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Abstract. We classify all solution triples with k-Fibonacci components
to the equation x2 + y2 + z2 = 3xyz + m, where m is a positive integer
and k ≥ 2. As a result, for m = 8, we have the Markoff triples with
Pell components (F2(2), F2(2n), F2(2n + 2)), for n ≥ 1. For all other
m there exists at most one such ordered triple, except when k = 3,
a is odd, b is even and b ≥ a + 3, where (F3(a), F3(b), F3(a + b)) and
(F3(a + 1), F3(b − 1), F3(a + b)) share the same m.
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1. Introduction

In the realm of number theory, Markoff m-triples represent an interesting
area of exploration. These triples are positive integer solutions to the Markoff
m-equation

x2 + y2 + z2 = 3xyz + m, (1.1)

where m is a positive integer. The case m = 0 corresponds to the original
equation studied by Markoff [1,2], where it was proved that all the solution
triples are distributed in a unique tree. Some of its branches are interesting
families of numbers: Fibonacci, Pell, etc. Many authors studied generaliza-
tions of this equation [3–5] and noticed that, depending on m, there could
exist one, multiple trees or none at all. In particular, in [5] it is proved that the
number of trees, for every m > 0, is equal to the number of Markoff m-triples
(x, y, z) that are minimal, that is to say, those that satisfy the inequality

z ≥ 3xy. (1.2)

In this paper, we study Markoff m-triples with k-Fibonacci components,
i.e. solutions of the Markoff m-equation (1.1), such that all its components
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Figure 1. Beginning of the Markoff 8-tree with minimal
triple (2, 2, 12). The sequence of non-minimal 8-Markoff
triples with 2-Fibonacci components (Pell components) is
represented in bold

are k-Fibonacci numbers. These numbers are defined recursively for every
positive integer k as follows

⎧
⎨

⎩

Fk(0) = 0
Fk(1) = 1
Fk(n) = kFk(n − 1) + Fk(n − 2), ∀n ≥ 2.

(1.3)

When k = 1, the sequence corresponds to the classic Fibonacci numbers, and
for k = 2, it yields Pell numbers. Some particular cases of Markoff m-triples
with k-Fibonacci components have already been studied: (k = 1, m = 0),
was studied in [6]; (k = 2, m = 0), was examined in [7]; (k > 1, m = 0), was
treated in [8]; the case m = 0, with Lucas sequences in [9,10] and, finally, the
case (k = 1, m > 0) was dealt with in [11]. Because of this, henceforth, we
will assume that m > 0 and k ≥ 2.

In this work, we classify all Markoff m-triples with k-Fibonacci com-
ponents, dividing our analysis first into non-minimal triples and then into
minimal ones. Specifically, our main results are the following.

Theorem 1.1. Every non-minimal Markoff m-triple with k-Fibonacci compo-
nents and m > 0 is a Markoff 8-triple of the form (F2(2), F2(2n), F2(2n+2)),
for n ≥ 2.

In particular, the non-minimal Markoff m-triples with k-Fibonacci com-
ponents are situated on the upper branch of the 8-tree with minimal triple
(2, 2, 12). The triples in this branch are composed of Pell numbers, as shown
in Fig. 1.

Theorem 1.2. If m > 0 admits a minimal Markoff m-triple with k-Fibonacci
components, then it is unique, except for k = 3 and all pairs of triples
(F3(a), F3(b), F3(a + b)), (F3(a + 1), F3(b − 1), F3(a + b)), for a odd and b
even with b ≥ a + 3.
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The paper is structured as follows. Section 2 provides certain identities
and inequalities satisfied by k-Fibonacci numbers which will be useful in
the next sections. Although most of them are well known [12–14], we have
included proofs for some of them for the sake of completeness. In Sect. 3,
we prove Theorem 1.1 and in Sect. 4, Theorem 1.2. The strategy to obtain
uniqueness in minimal Markoff m-triples (Fk(a), Fk(b), Fk(c)) except in the
case k = 3, c = a + b, a odd, b even and b ≥ a + 3 involves proving that
any pair of such triples which share the same m must have the same third
component c, and the sum a + b should be constant (see Lemmas 4.4 and
4.6). These two lemmas, in turn, follow from Lemma 4.1, which computes a
lower bound for the m associated with an m-triple (Fk(a), Fk(b), Fk(c)) in
terms of k and c.

2. Some Preliminary Results on k-Fibonacci Numbers

For any k > 0 and n ≥ 0 the n-th term of the sequence of k-Fibonacci
numbers, defined in Eq. (1.3), can be obtained using Binet’s formula

Fk(n) =
αn
k − ᾱn

k

Dk
, (2.1)

where αk and ᾱk are the roots of the characteristic polynomial of the recur-
rence α2 − kα − 1 = 0 and Dk = αk − ᾱk. Concretely,

αk =
k +

√
k2 + 4
2

, ᾱk =
k − √

k2 + 4
2

, Dk = αk − ᾱk =
√

k2 + 4.

The above formula is well known; for a proof the reader may consult Theorem
7.4 of [13]. It is a consequence of the fact that any k-Fibonacci number is
defined by recurrence relation (1.3) and it is a solution of the corresponding
second-order finite difference equation. Notice that αkᾱk = −1. In particular,
for k = 1, α1 = ϕ and D1 =

√
5, we have the classical Binet’s formula for the

Fibonacci numbers, where ϕ represents the Golden Ratio.

Lemma 2.1 (Generalization of Vajda’s Identity for k-Fibonacci numbers).
For any positive numbers i, j, k,

Fk(n + i)Fk(n + j) − Fk(n)Fk(n + i + j) = (−1)nFk(i)Fk(j).

Proof. Multiplying the left hand side by D2
k and using Binet’s formula (2.1)

and the fact that αkᾱk = −1 yields

D2
k (Fk(n + i)Fk(n + j) − Fk(n)Fk(n + i + j)) = (αn+i

k − ᾱn+i
k )(αn+j

k − ᾱn+j
j )

− (αn
k − ᾱn

k )(α
n+i+j
k − ᾱn+i+j

k ) = α2n+i+j
k − (−1)nαi

kᾱj
k − (−1)nᾱi

kαj
k + ᾱ2n+i+j

k −
α2n+i+j
k + (−1)nαi+j

k + (−1)nᾱi+j
k − ᾱ2n+i+j

k

= (−1)n(αi
k − ᾱi

k)(α
j
k − ᾱj

k) = D2
k ((−1)nFk(i)Fk(j)) .

�



76 Page 4 of 19 D. Alfaya et al. MJOM

Corollary 2.2. The following identities hold for any integers a, b, n ≥ 1 :

Fk(a + b) = Fk(a + 1)Fk(b) + Fk(a)Fk(b − 1) (2.2)

Fk(a) ≤ 1

k
Fk(a + 1) (2.3)

Fk(a)Fk(b) ≤ Fk(a + b − 1) (2.4)

Fk(a + b − 1) ≤ Fk(a)Fk(b)

(

1 +
1

k2

)

(2.5)

(D’Ocagne’s identity) (−1)aFk(b − a) = Fk(b)Fk(a + 1) − Fk(b + 1)Fk(a) (2.6)
(Catalan’s identity) Fk(n)

2 = Fk(n + r)Fk(n − r) + (−1)n−rFk(r)
2(2.7)

(Simson’s identity) Fk(n)
2 = Fk(n + 1)Fk(n − 1) − (−1)n. (2.8)

Moreover, the following equalities hold:

(1) The equality in (2.3) is only attained if a = 1.
(2) The equality in (2.4) is only attained if a = 1 or b = 1.
(3) The equality in (2.5) is only attained if a = b = 2.

Proof. For (2.2), take n = 1, i = a and j + 1 = b in the previous lemma.
For (2.3), we have

Fk(a + 1) = kFk(a) + Fk(a − 1) ≥ kFk(a)

and equality is only attained if Fk(a − 1) = 0, i.e., if a = 1.
For (2.4), substitute a by a − 1 in identity (2.2). Then

Fk(a + b − 1) = Fk(a)Fk(b) + Fk(a − 1)Fk(b − 1) ≥ Fk(a)Fk(b).

Equality is only attained if Fk(a − 1) = 0 or Fk(b − 1) = 0, i.e., if a = 1 or
b = 1.

For (2.5), substitute a by a − 1 in identity (2.2). Then

Fk(a + b − 1) = Fk(a)Fk(b) + Fk(a − 1)Fk(b − 1) ≤ Fk(a)Fk(b)
(

1 +
1
k2

)

.

Equality is only attained if Fk(a − 1) = 1
kFk(a) and Fk(b − 1) = 1

kFk(b),
which only happens if a = b = 2.

For the D’Ocagne identity (2.6), take n = a, i = b − a, j = 1 in the
previous lemma.

For Catalan’s identity (2.7), take n = n − r, i = j = r in the previous
lemma.

Finally, for the Simson identity (2.8), take r = 1 in the Catalan identity
(2.7). �

Lemma 2.3. For integers k ≥ 1 and N ≥ 0,

N∑

n=0

Fk(n)2 =
1
k

Fk(N)Fk(N + 1).

Proof. We will use induction to prove the result. For N = 0, the identity is
true because Fk(0) = 0. Assuming that the result holds for some N , we will
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prove it for N + 1. We begin with the following equation
1
k

Fk(N + 1)Fk(N + 2) =
1
k

Fk(N + 1)(kFk(N + 1) + Fk(N))

= Fk(N + 1)2 +
1
k

Fk(N)Fk(N + 1) .

And, by the induction hypothesis, we have

Fk(N + 1)2 +
1
k

Fk(N)Fk(N + 1) = Fk(N + 1)2 +
N∑

n=0

Fk(n)2 =
N+1∑

n=0

Fk(n)2 ,

which completes the proof. �

Lemma 2.4. If k ≥ 4 and n ≥ 1, then 4Fk(2n − 2) ≤ Fk(n)2.

Proof. For n = 1, the inequality becomes 0 = 4Fk(0) ≤ Fk(1) = 1, hence the
result holds. Assume that n ≥ 2. Taking a = b = n− 1 in equation (2.2), and
then multiplying by four, we obtain

4Fk(2n − 2) = 4Fk(n − 1)(Fk(n) + Fk(n − 2)). (2.9)

If k ≥ 5, then 4Fk(n − 1) ≤ 4/5Fk(n) and Fk(n − 2) < 1/4Fk(n). Combining
both inequalities, we get

4Fk(n − 1)(Fk(n) + Fk(n − 2)) < Fk(n)2.

The above inequality and (2.9) prove the lemma for k ≥ 5. In the case k = 4,
using again (2.9), we have

4F4(2n − 2) = 4F4(n − 1)(F4(n) + F4(n − 2))

= (F4(n) − F4(n − 2)) (F4(n) + F4(n − 2)) = F4(n)
2 − F4(n − 2)2 ≤ F4(n)

2,

which proves the result. �

Lemma 2.5. Let a, b, c ≥ 1. Then

F2(c) ≥ 3F2(a)F2(b) if and only if c ≥ a + b + 1 or (a, b, c) = (2, 2, 4),
(2.10)

and

Fk(c) ≥ 3Fk(a)Fk(b) if and only if c ≥ a + b, for all k ≥ 3. (2.11)

Moreover, equality in (2.10) holds when k = 2 and (a, b, c) = (2, 2, 4), and
equality in (2.11) holds when k = 3 and (a, b, c) = (1, 1, 2).

Proof. We first prove (2.10). By identity (2.2), we have that

F2(a + b + 1) = F2(a + 1)F2(b + 1) + F2(a)F2(b) = (2F2(a) + F2(a − 1))(2F2(b)

+ F2(b − 1)) + F2(a)F2(b) ≥ (22 + 1)F2(a)F2(b) > 3F2(a)F2(b) .

(2.12)

On the other hand,

F2(a + b)
F2(a)F2(b)

=
F2(a + 1)F2(b) + F2(a)F2(b − 1)

F2(a)F2(b)
=

F2(a + 1)
F2(a)

+
F2(b − 1)

F2(b)
.
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It is known that successive quotients of Pell numbers F2(n + 1)/F2(n) form
an oscillating sequence converging to α2, where the sequence of even terms
is decreasing and the sequence of odd terms is increasing. As a consequence,
the maximum of F2(a + 1)/F2(a) is 5

2 and it is attained only at a = 2, and
the maximum of F2(b − 1)/F2(b) is 1

2 and it is attained only at b = 2. Thus,

F2(a + b)
F2(a)F2(b)

=
F2(a + 1)

F2(a)
+

F2(b − 1)
F2(b)

≤ 5
2

+
1
2

= 3 (2.13)

and equality is only attained at (a, b) = (2, 2). Combining (2.12) and (2.13)
and using the fact that the function F2(c) is strictly increasing in c, we see
that (2.10) holds.

Finally, we prove (2.11). By using again (2.2), if k ≥ 3

Fk(a + b) = Fk(a + 1)Fk(b) + Fk(a)Fk(b − 1)

= kFk(a)Fk(b) + Fk(a − 1)Fk(b) + Fk(a)Fk(b − 1) ≥ 3Fk(a)Fk(b),

with equality if and only if k = 3, Fk(a − 1) = 0 and Fk(b − 1) = 0, i.e., if
a = b = 1. Additionally, for all k ≥ 3 it follows that

Fk(a+b−1) = Fk(a)Fk(b)+Fk(a−1)Fk(b−1) ≤ 2Fk(a)Fk(b) < 3Fk(a)Fk(b).

By the two previous inequalities and since the function Fk(c) is strictly in-
creasing in c, it follows that (2.11) holds. �

3. Non-minimal Case

Recall that a Markoff m-triple (x, y, z) is a positive integer solution triple of
the Markoff m-equation (1.1), where m is a positive integer. Henceforth, we
assume that the triple is ordered, i.e. x ≤ y ≤ z. For positive integers a, b, c,
we shall denote

mk(a, b, c) = Fk(a)2 + Fk(b)2 + Fk(c)2 − 3Fk(a)Fk(b)Fk(c),

so that (Fk(a), Fk(b), Fk(c)) is a Markoff m-triple with k-Fibonacci compo-
nents if and only if mk(a, b, c) > 0. In this section, after deriving conditions
on (a, b, c) for which mk(a, b, c) ≤ 0, as a straightforward consequence, we
prove Theorem 1.1, showing that there exists only one branch of non-minimal
Markoff m-triples with k-Fibonacci components. Note that we consider k ≥ 2,
since the case k = 1 was previously treated in [11].

Lemma 3.1. (1) For a ≥ 3, if c ≤ a + b, then mk(a, b, c) ≤ 0, for k = 2.
(2) For a ≥ 1, if c < a + b, then mk(a, b, c) ≤ 0, for all k ≥ 3.

Proof. We start with (2). We have

2Fk(a + 1) = 2(kFk(a) + Fk(a − 1)) ≤ 2(k + 1)Fk(a) ≤ 3kFk(a), (3.1)

for k ≥ 2. Next, from Eqs. (2.2) and (3.1) above, we obtain

Fk(a + b) ≤ 2Fk(a + 1)Fk(b) ≤ 3kFk(a)Fk(b). (3.2)

Also, since c ≤ a + b − 1, from (3.2)

Fk(c + 1)Fk(c) ≤ Fk(a + b)Fk(c) ≤ 3kFk(a)Fk(b)Fk(c). (3.3)
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Now, by Lemma 2.3, assuming a, b, c distinct or a = b < c − 1, we have

Fk(a)2 + Fk(b)2 + Fk(c)2 ≤ Fk(c + 1)Fk(c)
k

. (3.4)

Then, (3.3) and (3.4) yield

Fk(a)2 + Fk(b)2 + Fk(c)2 ≤ 3Fk(a)Fk(b)Fk(c),

which is equivalent to mk(a, b, c) ≤ 0.
Observe that in the case a ≤ b = c, we trivially have mk(a, b, c) ≤ 0.

Next, we prove the remaining case a = b = c−1. As Fk(c) ≤ (k+1)Fk(c−1),
we have

2Fk(c − 1)2 + Fk(c)2 ≤ 2Fk(c − 1)2 + (k + 1)2Fk(c − 1)2

= Fk(c − 1)2
(
2 + (k + 1)2

)
. (3.5)

Since c ≤ a+ b− 1 = 2(c− 1)− 1, we may suppose that c ≥ 3, which leads to

2 + (k + 1)2 < 3(k2 + 1) ≤ 3Fk(c).

As a result,

Fk(c − 1)2
(
2 + (k + 1)2

)
< Fk(c − 1)2 3Fk(c). (3.6)

Combining Eqs. (3.5) and (3.6), we obtain

2Fk(c − 1)2 + Fk(c)2 < 3Fk(c − 1)2 Fk(c),

which can also be expressed as mk(c − 1, c − 1, c) < 0.
Finally, we prove (1). The only case to be checked is c = a + b because

the proof above is valid if c ≥ a + b + 1. We aim to prove

F2(a)2 + F2(b)2 + F2(a + b)2 ≤ 3F2(a)F2(b)F2(a + b).

Adding 2F2(a)F2(b) on both sides,

(F2(a) + F2(b))
2 + F2(a + b)2 ≤ F2(a)F2(b) (3F2(a + b) + 2) .

Since (F2(a) + F2(b))
2 ≤ 4F2(b)2, it suffices to prove

4F2(b)2 + F2(a + b)2 ≤ 3F2(a)F2(b)F2(a + b).

Rearranging terms,

4F2(b)2 ≤ F2(a + b) (3F2(a)F2(b) − F2(a + b)) .

Developing F2(a + b) on the right-hand side, using (2.2),

4F2(b)2 ≤ F2(a + b) (3F2(a)F2(b) − F2(a + 1)F2(b) − F2(a)F2(b − 1)) .

Using 3F2(a) − F2(a + 1) = F2(a − 1) + F2(a − 2), we obtain

4F2(b)2 ≤ F2(a + b) (F2(b)(F2(a − 1) + F2(a − 2)) − F2(a)F2(b − 1)) ,

and thus, reordering terms on the right-hand side, we have

4F2(b)2 ≤ F2(a + b) (F2(b)F2(a − 2) + F2(b)F2(a − 1) − F2(a)F2(b − 1)) .

Now, applying D’Ocagne’s identity (2.6) to a − 1 and b − 1,

4F2(b)2 ≤ F2(a + b) (F2(b)F2(a − 2) + (−1)aF2(b − a)) . (3.7)
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To prove the inequality above, we distinguish two cases: a being even and
odd. If a is even, since a ≥ 4, then F2(a − 2) ≥ 2 and F2(a + b) ≥ 4F2(b).
Consequently,

4F2(b) ≤ F2(a + b)F2(a − 2)
and (3.7) holds. If a is odd, since a ≥ 3, we have 12F2(b) ≤ F2(a + b), and
for proving (3.7) it is enough to prove

F2(b) ≤ 3F2(b)F2(a − 2) − 3F2(b − a).

In other words,

F2(b) + 3F2(b − a) ≤ 3F2(b)F2(a − 2)

and this holds because 3F2(b − a) ≤ 3F2(b − 3) ≤ F2(b)
4 and F2(a − 2)

≥ 1. �

Lemma 3.2. The following hold.
(1) m2(1, b, b + 1) ≤ 0, for any b, and equality holds only for b = 1, 2.
(2) m2(2, b, b + 1) < 0, for any b ≥ 2.

Proof. For (1), it suffices to prove

1 + F2(b)2 + F2(b + 1)2 ≤ 3F2(b)F2(b + 1).

If b = 1, the above inequality holds as an equality. If b > 1, by applying
Lemma 2.3 to the left-hand side, the above is equivalent to

1
2
F2(b + 1)F2(b + 2) ≤ 3F2(b)F2(b + 1). (3.8)

Equivalently,

F2(b + 1)(2F2(b + 1) + F2(b)) ≤ 6F2(b)F2(b + 1).

Dividing by F2(b+1) �= 0, we obtain 2F2(b+1) ≤ 5F2(b), but this inequality
holds because 2F2(b + 1) = 4F2(b) + 2F2(b − 1) and F2(b) ≥ 2F2(b − 1). In
this case, equality is only achieved when b = 2.

Next, (2) is equivalent to

4 + F2(b)2 + F2(b + 1)2 < 6F2(b)F2(b + 1).

If b = 2, we can verify the above inequality numerically (4 + 4 + 25 < 60).
For b > 2, by Lemma 2.3, and Eq. (3.8), we see that the above holds. �

Theorem 3.3 (Theorem 1.1 of the Introduction). Every non-minimal Markoff
m-triple with k-Fibonacci components is a Markoff 8-triple of the form
(F2(2), F2(2n), F2(2n + 2)), for n ≥ 2.

Proof. First, we start with the case k ≥ 3. If a Markoff m-triple with k-
Fibonacci components (Fk(a), Fk(b), Fk(c)) is not minimal then c < a+ b, by
Lemma 2.5. However, by Lemma 3.1 (2), for k ≥ 3 this restriction implies that
mk(a, b, c) ≤ 0. Therefore, non-minimal Markoff m-triples with k-Fibonacci
components do not exist for k ≥ 3.

In the case k = 2, if a Markoff m-triple with 2-Fibonacci components
(F2(a), F2(b), F2(c)) is not minimal, then c ≤ a + b, by Lemma 2.5. This
restriction forces F2(a) to be equal to 1 or 2, because of Lemma 3.1 (1). If
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F2(a) = 1, then a = 1 and c ≤ b + 1. In the case b = c it is obvious than
m2(1, b, b) ≤ 0 and in the case c = b + 1, it follows that m2(1, b, b + 1) ≤ 0
by Lemma 3.2 (1). Finally, if F2(a) = 2 = F2(2), then a = 2, and c ≤ 2 + b.
Hence by Lemma 3.2 (2), the triple is of the form (2, b, b+2). Now, we prove
that b is an even number. Indeed,

m2(2, b, b + 2) = 4 + F2(b)2 + F2(b + 2)2 − 6F2(b)F2(b + 2)
= 4 + (F2(b + 2) − F2(b))2 − 4F2(b)F2(b + 2)

= 4 + 4F2(b + 1)2 − 4F2(b)F2(b + 2) = 4(1 − (−1)b+1)
(3.9)

is positive if and only if b is even, where the last equality is a consequence of
the Simson identity (2.8). As a result, all the triples of the form
(F2(2), F2(2n), F2(2n+2)), for n ≥ 1 are 8-triples and it is straightforward to
check that they all lie in a branch of the Markoff 8-tree with minimal triple
(2, 2, 12) (See Fig. 1). For m = 8, this tree is unique because there are no
more minimal triples than (2, 2, 12) as shown in Table 1 of [5]. �

4. Minimal Case

We recall that if (x, y, z) is a minimal Markoff m-triple, i.e. a solution of the
Markoff m-equation (1.1), with z ≥ 3xy, then

m = z(z − 3xy) + x2 + y2 > 0.

Let a, b be any pair of positive integers with a ≤ b and let c = a + b + t. By
Lemma 2.5, if t ≥ 1 for k = 2, or t ≥ 0 for k ≥ 3, then (Fk(a), Fk(b), Fk(c))
is minimal, therefore mk(a, b, c) > 0. Consequently, there exists an infinite
number of minimal Markoff triples with k-Fibonacci components. Clearly,
they cannot all correspond to a finite number of values of m, as the number of
minimal triples is finite for each m [5]. Hence there are infinitely many values
of m that admit minimal Markoff m-triples with k-Fibonacci components.
In the rest of the section, we will prove that any m > 0 admits at most one
minimal Markoff m-triple with k-Fibonacci components, except when k = 3,
c = a + b, a is odd, b is even and b ≥ a + 3, where m3(a, b, a + b) admits two
such triples.

Lemma 4.1. Let 1 ≤ a ≤ b. Suppose that k = 2 and c = a + b + 1, or k ≥ 3
and c = a + b. Then

mk(a, b, c) > Lk
α2c
k

D2
k

,

where Dk = αk − ᾱk =
√

k2 + 4 and

L2 =
(

1 − 3
D2

α−1
2

)

+ 2
(

1 − 3
D2

α2

)

α−4
2 −

(

6 +
3

D2
α2 +

9
D2

)

α−6
2 ,

L3 =
(

1 − 3
D3

)

(1 + 2α−2
3 ) −

(

6 +
12
Dk

)

α−4
2 ,

Lk =1 − 3
Dk

, ∀k ≥ 4.
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Proof. Using Binet’s formula (2.1) and taking into account that αkᾱk = −1,
it follows that for any k ≥ 1

Fk(n)2 =
1

D2
k

(
α2n
k + α−2n

k − 2 · (−1)n
)

>
1

D2
k

(
α2n
k − 2

)
.

If k = 2 and b = c − 1 − a, we have

m2(a, b, c) = F2(c)
2 + F2(c − 1 − a)2 + F2(a)

2 − 3F2(c)F2(c − 1 − a)F2(a)

>
1

D2
2

(
α2c
2 + α2c−2−2a

2 + α2a
2 − 6

)
− 3

D3
2

(αc
2 − ᾱc

2)(α
c−1−a
2 − ᾱc−1−a

2 )

(αa
2 − ᾱa

2) .

As c = a + b + 1 > 1 and α2ᾱ2 = −1, we conclude that

(αc
2 − ᾱc

2)(α
c−1−a
2 − ᾱc−1−a

2 )(αa
2 − ᾱa

2) ≤ (αc
2 + α−c

2 )(αc−1−a
2 + αa−c+1

2 )(αa
2 + α−a

2 )

= α2c−1
2 + α2c−1−2a

2 + α2a+1
2 + α2 + α−1

2 + α−2a−1
2 + α2a−2c+1

2 + α−2c+1
2

< α2c−1
2 + α2c−1−2a

2 + α2a+1
2 + α2 + 3.

Hence

m2(a, b, c)

>
1

D2
2

(
α2c
2 + α2c−2−2a

2 + α2a
2 − 6

)
− 3

D3
2

(α2c−1
2 + α2c−1−2a

2 + α2a+1
2 + α2 + 3)

=
1

D2
2

α2c
2

[(

1 − 3

D2
α−1
2

)

+

(

1 − 3

D2
α2

) (
α−2−2a
2 + α2a−2c

2

)

−
(

6 +
3

D2
α2 +

9

D2

)

α−2c
2

]

.

As f(x) = αx
2 is a convex function, c > 1 and a ≥ 1, by applying Karamata’s

inequality [15], we obtain

α−2−2a
2 + α2a−2c

2 ≤ α−2−2
2 + α2−2c

2 = α−4
2 + α2−2c

2 . (4.1)

Since

1 − 3
D2

α2 = 1 − 6 + 3
√

8
2
√

8
< 1 − 3

2
< 0

and c ≥ a + b + 1 ≥ 3, we have

m2(a, b, c) >
1

D2
2

α2c
2

[(

1 − 3
D2

α−1
2

)

+
(

1 − 3
D2

α2

)
(
α−2−2a
2 + α2a−2c

2

)

−
(

6 +
3

D2
α2 +

9
D2

)

α−2c
2

]

≥ 1
D2

2

α2c
2

[(

1 − 3
D2

α−1
2

)

+
(

1 − 3
D2

α2

)
(
α−4
2 + α2−2c

2

)

−
(

6 +
3

D2
α2 +

9
D2

)

α−2c
2

]

≥ L2
1

D2
2

α2c
2 ,

as the coefficient of α−2c
2 is clearly negative in the previous expression, and

therefore its minimum for c ≥ 3 is attained at c = 3.
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Analogously, if we assume that k ≥ 3 and c = a + b, we have

(αc
k − ᾱc

k)(α
c−a
k − ᾱc−a

k )(αa
k − ᾱa

k) ≤ (αc
k + α−c

k )(αc−a
k + αa−c

k )(αa
k + α−a

k )

= α2c
k + α2c−2a

k + α2a
k + 2 + α−2a

k + α2a−2c
k + α−2c

k < α2c
k + α2c−2a

k + α2a
k

+ 4.

Hence

mk(a, b, c) >
1

D2
k

(
α2c
k + α2c−2a

k + α2a
k − 6

) − 3
D3

k

(α2c
k + α2c−2a

k + α2a
k + 4)

=
1

D2
k

α2c
k

[(

1 − 3
Dk

)
(
1 + α−2a

k + α2a−2c
k

) −
(

6 +
12
Dk

)

α−2c
k

]

.

Now, the factor 1− 3
Dk

= 1− 3√
k2+4

becomes positive for k ≥ 3, so this time,
we need to apply the opposite Karamata bound [15] (which becomes simply
Jensen’s inequality in this case)

α−2a
k + α2a−2c

k ≥ 2α
−2a+2a−2c

2
k = 2α−c

k ,

yielding

mk(a, b, c) >
1

D2
k

α2c
k

[(

1 − 3
Dk

)
(
1 + 2α−c

k

) −
(

6 +
12
Dk

)

α−2c
k

]

.

Let us consider the polynomial

pk(x) = 2
(

1 − 3
Dk

)

x −
(

6 +
12
Dk

)

x2.

Then, our bound can be written as

mk(a, b, c) >
1

D2
k

α2c
k

[

1 − 3
Dk

+ pk(α−c
k )

]

.

We know that c = a + b ≥ 2, so α−c
k ∈ (0, α−2

k ], as αk > 1, and therefore,
limc→∞ α−c

k = 0. The polynomial pk(x) is a parabola with a negative leading
coefficient, so its minimum in the interval [0, α−2

k ] is attained at one of the
ends of the interval. A direct computation shows that p3(α−2

3 ) < 0 = p3(0),
and hence

m3(a, b, c) >
1

D2
3

α2c
3

[

1 − 3
D3

+ p3(α−2
3 )

]

= L3
1

D2
3

α2c
3 .

On the other hand, for k ≥ 4, we can prove that pk(α−2
k ) > 0 = pk(0) as

follows. The expression

α4
kpk(α

−2
k ) = 2α2

k

(

1 − 3
Dk

)

−
(

6 +
12
Dk

)

is clearly increasing in k, because αk and Dk are both increasing functions
of k. A direct computation shows that for k = 4 we have α4

4p4(α
−2
4 ) > 0, so
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pk(α−2
k ) must be positive for all k ≥ 4. As a consequence,

mk(a, b, c) >
1

D2
k

α2c
k

[

1 − 3
Dk

+ pk(α−c
k )

]

>
1

D2
k

α2c
k

[

1 − 3
Dk

+ pk(0)
]

=
1

D2
k

α2c
k

(

1 − 3
Dk

)

= Lk
1

D2
k

α2c
k .

�

We have the following lower bound for the constant Lk in the lemma
above.

Lemma 4.2. For each k ≥ 2, the constant Lk satisfies

Lk > α−2
k .

Proof. For k = 2, 3, a direct computation shows that α2
2L2 > 1 and α2

3L3 > 1,
so Lk > α−2

k for k = 2, 3. For k ≥ 4 we wish to prove that

Lk = 1 − 3
Dk

> α−2
k .

Rearranging the equation, this is equivalent to proving that for all k ≥ 4

1 >
3

Dk
+ α−2

k =
3√

k2 + 4
+

4
(k +

√
k2 + 4)2

.

The right-hand side of this expression is decreasing in k and for k = 4 a direct
computation shows that

3
D4

+ α−2
4 < 1,

and hence the inequality holds for all k ≥ 4. �

Lemma 4.3. Let 1 ≤ a ≤ b ≤ c and c ≥ 3. Suppose that a ≤ a′ ≤ c and
b ≤ b′ ≤ c. Then

mk(a, b, c) ≥ mk(a′, b′, c)
and equality holds if and only if a = a′ and b = b′. In particular, for an
ordered minimal Markoff-Fibonacci m-triple (Fk(a), Fk(b), Fk(c)),

mk(1, 1, c) ≥ mk(a, b, c) ≥ mk(a, c − a − s, c),

where s = 1, for k = 2 and s = 0, for k ≥ 3.

Proof. The lemma and its proof are entirely analogous to Lemma 4.1 in [11],
which addresses the case k = 1. In this lemma, the starting point is a = 2
because F1(2) = F1(1) = 1. In our situation, with k ≥ 2, the case a = 1 is
also valid since Fk(2) > Fk(1) = 1. �

Lemma 4.4. If (Fk(a), Fk(b), Fk(c)) and (Fk(a′), Fk(b′), Fk(c′)) are two or-
dered minimal Markoff-Fibonacci m-triples with c ≥ c′, then c = c′.

Proof. Assume that mk(a, b, c) = m = mk(a′, b′, c′). By applying Lemmas 4.3
and 4.1, it follows that

m = m2(a, b, c) ≥ m2(a, c − a − 1, c) > L2
1

D2
2

α2c
2
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if k = 2 and

m = mk(a, b, c) ≥ mk(a, c − a, c) > Lk
1

D2
k

α2c
k ,

for any other k ≥ 3. From Lemma 4.2 we know that Lk > α−2
k for all k ≥ 2,

so

mk(a, b, c) > Lk
1

D2
k

α2c
k >

1
D2

k

α2c−2
k . (4.2)

On the other hand, from Lemma 4.3, we deduce that

m = mk(a′, b′, c′) ≤ mk(1, 1, c′) = Fk(c′)2 − 3Fk(c′) + 2

<
1

D2
k

α2c′
k +

1
D2

k

ᾱ2c′
k +

2
D2

k

(−1)c
′ − 1 <

1
D2

k

α2c′
k .(4.3)

Using Eqs. (4.2) and (4.3) together, we obtain α
2(c−1)
k < D2

km < α2c′
k . Thus,

c′ > c − 1. As we assumed c′ ≤ c, we conclude that c′ = c. �

Lemma 4.5. Let (Fk(a), Fk(b), Fk(c)) and (Fk(a′), Fk(b′), Fk(c)) be two dis-
tinct ordered minimal Markoff-Fibonacci m-triples with the same third ele-
ment. If a ≤ a′, then a < a′ ≤ b′ < b.

Proof. Suppose first that a = a′. It follows by Lemma 4.3 that the equal-
ity mk(a, b, c) = mk(a′, b′, c′) = mk(a, b′, c) is only possible if b = b′, in
which case (a, b, c) = (a′, b′, c′), contradicting the assumption that the two
m-triples are distinct. Thus a < a′. If b ≤ b′, then Lemma 4.3 implies
m(a, b, c) < m(a′, b′, c), which is not possible as both are m-triples for the
same m. Therefore, it follows that a < a′ ≤ b′ < b. �

Lemma 4.6. Let (Fk(a), Fk(b), Fk(c)) and (Fk(a′), Fk(b′), Fk(c)) be two or-
dered minimal Markoff-Fibonacci m-triples. Then a + b = a′ + b′.

Proof. By Lemma 4.5 we can assume without loss of generality that 1 ≤ a <
a′ ≤ b′ < b ≤ c. In particular, b ≥ 3. Rearranging the equation mk(a, b, c) =
mk(a′, b′, c), yields

Fk(a)2 + Fk(b)2 − Fk(a′)2 − Fk(b′)2

= 3Fk(c) (Fk(a)Fk(b) − Fk(a′)Fk(b′)) .(4.4)

Since b ≥ 3 and a′ ≤ b′ < b we have

Fk(b)2 ≥ k2Fk(b − 1)2 > 2Fk(b − 1)2 ≥ Fk(b′)2 + Fk(a′)2,

so the left-hand side of Eq. (4.4) is always positive and, thus, so is the right-
hand side. Let us see that this is impossible if a′ + b′ > a + b. Indeed,

Fk(a′)Fk(b′)
Fk(a)Fk(b)

=
(αa′

k − ᾱa′
k )(αb′

k − ᾱb′
k )

(αa
k − ᾱa

k)(α
b
k − ᾱb

k)
≥ (αa′

k − α−a′
k )(αb′

k − α−b′
k )

(αa
k + α−a

k )(αb
k + α−b

k )

=
αa′+b′
k − αb′−a′

k − αa′−b′
k + α−a′−b′

k

αa+b
k + αb−a

k + αa−b
k + α−a−b

k

.
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Assume that a′ + b′ = a + b + r with r > 0 and let s = a + b. Then
a′ + b′ = s + r. Dividing the numerator and denominator by αs

k yields

αa′+b′
k − αb′−a′

k − αa′−b′
k + α−a′−b′

k

αa+b
k + αb−a

k + αa−b
k + α−a−b

k

=
αr
k − αr−2a′

k − αr−2b′
k + α−2s−r

k

1 + α−2a
k + α−2b

k + α−2s
k

= αr
k

1 − α−2a′
k − α−2b′

k + α−2s−2r
k

1 + α−2a
k + α−2b

k + α−2s
k

.

As 1 ≤ a < a′ ≤ b′ < b, we have a ≥ 1, a′ ≥ 2, b′ ≥ 2, b ≥ 3 and s = a+b ≥ 4.
Thus

αr
k

1 − α−2a′
k − α−2b′

k + α−2s−2r
k

1 + α−2a
k + α−2b

k + α−2s
k

≥ αk
1 − 2α−4

k

1 + α−2
k + α−6

k + α−8
k

≥ 1.92 > 1.

Therefore, Fk(a′)Fk(b′) > Fk(a)Fk(b), which contradicts the positivity of
both sides of Eq. (4.4).

Therefore, we must have a+ b ≥ a′ + b′. Suppose that a′ + b′ = a+ b− r
with r > 0 and let s = a + b as before. Following the same logic as in the
previous case,

Fk(a
′)Fk(b

′)
Fk(a)Fk(b)

=
(αa′

k − ᾱa′
k )(αb′

k − ᾱb′
k )

(αa
k − ᾱa

k)(α
b
k − ᾱb

k)
≤ (αa′

k + α−a′
k )(αb′

k + α−b′
k )

(αa
k − α−a

k )(αb
k − α−b

k )

=
αa′+b′
k + αb′−a′

k + αa′−b′
k + α−a′−b′

k

αa+b
k − αb−a

k − αa−b
k + α−a−b

k

= α−r
k

1 + α−2a′
k + α−2b′

k + α−2s−2r
k

1 − α−2a
k − α−2b

k + α−2s
k

≤ α−1
k

1 + 2α−4
k + α−10

k

1 − α−2
k − α−6

k

< 0.53 <
8

9
.

As a result,

1 − Fk(a′)Fk(b′)
Fk(a)Fk(b)

> 1 − 8
9

=
1
9

≥ 1
9Fk(a)2

.

Multiplying both sides by 3Fk(a)Fk(b)Fk(c), results in

3Fk(c) (Fk(a)Fk(b) − Fk(a′)Fk(b′)) >
Fk(c)Fk(b)

3Fk(a)
.

Since (Fk(a), Fk(b), Fk(c)) is minimal, we have Fk(c) ≥ 3Fk(a)Fk(b). Conse-
quently,

3Fk(c) (Fk(a)Fk(b) − Fk(a′)Fk(b′)) >
Fk(c)Fk(b)

3Fk(a)
≥ Fk(b)2

> Fk(b)2 − Fk(b′)2 + Fk(a)2 − Fk(a′)2 .

This contradicts Eq. (4.4), and thus a′ + b′ ≥ a + b and therefore
a + b = a′ + b′. �

Lemma 4.7. If a is odd, b is even and b ≥ a + 3 then

m3(a, b, a + b) = m3(a + 1, b − 1, a + b).

Proof. Using Simson’s identity (2.8) for a odd,

F3(a)
2 − F3(a + 1)2 = F3(a)

2 − F3(a)F3(a + 2) + (−1)a+1 =

= F3(a)(F3(a) − F3(a + 2)) + (−1)a+1 = −3F3(a)F3(a + 1) + 1 .
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Using a similar argument for b even, we have

F3(b)2 − F3(b − 1)2 = 3F3(b)F3(b − 1) − 1.

Adding both expressions yields

F3(a)
2 + F3(b)

2 − F3(a + 1)2 − F3(b − 1)2 = 3(F3(b)F3(b − 1) − F3(a)F3(a + 1)).(4.5)

We obtain the following identities by applying Vajda’s identity (see Lemma 2.1)
and considering that a is odd and b is even:

F3(a)F3(a + 1)

= F3(b)F3(b − 1) − F3(a + b)F3(b − a − 1) = (−1)b−a−1F3(a)F3(a + 1),

F3(b − a − 1) = F3(a + 1)F3(b − 1) − F3(a)F3(b) = (−1)aF3(1)F3(b − a − 1).

Thus,

F3(b)F3(b − 1) − F3(a)F3(a + 1) = F3(a + b)F3(b − 1 − a)

= F3(a + b)(F3(a + 1)F3(b − 1) − F3(a)F3(b)).

Substituting back in (4.5) yields

F3(a)2 + F3(b)2 − F3(a + 1)2 − F3(b − 1)2 =

3F3(a + b)(F3(a + 1)F3(b − 1) − F3(a)F3(b)).

Rearranging this equation yields the required result. �

Theorem 4.8 (Theorem 1.2 of the Introduction). If m admits a minimal
Markoff m-triple with k-Fibonacci components then it is unique except for
k = 3 and all pairs of triples (F3(a), F3(b), F3(a + b)), (F3(a + 1), F3(b −
1), F3(a + b)), for a odd, b even and b ≥ a + 3.

Proof. Let (Fk(a), Fk(b), Fk(c)) and (Fk(a′), Fk(b′), Fk(c′)) be a pair of or-
dered minimal m-triples contradicting the theorem. By Lemma 4.4, it follows
that c = c′. Moreover, by Lemma 4.5 we can assume without loss of gen-
erality that 1 ≤ a < a′ ≤ b′ < b ≤ c and by Lemma 4.6 we must have
a + b = a′ + b′. Taking n = a, i = b′ − a and j = b − b′ = a′ − a in Vajda’s
identity (Lemma 2.1), we transform Eq. (4.4) into

Fk(a)2 + Fk(b)2 − Fk(a′)2 − Fk(b′)2 = 3Fk(c) (Fk(a)Fk(b) − Fk(a′)Fk(b′))

= (−1)a+13Fk(c)Fk(b′ − a)Fk(b − b′) .

(4.6)

From the proof of Lemma 4.6, the left-hand side of this equality is positive,
therefore a is odd, and hence

Fk(a)2 + Fk(b)2 − Fk(a′)2 − Fk(b′)2 = 3Fk(c)Fk(b′ − a)Fk(b − b′). (4.7)

In the case k = 2, using (2.10) from Lemma 2.5 twice, we obtain that

F2(b) ≤ 3F2(b′)F2(b − b′) ≤ 9F2(a)F2(b′ − a)F2(b − b′) .

Multiplying by F2(b) and by minimality, 3F2(a)F2(b) ≤ F2(c), it follows that

F2(b)2 ≤ 9F2(a)F2(b)F2(b′ − a)F2(b − b′) ≤ 3F2(c)F2(b′ − a)F2(b − b′)
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and as a consequence

F2(b)2 − F2(b′)2 + F2(a)2 − F2(a′)2 < F2(b)2 ≤ 3F2(c)F2(b′ − a)F2(b − b′),

which contradicts Eq. (4.7).
In the case k ≥ 4, suppose that c = a + b. We want to prove

Fk(b)2 − Fk(b′)2 + Fk(a)2 − Fk(a′)2 > 3Fk(c)Fk(b′ − a)Fk(b − b′), (4.8)

contradicting (4.7). First, since Fk(b) ≥ kFk(b − 1) ≥ 4Fk(b′) by Eq. (2.3),
we have

Fk(a′)2 + Fk(b′)2 ≤ 2Fk(b′)2 ≤ 1
8
Fk(b)2 <

Fk(b)2

4
. (4.9)

Now, using Eq. (2.4) twice, it follows that

3Fk(a + b)Fk(b − b′)Fk(b′ − a) ≤ 3Fk(a + b)Fk(b − a − 1) ≤ 3Fk(2b − 2).

The inequality above and (4.9) give

Fk(a′)2 + Fk(b′)2 + 3Fk(a + b)Fk(b − b′)Fk(b′ − a) <
Fk(b)2

4
+ 3Fk(2b − 2)

and by Lemma 2.4

Fk(b)2

4
+ 3Fk(2b − 2) ≤ Fk(b)2

4
+

3
4
Fk(b)2 = Fk(b)2.

Due to the two inequalities above, (4.12) holds.
In the case k = 3, suppose that c = a + b and b′ ≤ b − 2. We want to

prove

F3(b)2 > F3(a′)2 + F3(b′)2 + 3F3(a + b)F3(b′ − a)F3(b − b′), (4.10)

which contradicts Eq. (4.7). Repeating the above argument,

3F3(a + b)F3(b′ − a)F3(b − b′) ≤ 3F3(2b − 2) ≤ 3
4
F3(b)2.

On the other hand, if a′ ≤ b′ ≤ b − 2, since F3(b) ≥ 9F3(b − 2), we have

F3(a′)2 + F3(b′)2 ≤ 2F3(b′)2 ≤ 2F3(b − 2)2 ≤ 2
9
F3(b)2 <

1
4
F3(b)2.

Adding the above two inequalities, (4.10) holds.
In the case k ≥ 3, we first consider c ≥ a + b + 1. We will show that

Fk(b)2 − Fk(b′)2 + Fk(a)2 − Fk(a′)2 < 3Fk(c)Fk(b′ − a)Fk(b − b′),
(4.11)

which contradicts Eq. (4.7). Then, since Fk(b′) > Fk(a) it is enough to show
that

Fk(b)2 < 3Fk(a + b + 1)Fk(b′ − a)Fk(b − b′). (4.12)

By using Eq. (2.5) twice, we obtain

3Fk(a + b + 1)Fk(b′ − a)Fk(b − b′) ≥ 3Fk(a + b + 1)
1

(1 + 1
9 )

Fk(b − a − 1)

≥ 3
(
1 + 1

9

)2 Fk(2b − 1) > Fk(2b − 1).
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On the other hand, applying formula (2.2) to b − 1 and b, it follows that

Fk(2b − 1) = Fk(b)2 + Fk(b − 1)2 > Fk(b)2.

The above two inequalities show that (4.12) holds.
Finally, we study the last case; k = 3, c = a + b, b′ = b − 1 and a

odd (see Eq. (4.6)). This is precisely addressed in Lemma 4.7, which iden-
tifies the minimal pairs of Markoff m-triples with k-Fibonacci components
satisfying m = m3(a, b, a + b) = m3(a + 1, b − 1, a + b), where b is even.
Note that the condition b ≥ a + 3 in that lemma implies that the triple
(F3(a+1), F3(b− 1), F3(a+ b)) is ordered, so (F3(a+1), F3(b− 1), F3(a+ b))
and (F3(a), F3(b), F3(a + b)) are distinct. This, however, does not hold if
b = a + 1. If b were odd, we would have in the last equality of Lemma 4.6

F3(a)2 + F3(b)2 − F3(a + 1)2 − F3(b − 1)2

= 3F3(a + b)(F3(a + 1)F3(b − 1) − F3(a)F3(b)) + 6.

Therefore, if b were odd, m3(a, b, a + b) > m3(a + 1, b − 1, a + b). �
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