydropower plant turbine
an be characterized. This figure shows two working modes: (A) in
hich the hydropower plant is pumping water back to the reser-

oir (consuming power), and (B) in which the hydropower plant is
enerating power releasing water through the turbine. For a better
isualization of the information, the values of the OMs  centroids are
epresented using their Bearing temperature [◦C] and Guide vane
pening [%].

Some of the advantages of this method are:

This method is more robust against outliers. Samples that are
less representative in a behavior are also less representative in
the pattern.
In those cases where the number of observations under assess-
ment is significantly large, working with patterns instead of
samples implies a reduction in the volume of information that
has to be stored and processed in the assessment.
This strategy allows for differing deviated OMs from real new
OMs depending on the location of the OM of the pattern under
assessment taking into account the PDFs of the reference pattern.
Sharp deviations in OMs centroids can be due to a fault in the
system or a change in the operation strategy. This assessment is
based on the indicators stated in Section 3.3.
This methodology allows for the comparison of two  behavior
patterns with different numbers of OMs.

Some disadvantages of this method are:

Building a pattern for each new set of observations implies longer
running times than comparing directly new observations with a
To detect small deviations in the behavior, the number of OMs
has to be big enough to provide a detailed characterization of the
behavior. An excessive number of OMs could, on the other side,
lead to over-fitting issues in the pattern.
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The corresponding algorithm of this strategy is summarized in
Algorithm 1.

Algorithm 1.

3.2.2. Strategy 2 – behavior assessment “Observations vs.
Pattern”

This strategy aims to assess the observed behavior of a com-
ponent comparing the feature values of the observed samples with
their closest reference OM. Distances between observation features
and OMs are measured through the Euclidean distance. Given N as
the total number of OMs in the reference pattern, n as the index
of the OM which an observation belongs to, FOMn the feature val-
ues of the closest OM centroid, and Fobs the feature values of the
observation to be matched; the matching equation can be defined
as:

OMn : n = arg min
(∥∥FOMn − Fobs

∥∥)
(4)
n ∈ N

An schematic representation of this approach is shown in Fig. 8.
An example of this approach is shown in Fig. 9, in which it can be

seen how the observations are matched to their closest OM within
the reference behavior pattern. For a better visualization of the

a
f

a
g

Fig. 7. Example of a behavior assessment “Pattern vs. Pattern”. Two  behavior patterns are
back  to the reservoir); (B) hydropower plant generating power.

6

nformation, the values of the OMs  centroids are represented using
heir Bearing temperature [◦C] and Guide vane opening [%].

The advantages of this method are:

This approach does not require building a test pattern to be com-
pared with the reference one. Therefore, observations can be
assessed individually.
Matching process (samples ↔ OMs) is remarkably fast.

he main disadvantage of this approach is that it is less robust
egarding outliers and rare values. When observations are char-

cterized in a pattern, rare values are filtered out preserving those
eature values that are more representative.

Both strategies provide analogous results, but their applications
re different. Comparing a pattern with single observations has a
reat potential in time series assessments, on the other hand, com-

 matched and compared. (A) hydropower plant consuming power (pumping water
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is within a range of values with a high density of samples in the ref-
erence OM.  These ranges are determined through the PDFs of the
OM. The similarity value of an observation Of,n within the PDF of
feature f of its closest reference OM is defined as:
Fig. 8. The strategy followed in the behavior assessment “Observations vs. Pattern”.
Observation values are matched to their closest reference OMs from the reference
pattern to be compared.

paring two patterns offers a greater visibility of those failures that
have a global effect on the system behavior with a greater extent
in time and deviation from their reference value.

An assessment “pattern vs. pattern” is intended mainly for off-
line applications such as trend and evolution analysis, etc. whereas
an assessment “observations vs. pattern” is more suitable for on-
line/monitoring applications.

The corresponding algorithm of this strategy is summarized in
Algorithm 2.

Algorithm 2.
7
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.3. Behavior indicators

Behavior indicators aim to quantify numerically the level of
imilarity or discrepancy between behavior patterns and/or obser-
ations. The strategies proposed in Section 3 aim at matching
atterns or observations with their reference pattern. Once the
atching process is complete, discrepancies are quantified. This

ection covers the third step of the methodology. The novelty in
his part of the methodology resides in two  powerful indicators
sed jointly to quantify discrepancies:

 Similarity (similarity value and average similarity). This indicator
is explained in detail in Section 3.3.1

 Deviation/distance from OM feature centroid. This indicator is
explained in detail in Section 3.3.2.

These two indicators are frequently used separately in anomaly
etection applications but, when combined, it is possible to char-
cterize hidden behaviors that would be misclassified in case that
oth indicators were applied separately. The advantages of com-
ining both indicators are explained in Section 3.3.3.

.3.1. Similarity indicator
This indicator makes it possible to quantify how similar an

bservation is regarding the typical values of the reference OM to
hich it is assigned. This is, for values near to one, an observation
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Fig. 9. Example of a behavior assessment “Observations vs. Pattern”. A reference pattern is compared with a set of observations. (A) Hydropower plant consuming power
(pumping water back to the reservoir); (B) Hydropower plant generating power.
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Fig. 10. Assessment of Similarity values regarding the bandwidth h chosen. Three 

adjusted  bandwidth (h′/3), over-fitted bandwidth (h′/10).

Sf,n = pref,f

(
Of,n

)
(5)

where pref,f(x) is the PDF of feature f of the corresponding OM within
the reference pattern and Of,n is the feature value of observation n.
The similarity value of an observation is obtained through a linear
interpolation between PDF values. The advantage of this approach
is using precomputed PDFs to obtain new similarity values inter-
polating new observations within such precomputed PDFs. This
approach allows for an outstanding reduction in the number of
operations required to compute similarity values in PDFs of large
populations. When comparing two patterns, the observation is sub-
stituted by the centroid of the test pattern.

The similarity indicator of feature f for multiple observations is:

Sf,N =
∑N

n=1pref,f

(
Of,n

)
N

=
∑N

n=1Sf,n

N
(6)

where N is the total number of observations under assessment.
In Fig. 10, an example of this method is shown. In this

example, the reference features are two normal distributions:
N (� = 1, � = 0.5, n = 20) and N (� = 3, � = 0.2, n = 20).  The ref-

erence probability distribution is discretized through an equally
spaced vector (E) of 100 samples. The observed features corre-
spond to a normal distribution N (� = 1.3, � = 0.2, n = 20).  This
figure shows how the value of h affects the similarity indicator
values obtained for an observed feature distribution. After several

D

w
t

8

rios are shown: Bandwidth obtained through the rule of thumb of Silverman (h′),

alues of h were tested, it could be seen that taking a third of the
riginal value of h′ (obtained through the rule of thumb of Silver-
an), allows for a better assessment of the observed distribution,

voiding under-fitted (h′) and over-fitted (h′/10) configurations.
andwidth values obtained through the rule of thumb of Silver-
an  usually underperform characterizing bimodal distributions,
hich is the case shown in Fig. 10. A correction factor is needed

n these cases. This factor has to be chosen through visual inspec-
ion in most scenarios. Silverman (Silverman, 1986) proposes an
ssessment range of bandwidth values around 1/4 and 1/2 of its
nitial value (h′). In this case 1/3 is the correction factor applied.

.3.2. Deviation indicator
A second indicator quantifies the deviation/distance of each

bservation n from the feature centroid of its corresponding ref-
rence OM.

∣∣Of,n − COMref ,f

∣∣

f,n =

�OMref ,f
(7)

here Of,n is the feature value of the observation, COMref
is the cen-

roid feature value of the reference OM and �OM,f is the standard
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fourth and last step in the methodology. Deviations can be assessed
Fig. 11. Particular cases in which the joint use of distance and similarity indicators
provide a better assessment of the observation regarding its reference OM.

deviation of feature f of the OM. When comparing two patterns, the
observation is substituted by the centroid of the test pattern.

Df,n =
∣∣COMtest f,n − COMref ,f

∣∣
�OMref ,f

(8)

Distances are normalized with the standard deviation of the cor-
responding OM. As each OM has a different standard deviation, this
method allows for a comparison of relative distances between OMs.

3.3.3. Joint use of both indicators
These two indicators can be used jointly to quantify how much

an observation or pattern differs from its reference behavior pat-
tern. An observation is not explained by an OM when the feature
values of the observation or the centroid of the test OM are located
outside the probability density distributions of the reference OM,
i.e. below and above PDFf,min and PDFf,max, respectively; (see Fig. 4).
One of the advantages of using these two indicators jointly is a more
effective detection of deviations in cases where a distance from the
centroid is not enough to characterize an observation. Fig. 11 shows
two cases in which the joint use of these two indicators allows for
a better characterization of the observation regarding its reference
OM; where a normal behavior condition is defined as:

[
Sf,n > Sf,min

]
∧

[
Df,n < 2.5

]
(9)

Fig. 11 shows two different cases in which only one condition is
fulfilled. Case (a) shows an OM distribution in which the centroid
is located in a region with a low density of samples. In this case,
those observations that are located too close to the centroid would
be considered as part of a normal behavior when only the distance
to the centroid of the OM is considered. Taking into account the
Similarity indicator, the normal behavior condition is not fulfilled
any longer. Case (b) shows an opposite situation in which there
is a region located outside of the distance threshold delimited by
±2.5�, but regarding its Similarity value, it is above the minimum
value Sf,min.

Both indicators can be combined in a single equation weighing
each indicator individually and setting � as the minimum value to
consider the observation or test OM (n) within normal behavior
conditions:
Ws · Sf,n + WD · min

(
2.5
Df,n

, 1

)
≥ � (10)

t
t
O
S

9

Fig. 12. Examples of soft and hard transitions.

here:

Sf,n ∈ [0,  1]; min

(
2.5
Df,n

, 1

)
∈ [0,  1];

Ws + WD = 1

(11)

epending on the application, the weight of each indicator can
e adjusted (or not) for a better behavior assessment. To avoid an
xcessive alarming behavior two  strategies can be used for fitting
etter the process of anomaly detection:

Reduce the minimum similarity value and increase the maxi-
mum  deviation to relax the conditions used to detect alarming
behaviors.
Include and weight the samples detected as false positive within
the training set of reference pattern to consider those samples as
part of the normal behavior.

.4. Transitions among patterns of behavior

This assessment belongs to the fourth step of the methodology
roposed. The aim of this assessment is determining whether a set
f features have been already registered by the reference model
r not. A transition can be defined as a displacement of feature
alues among OM. Two types of transitions are considered: soft
ransitions and hard transitions. Soft transitions take place when
he feature values lie within their reference feature PDFs, otherwise
hen feature values fall outside from any OM feature PDF, a hard

ransition takes place.
These two  types of transitions are depicted in Fig. 12. In this

xample, an observation evolves over time changing its feature
alue. The reference pattern is made up of three OMs: OM1, OM2
nd OM3. Transitions [O → O′] and [O′ → O′′] are soft transitions
s the observation remains within reference OM PDFs. Transition
O′′ → O′′′] is a hard transition as the observation shifts from being
ithin OM2 PDF to being outside of any OM PDF. Hard transitions

ive rise to the detection of unknown working conditions that can
e used to detect possible anomalies or to discover new OMs not
overed yet by the reference pattern.

.5. Deviation assessment

As stated before, in order to assess the behavior of a component,
t is necessary to measure how much such behavior differs from

 reference behavior pattern. The assessment of deviations is the
hrough several strategies: Applying the indicators proposed in Sec-
ion 3.3, strategies based on statistical features such as Analysis
f Variance (ANOVA) (Sthle and Wold, 1989), other strategies like
upport Vector Machines (SVM) (Scholkopf and Smola, 2001), etc.
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Fig. 13. Workflow chart of the behavior assessment applied to the Nygard hydropower plant.
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Fig. 14. Working modes defined automa

that could be applied in the study of similarities between features.
This paper is focused on an assessment based on similarity and dis-
tance indicators, leaving additional strategies as part of a future
application and research work. This assessment aims to quantify
numerically a deviation from a reference value taking into account
the values obtained for the indicators proposed in Section 3.3. The
following case-study is an example of an application of the pro-
posed methodology in the behavior assessment of a hydropower
plant based on the similarity and distance indicators defined in
Section 3.3.

4. Application of the methodology proposed to a
hydropower plant

The following case-study focuses on the characterization and
diagnostic of the behavior of a hydropower plant. The steps fol-
lowed in the behavior assessment are depicted in the workflow
chart of Fig. 13. The proposed approach is divided into four main
steps. The first two steps (A and B) are focused on understanding the
characteristics of the data set and the main features of the behavior
of the system that can be useful in the composition of the working
mode in which the data set can be divided. The last two  steps (C and
D) are a summary of the four stages of the methodology proposed
depicted in Fig. 1. Step C focuses on the composition of behavior
patterns according to its working modes. As mentioned before, in
the case of the hydropower plant, there are three working modes:
idle, pumping water back to the magazine (consuming energy) and
producing energy. The last step D, aims to assess the behavior of the
hydroelectric power plant through the two strategies described in
Section 3.2.
4.1. Step A: Data and feature definition

According to the information available, the behavior of a
hydropower plant is characterized using six sensor measures:

t
T
f
t

10
 through a 3 cluster K-means algorithm.

Active power generated/consumed [MW]:  This feature makes it
possible to know the working mode of the plant: Consuming
energy, producing energy or idle.
Guide vane opening [%]: The opening percentage of the guide
vane determines the flow rate of water released/pumped through
the turbine. This feature complements the information about the
working conditions of the plant.
Bearing temperatures (×4) [◦C]: The temperatures collected by
the SCADA system correspond to four bearings, two thrust bear-
ings and two  upper guide bearings. Bearing temperatures provide
information not only about their operating conditions but also
about their behavior and status. This feature is the target of this
study.

These six sensor measures were registered as the average value
f each hour collected from 2011 to 2016. The number of observa-
ions is around 8600 samples per year.

.2. Step B: Framework definition

Three main working modes can be defined by the amount of
ower consumed or generated by the plant. It is important to
ake this fact into account when it comes to scheduling main-
enance tasks. The time that the hydropower plant operates at
ach working mode might have different effects regarding behavior
eviations of the system. It is necessary to take into consideration
he length of those working modes in which the hydropower plant
s not consuming nor producing power. These periods, in which
he hydropower plant is idle, might lead to a pseudo reduction in
emperatures measured in bearings and cooling systems.
Different temporal frameworks can be set up depending on the
ype of assessment intended: months, season of the year, year, etc.
he scope of the assessment determines the type of the temporal
ramework to be set in the study. In this study-case, tempera-
ure is one of the variables under assessment. Temperatures are,
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Fig. 16. Assessment of the average distance of the training set to the centroid of
their corresponding neuron depending on the number of iterations of the training
process.

Table 1
Setup of the SOM used to train the reference behavior pattern.

Reference pattern setup

Dates 2011-01-01 to 2012-01-01
Number of observations 5290
Dataset normalization linear normalization [0;1]

KSOM setup

Feature dimension 6
Neuron layout 25 neurons
Neuron initialization random [0;1]
Early Stopping condition �mse  < 2.5 · 10−5

Maximum epoch 4200
Best Matching Unit Euclidean distance
Spatial neighborhood function (snf) Gaussian

Propagation rate [Gradient descent]
[

0.5;
(

1 − epochcurrent
epochmax

)
· 0.5

]
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Fig. 15. Assessment of the variance explained depending on the number of OMs
applied in the characterization of each working mode based on a K-means algorithm.

to a greater or lesser extent, dependant on environmental tem-
peratures. To study how environmental temperatures affect the
efficiency of the cooling system, the temporal framework would be
the seasons of the year. To study how each working mode affects
bearing temperatures, the proper temporal framework would be
weeks or months as the working mode of the hydropower plant
remains constant for several weeks. When the scope of the study
focuses on the assessment of the cooling system behavior, an
acceptable temporal framework would be months or even years as
the behavior of this type of systems usually shows slow deviations
that are only quantifiable in long term assessments.

4.3. Step C: behavior pattern composition

The number of samples of each working mode is not the same
in all of them, this means that the hydropower plant is not gen-
erating power at the same time that it is pumping water back to
the magazine or in an idle state. In order to reduce the bias that an
uneven sample distribution might produce in the behavior charac-
terization, three working modes were defined through a 3 cluster
K-means algorithm, using the Euclidean distance and 3000 iter-
ations (convergence reached). The centroids of each scenario are
shown in Fig. 14, in which: working mode S1, the plant is pumping
water back to the water reservoir; working mode S2, the plant is
generating power; working mode S3, corresponds to a transition
state in which the hydropower plant shifts from an idle state to
generating or consuming active power.

The aim of this first clustering is to divide the observations
collected during a year into three working modes to be modeled
individually through a SOM algorithm. In order to determine the
number of OMs within each working mode of the behavior pat-
tern, an elbow assessment method (Ketchen and Shook, 1996) was
carried out to determine its optimum number according to the
variance explained (Kodinariya and Makwana, 2013). The elbow
method is based on the percentage of variance explained as a func-
tion of the number of OMs. The optimum number of OMs is defined
by the point in which, increasing the number of OMs in the pattern,
their variance explained (dispersion of the observation regarding
their reference OM) starts to become stable.

According to the results shown in Fig. 15, the three working
conditions have approximately an optimal number of OMs equal
to 25 according to the results obtained through the elbow crite-

rion. Therefore, each SOM pattern is made up of 25 OM. Each OM is
defined by 6 main features: Active power [MW],  Guide vane open-
ing [%] and Bearing temperature [◦C]×4  (This feature is represented
as the mean value of the four temperatures). The number of iter-
ations in the training process of each pattern is defined by the

s
t
a
e
a

11
arly-stopping condition defined in the setup (reached at ∼3000
terations), which is the point at which the average distance to the
entroids stabilizes, see Fig. 16. The setup of the SOM used to train
he reference behavior pattern is shown in Table 1

Once the location of each OM is defined, the information con-
ained in each OM is made up of: centroid values of the OM, standard
eviation and PDF of each feature that defines an OM.

.4. Step D: behavior assessment

This step corresponds to the last stage (D) in the workflow
epicted in Fig. 13. The assessment was carried out taking the
ehavior of the hydropower plant in 2011 as the reference pat-
ern. Fig. 17 shows how the reference pattern of 2011 is compared
ith the behavior pattern of 2012. First, all the OMs from the pat-

ern under assessment (2012) are matched with their closest OM
n the reference pattern (2011). The matching is carried out based
n the Euclidean distance between neuron centroids. The type of
atching is “many to one”, this means that one reference OM can

ave assigned none, one, or several OMs  from the pattern under
ssessment.

Similarity and Distance indicators were computed regarding the
M centroids of the behavior pattern under assessment. Fig. 17
hows how this process is carried out for a single feature (bearing
emperature) in a single reference OM; the rest of OMs matched
re depicted as faded out. This process has to be carried out for
ach feature of each OM. Once Similarity and Distance indicators
re computed for all OMs, deviations can be assessed.
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Fig. 17. Pattern comparison. Example of S

5. Results

5.1. Behavior assessment

In order to assess the behavior of the hydropower plant, the
same pattern of 2011 was used as the reference pattern. The aim
is to compare how the behavior of the system evolves over the fol-
lowing years. As explained in previous sections, the variables under
assessment were: Active power [MW]  (P); Guide vane opening [%]
(O) and Bearing temperature [◦C] (T). Two different approaches are
proposed to assess the behavior of the hydropower plant. The first
one, through visual inspection, comparing the PDFs of a reference
pattern with other patterns; the second approach, numerically,
through the values obtained from the two indicators proposed in
this study. As the behavior of the hydropower plant is divided into
three main working modes (S1, generating power; S2, consuming
power; S3, idle), each working mode has to be studied separately.
Therefore, only S1 and S2 were considered in the assessment.

5.2. Behavior assessment through probability density functions

The evolution of test patterns OM PDFs is shown in Figs. 18 and
19 . These two figures show a comparison of test patterns obtained
from the observations registered throughout the years 2012, 2013
and 2014 with a reference pattern obtained from the observations
registered in 2011. This assessment is carried out through the visual
comparison of the PDFs of test and reference patterns. The OMs  of
each test pattern are matched (“many to one”) to their closest OM
from the reference pattern. Thus, deviations are easily detected via
visual comparison of PDFs. The OMs  mentioned in the assessment
are marked with red arrows in their corresponding figures. OMs
7–25 are magnified for better visualization of deviations in such
OMs.

When deviations are detected in variables that are part of the
working mode configuration (i.e. variables that can be adjusted
through the controller of the system) then, they should be consid-
ered as new working modes not covered by the reference pattern.
On the other hand, when deviations take place mostly in variables
that cannot be manually set by the controller, potential behavior
deviations may  be occurring. This rule makes it possible to differ-
entiate behavior deviations from new behaviors not included in the
reference pattern.

The three features studied are: P - Active power [MW];  O - guide

vane opening [%], T - bearing temperature [◦C]. PDFs in dark blue
correspond to the reference pattern of 2011.

The results obtained for working mode S1 (hydropower plant
consuming active power) show that operating conditions defined
by P and O, are very similar to the reference pattern (2011). T, on

;
g

a

12
ity and Distance indicators computation.

he other side, starts to deviate after 2012. These deviations can be
oticed in the test PDFs in T OMs 15, 20 and 24 in 2013; and OMs
5, 20 and 21 in 2014 in which deviations of +1◦C appear.

Working mode S2 (hydropower plant generating active power)
hows deviations in all of the three variables. A simultaneous devia-
ion in P, O and T is an evidence of a possible change in the operation
onditions of the plant. In 2014, OMs 15, 21 and 23 show similar
DFs regarding variables P and O, but in T, a temperature increment
lose to +2◦C can be seen.

When deviations take place only in T, it can be classified as a
ailure, on the other hand when deviations take place in all the
eatures at the same time, it can be considered as a change in the
orking mode of the hydropower plant.

Taking into account that patterns were obtained for all the sam-
les collected during a year, seasonal variations in temperature can
e assumed as not significant.

.3. Behavior assessment through indicators

In the following, the information shown in previous Figs. 18 and
9 is assessed numerically. The results of the assessment are shown

n Fig. 21. The results correspond to the assessment of yearly behav-
or patterns with regard to the reference pattern 2011. These results
nclude, in addition, years 2015 and 2016. Each assessment shows
wo different pieces of information:

Similarity analysis. The scale of the values is located at the left
side of the graph and the values are plotted in red. The values
are obtained according to the method described in Section 3.3.1.
This indicator refers to how “similar” the pattern under assess-
ment is in comparison to a reference pattern. In those cases where
similarity values are close to 0 it is recommendable to focus on
the obtained values of the deviation indicator in order to have a
detailed view of the magnitude of the deviation.
Deviation analysis. The scale of the values is located at the right
side of the graph and the values are plotted in light brown
(positive deviations from the reference value) and dark brown
(negative deviations from the reference value). Their values cor-
respond to the ones obtained according to the method described
in Section 3.3.2. Values shown are already normalized regarding
the standard deviation of each reference OMs.
In order to understand the results shown in Figs. 21, 22 and 24
 Fig. 20explains the meaning of each element that appears in the
raphs.

The numerical results shown in Fig. 21 confirm the behavior
ppraisal carried out through visual inspection in Figs. 18 and 19 .
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Fig. 18. Pattern comparison and assessment of deviations b

In working mode S1, it can be seen that the behavior under
assessment is loosing similarity each year with regard to its refer-
ence behavior (2011). This loss of similarity is specially remarkable
after 2012. It is important to highlight the correlation between P and
O. Although variables P and O remain above 0.4 and below 2.5� in
their similarity and deviation coefficients respectively, in the case
of T its similarity indicator drops down to values close to 0.1 and
reaches deviations ten times larger than their standard deviation.
In particular, in 2014, it can be seen that, approximately only 11%
(4%+7%) of the T OMs of the test pattern have absolute deviation val-
ues lower than 2.5. This explains why the similarity regarding its
bearing temperature is around 0.1. Although similarity values in T
are remarkably low, the correlation between features remains; this
is, an increment in P implies an increment in O and T (an apparition
of a new working mode is more likely than an anomalous behavior).

Similar relationships between variables appear in working
mode S2. In contrast to S1, S2 shows, in 2016, a break in the correla-
tion between P, O and T. It can be observed that although deviations
in P and O become lower during this year than in the previous
one, T keeps increasing. This behavior evidences the existence of
an anomaly in the behavior of the bearing cooling system, due to
the fact that the temperature, which keeps increasing despite the
opposite trend in the other two features, shows a positive trend.
An additional assessment is carried out through the direct com-
parison between the observations collected throughout the years
tested and the reference pattern (2011). The results obtained are
shown in Fig. 22.

b
m
b
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n 2011 (reference pattern) and 2014 in working mode S1.

Slight variations can be seen comparing the results obtained
n the analysis “Observations vs. Pattern” to the previous results
btained with a “Pattern vs. Pattern” analysis. The Similarity indica-
or value obtained in the reference year (2011), is close to 0.8 (being
.0 in the previous assessment). This deviation is due to the fact that
ome observations of the training set are located far away from the
istribution centroid. In S2 T, there are some years in which the
arkers of the negative deviation curve have a percentage equal

o 0%. This happens because the percentage value is rounded to its
earest integer and these values are lower than 0.5% of the total
umber of observations during such years.

When assessing periods different from the reference one, both
pproaches provide equivalent information, although assessing
bservations directly allows for the detection of deviations caused
y outliers and occasional working conditions.

The results and conclusions derived from both approaches are
emarkably similar, therefore confirming the coherence of the
esults obtained through both methods.

.4. Maintenance assessment

This methodology, not only provides information about the

ehavior of a component, but also about the effectiveness of a
aintenance task quantifying the recovering level of a component

ehavior from a previous (defective) one. In previous figures, it
ould be seen that the behavior of the bearing cooling system has
hanged drastically since 2013. Therefore 2013 was  taken as a ref-
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Fig. 19. Pattern comparison and assessment of deviations between 2011 (reference pattern) and 2014 in working mode S2.
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Fig. 20. Meaning of the element

erence year due to the fact that comparing two behaviors with big
discrepancies between them, can lead to a loss of accuracy in the
overall assessment.

The method proposed is a powerful tool as it can be an impor-
tant source of information about the quality of the maintenance
tasks that were carried out, and at the same time it is able to assess
the evolution of the behavior of the components. Regarding the
maintenance assessment, the method proposed is able to provide

information about:

• Efficacy. Fig. 23(A). Improvements in similarity and deviation
indicators. After a maintenance task, the behavior of the system

i

•

14
ent in the behavior assessment.

reaches back to similarity values above 0.4 and deviation values
below 2.5�.
Effectiveness. Fig. 23(B). The effects of the maintenance persist
over time. The longer of the effects remain, the more effective
the maintenance task has been.

Regarding the component behavior, the methodology proposed

s able to provide information about:

behavior deviation trends. Fig. 23(C). Depending on the working
conditions of the hydropower plant, some behavior deviations
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Fig. 21. Pattern comparison and assessment of deviations. Reference pattern obtained in 2011 compared with test patterns obtained from 2011 to 2016.

Fig. 22. Comparison and assessment of deviations between reference pattern (2011) and observations registered between 2011 and 2016.

Fig. 23. (A) Maintenance task efficacy. (B) Maintenance task effectiveness. (C) Component behavior deviation trend.

15
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Fig. 24. Comparison and assessment of deviations betwee

display trends that can be studied and applied to a PHM strategy
program.

Fig. 24 shows how this methodology can be applied in the
assessment of maintenance tasks. The maintenance activities reg-
istered are focused on the bearing cooling system. This study
aims to provide different approaches to assess the effectiveness of
such maintenance activities. As the maintenance tasks registered
were applied to the bearing cooling system, the attribute under
assessment is the bearing temperature. Three cleaning activities in
the cooling unit were registered on 29/09/2014, 21/10/2015 and
21/09/2016.

The behavior under assessment corresponds to the working
mode S2 (hydropower plant producing energy) from 2013 until
2017. The results of this assessment show that working conditions
regarding P and O from 2013 until 2017 remain within devia-
tion limits ±2.5� according to the reference pattern (2013). In
contrast, T shows greater deviations from their confident limits.
The results obtained in 09/2014, show an improvement in simi-
larity and deviation indicators before the maintenance task took
place. In order to explain this behavior, it is necessary to know
that during this month the hydropower plant experienced several
stops during which bearing temperatures cooled down, leading to
slight improvements in both indicators. It can be seen that the first

and third maintenance tasks achieved a more effective recovery
in T than in the second one which did not achieve a significant
improvement. A good maintenance should produce a reduction in
the deviation value, an increment in the similarity value and should
extend a normal behavior as much as possible.

a
b
v

16
rence pattern (2013) and observations (2013 and 2017).

. Conclusion

This paper describes a novel methodology based on behavior
atterns obtained from the application of unsupervised machine

earning algorithms for anomaly detection of industrial compo-
ent behaviors. Behavior patterns are obtained through clustering
lgorithms such as K-means and Self-Organizing maps (SOMs) as

 starting point, to be used in later diagnosis. The novelty intro-
uced by this method is the procedure to carry out a deep analysis
f the information initially clusterized in reference behavior pat-
erns and their later adaptation to the new behaviors observed. As
ore of this analysis, an algorithm based on local Probability Den-
ity Distributions (PDD) of the clusters obtained is used to enhance
he characterization capability of the patterns. Another important
ontribution was the description of two  different strategies for the
ssessment of behaviors based on patterns and two indicators: sim-
larity,  which measures how similar an observation is regarding the
DF of its reference pattern; and distance, which measures devia-
ions regarding the standard deviations of the reference pattern.
he methodology proposed emphasizes the joint use of both indi-
ators to improve the accuracy of the assessments of the behaviors
egistered. These indicators are useful inputs for detecting degra-
ations or changes in the behavior of a component that also can
ive support to an approach based on data-driven maintenance
trategies.
This paper has presented the application of the methodology to
 real case in the field of hydropower plants. In this case study, the
ehavior of the hydropower plant was characterized through three
ariables: active power [kW/h], guide vane opening [%] and bearing
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Zhao, B., Zhang, X., Zhan, Z., Pang, S., 2020]. Deep multi-scale convolutional trans-
fer learning network: a novel method for intelligent fault diagnosis of rolling
P. Calvo-Bascones, M.A. Sanz-Bobi and T.M. Welte 

temperature [◦C]. The results of the assessment showed a deviation
trend in the temperature of the bearings while the other two vari-
ables, active power and guide vane opening, remain within normal
behavior conditions defined by the chosen reference pattern. Three
maintenance tasks are also included and assessed in this study.
Applying the same methodology proposed for the behavior analy-
sis, maintenance efficacy and effectiveness were also assessed. This
part of the study shows how the quality of maintenance tasks can
be studied from a behavioral point of view. The results obtained
are a successful demonstration of the capability of the new method
proposed in the diagnosis and maintenance assessment for real-life
industrial applications.
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