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Resumen del proyecto
El informe discute el concepto de percepción multimodal, que sugiere que los hu-
manos dependen de múltiples sentidos, como el audiovisual, el tacto y la visión,
para comprender el entorno. En relación a estos sentidos, destaca la interdepen-
dencia entre tacto y vista y es importante incorporar entradas sensoriales diversas
para los procesos de toma de decisiones. En la robótica industrial, comprender las
capacidades de percepción de los robots se vuelve crucial, ya que éstos carecen de
habilidades innatas y dependen de sistemas implementados. El enfoque se centra
en mejorar la percepción de los robots de agarre fijo para mejorar la calidad, la
localización y la identificación de objetos, así como la seguridad humana. La clasi-
ficación de objetos plantea desafíos, especialmente cuando los objetos son similares
pero están hechos de diferentes materiales, y utilizar como única herramienta la
clasificación visual puede resultar computacionalmente costoso.

En este proyecto, se ha llevado a cabo una investigación para combinar sensores vi-
suales y táctiles con el objetivo de mejorar la categorización de objetos. Se plantean
varias preguntas relacionadas con el uso de un gripper rígido para la clasificación
de objetos. Entre estas preguntas se incluyen si es posible clasificar objetos con la
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misma apariencia pero con durezas diferentes, el potencial de mejorar significati-
vamente la precisión combinando datos visuales y táctiles, y las situaciones en las
que un protocolo que combine ambos sentidos sería beneficioso para la clasificación
de objetos.

La finalidad del proyecto es desarrollar un protocolo que combine información vi-
sual de una cámara e información táctil obtenida mediante los sensores de presión
de un gripper. La idea principal es construir un modelo de clasificación utilizando
Region-Based Convolutional Neural Network (R-CNN) y Machine Learning (ML).
El propósito es diferenciar eficazmente objetos con características visuales simi-
lares pero con características táctiles variables. Los principales objetivos de inves-
tigación son los siguientes:

• Diseñar un modelo táctil capaz de distinguir entre diferentes niveles de
dureza (suave y duro).

• Generar múltiples modelos de ML para determinar el algoritmo más preciso
entre ellos.

• Evaluar el rendimiento de R-CNN cuando los datos sensitivos son descono-
cidos y compararlo con la salida del protocolo cuando se combina con la
percepción táctil.

• Verificar que el modelo seleccionado logra una clasificación precisa en un
escenario de caso de uso.

Figure 1: Imágen de la salida del laboratorio.
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Este proyecto es significativo no solo en términos de sus contribuciones teóricas,
sino también a través de su experimentación práctica realizada en el Laboratorio
de Sistemas Autónomos en DTU (Universidad Técnica de Dinamarca). La config-
uración experimental, como se muestra en la Fig. 1, consta de una cámara y un
gripper equipado con siete sensores de presión en cada dedo, que funcionan como
sensores visuales y táctiles, respectivamente.

Considerando la metodología para obtener el algoritmo de clasificación, es nece-
sario estudiar la clasificación táctil por separado, seguida de la clasificación visual
y, finalmente, la integración de ambas. Sin embargo, antes de esto, es esencial
comprender el proceso de adquisición de datos del gripper.

En este contexto dado, una prueba táctil se refiere al proceso de extraer información
de un objeto utilizando el gripper. El enfoque específico empleado depende de las
características del gripper utilizado. Si fuera factible recopilar toda la información
requerida utilizando ciertos sensores, una posible prueba táctil podría involucrar
deslizar la herramienta sobre el objeto para capturar su forma en forma de imagen.
Alternativamente, en el caso de los grippers blandos, se podría crear una imagen
sensorial cuando se agarra el objeto. Sin embargo, cabe señalar que el gripper
seleccionado para este proyecto posee sensores limitados, capaces solo de adquirir
información de contacto en forma de evento y fuerza. Por tanto, los datos obtenidos
por cada medición serán parecidos a los mostrados en la Fig. 2.

Figure 2: Gráfico de las medidas de fuerzas de contacto una vez realizado el test
táctil en una botella vacía.

Una vez que se comprende el proceso de percepción de la información, los algo-
ritmos asumirán la responsabilidad de clasificar el objeto en función de su forma
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y dureza, utilizando indicaciones visuales y táctiles, respectivamente. La coordi-
nación entre estos algoritmos culminará en un algoritmo visión-táctil como el que
se representa esquemáticamente en la Fig. 3.

Figure 3: Diseño del algoritmo de clasificación de objetos.

Una vez establecida la coordinación de los sentidos, el siguiente paso conlleva en-
trenar y probar los algoritmos. Se realizan experimentos con varios objetos carac-
terizados por su forma y dureza, como botellas llenas y vacías. Si bien el conjunto
de datos para entrenar el Faster R-CNN se puede obtener de Internet, los datos de
percepción táctil deben obtenerse directamente del gripper. Por lo tanto, se debe
crear un conjunto de datos para cada objeto para permitir el análisis de la infor-
mación táctil. A continuación, se eligen los modelos de ML seleccionados: árboles
de decisión, K-Nearest Neighbour (KNN) y Support Vector Machine (SVM).

Una vez que se realizan el entrenamiento y las pruebas, se lleva a cabo un caso
de uso para verificar los resultados obtenidos. Estos resultados se muestran en la
Fig. 4.

Figure 4: Resultados del caso de uso de precisión en el algoritmo visión-táctil.
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La detección táctil de discrepancias fue evaluada inicialmente como un fracaso
cuando se evaluó de forma independiente. Sin embargo, al considerar el sistema
en su conjunto, se encontró que la detección de diferencias puede considerarse un
éxito potencial. El sistema demuestra una alta probabilidad de detectar y clasificar
correctamente objetos con lecturas de sensores diferentes al repetir el proceso de
verificación. Como resultado, la tasa de éxito general del algoritmo se calcula en
un 95%. Cabe destacar que el componente visual del algoritmo muestra una tasa
de fracaso más alta del 8.75% en comparación con el componente basado en tacto,
que tiene una tasa de fracaso del 5.7%.
En general, los hallazgos de la tesis destacan la implementación exitosa de un sis-
tema de clasificación de objetos utilizando entradas visuales y táctiles. El enfoque
visión-táctil superó al enfoque solo de visión y mostró promesas para aplicaciones
prácticas, especialmente en la industria alimentaria. Sin embargo, la refinación
adicional y la integración con sistemas robóticos son áreas potenciales para inves-
tigaciones futuras.
El informe de la tesis está estructurado en varios capítulos. El Capítulo 2 pro-
porciona una visión general del contexto, discutiendo la percepción humana y re-
visando enfoques anteriores en el campo. En el Capítulo 3, el enfoque se centra en
la teoría detrás de los algoritmos de clasificación para el reconocimiento de objetos
basado en visión y táctil. El Capítulo 4 entra en detalle sobre los métodos y her-
ramientas utilizadas en el proyecto, comenzando desde los requisitos y cubriendo
todo el proceso de implementación. El Capítulo 5 está dedicado al diseño de la
prueba táctil, incluyendo las métricas utilizadas, la recopilación y procesamiento
de datos, y la implementación de los algoritmos. También presenta los resultados
finales y el análisis dentro de un escenario específico de caso de uso. Los capítulos
restantes sirven como discusión y conclusión, resumiendo los logros del proyecto.
El informe incluye apéndices al final, que proporcionan información adicional para
complementar el contenido.
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Collaborating Entity: ICAI Universidad Pontificia Comillas.

Project summary
The report discusses the concept of multi-modal perception, which suggests that
humans rely on multiple senses, such as audiovisual, touch, and vision, to un-
derstand the environment. It highlights the interdependence between touch and
sight and emphasizes the significance of incorporating diverse sensory inputs for
decision-making processes. In industrial robotics, understanding robots’ percep-
tion capabilities becomes crucial as they lack innate abilities and rely on imple-
mented systems. The focus is on enhancing perception for fixed grasping robots
to improve quality, object localization, identification, and human safety. Object
classification poses challenges, especially when objects are similar but made of
different materials, and visual classification can be computationally expensive.

An investigation has been conducted into combining visual and tactile sensors to
improve object categorization. It raises several questions related to utilizing a hard
gripper for object classification. These questions include whether it is possible to
classify objects with the same appearance but different hardness, the potential
for significantly improved accuracy by combining vision and tactile data, and the
situations in which a protocol combining both senses would be beneficial for object
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classification.
The project’s goal is to develop a protocol that combines visual information from
a camera and tactile information from a gripper. The overarching idea is to con-
struct a classification model utilizing R-CNN and ML. The objective is to effec-
tively differentiate objects with similar visual characteristics but varying touch
characteristics through classification. The main research objectives are as follows:

• Design a tactile model capable of discerning between different levels of hard-
ness (soft and hard).

• Generate multiple ML models to determine the most accurate algorithm
among them.

• Evaluate the performance of glsrcnn when sensitive data is unknown and
compare it to the protocol’s output when combined with tactile perception.

• Verify that the selected model achieves precise classification across diverse
use case scenarios.

Figure 5: Picture of the laboratory output.

This project holds significance not only in terms of its theoretical contributions
but also through its practical experimentation conducted at the Autonomous Sys-
tems Laboratory at DTU (Technical University of Denmark). The experimental
setup, as depicted in Fig. 5, comprises a camera and a gripper equipped with
seven pressure sensors on each finger, functioning as vision and tactile sensors,
respectively.
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Considering the methodology for obtaining the classification algorithm, it is neces-
sary to study tactile classification separately, followed by visual classification, and
finally the integration of both. However, prior to this, it is essential to understand
the data acquisition process from the gripper.

In this given context, a tactile test refers to the process of extracting informa-
tion from an object using the gripper. The specific approach employed depends
on the characteristics of the gripper utilized. If it were feasible to gather all the
required information using certain sensors, a potential tactile test could involve
sliding the gripper across the object to capture its shape in the form of an image.
Alternatively, in the case of soft grippers, a sensory image could be created when
the object is grasped. However, it should be noted that the gripper selected for
this project possesses limited sensors, capable only of acquiring contact informa-
tion in the form of an event and force. Therefore, the data obtained from each
measurement will be similar to those shown in Fig. 6

Figure 6: Plot of contact forces measures once tactile test is performed on empty
bottle.

Once the process of information perception is comprehended, the algorithms will
assume the responsibility of classifying the object based on its shape and hardness,
using visual and tactile cues, respectively. The coordination between these algo-
rithms will culminate in a vision-tactile algorithm, which is depicted schematically
in the Fig. 7.

Once the coordination of the senses is established, the next step involves train-
ing and testing the algorithms. Experiments are conducted on various objects
characterized by their shape and hardness, such as full bottles and empty bottles.
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Figure 7: Design of the object classification algorithm.

While the dataset for training the Faster glsrcnn can be sourced from the internet,
the tactile sensing data must be obtained directly from the gripper. Therefore,
a dataset needs to be created for each object to enable analysis of the tactile in-
formation. Afterward, the selected glsml are chosen: decision trees, KNN and
SVM.
Once the training and tests are performed, a use case takes place in order to check
the results obtained. This is shown in the Fig. 8.

Figure 8: Accuracy use-case results on the vision-tactile algorithm.

The tactile-based detection of discrepancies was initially assessed as a failure when
evaluated independently. However, when considering the system as a whole, it was
found that the detection of mismatches can be deemed a potential success. The
system demonstrates a high likelihood of correctly detecting and classifying objects
with differing sensor readings upon repeating the verification process. As a result,
the overall success rate of the algorithm is calculated to be 95%. Notably, the visual
component of the algorithm exhibits a higher failure rate of 8.75% compared to
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the tactile-based component, which has a failure rate of 5.7%.
Overall, the thesis findings highlight the successful implementation of an object
classification system using both visual and tactile inputs. The vision-tactile ap-
proach outperformed the vision-only approach and showed promise for practical
applications, particularly in the food industry. However, further refinement and
integration with robotic systems are potential areas for future research.
The thesis report is structured into several chapters. Chapter 2 provides an
overview of the context, discussing human perception and reviewing previous ap-
proaches in the field. In Chapter 3, the focus is on the theory behind classification
algorithms for vision and tactile-based object recognition. Chapter 4 goes into
detail about the methods and tools employed in the project, starting from the
requirements and covering the entire implementation process. Chapter 5 is dedi-
cated to the design of the tactile test, including the metrics used, data collection
and processing, and the implementation of the algorithms. It also presents the
final results and analysis within a specific use case scenario. The remaining chap-
ters serve as a discussion and conclusion, summarizing the project’s achievements.
The report includes appendices at the end, which provide additional information
to complement the content.
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Chapter 1

Introduction

Several studies suggest that human perception can be multi-modal [1], meaning
that more than one sense participates in understanding the environment. Most
of the research for this multi-modal perception is done in the audiovisual scenario
[1], as there are various daily tasks where these two senses are intertwined; for
example when a friend is talking to another in a loud noise environment and it is
possible to interpret the sounds by reading the lips or when a calisthenics move
should be done just by following the beat of a song [2].

Furthermore, it has been established that the senses of touch and vision possess
a significant interdependence [3]. By incorporating both touch and visual sensory
input, the brain receives diverse information about the environment, allowing for
the integration of the most relevant information in decision-making processes.

In the context of industrial robotics, it is crucial to understand the background
of robots’ perception capabilities. Unlike humans, robots do not possess innate
perception abilities and must rely on implementations that have been developed
for various types of robots, such as fixed-base manipulators, collaborative robots
(cobots), mobile robots, and mobile manipulators [4]. The main focus of perception
enhancement for fixed grasping robots is to improve quality, accurately locate
objects, identify objects, and enhance human safety during the industrial process.

Object classification presents a significant challenge in the context of fixed grasping
robots operating in an industrial setting. The ability to classify objects is crucial
for detecting misplaced objects or products of poor quality. While significant re-
search has been conducted on visual object classification, there are scenarios where
visual discrimination is difficult, such as when objects are similar but constructed
from differing materials or hardness. Additionally, visual classification is computa-
tionally expensive and becomes increasingly so as the number of objects considered
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in the classification increases.

1.1 Problem statement
Investigation has been conducted regarding the combination of visual and tactile
sensors to enhance object categorization. However, when it comes to utilizing a
hard gripper for object classification, several queries arise:

• The human sense of touch usually helps us determine what kind of material
an object is made of. Would it be possible to classify different objects that
look the same into two different groups according to their hardness?

• As mentioned before, vision is sometimes enough for classifying objects, but
it might not be the most accurate way. Will the model be significantly more
accurate when we use both data from vision and tactile than just using vision?

• What are the situations in which a protocol that combines both vision and
tactile information to classify objects would be useful?

1.2 Motivation of the project, goals and methods
The aim of the project is to create a protocol that fusions both the vision in-
formation from the camera and the tactile information from the gripper. The
general idea is to create a classification model based on Convolutional Neural
Network (CNN) and ML. Objects with similar visual characteristics but distinct
touch characteristics, should be separated through classification. Among the main
research objectives are the following:

• Design a tactile model which is able to distinguish between different levels
of hardness (soft and hard).

• Create different models (ML) to find the most accurate algorithm among
them.

• Examine the performance of the R-CNN without knowing the sensitive data
and compare it to the output of the protocol when it is working together
with the tactile perception.

• Check that the selected model is capable of performing accurate classification
under different use case scenarios.

This project also aligns with sustainability goals as outlined by the Sustainable
Developments Goals (SDG) of 2020. Specifically, it actively contributes to two of
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the main goals, including goal 8: Decent Work and Economic Growth, as it seeks
to reduce manual labor and increase income. Additionally, it contributes to goal
9: Industry, Innovation, and Infrastructure, through its utilization of cutting-edge
algorithms and technologies in the research.
In the design chapter, more information will be provided in order to show the
methods used to achieve those goals.

1.3 Thesis overview
The structure of the thesis report is as follows:

• Chapter 2 gives the context overview by describing the human perception
and reviewing the previous approaches in the field.

• Chapter 3 focuses on the theory and the selected classification algorithms
for vision and tactile-based object recognition.

• Chapter 4 details the methods and tools used in this project, from the re-
quirements until the implementation.

• Chapter 5 presents the design of the tactile test, the metrics used, the data
collection and processing, and the implementation of the algorithms. It also
showcases the final results and analysis for a use case scenario.

• The final two chapters discuss and conclude the project achievements.
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Chapter 2

Literature review

2.1 Perception in humans
Humans have served as inspiration for the robotic industry in terms of perception.
Therefore, it is crucial to understand the behavior of the human body and its
perceptual abilities before explaining the approaches made in robot’s perception.
The project focuses on the touch and sight senses.
As humans, we count with different perceptual abilities that help getting informa-
tion from the environment, together with interacting with ourselves. These senses
take information thanks to the receptors, which are the sensory systems that de-
tect the world from the outside (exteroceptors), those that get data from internal
organs (interoceptors) and those in charge of detecting position and load (proprio-
ceptors) [5]. Both vision and touch are considered exterosenses. Their performance
to get information from the environment is different. Although vision does not re-
quire direct interaction with the environment, touch does. Most research on the
senses emphasizes the importance of visual acuity, but this dominance of vision is
socially and culturally reinforced, not a law of nature [6].
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Sight sense

Figure 2.1: Human visual system
schematic. Fig. from [7].

The visual interpretation of humans is
processed in the visual cortex, which re-
ceives, integrates, and processes visual in-
formation from the retinas [8]. Fig. 2.1
shows an explanatory image of the parts
of the human visual system. In the im-
age, information is taken (1), visual in-
formation is processed (2) information is
extracted and sent to V1 (primary vi-
sual cortex) and then to V2 until V5.
As this happens, the layers communicate
and give feedback to each other. Simul-
taneously, neurons in layers communicate
and get the missing information [7].

Touch sense

Figure 2.2: Touch Pathway of the ner-
vous system. Fig. from [9].

The touch perception is done through
the exteroceptors, neurons, and the so-
matosensory cortex. This last one men-
tioned, is responsible for transforming in-
formation from the exteroceptors into hu-
man body sensations [10]. Fig. 2.2 ex-
plains the touch pathway with the ner-
vous system. First-order neuron connects
exteroceptors with the dorsal column and
medulla. From there second order take
the information from the Medial lemnis-
cus until the thalamus. Third-order neu-
rons take the information from there to
the cerebral cortex [9].
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Figure 2.3: Classification and connec-
tion between tactile sensing and per-
ception.

Tactile sensing is divided into two modal-
ities: intrinsic and extrinsic tactile sens-
ing, with the respective physiological con-
cepts being kinesthetic (limb movement
and position, force perception [11]) and
cutaneous sensing (vibration, tempera-
ture and pain). Haptic perception refers
to perception based on cutaneous and
kinesthetic sensing. This perception is
required to extract information including
an object’s overall shape or hardness [12].

Thanks to the tactile sense, humans are
able to identify an object, its shape, temperature, roughness and hardness of the
material, etc.

2.2 Perception in robotics
Despite the advances in robotics today, robots used to have limited understanding
of the environment, which made them dangerous and limited. Perception has
played a crucial role in helping these machines understand the world and behave
more like humans.

Visual Perception
With vision and robot technology combined, intelligence and reliability are en-
hanced. The purpose of adding vision perception to a task varies depending on
the way it is included. For example, by using a moving camera or two or more
cameras at the same time we can create different 3D images of the environment.
This type of images are practical in cases where depth is needed. For instance,
they can be used to recreate a room or an object. Besides, 3D images can be used
in mobile robotics to orientate the machine with visual odometry and mapping
algorithms.

According to 2D images, gray-scale images are useful for object detection, while
the addition of RGB information improves the results on object classification and
identification.
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Tactile Perception
In these days, tactile sensing involves the use of multiple types of sensors in different
robotic tasks. In particular, manipulator robots focus on haptic perception, which
is the aspect of tactile sensing concerned with grasping an object. To this end,
various sensors are used for different tasks, such as:

Measure the temperature: in order to determine if another machinery/human
can safely handle the object.

Shape and texture: different sensors are used to gather this information. Some
approaches have been done with normal pressure sensors, describing this
tactile information as image pixel [13]. Soft grippers and dexterous robotic
hands are also suitable sensors for these tasks.

Sliding detection: to determine if the object grasp is still on position or moving.
This was previously accomplish by using an accelerometer [14].

2.3 Multi-sensing perception for multiobject clas-
sification

Previous studies have investigated various methods for object identification and
classification. Several of them used tactile sensors. For example, by using an under-
actuated robotic hand performing both single-exploratory and short-exploratory
movements [15]. Other research done in touch-sensitive fingers gripper, was based
on creating images for each finger and performing a K-means clustering [16]. As
an outcome, both systems were able to identify objects with different shapes and
materials.

Some of them used a more advanced tactile sensors such as a dexterous robotic
hand [17]. The approach done a few years ago also involved computer vision to
determine the material and shape of a specific ball. At the end of the article, the
authors discussed the potential for deep learning-based implementation to improve
the results.

Besides the type of tactile sensor used, the data collection process and the tactile
test performed to gather data can vary, with three general approaches to grasping:
single-grasping [15, 16, 18], short-exploratory grasping movements [15] and sliding
grasping [19, 20, 21].

Even though single-grasping is less precise, it is often the preferred method due
to its speediness, as demonstrated in [15]. However, combining it with another
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sense, such as vision, can result in noticeable improvements in the identification
accuracy.
Not many experiments have combined vision and tactile elements for their ap-
proach. However, those that have merged them have focused on different object
characteristics. For example, the approach explained in [13] tries to classify the
object according to shape, size and visual characteristics. However, another ex-
periment [21] defined the approach for textures and materials.

2.3.1 Object classification algorithms
Many projects have been carried out using a variety of algorithms to achieve dif-
ferent objectives with both the data obtained from cameras and the information
obtained from tactile sensors. Object classification using both tactile and visual
information is one of the tasks that has been tackled using these algorithms. Some
techniques use the algorithms separately and then combine the results.
If we focus on the methods for object identification in images in the context of
robotic manipulators, the most commonly used methods are usually 2D. On the
other hand, 3D techniques are typically employed in methods such as Simultane-
ous Localization And Mapping (SLAM) to create maps based on the information
collected by mobile robots, or to create a descriptive model of an object for further
analysis.
Nevertheless, paying attention to previous experiments, it is possible to highlight
different algorithms at the visual level. The Scale-Invariant Feature Transform
(SIFT) algorithm is one of the simplest ones. It only detects a clearly defined
object and find it in a image [22]. On the other hand, Artificial Neural Networks
(ANNs) are discarded in processes that need to work in real-time, as they are
particularly slow. In this regard, the most common options for object classifica-
tion are the CNNs. These neural networks reduce the dimensionality of images,
making them faster and more efficient. Besides, CNNs are unsupervised, so they
require less information to perform well. To achieve not just classification, but
also identification of the object in space, one needs to work with R-CNN. These
CNNs are able to not only extract features from the image to classify objects, but
also identify them within the image by searching for the correct bounding box.
Furthermore, when it comes to data interpretation of tactile sensors using the
single-grasp method, two techniques stand out. The first one involves analyzing
the sensor information and applying various ML techniques, such as KNN, trees,
SVM, boosted trees, ANN, etc. (referenced in [13, 15, 18, 19]) with the objective
of finding similarities and differences between objects. The other widely used
technique is creating a sensory map that is represented in an image format, which
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can then be analyzed using the image-based classification methods discussed earlier
(referenced in [16, 21]).
Although some previous experiments did the approach for each sense and then
fused them [13], there is at least one project where they use the fusion of both as
a method, as in [23]. In this approach, a neural network is implemented to fuse
information from both sensors in a single algorithm. The researchers created a
neural network model for the camera images and another one for the tactile map
images. Afterwards, they fused the results with another neural network, resulting
in a vector indicating the similarity of a tested object to the 26 classes of items
it had to classify. This algorithm can label the objects, but it does not have the
ability to identify a given object in space.
In the framework of a MSc thesis, the Graspian company, in collaboration with
DTU, built a gripper with two fingers and pressure sensors (tactile sensors). The
focus of Jacob Fiskaali’s MSc thesis was to integrate the pressure sensors into a
robotic loop [24].
The thesis project explained in this report implements a classification model that
uses both visual and tactile (pressure) information to classify objects with different
characteristics. The visual information is used to classify the shape of the objects,
and the pressure sensors, which are type of tactile sensor assembled on a rigid
gripper, are used to identify the hardness of the object. This approach, which relies
on bio-inspired algorithms utilizing both visual and pressure information, brings
the identification process closer to human performance, where multiple senses are
employed.
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Chapter 3

Theory

This chapter explains the theory behind the selected algorithms. This will help to
understand the later explanation of the implementation in software for both the
vision-based algorithm (Faster R-CNN) and the tactile-based algorithm, based on
ML (Decision trees, KNN and SVM).

3.1 Vision-based algorithm - Faster Region-Based
Convolutional Neural Network

Among the different eligible vision algorithms, the Faster R-CNN is chosen because
it is a fast algorithm that can identify where the object is located. This algorithm
is a CNN developed based on the indications in the 2015 paper: Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks [25]

This paper introduced the concept of Faster R-CNN and its functioning, and there
have been several implementations, with the most commonly used one being the
Pytorch implementation (currently in beta stage).

This algorithm is based on a previous algorithm called Fast R-CNN [26]. Both
of them belong to the R-CNN familly. The explanation diagram for the Faster
R-CNN is presented in Fig. 3.1. This section outlines the various parts of the
algorithm.

3.1.1 Convolutional Neural Network
This CNN is commonly referred to as the backbone and it is the most computa-
tionally intensive component of the algorithm. The input to the first layer is the
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Figure 3.1: Contents of the Faster R-CNN algorithm, from original paper [25].

image data and a filter or feature detector. The output of the final layer is a feature
map. The filter is a 2D array of weights that represents a portion of the image.
In this project, a 3x3 matrix is used since we are working with RGB images (one
dimension for each reference color). The filter is applied to small sections of the
image (as shown in Fig. 3.2) and the result is a feature map. It’s worth mention-
ing that after each intermediate convolutional layer, a ReLU activation function
is applied.

Different CNN have been tested in conjunction with the Faster R-CNN algorithm.
However, in this project, the chosen CNN is ResNet 50 (shown in Fig. 3.3).
Compared to other possible options (VGG16, VGG19), it is a CNN with fewer
parameters and reduces the dimension of the image faster in each of the layers
used. On the other hand, there are more advanced backbones, such as ResNet101,
which has double the number of layers. This makes the training more difficult and
the results more accurate, which makes sense to implement when the objects to
be identified are similar.
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Figure 3.2: Inside work of a convolutional layer.

Figure 3.3: Resnet 50 backbone algorithm.

3.1.2 Region proposal network

The Region Proposal Network (RPN) is a CNN and it is a new component in
the Faster R-CNN algorithm compared to Fast R-CNN. With the feature map as
an input, the RPN aims to produce a set of rectangular object proposals, known
as anchors, each with an objectness score. To generate these region proposals,
a small network is slid over the final shared convolutional layer’s feature maps,
resulting in multiple sliding windows. The dimensions of each sliding window are
reduced based on the backbone CNN used. An anchor is centered at the analysed
sliding window and it is assigned a predetermined scale and aspect ratio. output
will provide the calculated bounding box according to its coordinates and a vector
indicating whether the box represents the background or an object. Before using
the RPN in the detection task, it needs to be trained. The anchor is given a positive
or negative value based on its Intersection-over-Union (IoU) with the ground truth
bounding boxes.
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Figure 3.4: Region Proposal Network for Faster R-CNN [25].

3.1.3 Region of Interest (RoI) Pooling and Loss function
This layer of the algorithm is responsible for merging the results obtained by Fast-
R-CNN with the outputs of the RPN to make it more efficient. Once the proposed
regions have been obtained, these are combined with the feature map to identify
the object with a softmax classifier and select the bounding box. Fig. 3.5 explains
the last step in more detail. The classification and regression are performed using
a loss function. This loss function, which incorporates the RPN classification loss,
RPN regression loss, and Fast-R-CNN classification and regression loss, is applied
to the output of the Fast-R-CNN branch. The loss is calculated for each proposal,
and the gradients are backpropagated through the network to update the model’s
parameters. For further information on loss calculation, refer to Appendix B.

Traditionally, the Mean Average Precision (mAP) is the evaluation metric used
in object detection tasks for Faster R-CNN. It calculates the average precision of
the model across all object classes. It is a way to measure the model’s ability to
correctly identify objects while avoiding false positives. It takes into account both
precision and recall of the model, which are important indicators of the model’s
performance. mAP provides a single number summary of the model’s performance
and it can be used to compare different models or track the performance of a model
over time.

3.2 Tactile-based algorithm - Machine Learning
In this project, the output of the tactile test is a vector of 14 positions, each indi-
cating the contact force measured by each of the sensors of the gripper. Regarding
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Figure 3.5: Faster R-CNN algorithm extended explanation and example.

this, it has been determined that the best approach would be to implement ML al-
gorithms. Among the various ML algorithms available, it is important to mention
the two main categories:

Supervised: Here, a training dataset is labeled with the expected class or out-
come for each row of data.

Unsupervised: In this case, there is no prior information about the outcome,
and the algorithm attempts to group the data into clusters for better under-
standing.

Moreover, supervised ML relies on using previous data to predict the results,
making it the preferred option for this project. Therefore, among the many possible
algorithms, three of them have been selected for this project and are explained in
the following sections.

3.2.1 Decision Tree
The idea of using a Decision Tree for classification is to predict a discrete output
label yi for observation i based on features xi [27]. The goal is to build a training
model that can predict the class or value of the target variable by learning simple
decision rules inferred from prior data (training data).

This algorithm starts from the root, which is referenced to all data contemplated
for the training. From this features, a decision is taken according to the values of
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the different variables, where the dataset is split in two or more nodes depending
on the possible values of a certain input variable. Fig. 3.6 shows the different
terminology of nodes after splitting.

Decision nodes are those that are split in different nodes.

Terminal nodes are those that are not split again. This can happen because of
two reasons: there is just one class in this node or there is a limitation on
depth so the algorithm doesn’t get too complex.

Figure 3.6: Decision tree simple graph.

The algorithm has an iterative procedure. On each iteration of the algorithm, it
goes through the attribute of the set and calculates impurity. Impurity defines the
percentage of mix classes in the set being processed. The meaning of having an
impurity close to 0 is a better split class. There are many ways of calculating the
impurity: entropy, Gini index (just for binary split), class error, etc. Besides of
this case, just entropy is explained because is the selected one for this project.

Entropy =
C∑

i=1

−pi ∗ log2 pi

Being pi the amount of values of a certain class among the total data in a node.

In order to work with continuous input variables, the split is performed looking for
the smallest entropy when selecting a specific input and changing its split value.
Then, the smallest entropy calculated among all the input variables, would be the
one that will perform the split.
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3.2.2 K-Nearest Neighbour
KNN is an instance-based ML algorithm type, meaning that the algorithm does
not explicitly learn a model. Instead, it memorises training instances that are
used as a "knowledge base" for the prediction phase. It essentially classify values
by looking for the "most similar" (by closeness) data points learned in the training
stage (see seven steps to create your ML) and making guesses of new points based
on that classification. This method merely looks at the observations nearest to
the one it is trying to predict and classifies the Point Of Interest (POI) based on
the majority of the surrounding data.
To explain this algorithm, it could be broken down into 3 steps:

• Calculate the distance between the item to be classified and the rest of the
items in the training dataset. The measure used for calculating the distance
is a parameter to define in this algorithm.

• Select the "k" closest items (with a smaller distance, depending on the func-
tion used). When the k is bigger, the algorithm is less restricted and less
overfitted.

• Perform a "majority vote" among the k items: those of a class/label that
dominate will decide their final ranking.

(a) Subset of a dataset
where only two features
are consider.

(b) Illustration of the
KNN of the black cross de-
fined in a). The circle de-
termines the included data
points for determining the
class.

(c) KNN classification
boundary example. As K
increases, the boundary
becomes more smooth.

Figure 3.7: KNN example for explanation [27].
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3.2.3 Support Vector Machine

Figure 3.8: SVM graphic example
for not easy to separate data.

SVM is a model-based machine learning algo-
rithm that separates sample points in space
into two classes as widely as possible by means
of a hyperplane separator. The X-dimensional
plane is defined as the vector between the two
closest points of the two classes, known as
the support vector. When new samples are
mapped to this model, they can be classified
into one of the two classes based on the spaces
they belong to. SVM can also map data to
a space with multiple dimensions, even more
than three.
To select the best separator, the SVM algo-
rithm chooses the boundary that maximizes
the distance to the closest elements of each class. Different boundary types can
be used depending on the data distribution, such as linear, Gaussian, polynomial,
etc. Fig. 3.8 shows a brief explanation on how the separation is done in linear
way.

Principal Component Analysis
Principal Component Analysis (PCA) is a method of simplifying large datasets by
transforming the original set of features into a new set of features that capture
the most variance in the data. This process reduces the number of features while
preserving the information that is most important for analysis. The result is a
set of features that are uncorrelated and more interpretable, making it easier to
visualize patterns in the data.
PCA can also be used in conjunction with SVM, as it can improve the accuracy
of the SVM model by simplifying the dataset and reducing noise in the data.
Additionally, PCA can help to visualize high dimensional data, making it easier
to understand the structure of the data and interpret the results of SVM. By
simplifying the dataset and reducing noise, PCA can lead to more robust and
accurate SVM models, making it an important tool for data analysis and modeling.
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Chapter 4

Methods and Tools

The project aims to develop an algorithm that utilizes information from a camera
and touch sensors to identify an object. The object is considered to be "identified"
when the algorithm can recognize its general category (e.g. bottle) and state (e.g.
empty) through the combination of both visual and tactile information. The use
of the tactile sensor enhances the object classification compared to using vision
alone.
The goal of the project is to validate the results obtained from the vision algorithm
using the information received from the tactile sensor.

4.1 Setup of the scene
The experiment takes place in the DTU electrical laboratory. The image in Fig.
4.1 shows a corner view of the room and a schematic representation of the setup.
The setup consists of a camera acting as a visual sensor and a Gripper serving as
a tactile sensor.
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(a) Picture of the laboratory output.

(b) Schematic representation of the setup

Figure 4.1: Setup of the project.

4.2 Requirements

The project aims to develop an algorithm that fuses information from a camera
and touch sensors to identify objects and their states in real-time. The following
sections outline the requirements for the gripper, camera, vision-based algorithm,
tactile-based algorithm and software used in the project. The ultimate goal is to
obtain a reliable and accurate algorithm that can classify objects based on both
visual and tactile information.
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Gripper requirements
• The pressure sensors of the fingers must maintain relatively stable answers no

matter the time passed by and the number of times the gripper is performed.

• Test done by the gripper must be able to detect sensitive objects, like food,
and act over them without changing their shape or state (not squeezing
them).

Camera requirements
• Able to get images where the objects can be classified also by the human

eye.

• Get images in real-time.

• The camera has to work correctly with the usual light working conditions of
the area.

Vision-based algorithm requirements
• The algorithm must be trained without any economic cost, from a GPU at

the university.

• Identify the objects positioned on the right side of the conveyor, even if there
is more than one.

Tactile-based algorithm requirements
• Get the model, run the gripper test for tactile information, apply the model

and get the output in real-time.

• Get more than 3 working models in order to compare them.

• Able to identify that the object tested on the gripper is not the same as the
one seen on camera.

• Accuracy over 85% to consider it valid.

Software
• Python libraries related to ML and Faster R-CNN.

• Python libraries related to camera.
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• All the programs must run together since the camera detects an object on
the conveyor until this object is classified with the two main attributes.

• The output of this algorithm must show also if there is a discrepancy between
the two sensors (camera and pressure sensors).

22



Vision-tactile object classification through Faster R-CNN and Machine Learning algorithms for
robotic grasping

4.3 Tools

4.3.1 Camera

Figure 4.2: Elements of RealSense
D435 Camera.

This camera is an Intel RealSense Depth
Camera D435, as shown in Fig. 4.2. The
main features of the device are depicted
in the figure. Despite the presence of mul-
tiple cameras, only the right camera is
used in this project. Thus, the informa-
tion obtained from the environment does
not take into account depth vision, which
can be obtained by using two cameras
placed at a constant distance, such as the
right and left cameras. The camera is
connected to the computer through a 2-
meter-long cable with USB C input for
the camera and USB 3.1 input for the processor element. This arrangement may
be a limiting factor for real-time image acquisition.

To access the camera, the camera control software must be installed to obtain the
device identification number. In addition, the Python library pyrealsense must be
installed to work with the vision classification models.

4.3.2 Gripper
The gripper was developed as part of a master’s thesis by a former master’s student
in collaboration with a company named Graspian[24]. The student worked on
various aspects of the gripper:

• Test the pressure sensors.

• Calibrate the sensors.

• Design the hardware circuit for the gripper.

• Transform the output information from the sensors to understand it as a
contact force perceived by the sensors.

• Build an interface based on Robot Operating System (ROS) to obtain the
responses from the sensors and send some commands for the gripper to
actuate the motors in a specific way.

Fig. 4.3 shows the components of the gripper and a screenshot of the interface.
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Figure 4.3: Elements and interface of gripper from Graspian.

It is important to understand the software that underlies the gripper to work with
it. The gripper uses a Teensyduino, a programmable microcontroller, as its main
board. The programming language used for the Teensyduino is Arduino. For its
implementation, it is necessary to install the compatible Arduino software on the
computer. The Teensyduino also has a "Serial.print()" function that allows access
to the information inside the microcontroller and a "Serial.write()" function that
enables sending information to the gripper to perform a specific action.
Additionally, when using Visual Studio Code (VSCode), it is necessary to down-
load a PlatformIO (PIO) extension. This extension is a professional development
environment that supports different operating systems, including Teensy.
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4.3.3 Computer
The project is developed using their own Lenovo MT 81YH IdeaPad 5 14IIL05 com-
puter for this project. The computer specifications include an Intel(R) Core(TM)
i7-1065G7 CPU running at 1.30GHz with 1498 MHz and 4 physical and 8 logical
processors. The operating system used is Ubuntu 20.04 and the code editor used
is Visual Studio Code (VSCode). The main programming languages used in the
project are C++ and Python.

Robot Franka Emika
Although the manipulator’s arm is beyond the scope of the intention of this project,
it is relevant to mention it as it appears in the image obtained from the camera.
Also, it could be used in future works.

Conveyor
This element is a black rubber conveyor on which the different objects to clas-
sify are. This conveyor is the reference scene in the image. Only those objects
positioned in this area are considered objects to classify.
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Chapter 5

Methodology and Results

5.1 Tactile test design

Figure 5.1: Different types of contact-
level data that can be extracted from
sensor-level tactile signals are illustrated.
Figure inspired on [28].

There are different methods for gaining
knowledge of an object through tactile
interaction. In the field of robotics, the
goal is to approximate human percep-
tion of actions performed by robots in
the most appropriate way possible. To
understand the previous approaches, it
is necessary to visualize the various
types of information that can be ob-
tained through tactile contact, as de-
picted in Fig. 5.1, where an outline
represents this information.

In this context, a tactile test is the ac-
tion of using the gripper to get the in-
formation from the object. There are
different approaches depending on the
characteristics of the gripper used. If it
was possible to obtain all this informa-
tion with some sensors, a possible tac-
tile test would be, for example, to slide
the gripper over the object to create an
image of its shape. Another possibility, in the case of soft grippers, would be to
create a sensory image when the object is grasp. However, the gripper selected
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for this project has limited sensors. These are only capable of getting contact
information in the form of an event and a force. Fig. 5.2 shows the chosen test for
the project.

Figure 5.2: Gripper test description.

The data obtained from a single object can vary greatly depending on its position
during the test. For example, if the object is positioned on the outer edge of the
gripper, the pressure sensors located deeper within the gripper may not detect any
contact force. Conversely, if the object is positioned closer to the center of the
gripper, all sensors are more likely to register a contact force.

5.2 Vision-tactile-based algorithm
The implementation used seeks to exploit the characteristics of the sensors. As the
camera is positioned outside the working area, it can classify the objects before
working with the touch sensor. Therefore, it is decided to proceed with a linear
implementation, as shown in the Fig. 5.3.

Figure 5.3: Design of the object classification algorithm.

Regarding the operation and characteristics obtained by the sensors, the camera
is in charge of finding the object type (related to the object’s shape). For example,
if it is a full plastic bottle, the Faster R-CNN should detect that there is a bottle
in position. The signal is then sent indicating that an object has been found.
Information on the type of object found is also sent. It is at this point that the
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gripper is moved to the position of the object. This movement and calibration of
the robot are out of the scope of this project, but it is considered that this task
could be done automatically in the future. Therefore, after the gripper is placed
in the correct position and performs the tactile test, we get the second feature.
Following the example, the result obtained would be, f.e. "full". The touch test
aims to obtain a more specific tactile feature. This characteristic is not appreciable
by the vision-based algorithm. Fig. 5.4 shows two pictures of a full an an empty
plastic bottle. This objects are not easy to differentiate by a picture.

(a) Full bottle. (b) Empty bottle.

Figure 5.4: Images of the two different bottles.

Additionally, to enhance the self-diagnosing capabilities of the algorithm, certain
implementations have been made. As this is an experimental test and the external
conditions of the environment may vary, the possibility of a discrepancy between
the camera and touch sensor detections is taken into account. Furthermore, the
camera may not detect the object once it has been placed on the conveyor. The
idea would be to implement a loop for the system to work until it detects an object.

5.3 Metrics and experiments for algorithms
The metrics used will be based on accuracy. That means that it will give a per-
centage of the number of times that the algorithm has performed meeting the
requirements out of the total amount of times that it was tested. Nevertheless, as
the project develops two algorithms and the implementation of both together, the
experiment and the succeed requirements are different for each.

To carry out these experiments, 6 objects are selected. These objects are shown in
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the Table 5.1 Objects with different physical characteristics (bottle, ball, can) and
discriminating hardness characteristics (full-empty, hard-soft) have been chosen.
The experiments will perform the test 20 times for each of the objects.

Table 5.1: Selected objects for the experiments.

Bottle Can Ball

Hard

Soft

Faster R-CNN requirements and experiment.
The experiment will start the camera, look for an object an identify it. For this
experiment, the test is consider to be a success if:

• The mAP value is over 70 %.

• The test takes less than 10 seconds.

• The object is detected in 3 or less tries.
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ML requirements and experiment.
The experiment will be divided in two parts: first giving the right type of object
detected to the algorithm (14 time per object) and then giving a wrong one (6
times per object). For this experiment, the test is consider to be a success if:

• The test takes less than 10 seconds.

• In case of sending the corresponding type of object, the object is detected
correctly in the first try.

• In case of sending the a different type of object, the object is detected as
"something else".

Thanks to this experiment, the best ML algorithm will be chosen for the experi-
ment with all the algorithm.

Vision-tactile-based algorithm requirements and experiment
The whole implementation explained in 5.3 is performed for each of the objects.
For this experiment, the test is consider to be a success if:

• The object is detected by the camera in 3 or less tries.

• The test takes less than 30 seconds since the command is sent.

• In case of disagreement between tactile and visual sensors, the object is
detected correctly when is tested again.

5.4 Data preparation
Once the objects to be worked with are selected, data is collected about these same
objects.

Visual data preparation
The visual data preparation is divided in two process. The first step is to group
100 images of each of the objects (bottle, can and ball). This data has to be large
and diverse in order to get more accurate results and less biased model. Once the
images are selected it is necessary to mark the box and label each of the images.
In this case, this task was done thanks to the Roboflow app. The advantages of
this app are that it allows to label the images, add the corresponding boxes and
perform different transformations on the images in order to have a not over-fitted
model. Once the dataset is created, it is necessary to download the data in the
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required form, in this case in .xml file. In Fig. 5.5 it is shown an example of the
.xml file. Each of the images used has a correspondant .xml file with the label
information.

Figure 5.5: Labeled data and labeled data file.

Tactile data preparation
It is necessary to perform the tactile test (Fig. 5.2) on the different objects to get
the tactile dataset. This test is performed 100 times for each of them. The results
of each of these give rise to a graph similar to the Fig. 5.6. This plot represents the
contact force measured by each of the pressure sensors throughout the experiment.
Every 300 ms new measurement is taken.

Figure 5.6: Plot of contact forces measures once tactile test is performed on empty
bottle.

The data must be simplified to work with tactile data. The present form of the
data is a matrix. This matrix counts with 14 columns and as many rows as the
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amount of data taken over time. It is decided to simplify this form by choosing
as representative data the row whose values add up to the highest number. This
vector will be the data representing an object. This data cleaning is explained in
Fig. 5.7.

Figure 5.7: Cleaning tactile data descriptive diagram.

The training of the tactile-based algorithm could be done in different ways. One
choice could be to train the algorithms with the experimental data of all objects.
This option would lead to more errors, as it would be necessary to classify ac-
cording to object type and secondary features, resulting in more clusters. Another
option would be to use the information obtained from the vision-based algorithm.
Moreover, only the tactile data of the objects classified as that object type could
be used. That option does not allow checking if there is a discrepancy between
what the tactile sensor and the camera understand, so another approach is sought.

Therefore, it is decided to create a different dataset for each object type. The
dataset for each object type is divided into three classes. For example, if the first
algorithm detects a bottle, a dataset will be created with the following classes:
full bottle, empty bottle, and "Something else" (other object type). The first two
classes will contain all of the previously obtained data (100 data vectors per class),
and the "Something else" class will consist of a set of data from other previously
tested objects (the same number of data vectors for each object). This dataset
aims to have the same weight as the others, so it is created with 100 data vectors
to avoid overfitting in the system and to ensure balance.

5.5 Implementation
This section explains the implementation carried out to develop the project. This
part is divided into three components: file overview, libraries used and selection
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and training of the algorithms.

Files overview
The outline below shows the structure of the files used for this project. Each
of them is described next to their names.The files are uploaded in Github. Just
some of them that are explained here are not uploaded due to large memory
requirements.

object_classification_vision_tactile/
|- .gitignore large files are ignored on github,

but will appear for the explanation
|- README.md explanation on how to work with the

code and possible requirements
|- object_classification.py main code, conection with gripper

and camera
|- Camera/
| |- __init__.py
| |- change_xml.ipynb change the name of the object on xml

files for labeling images
| |- connect_realsense.py test that the camera is connected

and cable working
| |- connect_to_hpc.txt text file to explain the steps to

connect to HPC
| |- results_camera/
| | |- __init__.py
| | |- model.pth saved model from the training (not

uploaded on Github)
| | |- inference.py connect to camera, get image, get

the image classification
| | |- models/
| | | |- __init__.py
| | | |-
create_fasterrcnn_model.py

description of number of classes

| | | |-
fasterrcnn_resnet50_fpn.py

description of the model

| | |- utils/
| | | |- __init__py
| | | |- annotations.py change the image and add the

information from the classification,
thus class and mAP

| | | |- general.py training oriented
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| | | |- transforms.py change image from camera to the
right format for the classification

|
|- Gripper/
| |- GraspianGripperSoftware/ interface to work with Gripper -

developed by Jacob Fiskaali
| |- gripper-software/ PIO software to implement on

teensyboard. Deeper explanation
on C

| |- object_classification/
| | |- __init__.py
| | |- cleaning/ used in not real time to get the

dataset
| | |- Classifiers/
| | | |- KNN.py
| | | |- SVM.py
| | | |- tree_classifier.py
| | | |- import_serial.py send command to perform the test and

returns the vector value

The connection between the explained files for object-classification by vision-
tactile-based algorithm is shown in Fig. 5.8

Figure 5.8: Diagram of connection between files for object-classification.
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Python Libraries
Since multiple algorithms are used for this project, it is necessary to download
different libraries to work with Python. Moreover, when working with elements
such as the camera and the gripper, it is necessary to have special libraries to
communicate with it. The main used libraries for this project are shown and
explain below.

pyrealsense2 it is the python library to connect with the cammera. It is devel-
oped by Intel in order to work with the camera that they designed.

cv2 also known as opencv for python. This is a computer vision library. In this
project this is used to show the images obtained from the camera and modify
them by adding the results from the Faster R-CNN model.

serial this is the library to connect with serial port. The projects needs this one
for the connection with the gripper. Through this library, commands are
sent to the Gripper to perform in a specific way.

pandas it is the most known library for data analysis and manipulation. This
projects takes the advantage of using it to clean the tactile data in not real
time. Furthermore, it is also used to access the tactile dataset to train the
ML algorithms.

numpy work with arrays. In the project, it is used for the processing of tac-
tile data, as well as for processing the results from the visual classification
algorithm.

Pytorch: torchvision torch library for computer vision modeling. In specific,
oriented to image classification modeling. It is used to work with the prede-
fined model for faster_rcnn_resnet50_fpn.

albumentations image increasing the size and diversity of labeled trainings.

wandb this library is an API to connect to the web Weights & Biases. This web
allows to save the deep learning models that are trained on GPUs.

sklearn tool for predictive data analysis. Decission trees, K-Nearest Neighbours
and Support Vector Machines are algorithms that are already predefine by
this library.

Others some other libraries used in this project: matplotlib, jupyter, Pillow,
pyYAML, scipy, tensorboard, torchinfo, xml...
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Selection and training of the algorithms
Tactile-based algorithms
The selected algorithms to implement are previously explained in Section 3.2. But
in addition to picking the algorithms, we have to choose parameters.

In the case of the Decision Tree,the method used to calculate impurity of nodes is
entropy. It is decided that there should not be a minimum number of samples to
separate the nodes. Thus, a complex decision tree.

In the case of KNN, the distance used to find the closest point should be taken as a
parameter. In the implementation, three different distances will be used, depicted
in Fig. 5.9.

Figure 5.9: Equations to calculate the three proposed distances for KNN.

For the last ML algorithm SVM, three options are selected to take the lines that
will separate the data (linear, cubic and quadratic).

There are different models depending on the information given by the class ob-
tained by vision. Since the tactile models are quick to create, it is decided to train
these in real-time. To select the most appropiate algorithm, the idea is to get the
percentage of the acccuracy when it is performing with the correct type of object
given and than calculate the percentage when it is working with the wrong type
given. The total accuracy would be the mean of those two values.

It is important to have in mind that the algorithms are design attending to a
dataset of 3 classes: hard object type, soft object type and another object type.

Vision-based algorithms
Although only the Faster R-CNN is used for the classification by vision, there are
different parameters to specify for its training:
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• Number of epochs: number times that the learning algorithm will work
through the entire training dataset.

• Number of batches: number of samples to work through before updating the
internal model parameters.

Although the backbone and the RPN could have been trained, it was decided to use
a pre-trained model as a starting point. These neural networks are big enough and
the type of project developed suggests starting from pre-trained models. Nonethe-
less, this training is computationally expensive. Therefore, in this project the
decision was to connect to the DTU’s High Power Computers (HPCs). A HPC is
a technology that uses clusters of powerful processors working in parallel to pro-
cess massive multidimensional data sets (big data) and solve complex problems
at extremely high speeds. In addition, they typically run on GPUs rather than
CPUs, which makes this training faster. The Fig. 5.10 shows how the connection
is made in this case and how the model is obtained.

Figure 5.10: Training of Faster R-CNN through connection with HPC.

Every time that it is needed to add new objects to be identified by the neural
network, it is necessary to re-train it.
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Chapter 6

Results

Having previously outlined the format in which the tests are conducted, the soft-
ware structure of the project, and the experiments that were performed, we proceed
to present the results.

6.1 Test on laboratory objects

Faster R-CNN results
To train the algorithms, images of cans, bottles, and balls are utilized. The di-
mensions of the images are also a parameter that is set by the user. In this case,
the same images (only with different size) are used to create three models:

Algorithm 64_100_32 Image size: 64x64, Number of epochs: 100, Batch size:
32

Algorithm 640_100_16 Image size: 640x640, Number of epochs: 100, Batch
size: 16

Algorithm 640_200_32 Image size: 640x640, Number of epochs: 200, Batch
size: 32

Once the model is trained and implemented, it is tested with different images from
the Internet, distinguishing between can, ball and bottle. The results are shown
in Fig. 6.1
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Figure 6.1: Faster-RCNN accuracy results on test images for the three trained
models.

After this results are shown, apparently it seems to work better for the model
that was tested with larger images and a higher number of batches and epochs.
However we perform another test but now with the objects from the lab. The
image test described in 5.3 is performed, and the results are shown in Table 6.1.
Image results of each modle are shown in Appendix E.4.

Table 6.1: Faster R-CNN models performance on laboratory images.

Algorithm Score MTP (s) mAP

64_100_32 98.33% 3.222 91.78%
640_100_16 100.00% 3.137 97.75%
640_200_32 100.00% 3.149 97.95%

The results indicate that using larger images improves the accuracy of the algo-
rithm. Furthermore, increasing the number of training epochs and batches im-
proves the algorithm’s performance but increases the computational load during
training. Despite this, the response time of the algorithm remains unchanged.
Results for each of the tested objects are shown in Appendix E.1.
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Machine Learning results
Upon implementation of the algorithms, an evaluation of their accuracy was con-
ducted as previously outlined in 5.5. The results of this evaluation, utilizing ob-
jects in a laboratory setting, are presented in the accompanying Fig. 6.2. The
algorithms depicted in the image are:

Tree Decision tree with entropy
KNN1 KNN with euclidean distance.
KNN2 KNN with cosine distance.
KNN3 KNN with mahalanobis dist.
SVM1 SVM with linear metric.
SVM2 SVM with quadratic metric.
SVM3 SVM with cubic metric.

Figure 6.2: Accuracy results for Machine Learning algorithms.
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Figure 6.3: PCA exp. variance.

As the results demonstrate, the KNN1 al-
gorithm, which uses a KNN approach with
Euclidean distance as its distance metric,
was the most successful. It was observed
that the SVM algorithm performed signifi-
cantly worse in comparison. This is due to
the fact that SVM is typically used in two
or three dimensions, and working with four-
teen dimensions makes data division more
complex. As a result, the possibility of im-
plementing PCA on the data was consid-
ered, however, after analyzing the explained
variance, this option was ultimately dismissed (as depicted in the Fig. 6.3). The
figure illustrates three plots that pertain to the different datasets used to evaluate
the algorithm’s performance.

Vision-tactile-based algorithm results

Once the most appropriate models and algorithms for each sense were selected,
the results of the combined algorithm were evaluated. Fig. 6.4 shows the results
distinguishing between three different outputs in accuracy: success, failure and
discrepancy. For the purpose of this project, we consider discrepancy as a successful
result, because the system understand that the object is not define if there is
discrepancy between the visual and the tactile-based algorithms. This would mean
that both visual and tactile test must be performed again in order to identify the
object correctly. The results obtained indicate that the system reduces errors in

Figure 6.4: Accuracy test results on the vision-tactile-based algorithm.
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vision due to the use of touch. As cases of discrepancy will be re-analyzed, it can
be considered that the system as a whole functions better due to the inclusion of
the tactile sensor. Additionally, the characteristics that are not obtained through
the vision algorithm have a small percentage of errors (1.5%). If a more specific
analysis of the errors obtained in the experiments due to the vision and tactile
algorithms is desired, a more detailed explanation can be found in the Appendix
E.
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6.2 Use case
To validate the algorithm’s performance in an industrial setting, a use case in-
volving the testing of tomatoes was proposed. This exercise was a reduced way
of validating the project. Moreover, this experiment tested the selected algorithm
ability of classifying tomatoes as being in good or bad condition. The ripeness
of tomato classification was carried out solely by the tactile sensor. This means
that even if the tomato looked ripped, it would be just classified as tomato by the
camera. The aim of this experiment was to test that the system was able to detect
the state of the tomato independently of its appearance.

Because of using an object that was not included in the test, the former visual
and tactile datasets (Table 5.1) had to be enlarged. We added tomato images
as visual data and previously taken information by the gripper as tactile data.
Therefore, the dataset used for Faster R-CNN training now included 400 images
and the dataset for the tactile-algorithm counted with 800 tactile data from eight
different objects. Table 6.2 shows the tomatoes used for the experiment and the
results of a tactile-data collecting test performed on them. As can be seen in the
images, these tomatoes had different tactile characteristics, but very similar visual
appearance.

Table 6.2: Selected added objects for use case experiment and contact force results
when the test is applied on them.

Tomato

Hard

Soft
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Faster R-CNN results

The earlier chosen model (640_200_32) needed to be retrained because it included
an object that was not considered before. Once the model has been trained, it
is validated by the laboratory objects. The results obtained on this occasion are
shown in the Fig. 6.5

Figure 6.5: Accuracy use-case results on the vision-based algorithm.

As can be observed, even though the algorithm has been trained in the same way,
when considering two visually similar objects (tomatoes and hard ball, which are
both round and red), the algorithm was not able to distinguish them correctly.
In some cases, the algorithm did not detect the object. This last happen because
when the mAP is less than 70%, the classification given by the algorithm was not
considered.

Machine Learning results

Since the algorithm selected during the test is the KNN with Euclidean distance,
we proceeded to validate through the use-case with the same algorithm. The
results are shown in Fig. 6.6
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Figure 6.6: Accuracy use-case results on the tactile-based algorithm.

This test show a similar accuracy than the one obtained with the test done without
considering the tomatoes in the dataset (94.3% against 93.41% that it was before).
Nevertheless, according to the results, when the vision fails on misclassifying the
target and the tactile is not detecting discrepancy, it results in a tactile-based
algorithm failure, which should have detected discrepancy. In this use-case, this
percentage is much higher than the test’s (almost 90% before and 1.27%/5.7%
= 77.7% now). This happened because the tactile test sometimes confused the
response of the soft-ball with tomatoes and the other way around. Despite this
misclassification, the success rate of the tactile-based algorithm classification is
achieved with a decent accuracy (94.3%).

Vision-tactile-based algorithm results
The performance can be summarized with the diagram in Fig. 6.7

Figure 6.7: Accuracy use-case results on the vision-tactile algorithm.
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In the previous test, when the tactile-based detection of discrepancy was assessed
by itself, it was deemed a failure. However, upon evaluating the system as an
integrated whole, it was determined that the detection of mismatch by the system
can be considered a potential success. This is because if the system were to repeat
the verification process, it is likely that the objects where the sensors differed would
be correctly detected and classified. Therefore, the overall algorithm’s success rate
is calculated to be 95%. It is important to note that the visual component of
the algorithm has a higher failure rate at 8.75%, compared to the tactile-based
component which has a failure rate of 5.7%.
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Chapter 7

Discussion

This chapter presents a discussion about the results obtained throughout the thesis.
It is done by covering the aspects that have functioned correctly and pointing out
the limitations that have arisen in the development of the project. This chapter
describes the potential uses of the implementation. Moreover. it comments on
possible solutions to the flaws that regard hardware elements (camera and gripper),
and the design and usage of the algorithms.

7.1 Impact of vision-tactile based object classifi-
cation

The project work consisted on implementing and testing different algorithms for
object classification. The aim was to find the most appropriate solution toward
a future robotic grasping task. The final solution consists of two object classifi-
cation algorithms: Faster R-CNN and KNN that process vision and tactile input,
respectively. The tests showed that the system accurately identify four types of
objects and two object hardness classes.

The integration of both vision and tactile sensing is beneficial in multiple scenarios.
Including a tactile-based object classification to the traditional vision-based object
classification enhance the data. This implementation has three main advantages.

The first one is the ability to adapt to an environment of disparate items. In this
sense, the classification aims to identify the objects and their characteristics. The
results of the experiments showed that the system employed in this project can
distinguish between different types of items, with an accuracy of 96.25%. In addi-
tion, it discriminates among two types of hardness, thus giving extra information
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that is not available from the camera.

The second main advantage is the possibility of choosing how to grasp the object
depending on shape and material characteristics. Although we did not test the
following objective, after performing the vision-based algorithm, we could send
the type of object information to the robot, for example, a bottle. With this first
attribute characteristic (bottle), some pre-defined shape characteristics would be
sent to the robot in order to position the gripper in the right place to perform
tactile test. Once the tactile test is performed, the tactile-based algorithm could
get the hardness results. With this results, we could send to the gripper the force
that it would have to exert to grasp the object without losing or damaging it.

The third advantage is to be able to identify that the vision-based algorithm has
not gotten false positive results. If the objects to be classified have a similar shape,
it is possible that the camera gives the wrong results. In our selected use case,
the results were worse than they could have been because of using two different
round objects (tomatoes and balls). The camera was sometimes confused, but the
tactile-based algorithm allowed to determine that the grasped object belonged to
a different category than the one indicated by the vision-based algorithm.

Therefore, thanks to such a system, a robot could handle various items (hard or
soft) in a more precise and compliant manner. Because of this reason, the system
could be applicable to different industrial sectors, for example (recycling plants,
food industry).

However, when it comes to handling identical objects, this type of arrangement
does not seem to have much in its favor. This system involves an economic and
computational overhead that can sometimes be solved more efficiently. A good
example where it would not be useful would be industries manufacturing identical
and not very fragile objects. In this case, the way of picking up the object and
identifying whether or not it is defective can be done by selecting specific gripper
for the industry, like 3D printed grippers 1.

7.1.1 Possible applications
Based on the understanding of the pros and cons of the system, the following
features can be identified as necessary for any potential application to make the
developed system practical and usable.

• Application counts with different objects according to its shape.

• Application needs information of the hardness of the object
1https://www.ennomotive.com/robot-grippers-industrial-applications/
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• Application needs to understand which object is the target to leave it in a
determined position.

According to this features, one application could be food sorting. In the food
sector, products have many different shapes. It could classify the food into good or
bad condition depending on its hardness. In the use case development, the system
is able to distinguish between two tomatoes with similar physical characteristics,
but one of which has the properties of overripe food. According to the results
from the test, when vision-based algorithm correctly identify the tomatoes, the
tactile-based algorithm can confuse it with a tennis ball, but is never confused
distinguishing between the tomatoes hardness (See Table F.1). In the same way,
handling different vegetables could be carried out in a realistic scenario. This could
be done by depositing them in the determined area. It is a good idea to use a
fixed gripper for this tasks, as one of the main advantages of using IT instead of a
soft gripper is precision tasks.

Picking up unknown objects is one of the most complicated handling tasks, specif-
ically if this task is performed outdoors, where spatial conditions may change.
Therefore, a second application could be the recycling sector. The carried out
tests through this project have validated the identification of objects such as cans
and bottles. For this purpose, it would be possible to identify such items and de-
termine whether they are full or empty to recycle or store for later consumption.

Finally, a third application could be in contexts where the camera can not be
placed in the workspace and the gripper is able to access these areas. A good
example would be an oven in which the manipulator arm could to work but the
camera could not withstand such extreme temperatures. Therefore, thanks to the
tactile sensor, we could determine whether the gripped object is the one previously
seen by the camera or if there is a delay or malfunction of the system.

7.2 Gripper performance and limitations
Thanks to the experiments, it has been observed that the gripper is a simple
element in terms of handling and control.It is possible to send force commands
to be applied to the motors, with the aim of picking up objects with a specific
force. The tactile sensors attached to the gripper provide simple measurements.
Since the readings are straightforward, good results have been obtained even using
simple algorithms. This information is enough to classify the same type of object
into two classes according to its hardness and to indicate when the camera has
failed to classify it.

Despite the fact that this element has worked and fulfilled its objective, this project
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rules out the possibility of industrial use, as two main problems have been detected
during the development of the project. Firstly, the sensor measurements have
changed their values over time, due to a more intensively used and changes in
temperature. Accordingly, the results obtained by the subsequent algorithm were
not trusted. The only way to rely them would be to create the data set shortly
before the experiment and under similar conditions. On top of that, during the
tests, the gripper broke due to a motor disengaged on two occasions from the gear,
slowing down the course of the project.

In addition, if we wished to create more classes based on the hardness presented
in the objects, this gripper would not have been able to distinguish between cases.
To improve the outcome, a possible experiment would be to use a soft-gripper.
The soft nature of the gripper allows the adaptation of the grasping to the object
shape. Otherwise, defining a map of the contact forces received from each part
of the object could allow a fusion of deep learning by images between vision and
tactile senses [23].

7.3 Camera performance and limitations
At the beginning of the project, we tried a camera without an RGB module (Blue-
Fox3). The connection to this camera was quite complicated, and the images were
not clear enough to work with classification. There were complications with the
set of this camera because it was looking at the objects from the top, meaning
that the objects were hard to identify (See G.3). Moreover, we could not change
the position because another work was using this camera. Therefore, the decision
was to change the camera and work with the one finally implemented, the Intel
Depth camera. Understanding the operation of this camera was a much simpler
process, as it had direct indications from the company that created it (Intel Re-
alSense Depth Camera). In addition, this camera does have the RGB module,
which is useful in classification problems. On the other hand, the obtained images
from this camera are of good quality, and the camera calibrates itself automati-
cally. Moreover, regardless of the time of day and independently of the light in the
laboratory, the images change only slightly so that the obtained data is robust.

However, this camera presents some disadvantages. Images with more information
are more susceptible in real-time, thus resulting in an increased communication
time with the PC. That is the reason why, with a 5-meter cable connection, the
system started to crash. However, we could solve this issue by using a shorter
wire.

In order to get more benefits for the project, we could have exploited even more
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the Intel depth camera. Because of the two incorporated cameras, we could have
worked with depth and made a deep learning model using a dataset that includes
this information (RGBD) [29]. The objective of analyzing depth would be to deter-
mine at what distance the objects we want to work with should be. This distance
measure would help to avoid identifying objects belonging to the background as
objects we are interested in this.

Another possible improvement for the project would be to re-design the camera
position within the workspace. This change is linked to the future implementation
of a project with the robot because, from the current location, it is difficult to es-
timate the position to which the robot should go. Adding depth information could
help to find a more accurate arrangement. A better option to get the information
for the robot would be to have the camera above the conveyor. However, this
option would not be feasible because the objects would be difficult to recognize
from this perspective.

7.4 General issues and further improvements
One of the main problems faced in this project is the training of the Faster R-
CNN. As this has been done with the university’s HPCs, it is not always possible
to allocate memory to run the batch. This problem has delayed the tests. In
addition, due to the computational load involved, it has not been possible to
train the model with a batch size of 64, which would probably have improved
performance.

On the other hand, a laptop via the CPU drives the system. According to previous
experiments, the processing of a deep learning model on a CPU is approximately
three times slower than if it were processed on a GPU 2. The support of a GPU
would improve the performance of the implementation and bring it closer to real-
time application.

The used tactile-based algorithms are easy and work successfully. Therefore, with
the sensors currently available and for the purpose of separating into two classes
according to the object hardness, handling a neural network is ruled out. The
reason for doing this is that it would increase the computational load and process-
ing time unnecessarily. In case of modifying the scope and dividing the classes
according to more than two types of hardness, this could be a suitable option.

The thesis work presented in this report has been carried out with the intention
of merging it with the work developed at the same time by Nils Meile, a Master’s

2https://deci.ai/blog/close-gap-cpu-performance-gpu-deep-learning-models/
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student of Autonomous Systems at DTU. His project consisted of the development
of a grasping control that rely on fused vision and tactile sensing. A camera is
placed above the workspace, so the robot is able to move towards and pick up a
target. In fact, the camera is only used to detect an object and then the tactile
sensing allows the gripper to determine when it grasps or not the object. Both
sensing clues are fused to determine an optimal grasping based on the object
position and measured pressure. The object classification provided by this thesis
would allow a more intelligent control grasping in the future.
Previous research [23] has suggested combining visual and tactile information
through neural networks. However, the advantage of the current project, which
incorporates a controlled robot, is that visual information is obtained in advance.
Therefore, merging both senses is unnecessary in this setup as it would negate the
benefit of obtaining the images beforehand. The purpose of obtaining these images
is to determine the object’s coordinates while the classification is in progress. This
approach would be beneficial if the camera was placed on the manipulator rather
than in the current setup.
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Chapter 8

Conclusion

In this master thesis project, an object classification system based on shape and
object hardness was implemented. To classify the shape, a Faster R-CNN algo-
rithm was employed by providing visual sensing input while ML methods were
applied to distinguish the hardness by means of tactile sensing input. With this
aim, we used an RGB camera and a gripper endowed with pressure sensors.

Besides the object classification algorithms, we designed an appropriate test to
obtain the tactile information. We opted for a single grasping test. This test stops
when it detects an item and applies an extra force until it acquires the contact force
of the object. The gripper applies the pressure without exceeding a determined
deformation nor force. The test results format is a simple vector that allows the
modeling of not complicated ML algorithms that can be used to interpret the
hardness.

Regarding the tactile recognition, we implemented seven ML algorithms. After
calculating their accuracy, the KNN with Euclidean distance was selected as the
most fitting algorithm. Additionally, throughout the experiments, we discovered
that the employed pressure sensors are not reliable, given that the measure is not
replicable in a constant scenario. Hence, we conclude that they are not capable of
being used in a non-academic context.

The Faster R-CNN has been trained at HPCs of the university. A different training
was carried out by changing the image dataset and the quality of the data. The best
training performance was obtained with the dataset comprising 640x640 pictures
with applied image transformations (brightness, size, rotations, etc.). When the
algorithm was tested, it was found to be accurate (91.25%) but also slow (around
3 s to classify and identify). The algorithm can not be used in real-time, at least
not if it is run from a CPU. In addition, bringing in two types of visually similar
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objects leads to a large amount of error compared to having classes that are very
different in shape.
The vision-tactile implementation has shown slightly better results than using only
vision (96.25% compared to 91.25% accuracy from vision-based algorithm). The
tactile-based algorithm gives better results than vision-based algorithm (94.3%)
and is able to identify hardness differences, especially when dealing with an object
of similar shape characteristics. All the implementation could performed itera-
tively even when a discrepancy between vision-based and tactile-based algorithms
is detected.
Finally, the use case has shown that the system is suitable for the food sector. The
validation results showed that the accuracy is good at identifying vegetables and
identifying their current state condition. Moreover, a proper tactile test procedure
ensure not to damage the product.
The conclusion of this thesis suggests that future work could involve integrating
this project with another one to control a robot for grasping and releasing objects
based on their characteristics. This has already been explored by a previous mas-
ter’s thesis student, Nils Meile, who utilized a top-view camera and the Panda
robot from the lab. A potential solution could be to position the camera at an
angle that enables object classification while also recognizing the object’s position
and orientation.
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Appendix A

Sustainability

The Sustainable Development Goals (SDGs), also known as the Global Goals, are
a set of 17 interconnected goals adopted by the United Nations in 2015. They
serve as a blueprint for achieving a more sustainable and equitable world by 2030.
The SDGs address a wide range of social, economic, and environmental challenges
faced by countries worldwide.

The goals cover a broad spectrum of issues, including eradicating poverty and
hunger, ensuring quality education and healthcare, achieving gender equality, pro-
moting clean energy and sustainable cities, combating climate change, protecting
ecosystems and biodiversity, and fostering peaceful and inclusive societies.

This project aligns with multiple SDGs, primarily SDG 9: Industry, Innovation,
and Infrastructure, and SDG 12: Responsible Consumption and Production. Ad-
ditionally, it has implications for SDG 8: Decent Work and Economic Growth.

SDG 9 focuses on promoting sustainable industrialization, innovation, and infras-
tructure. The development of a vision-tactile object classification system con-
tributes to this goal by advancing the field of robotics and automation. By lever-
aging machine learning algorithms and computer vision techniques, the system
enhances the capabilities of robots, leading to increased efficiency and produc-
tivity in industries. This technology can support the development of advanced
manufacturing processes, helping create sustainable and resilient infrastructure.

SDG 12 emphasizes responsible consumption and production patterns. The vision-
tactile object classification system contributes to this goal by optimizing the robotic
grasping process. Accurate object classification enables robots to handle items
more effectively, reducing errors, damages, and waste in production and logistics
operations. By improving the precision of grasping, this technology promotes sus-

61



Vision-tactile object classification through Faster R-CNN and Machine Learning algorithms for
robotic grasping

tainable consumption by minimizing resource wastage and product losses during
manufacturing and supply chains.
SDG 8 aims to promote sustained, inclusive, and sustainable economic growth.
The implementation of a vision-tactile object classification system creates oppor-
tunities for job growth and skills development. It can lead to the creation of new
employment opportunities in robotics and automation industries, as well as related
fields such as machine learning and computer vision. This technology empowers
workers by augmenting their abilities and enabling them to focus on higher-level
tasks, leading to improved productivity and economic growth.
Overall, this project demonstrates the potential to address multiple SDG simulta-
neously by leveraging technological advancements to enhance industrial processes,
promote responsible consumption, and foster economic growth. By aligning with
the SDGs, it contributes to the broader agenda of sustainable development and
helps create a more sustainable and prosperous future for all.
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Appendix B

Faster R-CNN Loss function

In this section, we shall discuss the loss function utilized in the Faster R-CNN al-
gorithm.The algorithm utilizes a multi-task loss function which is made up of four
components: RPN classification loss (LRPN

cls ), RPN regression loss (LRPN
reg ), Fast R-

CNN classification loss (LFast−RCNN
cls ) and Fast-RCNN regression loss (LFast−RCNN

reg ).
The RPN classification loss is calculated as the cross-entropy loss between pre-
dicted objectness scores and true objectness labels. The RPN regression loss is
calculated as the smooth L1 loss between predicted and true bounding box co-
ordinates. Similarly, the Fast R-CNN classification loss is also calculated as the
cross-entropy loss between predicted class labels and true class labels, and the Fast
R-CNN regression loss is calculated as the smooth L1 loss between predicted and
true bounding box coordinates. The formulas for each of the loss are shown below.

L = LRPN
cls + LRPN

reg + LFast−RCNN
cls + LFast−RCNN

reg (B.1)

LRPN
cls = − 1

Ncls

Ncls∑

i

(yi ∗ log(pi) + (1− yi) ∗ log(1− pi)) (B.2)

Where Ncls is the number of region proposals, yi is the true objectness label and
pi is the predicted objectness score.

LFast−RCNN
cls = − 1

Ncls

Ncls∑

i

(yi ∗ log(pi) + (1− yi) ∗ log(1− pi)) (B.3)
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Where Ncls is the number of region proposals, yi is the true class label and pi is
the predicted class label.

LRPN
reg = smoothL1(ti − t∗i ) (B.4)

LFast−RCNN
reg = smoothL1(ti − t∗i ) (B.5)

Where ti is the true bounding box coordinates and t∗i is the predicted bounding
box coordinates. The smooth L1 loss is defined as:

smoothL1(x) =

{
0.5x2 if |x| < 1

|x|− 0.5 otherwise
(B.6)
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Appendix C

Gripper-software code description

Below is given a short description of each file or class file-pair in within the project.
This description was developed by Jacob Fiskaali during his project development
at Graspian company.

Gripper-software/
|- archive/ old unused code
|- include/
| |-
Publihser(deprecated)/

old user interface - still used by some tests

| |-
UserCom(deprechated)/

old user interface - still used by some tests

| |- UserInterface/
| | |- Publishing/
| | | |- publishers.h implementation of data that can be published to

user
| | | |- pubsub.h class defining the subscription service
| | |- UserCommands/
| | | |-
control_actions.h

implementation of user commands regarding force
control

| | | |- motor_actions.h implementation of user commands regarding motor
control

| | | |-
optical_actions.h

implementation of user commands regarding
optical sensor

| | | |-
tactile_actions.h

implementation of user commands regarding
tactile sensor

| |-
tactile_calibration.h

methods used for calibrating tactile sensors
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| |- tactile_perception.h methods used for computing higher-level tactile
information

|
|- lib/
| |- Executor/ wrapper for Teensy-thread
| |- ForceControl/ abstraction class for force controller
| |- ForceControllers/ implementations of force controller
| | |-
DetectionController/

controller used for detecting objects within
gripper

| | |- PID_Controller/ controller used for applying constant grip
force

| |- Hardware/ definitions of hardware
| |- Led/ class for controlling Tennsy led
| |- PushButton/ class for reading push button
| |- RS485_Module/ class for reading/writing through RS485 module
| |- TactilePerception/ methods used for computing higher-level tactile

information
| |- UserInput/
| | |- Listener class for logging user input
| | |- Parser class for parsing strings to user command

arguments
| | |- UserAction.h abstraction class for user commands
| | |- variant.h storage for variant variable types
| |- UserStream/
| | |-
serial_definitions.h

definitions regarding serial port and baud rate

| | |- UserStream warpper class for writing annotated outputs
|
|- src/
| |- main/ files included when selcting env:main
| | |- gripper_actions methods defining higher-level gripper

executions
| | |- main.cpp file containing main methods setup() and loop()
| |- robotbrag/ files included when selcting env:robotbrag
| |- tests/ files included when selcting div. test

environments
|
|- extra_script.py script executed after upload.
|- platformio.ini file describing environments and build options

Libraries/ hardware-related libraries
|- Fingers/ definition of different finger designs
| |- F2221/ finger with 7 taxels (unused)
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| |- F2221_2/ finger with 7 taxels (env:tactile_tests)
| |- F2221_demo/ finger with 7 taxels (unused)
| |- OPT_demo/ finger w. 7 taxels + opt. sensor (env:main /

env:robotbrag)
| |- OPT_v1/ finger w. 7 taxels + opt. mouse sensor

(env:optical_tests)
| |- PlusFingers_v1/ finger with 4 taxels
|- MotorControl/
| |- MC3001_Interface definition regarding communication with MC3001

board
| |- Motor high-level class for controlling the motor
| |- MotorCom class handling communication with MC3001 board
| |- MotorSpecs.h motor-specific constants
|- OpticalSensor_mouse/ optical sensor class based on optical mouse
|- OpticalSensor_PAA5100/ optical sensor class based on PAA5100 module

(current)
| |- Bitcraze_PMW3901_mod modified arduino library (unused)
| |- OpticalSensor used implmentation
|- Streaming/ arduino library for using ’«’ operator
|- TactileCircuit/
| |- Circuit_2x7 class regarding tactile meassuring
| |- CircuitBoard definition of circuit version and signal order
| |-
hw_analog_definitions.h

analog definitions related to Teensy

| |- SamplingCircuit abstraction class for tactile circuit
|- TactileSensor/
| |- RowSensor_impl.h implementation of tactile sensor template class
| |- RowSensor.h template class definition for tactile sensor

with n taxels
| |- SingleSensor class for single taxel (unused)
| |-
TactileSensorInterface.h

abstraction class for tactile sensor

Note: if the internal wiring of taxels are changed within the finger, the order should
be updated in the file libraries/Fingers/OPT_demo/fingers.cpp.
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Appendix D

Tactile description on tested
objects
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Figure D.1: Classification and connection between tactile sensing and perception.
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Appendix E

Testing accuracy on the different
objects

Faster R-CNN results

Figure E.1: 64_10_32 al-
gorithm.

Figure E.2: 640_100_16
algorithm.

Figure E.3: 640_200_32
algorithm.

Figure E.4: Bottle classification by using three different models of Faster R-CNN.
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Table E.1: Results of test on objects from the setup.

64_100_32 640_100_16 640_200_32
Objects Acc. MTP mAP Acc. MTP mAP Acc. MTP mAP

Full bottle 100% 3.28 91.58% 100% 3.22 95.42% 100% 3.08 99.02%
Empty bottle 100% 3.21 93.64% 100% 3.14 98.76% 100% 3.09 98.98%
Full can 100% 3.30 89.30% 100% 3.23 99.13% 100% 3.26 97.74%
Empty can 90% 3.14 87.42% 100% 3.07 99.73% 100% 3.18 98.96%
Hard ball 100% 3.21 97.43% 100% 3.08 95.09% 100% 3.10 96.09%
Soft ball 100% 3.20 91.29% 100% 3.08 98.35% 100% 3.17 96.91%

Average 98% 3.22 91.78% 100% 3.14 97.75% 100% 3.15 97.95%

ML results

Table E.2: ML. Training performance.

Objects Tree KNN1 KNN2 KNN3 SVM1 SVM2 SVM3

Full bottle 95.0% 100.0% 91.7% 94.1% 100.0% 87.8% 88.2%
Empty bottle 100.0% 100.0% 96.4% 100.0% 100.0% 100.0% 100.0%

Full can 96.8% 97.1% 100.0% 100.0% 96.8% 97.0% 95.0%
Empty can 88.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Hard ball 91.7% 100.0% 100.0% 94.3% 100.0% 97.1% 100.0%
Soft ball 82.1% 87.9% 74.1% 92.3% 75.9% 79.3% 100.0%

Something else 89.0% 89.3% 84.6% 89.9% 71.8% 77.0% 45.6%
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Vision-tactile-based algorithm results from test

Figure E.5: Results on visual test
with selected model (640_200_32).

Figure E.6: Results on tactile test
with selected algorithm (KNN1).

Figure E.7: Independent test results for the two algorithms.

73



Vision-tactile object classification through Faster R-CNN and Machine Learning algorithms for
robotic grasping

Ta
bl

e
E.

3:
G

lo
ba

la
lg

or
ith

m
te

st
pe

rfo
rm

an
ce

.

O
bj

ec
t

Vi
su

al
Ta

ct
ile

Vi
su

al
fa

ile
d

Vi
su

al
su

cc
-

Su
cc

.
VF

ND
Ca

us
e

Su
cc

.
VD

VT
F

TF
TD

Ca
us

e

Fu
ll

bo
tt

le
20

-
-

19
-

-
-

1
(T

D
)T

ac
t.

So
m

.E
lse

Em
pt

y
bo

tt
le

20
-

-
19

-
-

1
-

(T
F)

D
ct

ed
.a

sF
B

Fu
ll

ca
n

20
-

-
20

-
-

-
-

Em
pt

y
ca

n
18

-
2

(N
D

)N
ot

dc
te

d.
18

-
-

-
-

(N
D

)N
ot

dc
te

d.

Ha
rd

ba
ll

19
1

-
(V

F)
D

ct
ed

.c
an

19
1

-
-

-
(V

D
)D

isc
.

So
ft

ba
ll

20
-

-
20

-
-

-
-

74



Appendix F

Use case accuracy results on the
different objects

Vision-tactile-based algorithm results from use case
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Appendix G

Others

Tactile test on other objects
Before selecting the objects, the gripper tested other objects. As can be seen in
Fig. G.1 and Fig. G.2 some objects where discarded because with this gripper
and the approach made with ML algorithms it was hard to get good results. The
behaviour of the empty bottle is really similar to the half-full bottle. It happened
the same with the two types of tennis balls, one completely new and one that had
lost some pressure already.

Figure G.1: Response of three
different bottles for tactile test.

Figure G.2: Response of three
different balls for tactile test.
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BlueFox3 image results

Figure G.3: Image obtained from BlueFox3 camera at the lab.
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