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Abstract. We classify all solution triples with k-Fibonacci components
to the equation 22 + y% + 2% = 3zyz + m, where m is a positive integer
and £ > 2. As a result, for m = 8, we have the Markoff triples with
Pell components (F2(2), F2(2n), F2(2n + 2)), for n > 1. For all other
m there exists at most one such ordered triple, except when k = 3,
a is odd, b is even and b > a + 3, where (F3(a), F3(b), F3(a + b)) and
(F3(a+1),F3(b— 1), F5(a + b)) share the same m.
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1. Introduction

In the realm of number theory, Markoff m-triples represent an interesting
area of exploration. These triples are positive integer solutions to the Markoff
m-equation

22 4+ 9% + 2% = 3zyz +m, (1.1)

where m is a positive integer. The case m = 0 corresponds to the original
equation studied by Markoff [1,2], where it was proved that all the solution
triples are distributed in a unique tree. Some of its branches are interesting
families of numbers: Fibonacci, Pell, etc. Many authors studied generaliza-
tions of this equation [3-5] and noticed that, depending on m, there could
exist one, multiple trees or none at all. In particular, in [5] it is proved that the
number of trees, for every m > 0, is equal to the number of Markoff m-triples
(z,y, z) that are minimal, that is to say, those that satisfy the inequality

z > 3zy. (1.2)

In this paper, we study Markoff m-triples with k-Fibonacci components,
i.e. solutions of the Markoff m-equation (1.1), such that all its components
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(2,408,2378)
(408,2378,2910670)

(2,70,408)
(70,85678,17991972)
(70,408,85678) <
(408,85678,104869302)
(2,2,12) — (2,12,70)
(12,90578,3258290)
(12,2518,90578)
(2518,90578,684226200)
(12,70,2518)

(70,528768,111038762)
(70,2518,528768) <
(2518,528768,3994313402)

Figure 1. Beginning of the Markoff 8-tree with minimal
triple (2,2,12). The sequence of non-minimal 8-Markoff
triples with 2-Fibonacci components (Pell components) is
represented in bold

are k-Fibonacci numbers. These numbers are defined recursively for every
positive integer k as follows

Fi(0) =0
Fu(1) =1 (1.3)
Fr(n) =kFr(n—1) 4 Fp(n —2), Vn>2.

When k = 1, the sequence corresponds to the classic Fibonacci numbers, and
for k = 2, it yields Pell numbers. Some particular cases of Markoff m-triples
with k-Fibonacci components have already been studied: (k = 1, m = 0),
was studied in [6]; (k = 2, m = 0), was examined in [7]; (k > 1, m = 0), was
treated in [8]; the case m = 0, with Lucas sequences in [9,10] and, finally, the
case (k =1, m > 0) was dealt with in [11]. Because of this, henceforth, we
will assume that m > 0 and k > 2.

In this work, we classify all Markoff m-triples with k-Fibonacci com-
ponents, dividing our analysis first into non-minimal triples and then into
minimal ones. Specifically, our main results are the following.

Theorem 1.1. Every non-minimal Markoff m-triple with k-Fibonacci compo-
nents and m > 0 is a Markoff 8-triple of the form (F»(2), F2(2n), F»(2n+2)),
forn > 2.

In particular, the non-minimal Markoff m-triples with k-Fibonacci com-
ponents are situated on the upper branch of the 8-tree with minimal triple
(2,2,12). The triples in this branch are composed of Pell numbers, as shown
in Fig. 1.

Theorem 1.2. If m > 0 admits a minimal Markoff m-triple with k-Fibonacci
components, then it is unique, except for k = 3 and all pairs of triples

(F3(a), F53(b), F5(a + b)), (F3(a + 1), F5(b — 1), F3(a 4+ b)), for a odd and b
even with b > a + 3.
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The paper is structured as follows. Section 2 provides certain identities
and inequalities satisfied by k-Fibonacci numbers which will be useful in
the next sections. Although most of them are well known [12-14], we have
included proofs for some of them for the sake of completeness. In Sect. 3,
we prove Theorem 1.1 and in Sect. 4, Theorem 1.2. The strategy to obtain
uniqueness in minimal Markoff m-triples (Fj(a), Fj (), Fr(c)) except in the
case k = 3,¢c = a + b,a odd, b even and b > a + 3 involves proving that
any pair of such triples which share the same m must have the same third
component ¢, and the sum a + b should be constant (see Lemmas 4.4 and
4.6). These two lemmas, in turn, follow from Lemma 4.1, which computes a
lower bound for the m associated with an m-triple (Fy(a), Fi(b), Fr(c)) in
terms of k and c.

2. Some Preliminary Results on k-Fibonacci Numbers

For any kK > 0 and n > 0 the n-th term of the sequence of k-Fibonacci
numbers, defined in Eq. (1.3), can be obtained using Binet’s formula
ap —ap
Fi(n) = -k 2.1
) = S (21)
where oy and &y, are the roots of the characteristic polynomial of the recur-
rence o’ — ka —1 =0 and Dj, = ay, — @&;,. Concretely,

) JE2
ak:7k+ 2k+4, O_zkiik 2k+4, Dk:ak—&k:\/m.
The above formula is well known; for a proof the reader may consult Theorem
7.4 of [13]. It is a consequence of the fact that any k-Fibonacci number is
defined by recurrence relation (1.3) and it is a solution of the corresponding
second-order finite difference equation. Notice that o, = —1. In particular,
for k =1, a; = ¢ and D; = v/5, we have the classical Binet’s formula for the
Fibonacci numbers, where ¢ represents the Golden Ratio.

Lemma 2.1 (Generalization of Vajda’s Identity for k-Fibonacci numbers).
For any positive numbers i, j, k,

Fi(n+i)Fr(n+7) — Fp(n)Er(n+1i+7) = (=1)"F (i) Fr(5).

Proof. Multiplying the left hand side by D,% and using Binet’s formula (2.1)
and the fact that aiay = —1 yields

DR (F(n+ i) Fp(n+j) — Fr(n)Fu(n+i+5)) = (ap " —apti)(ap™’ — al ™)
_ (O‘Z _ &2)(a’g+i+j _ O—leriJrj) _ ain+i+j _ (_l)na};&i _ (_l)nazai + C_Yin+i+j_
ainJriJrj + (_l)na2+j + (_l)no—[;:rj _ ain+i+j

= (—1)"(a}, — a})(af, — &) = D} (—1)"Fr (i) Fr(4)) -
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Corollary 2.2. The following identities hold for any integers a,b,n >1:
Frp(a+b) = Fy(a+ 1)F(b) + Fi(a)Fi(b—1)
Fr(a) < %Fk(a+ 1)
Fi(a)Fy(b) < Fr(a+b—1)
2
(D’Ocagne’s identity) (—1)*Fi,(b— a) = Fj(b)Fy(a+ 1) — Fi(b+ 1)Fj.(a)

(Catalan’s identity) Fy(n)? = Fe(n 4+ 7)Fx(n —7) + (=1)" " Fi(r)?
(Simson’s identity) Fy(n)? = Fp(n+ 1)Fi(n —1) — (=1)™.

(2.2)
(2.3)
(24)
Fr(a+b—1) < Fy(a)Fy(b) <1+ —) (2.5)
(2.6)
(2.7)
(2.8)

Moreover, the following equalities hold:
(1) The equality in (2.3) is only attained if a = 1.
(2) The equality in (2.4) is only attained if a =1 or b= 1.
(3) The equality in (2.5) is only attained if a = b = 2.

Proof. For (2.2), take n =1,i=a and j + 1 = b in the previous lemma.
For (2.3), we have

Fr(a+1) =kFi(a) + Fr(a—1) > kFy(a)

and equality is only attained if Fy(a — 1) =0, i.e., if a = 1.
For (2.4), substitute a by a — 1 in identity (2.2). Then

Fk(a +b— 1) = Fk(a)Fk(b) + Fk(a — 1)Fk(b — 1) > Fk(a)Fk(b)

Equality is only attained if Fiy(a —1) =0 or Fp(b—1) =0, ie.,ifa =1 or
b=1.
For (2.5), substitute a by a — 1 in identity (2.2). Then

Fk(a +b— 1) = Fk(a)Fk(b) + Fk(a — 1)Fk(b — 1) < Fk(a)Fk(b) (1 + ];) .
Equality is only attained if Fj(a — 1) = $Fj(a) and Fp(b— 1) = £ Fx(b),
which only happens if a = b = 2.

For the D’Ocagne identity (2.6), take n = a, i = b—a, j = 1 in the
previous lemma.

For Catalan’s identity (2.7), take n = n —r, i = j = r in the previous
lemma.

Finally, for the Simson identity (2.8), take » = 1 in the Catalan identity
(2.7). O

Lemma 2.3. For integers k > 1 and N > 0,
Z Fr(n ka(N)Fk(N +1).

Proof. We will use induction to prove the result. For NV = 0, the identity is
true because Fi(0) = 0. Assuming that the result holds for some N, we will
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prove it for N + 1. We begin with the following equation
1 1
%Fk(N +1)Fp(N +2) = %Fk(N +1)(kFy(N + 1) + Fx(N))

= Fp(N +1)* + %Fk(N)Fk(N +1).

And, by the induction hypothesis, we have
1 N N+1
Fp(N +1)% + ZF(N)F(N +1) = Fy (N + 12+ Fe(n)? = > Fi(n)*,
n=0 n=0

which completes the proof. O
Lemma 2.4. If k >4 and n > 1, then 4F(2n — 2) < Fy(n)?.

Proof. For n = 1, the inequality becomes 0 = 4F},(0) < Fi(1) = 1, hence the
result holds. Assume that n > 2. Taking a = b = n — 1 in equation (2.2), and
then multiplying by four, we obtain

4F,(2n — 2) = 4F,(n — 1)(F(n) + Fe(n — 2)). (2.9)

If £ > 5, then 4F;(n — 1) < 4/5F(n) and Fy(n —2) < 1/4Fk(n). Combining
both inequalities, we get

4Fy(n — 1)(Fr(n) + Fr(n —2)) < F(n)2.

The above inequality and (2.9) prove the lemma for k > 5. In the case k = 4,
using again (2.9), we have

4F4(2n —2) = 4F4(n — 1)(Fa(n) + Fu(n - 2))
= (Fi(n) = Fi(n — 2)) (Fa(n) + Fa(n — 2)) = Fi(n)? — Fi(n - 2)> < Fi(n)?,
which proves the result. O
Lemma 2.5. Let a,b,c > 1. Then
Fy(c) > 3F5(a)F5(b) if and only if ¢ > a+b+1 or (a,b,c) = (2,2,4),
(2.10)
and
Fy(c) > 3F(a)Fy(b) if and only if ¢ > a+b, for allk > 3. (2.11)
Moreover, equality in (2.10) holds when k = 2 and (a,b,c¢) = (2,2,4), and
equality in (2.11) holds when k =3 and (a,b,c) = (1,1,2).
Proof. We first prove (2.10). By identity (2.2), we have that
Fryla+b+1)=Fy(a+1)Fy(b+ 1) + Fy(a)Fs(b) = (2F(a) + Fa(a — 1)) (2F5(b)
(2.12)
+ Fy(b—1)) + Fa(a)Fa(b) > (2% 4+ 1) Fy(a)Fa(b) > 3Fy(a)Fy(b).
On the other hand,
Fy(a+b)  Fy(a+1)F5(b) + Fa(a)Fa(b—1)  Fy(a+1) N Fr(b— 1)'

Fy(a)F(b) Fy(a)Fy(b) - Fy(a) Fy(b)
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It is known that successive quotients of Pell numbers Fy(n + 1)/Fy(n) form

an oscillating sequence converging to as, where the sequence of even terms

is decreasing and the sequence of odd terms is increasing. As a consequence,

the maximum of Fy(a + 1)/Fz(a) is 3 and it is attained only at a = 2, and

the maximum of Fy(b—1)/F5(b) is 3 and it is attained only at b = 2. Thus,
Fa+bd)  Flat+l)  Fb-1) - §+1:3 (2.13)
FQ(G)FQ(b) Fg(a) Fg(b) 2 2

and equality is only attained at (a,b) = (2,2). Combining (2.12) and (2.13)

and using the fact that the function Fy(c) is strictly increasing in ¢, we see

that (2.10) holds.

Finally, we prove (2.11). By using again (2.2), if £k > 3

Fk(a + b) = Fk(a + 1)Fk(b) + Fk(a)Fk(b - 1)
= k:Fk(a)Fk(b) + Fk(a - ].)Fk(b) + Fk(a)Fk(b - ].) Z SFk(a)Fk(b),

with equality if and only if k = 3, Fi(a —1) = 0 and Fi(b—1) =0, i.e., if
a = b= 1. Additionally, for all k£ > 3 it follows that

Fk(a—f—b—l) = Fk(a)Fk(b)—i—Fk(a—1)Fk(b—1) < 2Fk(a)Fk(b) < 3Fk(a)Fk(b)

By the two previous inequalities and since the function Fy(c) is strictly in-
creasing in ¢, it follows that (2.11) holds. O

3. Non-minimal Case

Recall that a Markoff m-triple (z,y, z) is a positive integer solution triple of
the Markoff m-equation (1.1), where m is a positive integer. Henceforth, we
assume that the triple is ordered, i.e. z < y < z. For positive integers a, b, c,
we shall denote

mp(a,b,c) = Fp(a)? + F(0)? + Fi(c)? — 3F(a)Fi(b)Fx(c),

so that (Fg(a), Fi(b), Fi(c)) is a Markoff m-triple with k-Fibonacci compo-
nents if and only if my(a,b, ¢) > 0. In this section, after deriving conditions
on (a,b,c) for which myg(a,b,c) < 0, as a straightforward consequence, we
prove Theorem 1.1, showing that there exists only one branch of non-minimal
Markoff m-triples with k-Fibonacci components. Note that we consider k > 2,
since the case k = 1 was previously treated in [11].

Lemma 3.1. (1) Fora >3, ifc<a+b, then mg(a,b,c) <0, for k= 2.
(2) Fora>1,ifc<a+b, then my(a,b,c) <0, for all k > 3.
Proof. We start with (2). We have
2Fy(a+1) = 2(kFy(a) + Fi(a — 1)) < 2(k + 1) Fy(a) < 3kFk(a), (3.1)
for k > 2. Next, from Eqgs. (2.2) and (3.1) above, we obtain
Fi(a+b) <2F(a+ 1)F(b) < 3kFy(a)Fy(b). (3.2)
Also, since ¢ < a+b— 1, from (3.2)
Fi(c+1)Fi(c) < Fi(a+b)Fy(c) < 3kFi(a)Fj(b) Fi(c). (3.3)
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Now, by Lemma 2.3, assuming a, b, ¢ distinct or a = b < ¢ — 1, we have

Fr(a)® + Fy(b)* + Fi(c)* < M
Then, (3.3) and (3.4) yield
Fi(a)? + Fi(b)* 4 Fi(c)® < 3Fg(a) Fi(b) Fi(c),

which is equivalent to my(a,b,c) <0.

Observe that in the case a < b = ¢, we trivially have mg(a,b,c) < 0.
Next, we prove the remaining case a = b= c—1. As Fj(c) < (k+1)Fg(c—1)
we have

(3.4)

)

2F;(c — 1) 4+ Fi(c)? < 2F,(c — 1)2 + (k + 1)?Fy(c — 1)?
=F(c—1)%(2+ (k+1)%). (3.5)
Since c < a+b—1=2(c—1)—1, we may suppose that ¢ > 3, which leads to
2+ (k+1)% < 3(k* + 1) < 3F(c).
As a result,
Fr(c—1)? (2+ (k+1)%) < Fy(c — 1)* 3 Fy(c). (3.6)
Combining Egs. (3.5) and (3.6), we obtain
2Fi(c — 1)? + Fy(c)? < 3 Fi(c — 1) Fi(c),

which can also be expressed as mg(c —1,¢—1,¢) < 0.
Finally, we prove (1). The only case to be checked is ¢ = a + b because
the proof above is valid if ¢ > a + b+ 1. We aim to prove

Fy(a)? 4 Fa(b)* + Fa(a+b)* < 3F(a)Fa(b)Fa(a +b).
Adding 2F5(a)F>(b) on both sides,
(Fy(a) 4+ Fa(b))? + Fala + b)? < Fy(a)Fa(b) (3Fa(a +b) +2).
Since (Fy(a) + Fy(b))* < 4F5(b)?, it suffices to prove
4F(b)% 4 Fo(a +b)? < 3Fy(a)Fo(b)Fy(a +b).
Rearranging terms,
4F,(b)* < Fa(a+b) (3F2(a)Fa(b) — Fa(a+1b)).
Developing Fy(a + b) on the right-hand side, using (2.2),
4F,(b)? < Fy(a+b) (3Fs(a)Fa(b) — Fay(a 4+ 1)Fy(b) — Fy(a)Fa(b—1)).
Using 3F5(a) — Fa(a+ 1) = Fa(a — 1) + F(a — 2), we obtain
AF5(b)? < Fo(a+b) (Fo(0)(Fa(a — 1) + Fa(a — 2)) — Fa(a)Fa(b— 1)),
and thus, reordering terms on the right-hand side, we have
AF3(0)* < Fa(a+b) (Fa(b)Fa(a — 2) + Fa(b) Fa(a — 1) — Fa(a)Fa(b - 1)).
Now, applying D’Ocagne’s identity (2.6) to a — 1 and b — 1,
4F5(b)? < Fy(a+b) (Fa(b)Fo(a — 2) + (=1)*Fy(b — a)). (3.7)
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To prove the inequality above, we distinguish two cases: a being even and
odd. If a is even, since a > 4, then Fy(a — 2) > 2 and Fy(a + b) > 4F5(b).
Consequently,
4F5(b) < Fy(a + b)Fa(a — 2)

and (3.7) holds. If a is odd, since a > 3, we have 12F5(b) < Fs(a + b), and
for proving (3.7) it is enough to prove

Fg(b) S 3F2(b)F2(a — 2) — 3F2(b — a).
In other words,

Fg(b) + 3F2(b — a) < 3F2(b)F2(a — 2)

and this holds because 3F5(b —a) < 3F5(b—3) < FQT(b) and Fy(a —2)
> 1. 0

Lemma 3.2. The following hold.
(1) ma(1,0,b+1) <0, for any b, and equality holds only for b=1,2.
(2) m2(2,b,b+1) <0, for any b > 2.

Proof. For (1), it suffices to prove
1+ F2(b)? + Fa(b+ 1)? < 3Fy(b)Fa(b + 1).

If b = 1, the above inequality holds as an equality. If b > 1, by applying
Lemma 2.3 to the left-hand side, the above is equivalent to

%Fg(b + 1) Fa(b+2) < 3F5(b)Fa(b+ 1). (3.8)

Equivalently,
Fo(b+1)(2F3(b 4 1) + Fy(b)) < 6Fy(b)Fy(b + 1).

Dividing by Fa(b+ 1) # 0, we obtain 2F»(b+ 1) < 5F5(b), but this inequality
holds because 2F5(b + 1) = 4F5(b) + 2F»(b — 1) and Fa(b) > 2F5(b—1). In
this case, equality is only achieved when b = 2.

Next, (2) is equivalent to

4+ Fo(b)? + Fa(b+1)% < 6F5(b)Fa(b+1).

If b = 2, we can verify the above inequality numerically (4 + 4 + 25 < 60).
For b > 2, by Lemma 2.3, and Eq. (3.8), we see that the above holds. O

Theorem 3.3 (Theorem 1.1 of the Introduction). Every non-minimal Markoff
m-triple with k-Fibonacci components is a Markoff 8-triple of the form
(F»(2), F»(2n), F»(2n + 2)), forn > 2.

Proof. First, we start with the case k > 3. If a Markoff m-triple with k-
Fibonacci components (Fi(a), Fj(b), Fx(c)) is not minimal then ¢ < a+b, by
Lemma 2.5. However, by Lemma 3.1 (2), for k£ > 3 this restriction implies that
myg(a,b,c) < 0. Therefore, non-minimal Markoff m-triples with k-Fibonacci
components do not exist for £ > 3.

In the case k = 2, if a Markoff m-triple with 2-Fibonacci components
(Fy(a), Fa(b), Fa(c)) is not minimal, then ¢ < a + b, by Lemma 2.5. This
restriction forces Fh(a) to be equal to 1 or 2, because of Lemma 3.1 (1). If
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Fy(a) = 1, then @ = 1 and ¢ < b+ 1. In the case b = ¢ it is obvious than
mz(1,b,b) <0 and in the case ¢ = b+ 1, it follows that mz(1,0,b+1) <0
by Lemma 3.2 (1). Finally, if Fy(a) = 2 = F5(2), then a =2, and ¢ < 2+ .
Hence by Lemma 3.2 (2), the triple is of the form (2, b, b+ 2). Now, we prove
that b is an even number. Indeed,

m2(2,b,b+2) =4+ Fy(b)* + Fo(b+2)% — 6F5(b) Fa(b+2)
=4+ (Fy(b+2) — Fy(b))* — 4Fs(b) Fa(b + 2)
=44+ 4F(b+ 1) —4F,(b)Fy(b+2) = 4(1 — (—=1)"+1)
(3.9)

is positive if and only if b is even, where the last equality is a consequence of
the Simson identity (2.8). As a result, all the triples of the form

(F2(2), F»(2n), F»(2n+2)), for n > 1 are 8-triples and it is straightforward to
check that they all lie in a branch of the Markoff 8-tree with minimal triple
(2,2,12) (See Fig. 1). For m = 8, this tree is unique because there are no
more minimal triples than (2,2,12) as shown in Table 1 of [5]. O

4. Minimal Case

We recall that if (z,y, z) is a minimal Markoff m-triple, i.e. a solution of the
Markoff m-equation (1.1), with z > 3zy, then

m = z(z — 3zy) + 2° + y* > 0.

Let a,b be any pair of positive integers with a < b and let ¢ = a + b+ t. By
Lemma 2.5, if t > 1 for k = 2, or t > 0 for k > 3, then (Fy(a), Fi(b), Fx(c))
is minimal, therefore my(a,b,c) > 0. Consequently, there exists an infinite
number of minimal Markoff triples with k-Fibonacci components. Clearly,
they cannot all correspond to a finite number of values of m, as the number of
minimal triples is finite for each m [5]. Hence there are infinitely many values
of m that admit minimal Markoff m-triples with k-Fibonacci components.
In the rest of the section, we will prove that any m > 0 admits at most one
minimal Markoff m-triple with k-Fibonacci components, except when k = 3,
¢c=a+b,aisodd, bis even and b > a + 3, where ms(a,b,a + b) admits two
such triples.

Lemma 4.1. Let 1 < a <b. Suppose that k =2 andc=a+b+1, ork >3
and ¢ =a+b. Then
aic
ab7 > L o
mg(a,b,c) kD;%

where Dy, = oy, — a = VEk% +4 and

3 3 _ 3 9 -
L2:(1—D2a21>+2<1—D2a2>a24_(6+D2a2+D2)a267
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Proof. Using Binet’s formula (2.1) and taking into account that apay, = —1,
it follows that for any k& > 1
1 1
Fe(n)? == (af" + o, *" =2 (-1)") > — (af" — 2) .
Dy Dy,

If k=2and b=c—1—a, we have

2(a,b,c) = Fo(c)? + Fa(c — 1 — a)? + Fa(a)? — 3F2(c)Fo(c — 1 — a)Fa(a)
1 o 3 1
> D2 (a%chagc 272 4 age *6> - Fg(ag —as) (a5 -

(a3 —a3).

Ay~ )

Asc=a+b+1>1and asas = —1, we conclude that
(a5 —as)(as ' —as ' ") (a8 — af) < (a5 + a3 ) (as T+ ag T T (af + az?)
_ a3671 +a307172a +a§a+1 + s JrOl;l +a272a71 +a§a72c+l +a520+1

<aZeml g 2ol 2atl 4 g, 43
Hence
ma(a,b,c)
() ()

3 9 —2c
B <6+ D, D2>a2 } '
As f(z) = of is a convex function, ¢ > 1 and a > 1, by applying Karamata’s

inequality [15], we obtain
T —apt Fas. (4.1)

—2—2a 2a—2c¢ —2—2
o + o < ay + a5

Since
3 6+ 38 3
l——a=1-—"T"<c1-2<0
Dy ? 28 2

andc>a+b+12>3,

[ 3 3
m2(a,b, C) > ﬁagc (]_ — a21) + (1 o a2> (0427272(1 + a§a72c)
D2 DQ

1 o0 3 3 _ —2¢
>—2a§ (1—D2a21)+(1—D2a2> (a24+a§ 2)

9 1 i
>a225 Z LQﬁa%c7
2

¢ is clearly negative in the previous expression, and

as the coeflicient of o 2
therefore its minimum for ¢ > 3 is attained at ¢ = 3.
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Analogously, if we assume that k£ > 3 and ¢ = a + b, we have

(af —ap)(og* = ag ") (e — af) < (af + o) (™ + o) (af + %)

— aic +C¥ic—Qa +a%a +2+a;2a +aia_2C+Oé]:26 < aZc+aic—2a +aia
+ 4.
Hence
1 2c 2c—2a 2a 3 2c 2c—2a 2a
mk(a,b,c)>ﬁ(ak + o, + ag _6)_ﬁ( w Tag + ;" +4)
k k

1 c 3 —2a 2a—2c¢ 12 —2c

Now, the factor 1 — Dik =1- \/kgﬁ becomes positive for k > 3, so this time,

we need to apply the opposite Karamata bound [15] (which becomes simply
Jensen’s inequality in this case)

2a 2a—2c —2e42a—2¢ c
_ _ 5 o _
ap " +aj, > 2ay = 2ay,°,

yielding

1 3 » 12\ o
my(a,b,c) > D—%aic [(1 - Dk) (1+20;°) — (6—|— Dk) o, } .

Let us consider the polynomial

Pk($)=2<1—l§k>x— <6+11?2k>x2'

Then, our bound can be written as

1 3 .
my(a, b, c) > F%aic [1 ~ D + pr(oy, )] .

We know that ¢ = a+b > 2,50 a,“ € (O,a;z], as ay > 1, and therefore,
lim,—,o o, © = 0. The polynomial py(z) is a parabola with a negative leading
coefficient, so its minimum in the interval [0, a;z] is attained at one of the
ends of the interval. A direct computation shows that p3(az?) < 0 = p3(0),
and hence

1 3 B 1,
ms(a,b, c) ﬁagc [1 D, + p3(ag 2)] = L3—5a3°.
3

On the other hand, for k& > 4, we can prove that pj(a;?) > 0 = pg(0) as
follows. The expression

_ 3 12
a%pk(akz) = 204% (1 — ch) — (6 + Dk)

is clearly increasing in k, because oy and Dy are both increasing functions
of k. A direct computation shows that for k = 4 we have a}ps(a;?) > 0, so
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Dk (04,32) must be positive for all k > 4. As a consequence,

3
my(a,b,c) > —5aic [1 ~ D —l—pk(a;c)]
k

1, 1, 3 1,

a1 = 2 = ——a*(1— — ) = L,—a*°.

g Diak [ Dy, +pk(0)] Diak < Dk) kD/%ak
O

We have the following lower bound for the constant Lj in the lemma
above.

Lemma 4.2. For each k > 2, the constant Ly, satisfies
Ly > Oélzz.

Proof. For k = 2,3, a direct computation shows that a3Ls > 1 and a3Lz > 1,
so Lj > a;z for k = 2,3. For k > 4 we wish to prove that

3
Ly=1—-"">0a;2

Dy,
Rearranging the equation, this is equivalent to proving that for all k£ > 4
1> 2 o LA 4
— a = .
D" VEZ+4 (k+VE2+4)2

The right-hand side of this expression is decreasing in k and for k = 4 a direct
computation shows that
3 2 _
D74 +a, " <1,
and hence the inequality holds for all k£ > 4. O

Lemma 4.3. Let 1 < a < b < ¢ and ¢ > 3. Suppose that a < o' < ¢ and
b<V <c. Then
my(a,b,c) > myg(a’,V,c)
and equality holds if and only if a = o’ and b = V. In particular, for an
ordered minimal Markoff-Fibonacci m-triple (Fy(a), Fi(b), F.(c)),
mi(1,1,¢) > my(a,b,c) > mg(a,c—a—s,c),

where s =1, for k=2 and s =0, for k > 3.

Proof. The lemma and its proof are entirely analogous to Lemma 4.1 in [11],
which addresses the case £k = 1. In this lemma, the starting point is a = 2
because F1(2) = Fi(1) = 1. In our situation, with k > 2, the case a = 1 is
also valid since Fj(2) > Fi(1) = 1. O

Lemma 4.4. If (Fy(a), Fx(b), Fx(c)) and (Fy(a'), Fr(b'), Fx(c)) are two or-
dered minimal Markoff-Fibonacci m-triples with ¢ > ¢, then ¢ = .

Proof. Assume that my(a,b,c) = m = my(a’,v, ). By applying Lemmas 4.3
and 4.1, it follows that

2c

m = ma(a,b,¢) > ma(a,c—a—1,¢) > Lgﬁag
2
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if k=2and

m = my(a,b,c) > my(a,c—a,c) > L—5ai,

D2
for any other k > 3. From Lemma 4.2 we know that L > 0‘1;2 for all & > 2,

SO
1 1 2c 2

mg(a, b, c) > Lk ‘> ﬁ P

On the other hand, from Lemma 4.3, we deduce that
m = my(a’,b',c) < mk(l, 1,d) = Fp(d)* = 3F,(c) + 2
2 1 5

1—2c
< pred’  prd + pp(-)° 1< g

(4.2)

(4.3)

Usmg Egs. (4.2) and (4.3) together we obtain «;, 2e=) D?m < o3¢ Thus,
¢ >c—1. As we assumed ¢’ < ¢, we conclude that d =c. O

Lemma 4.5. Let (Fi(a), Fi(b), Fr(c)) and (Fi(a'), Fi(V'), Fx(c)) be two dis-
tinct ordered minimal Markoff-Fibonacci m-triples with the same third ele-
ment. If a < a’, then a < a' <V <b.

Proof. Suppose first that a = a’. It follows by Lemma 4.3 that the equal-
ity my(a,b,¢) = my(a’,b', ) = my(a,b',c) is only possible if b = V', in
which case (a,b,c) = (a/,V,¢'), contradicting the assumption that the two
m-triples are distinct. Thus a < o/. If b < ¥/, then Lemma 4.3 implies
m(a,b,c) < m(a’,¥,c), which is not possible as both are m-triples for the
same m. Therefore, it follows that a < a’ < b < b. O

Lemma 4.6. Let (Fi(a), Fr(b), Fx(c)) and (Fx(a'), Fi(b'), Fx(c)) be two or-
dered minimal Markoff-Fibonacci m-triples. Then a +b=a’ +b'.

Proof. By Lemma 4.5 we can assume without loss of generality that 1 < a <
a’ <b < b<ec In particular, b > 3. Rearranging the equation my(a,b,c) =
my(a’, b, c), yields

Fi(a)? + Fi(b)? — Fy(a')? — Fr(b')?
(4.4) = 3F(c) (Fp(a)Fy(b) — Fi(a')Fi (b)) .
Since b > 3 and @’ < V' < b we have
Fi.(0)? > E*Fi(b—1)2 > 2F,(b — 1)? > F, (') + Fi(d')?,

so the left-hand side of Eq. (4.4) is always positive and, thus, so is the right-
hand side. Let us see that this is impossible if a’ + b > a + b. Indeed,

Fiu(a)Fe(V)  (of —a)(ef —a¥) _ (af —az™)(ed —a;”)

Fi(a)Fr(b) — (af —ag)(ah — aw T (af o) (eh + o)
ZIJFb/ al]z:/fa ak + a];a/7 ’

a+b a—b
+ak +ak +%
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Assume that o’ + b = a+ b+ r with r > 0 and let s = a + b. Then
a’ +V = s+ r. Dividing the numerator and denominator by «; yields

’ ’ ! / /

tlzc,+b al]z —a’ o aZ b + alza "—b B ak a; 2a’ _ 047];7217 _’_a;str

a+b a—b - 2a —2b —2s

+ak +ap —|—ak 1+ +ak +ak
’
rl_alzZa_ +Oé 2s—2r
T T 0 P o
O‘k ay ay

Asl<a<ad <V <bwehavea>1,a" >2,0'>2 b>3ands=a+b>4.
Thus

1 _ —2(1/ —21)/ —2s—2r 1 _ 2 —4

e i S S S >192> 1.
1+ oy —I—ak —&—ozks 1+ak +ak +ak

Therefore, Fy(a')Fy(b') > Fj(a)Fi(b), which contradicts the positivity of
both sides of Eq. (4.4).

Therefore, we must have a+b > o’ +b'. Suppose that o’ +0' =a+b—r
with » > 0 and let s = a + b as before. Following the same logic as in the
previous case,

Fe(@)Fi () _ (off —af)(of —af) _ (o +o;*)(of +a,")
Fo(@Fi(®b) — (af —ap)ak —ak) = (a%—a;“)(ab —ap?)
z

- aa/+b + Z—a + g +Oc;a/_b/ a,rl‘i‘ak 2a’ +a;2b +a—2s 27
- az+b az a +a};a—b - Tk 1 7@[};2(1 704_2b +C¥
< aglw <053 < §
11—, —ap 9’
As a result,
F / /
1 k(a)Fk(b)>1 § 1Z 1
Fy.(a)Fy(b) 9 9 9Fk( )2
Multiplying both sides by 3Fy(a)Fy(b) Fi(c), results in
Fi.(c)Fy(b
35L(0) (Fu(@)Fi(b) — Fi(a) Fu(v)) > ZHOLHD)
3Fy(a)

Since (Fy(a), Fi(b), Fr(c)) is minimal, we have Fj(c) > 3F)(a)Fy(b). Conse-
quently,

3Fk(c) (Fk(a)Fk(b) — Fk(a/)Fk(b/)) > W

> Fk(b)Q — Fk(b/)Q + Fk(a)Q — Fk(a’)Q .

This contradicts Eq. (4.4), and thus @’ + 0" > a 4+ b and therefore
a+b=d +70. O

> Fi(b)*

Lemma 4.7. If a is odd, b is even and b > a + 3 then
ms(a,b,a+b) =ms(a+1,b—1,a+b).
Proof. Using Simson’s identity (2.8) for a odd,
F3(a)? — F3(a+ 1) = F3(a)? — F3(a)F3(a +2) + (-1)*T! =
= F3(a)(F3(a) — F3(a+2)) + (-1)*T! = —3F3(a)F3(a +1) + 1
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Using a similar argument for b even, we have
F3(b)? — F3(b—1)* = 3F3(b)F5(b— 1) — 1.
Adding both expressions yields
Fs(a)? + F53(b)? — F3(a+1)% — F3(b — 1)% = 3(F3(b)F5(b — 1) — F3(a)F3(a + 1))(4.5)

We obtain the following identities by applying Vajda’s identity (see Lemma 2.1)
and considering that a is odd and b is even:

Fs5(a)Fs5(a+1)
= F(0)F3(b—1) — F3(a+b)F3(b—a—1) = (=1)""* "' F3(a) F3(a + 1),
F3(b—a—1) = Fs(a+ 1)F3(b—1) — F3(a)F3(b) = (—1)*F5(1)F3(b—a —1).
Thus,
F5(b)F5(b—1) — F3(a)F5(a+1) = F3(a+ b)F3(b— 1 —a)
= F3(a+b)(F3(a+1)F5(b—1) — F3(a)F3(D)).
Substituting back in (4.5) yields
Fs(a)® + F3(b)? — F3(a+1)* — F3(b—1)* =
3F5(a+b)(F3(a+1)F3(b— 1) — F3(a)F3(b)).
Rearranging this equation yields the required result. (]
Theorem 4.8 (Theorem 1.2 of the Introduction). If m admits a minimal
Markoff m-triple with k-Fibonacci components then it is unique except for

k = 3 and all pairs of triples (F3(a), F5(b), F5(a + b)), (F3(a + 1), F5(b —
1), F5(a + b)), for a odd, b even and b > a + 3.

Proof. Let (Fy(a), F(b), Fx(c)) and (Fy(a'), Fx(b'), Fr(c')) be a pair of or-
dered minimal m-triples contradicting the theorem. By Lemma 4.4, it follows
that ¢ = ¢. Moreover, by Lemma 4.5 we can assume without loss of gen-
erality that 1 < a < o’ < ¥ < b < ¢ and by Lemma 4.6 we must have
a+b=ad +V. Takingn=a,i =0 —aand j =b—V =da —a in Vajda’s
identity (Lemma 2.1), we transform Eq. (4.4) into
Fi.(a)® + Fi.(0)* = Fi(a')? = Fy(b')* = 3Fx(c) (Fi(a) Fi(b) — Fi.(a') Fi (b))
(4.6)

= (=1D)*T3F(c)F(t — a)Fr(b—1').

From the proof of Lemma 4.6, the left-hand side of this equality is positive,
therefore a is odd, and hence

Fr(a)? + Fp(b)? — Fr(a')? — F(t)? = 3 (c)Fx (b — a)Fxp(b— V). (4.7)
In the case k = 2, using (2.10) from Lemma 2.5 twice, we obtain that
Fy(b) <3F(V)Fo(b—1b") < 9Fs(a)Fa(b —a)Fa(b—1').
Multiplying by F(b) and by minimality, 3F5(a)Fz(b) < Fa(c), it follows that
Fy(b)? < 9F5(a)Fo(b)Fo(b' — a)Fa(b— 1) < 3Fy(c)Fo(b — a)Fa(b— 1)
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and as a consequence
Fg(b)2 — Fg(b/)2 + Fg(a)Q — Fg(a/)2 < FQ(b)2 S 3F2(C)F2(b/ — a)Fg(b — b/),

which contradicts Eq. (4.7).

In the case k > 4, suppose that ¢ = a + b. We want to prove

Fyu(b)? = Fi (') + Fi(a)? = Fi(a')? > 3F(c) Fi (b — a)Fi.(b = V), (4.8)
contradicting (4.7). First, since Fj(b) > kFy(b— 1) > 4F, (V') by Eq. (2.3),
we have
Fi,(b)*

Fi(d)? 4 FL(t)? < 2F,(b)* < 1

Fi(b)? <

(4.9)

co| —

Now, using Eq. (2.4) twice, it follows that
3Fk(a + b)Fk(b — bl)Fk(b/ — a) < 3Fk(a + b)Fk(b —a— ].) < 3Fk(2b — 2)
The inequality above and (4.9) give

Fr(a)? + Fp(t)? + 3F(a + b)F.(b — V) Fr (b — a) < %W + 3F(2b - 2)

and by Lemma 2.4
F.(b)? Fy(b)?
4
Due to the two inequalities above, (4.12) holds.
In the case k = 3, suppose that ¢ = a + b and b’ < b — 2. We want to

prove

+3F:(2b—2) < + %Fk(b)Q = Fp(b)2.

F3(b)? > F3(a)* + F3(b)*> + 3F3(a + b)F3(b/ — a)F3(b— 1),  (4.10)
which contradicts Eq. (4.7). Repeating the above argument,
3
3F3(a + b)F3(b/ - G)F3(b — b/) S 3F3(2b — 2) S ZFg(b)Q
On the other hand, if ' < b <b—2, since F3(b) > 9F3(b — 2), we have

F3(b)* < ng(b)Q.

F3(a')? + F3(V')? < 2F3(V)? < 2F3(b—2)* < 1

Nel il V)

Adding the above two inequalities, (4.10) holds.
In the case k > 3, we first consider ¢ > a + b+ 1. We will show that

Fr(b)? = Fr(b')* + Fi(a)® = Fp(a')? < 3Fi(c)Fp(b' — a)Fp(b— V'),
(4.11)

which contradicts Eq. (4.7). Then, since F(b') > Fy(a) it is enough to show
that

F.(b)*> < 3Fy(a+b+ 1)FL(b —a)FL(b— V). (4.12)
By using Eq. (2.5) twice, we obtain
3Fk(a +b + 1)Fk(b, — a)Fk(b — b/) > 3Fk(a + b+ l)ka(b —a— 1)
9
> % R@b—1)> Fu2b—1).

(1+3)°
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On the other hand, applying formula (2.2) to b — 1 and b, it follows that
Fi(2b — 1) = Fi(b)* + F.(b— 1)* > Fj,(b)*.

The above two inequalities show that (4.12) holds.

Finally, we study the last case; k = 3, c = a+0b, 0/ = b—1 and a
odd (see Eq. (4.6)). This is precisely addressed in Lemma 4.7, which iden-
tifies the minimal pairs of Markoff m-triples with k-Fibonacci components
satisfying m = ms(a,b,a + b) = ms(a + 1,b — 1,a + b), where b is even.
Note that the condition b > a + 3 in that lemma implies that the triple
(F3(a+1),F3(b—1), F3(a+0)) is ordered, so (F3(a+1), F5(b—1), F5(a+b))
and (F3(a), F5(b), F3(a + b)) are distinct. This, however, does not hold if
b=a+ 1. If b were odd, we would have in the last equality of Lemma 4.6

F3(a)? + F3(b)* = Fs(a+1)* = F3(b—1)*
= 3F3(a + b)(Fs((l + 1)F3(b — 1) — Fg(a)Fd(b)) + 6.
Therefore, if b were odd, mg(a,b,a +b) > msg(a+1,b—1,a +b). O
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