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RESUMEN DEL PROYECTO

Esta tesis trata de sentar las bases para aplicar métodos basados en datos para el
análisis del tráfico de ataque de una red. Las redes de comunicación proporcionan
la estructura básica para el funcionamiento del mundo moderno, pero no sin en-
frentarse a algunos retos. Las ciberamenazas, como los ataques de fuerza bruta,
son un vector de ataque habitual para intentar obtener acceso no autorizado a
dispositivos y datos. Debido a la singularidad de cada red, disponer de una visión
personalizada de cada una de ellas es clave para prevenir y mitigar eficazmente el
impacto de los ataques y las filtraciones de datos. La tesis utiliza un entorno de
testeo de desarrollo propio que implementa un ataque de fuerza bruta de forma
segura y observable. El banco de pruebas archiva en conjuntos de datos el tráfico
del host y de la red central. Mediante el exhaustivo análisis exploratorio de datos a
nivel de host y de red de ambas muestras de tráfico, la tesis identifica patrones para
detectar un ataque de fuerza bruta basado en densidad de paquetes en el tráfico
de red. Los modelos estocásticos de bloques también demuestran su capacidad
para detectar ataques de robo de credenciales basados en fuerza bruta contra un
servidor de MySQL.

Palabras clave: análisis de tráfico de red, banco de pruebas, ataque de fuerza
bruta, servidor MySQL, Modelos estocásticos de bloques

1. Introducción

Las redes de comunicación constituyen una de las tecnoloǵıas que permiten al
mundo moderno funcionar digitalmente y entorno a todo el planeta. Sin embargo,
esta relevancia no está exenta de desaf́ıos. Entre otros, las redes de comunicación
se han convertido en objetivos de la ciberdelincuencia.

Los ciberataques pueden adoptar una gran variedad de formas, que difieren en
las tácticas, técnicas y procedimientos en los que se basan. Los ataques de fuerza
bruta son uno de los vectores más comunes para obtener acceso no autorizado
a sistemas y datos, debido a su naturaleza simple de ensayo y error y a su alta
efectividad. Para minimizar su impacto y garantizar la seguridad de las redes de
comunicación es de suma importancia detectar y mitigar estos ataques lo antes
posible.

Para prevenir los ataques es importante conocer la red en cuestión. Cada red
tiene caracteŕısticas diferentes y no pueden tratarse como una caja negra. Por lo
tanto, los métodos de detección y mitigación deben adaptarse a una red espećıfica
para lograr su máxima eficacia.



2. Definición del proyecto

En este contexto, la tesis propuesta se centra en sentar las bases para aplicar
métodos basados en datos para el análisis del tráfico de ataque de una red de un
campus. El proyecto implementa un banco de pruebas de desarrollo propio, en el
que se puede llevar a cabo un ataque de fuerza bruta contra un servidor MySQL
de forma segura y observable. Se recopilan los datos de red reales de los hosts
implicados y los datos de la monitorización central de la red. El conjunto de datos
resultante se somete a un exhaustivo análisis exploratorio de datos a nivel de host
y de red.

Los conocimientos adquiridos debeŕıan contribuir a responder a la pregunta so-
bre ”¿Cómo debe diseñarse la monitorización para permitir la detección de ataques
a la red?”, contribuyendo aśı directamente a la mejora de la seguridad de la red.
La identificación de patrones en el tráfico de red podŕıa allanar el camino para
automatizar la supervisión y detección de ataques de fuerza bruta en una red de
campus.

3. Arquitectura

El proyecto consta de tres fases principales: desarrollo del banco de pruebas; ataque
y recogida de datos; y análisis de datos. La primera parte consiste en configurar
el entorno de testeo con las máquinas virtuales. La máquina atacante utiliza
el framework de Metasploit [met23] para realizar el ataque. Metasploit es un
proyecto de código abierto orientado a las pruebas de penetración y es una de
las herramientas más populares en este campo. Target1, la v́ıctima del ataque,
contiene el servidor MySQL con varias bases de datos. Una vez configurado el
entorno, se procede a la aplicación del módulo auxiliar de metasploit para realizar
ataques de login de fuerza bruta. Los comandos del ataque se programan en python
para automatizar el proceso.

Después de codificar con éxito el ataque, se escribe el código para simular el
comportamiento del usuario real trabajando con las bases de datos de MySQL. El
script final combina tanto el ataque como el comportamiento del usuario. Durante
la ejecución del script, los datos de los hosts implicados y los datos de la moni-
torización central de la red se recopilan en conjuntos de datos. Por último, una
vez que los datos recopilados son suficientes, se procede al análisis para extraer
información de valor. El análisis exploratorio a nivel de host y de red consiste
en identificar comportamientos extraños en base a diferentes parámetros, como la
frecuencia de paquetes, el tamaño de los paquetes o el número de bytes envia-
dos. AwareNet [SKK22], un modelo de bloques estocásticos ponderados, analiza
el tráfico a partir de los datos de monitorización central agrupando nodos. Los
patrones y estructuras de comunicación se manifiestan en la pertenencia de un



nodo a un grupo y en las relaciones entre grupos descritas mediante matrices de
bloques.

Figure 1: Testbed environment schema

La figura 4.1 representa un esquema del banco de pruebas. El diagrama mues-
tra dos hilos principales correspondientes a los diferentes roles de las máquinas
virtuales durante la fase de ataque. El primer hilo representa tanto el ataque de
inicio de sesión por fuerza bruta como el uso por parte del usuario leǵıtimo de
las bases de datos MySQL, y la correspondiente recopilación de datos a nivel de
host. El segundo hilo corresponde al almacenamiento de la monitorización central
en conjuntos de datos.

4. Resultados

El proyecto adopta tres enfoques diferentes para analizar el ataque de inicio de
sesión por fuerza bruta. El análisis a nivel de host revela que el ataque en contraste
con el comportamiento normal, presenta un notorio aumento de la frecuencia de
paquetes por unidad de tiempo en la red. Dicho comportamiento también se
observa en el tráfico de la monitorización central. La figura ?? representa en azul
la densidad de paquetes promedia de todas las conexiones transmitiendo en ese
instante en la red. La zona azul claro marca el margen hasta la desviación t́ıpica.
La ĺınea naranja representa el flujo de paquetes entre el atacante y la v́ıctima. Se
observa que durante la franja correspondiente al ataque, los paquetes enviados por
minuto superan el margen de la desviación t́ıpica, presentando un comportamiento
fuera de los márgenes del tráfico esperado.
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Figure 2: Densidad de paquetes por minuto durante ataque

Para concluir se demuestra la efectividad de detectar el ataque de fuerza bruta
mediante un modelo de bloques estocásticos. Para ello AwareNet utiliza una serie
de datos iniciales para calcular las log-verosimilitudes del comportamiento esper-
ado de la red, que se sitúan entre -6 y -22 para la red en cuestión. Comparando el
tráfico de red restante con esos valores, AwareNet intenta detectar comportamien-
tos anómalos. La Fig. 5.24 y la Fig. 5.25 representan las log-verosimilitudes de
los grupos a los que pertenecen el atacante y la v́ıctima respectivamente. En las
gráficas se aprecia perfectamente cómo ambas conexiones presentan un compor-
tamiento absolutamente anómalo con valores muy alejados de los esperados por el
modelo inicial.
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Figure 3: log-likelihoods of group 105 and 102 over time

5. Conclusiones

Los resultados adquiridos durante el análisis del tráfico de red ayudan a responder
a la pregunta inicial sobre ”¿Cómo debe diseñarse la monitorización para permitir
la detección de ataques a la red?”. Además, los gráficos resultantes de la aplicación



del modelo de bloques estocásticos muestran que AwareNet es capaz de detectar
ataques de fuerza bruta contra servidores MySQL. Como trabajo de futuro podŕıa
estudiarse la capacidad de este modelo para detectar otros ataques.
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ABSTRACT

This thesis tries to lay the groundwork for applying data-driven methods to net-
work attack traffic analysis. Communication networks provide the basic structure
for the functioning of the modern world, but not without facing some challenges.
Cyberthreats, such as brute-force attacks are a common attack vector to try and
gain unauthorized access to devices and data. Due to the uniqueness of every
network, having tailored insight of every individual network is key to efficiently
prevent and mitigate the impact of attacks and data breaches. The thesis uses a
self-developed testbed environment that implements a brute-force login attack in a
secure and observable manner. The testbed collects the host and central network
traffic of a campus network into datasets. By scrutinizing both traffic samples
with a thorough exploratory data analysis at host and network level, the thesis
identifies patterns to detect a brute force-login attack based on packet frequencies
in the network traffic. Stochastic Block Models also demonstrate their ability to
detect credential stealing attacks based on brute-forcing against a MySQL server.

Keywords: network traffic analysis, testbed environment, brute-force attack,
MySQL server, Stochastic Block Model

1. Introduction

Communication networks constitute one of the enabling technologies that allow the
modern world to function digitally and around the globe. However, this relevance
does not come without its challenges. Among others, communication networks
have turned into targets of cybercrime.

Cyberattacks can take on a vast variety of forms, differing in the tactics, tech-
niques and procedures they are based on. Brute-force attacks are one of the most
common vectors to gain unauthorized access to systems and data due to their
simple trial-and-error nature and high effectiveness. To minimize their impact
and guarantee the security of communication networks it is of utter importance to
detect and mitigate these attacks as early as possible.

To prevent attacks it is important to have insight into the network itself. Every
network has different characteristics and cannot be treated as a black box. Detec-
tion and mitigation methods should therefore be tailored to a specific network to
achieve their maximum efficiency.

2. Project definition

In this context, the proposed thesis focuses on laying the groundwork for applying
data-driven methods to network attack traffic analysis. The project implements
a self-developed environment, where a brute-force login attack can be carried out



in a secure and observable manner. Ground truth network data from the involved
hosts and the related data from central network monitoring is collected. The
resulting dataset undergoes a thorough exploratory data analysis at host and at
network level.

The knowledge acquired should contribute towards answering ”How should
monitoring be designed to enable detection of network attacks?”, thus directly
contributing to the improvement of network security. The identification of patterns
in the network traffic could pave the way to automate the monitoring and detection
of brute-force login attacks in a campus network.

3. Architecture

The project has three major phases: testbed environment; attack and data col-
lection; and data analysis. The first part consists on setting up the testbed en-
vironment with the virtual machines. The attacker machine uses the Metasploit
[met23] framework to perform the attack. Metasploit is an open-source project
geared towards penetration testing and is one of the most popular tools in the
field. Target1 hosts the MySQL server with various databases. Once the envi-
ronment is set, the application of the auxiliary module of metasploit to carry out
brute-force login attacks follows. The attack queries are scripted in python.

After successfully coding the attack, the code to resemble the behavior of the
actual user working on the MySQL databases is scripted. The final script com-
bines both the attack and the user behavior. During the execution of the script
the data from the involved hosts and the related data form the central network
monitoring is gathered in datasets. Lastly, once the collected data is sufficient, the
analysis to extract valuable insight follows. The exploratory analysis at host and
network level consists on identifying odd behaviors in different parameters, such
as packet frequency, packet sizes or number of bytes sent. AwareNet [SKK22],
a Weighted Stochastic Block Model, analyzes traffic from the central monitoring
data by grouping nodes. Communication patterns and structures manifest in node
to group membership and in group-to-group relations described through block ma-
trices.

Figure 4.1 portrays a schema of the testbed environment. The diagram displays
two main threads corresponding to the different roles of the virtual machines during
the attack phase. The first thread represents both the brute-force login attack and
the use by the rightful user of the MySQL databases, and the corresponding data
gathering at host level. The second thread resembles the storing of the central
monitoring into datasets.



Figure 4: Testbed environment schema

4. Results

The project takes three different approaches to analyze the brute-force login at-
tack. The host-level analysis reveals, that the attack in contrast to the normal
behavior, presents a notorious increase in packet frequency per time unit. This
behavior also manifests in the data flow from the central monitoring. Figure 5.14
illustrates with a dark blue line the average density of packets per minute of all
connections communicating at every instant through the network. The light blue
region corresponds to the standard deviation. The orange line depicts the aver-
age packets per minute between the attacker and the victim. During the interval
that corresponds to the attack, the average packets sent per minute are beyond
the standard deviation. The packet density experiences an unexpected amount of
data flow that translates into outliers in comparison to the total network traffic.
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Figure 5: Average packets per minute during attack



To conclude Stochastic Block Models prove their capacity to detect brute-
force attacks. AwareNet uses some initial data to calculate the log-likelihoods
of the expected network behavior, which lie between -6 and -22. Comparing the
remaining network traffic with those values AwareNet tries to detect abnormal
behaviors. Fig. 2 and Fig. 3 represent the log-likelihoods of the groups the
attacker and the victim belong to respectively. From the graphs depict perfectly
how both connections present an absolut abnormal behavior.
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Figure 6: log-likelihoods of group 105 and 102 over time

5. Conclusions

The results help answer the initial question about ”How should monitoring be
designed to enable detection of network attacks?”. Further, the resulting plots
of the Weighted Stochastic Block Model showcase that AwareNet is capable of
detecting brute-force login attacks against MySQL servers. Future work could
explore the capacity of the model to effectively detect other attack types.
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Chapter 1

Introduction

Communication networks are the backbone of today’s society. They provide a
critical infrastructure in the everyday life of the majority of the population. From
banking transactions and social interaction to controlling vital infrastructures and
satellite monitoring. Communication networks constitute one of the enabling tech-
nologies that allow the modern world to function digitally and around the globe.
However, this relevance does not come without its challenges.

Among others, communication networks have turned into targets of cybercrime.
Cyberattacks can take on a vast variety of forms, differing in the tactics, techniques
and procedures they are based on. Some prominent examples are denial of service,
man in the middle attacks, or gain of unauthorized access to machines and data.
Brute-force attacks are one of the most common vectors to gain unauthorized
access due to their simple trial-and-error nature and high effectiveness. One of
its main purposes is credential stealing. Credential theft allows an attacker to
gain access to machines and steal critical data. The main advantage of credential
based attacks is, that the attacker bypasses an organizations security measures,
such as firewalls, effortless. To minimize their impact and guarantee the security
of communication networks it is of utter importance to detect and mitigate these
attacks as early as possible.

To prevent attacks it is important to have insight into the network itself. Net-
works differ in the amount and kind of traffic they process, the size of the system
and the amount and interconnection of the devices included. Given the different
characteristics of any network, they cannot be treated as a black box. Detec-
tion and mitigation methods should therefore be tailored to a specific network to
achieve their maximum efficiency.

In this direction, the proposed thesis focuses on laying the groundwork for
applying data-driven methods to a campus’ network attack traffic. The project
implements a self-developed environment, where a brute-force login attack can
be carried out in a secure and observable manner. Ground truth network data
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from the involved hosts and the related data from central network monitoring is
collected. The resulting dataset undergoes a thorough exploratory data analy-
sis at host and at network level. The knowledge acquired should contribute to
the development of methods for identifying traffic patterns of a brute force-login
attack, thus directly contributing to the improvement of network security. The
identification of patterns in the network traffic could pave the way to automate
the monitoring and detection of brute-force login attacks in campus’ network.
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Chapter 2

Background

The following chapter explains the technologies implemented in the project and
reviews different approaches to tackle the detection and mitigation of network
attacks. Section 2.1 reviews the attack under study as well as the technologies
employed to extract valuable insight. Section 2.2 analyzes some of the researches
carried out on the field and exposes their strengths and weaknesses.

2.1 Description of the technologies

Network attacks have become a critical issue for the security of computer net-
works. Communication networks are constantly exposed to cyberthreats and are
often the victim of intrusion attacks. A set of events which have the ability to
compromise the principles of computer systems: availability, authority, confiden-
tiality and integrity. One of the most prevalent intrusion attacks that threaten
computers connected to the network are brute force attacks. The detection and
mitigation of network attacks takes place through monitoring and analysis of rel-
evant traffic data at network or at host level. The variety of models to analyze
monitored data is countless. The thesis implements some basic exploratory data
analysis and Stochastic Block Models to that end.

2.1.1 Brute-force attack and Credential stealing

A brute force attack uses a trial-and-error approach to systematically guess login
information and encryption keys to gain unauthorized access to systems. Although
it is an old attack method, brute forcing remains effective. There exist different
types of attack. Simple brute-force attacks, where the attacker tries to logically
guess the credentials without assistance of any available tools or means. Dictionary
attacks run dictionaries containing lists of passwords on a chosen target. Hybrid
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brute-force attacks, where the attacker combines external means such as preexist-
ing dictionaries with their logical guesses. Reverse brute-froce attacks reverse the
attack by knowing the password and trying to guess the corresponding username.
Lastly, credential stuffing uses a known username-password tuple in tons of other
websites and applications since users often reuse login credentials.

This thesis uses a hybrid brute-force attack. The password list contains 1.000.001
entries plus the correct password. The list contains a selection of the most frequent
passwords, variations and permutations of those passwords and passwords related
to the chair of communication networks and their abbreviation. The reason is that
the virtual machines belong to that chair, therefore it is logical to think that the
password may be related to an acronym or a word related to it, facilitating the
access to any member of the chair. The passwords vary from only letters, to the
combination of letters with special characters and numbers and it uses capital and
lowercase characters.

Credential theft is among the popular brute force attacks, since the actor ac-
quires the account privileges of the victim. Once successful, the attacker can access
the system masquerading as the legitimate user and remain inside until detected.
The intent is to steal user credentials that will grant access to critical data, en-
able access to other devices on the network, install back doors, wipe backups and
data, move laterally and gain remote access to third-party services, among others.
Credential theft often takes place in form of internal attacks. Threats provoked
by people with authorized access to or knowledge of an organization’s resources
that deliberately or accidentally expose or help expose confidential information,
intellectual property, systems, money and more.

2.1.2 Host-based and Network-based intrusion detection
systems

An Intrusion Detection System (IDS) monitors network traffic and issues alerts
when it detects suspicious activities or known threats. IDSs sniff packets and
detects anomalies in network traffic. The roles comprise system monitoring, as-
sessment of firewalls, servers, etc., researching system logs and identify underlying
patterns in the data flow of the network to detect and tackle cyberthreats.

Host-based intrusion detection systems (HIDS) monitor and analyze local in-
coming and outgoing traffic of a specific host. Network-based intrusion detection
systems (NIDS) involve the entirety of the system and are therefore usually located
in main intersection points, such as routers or servers. NIDS examine the traffic
flow of all systems and devices in the network. A frequently used tool to capture all
packets in the network traffic is tcpdump[tcp23]. A powerful command-line packet
analyzer that compiles a pcap file of raw data derived from its sniffing process.
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These studies take place on physical testbeds to train and test cyberattacks.

2.1.3 Testbed environment

A testbed is an environment to carry out replicable and rigorous testing of exper-
imental research and new product development in a safe and controlled environ-
ment. The testbed can be tailored to the needs of the project at hand. Testbed
environments focus on a subset from the total real-world system that can range
from small pieces to complete prototypes of a subsection. They are used to gain
insight into specific aspects the project at hands aims to study. The rationale
behind using a testbed environment is to represent a realistic hardware-software
environment where the testing results are actually representative for the system
under scrutiny.

2.1.4 Stochastic Block Models

This thesis uses stochastic block models (SBM) to try to recognize a brute force
attack within a campus’ network data flow, given that community detection is
generally very insightful in evaluating the structure of large complex networks.
SBMs are unsupervised random graph models used in statistical analysis for com-
munity structure identification and clustering purposes. It is currently a useful
benchmark in statistics, network science and ML to retrieve community struc-
ture in graph data. This approach uses properties of edges within and between
communities, which makes it more suitable than simple clustering to understand
networks.

Let n be the amount of data points, referred as nodes, in the set. Stochastic
Block Models partition the nodes into k disjoint subsets called communities. Each
node is interconnected to the remaining nodes through particular edge densities.
The nodes belonging to the same community share some underlying characteristic.
The point of differentiation towards simple clustering is the description of edge
probabilities between groups through a symmetric block matrix of size kxk [FB19].
Figure 2.1 represents an example of the resulting graph and block matrix of a SBM
model. The colors in the graph denote the group each node belongs to. The matrix
on the figure depicts in a grey scale the group-to-group edge probabilities.
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Figure 2.1: Node-to-group membership and group-to-group block matrix of SBM
[FB19]

2.2 Current research

To assess the efficiency of intrusion detection systems there exists a vast variety of
intrusion detection datasets (IDSs) and testbed environments. Platforms to con-
duct replicable testing of computing tools and new technologies and algorithms.
The IDSs are extensively used for attack prediction approaches and anomaly de-
tection in networks. Some publicly available benchmark datasets for the field of
network security are the: KDD Cup ’99, NSL-KDD, Kyoto 2006+, UNSWNB15,
CIC-IDS2017 and CSE-CIC-IDS2018 datasets.

Both the KDD Cup ’99 and its upgraded version, the NSL-KDD dataset, are
comprised of over 40 features and can distinct between 25 attack types. But their
inability to reflect the modern environment makes them unsuitable for current real
network traffic analysis[GB19].

The CIC-IDS2017 and its newer version, the CSE-CIC-IDS2018, implement a
complete network configuration (including Modem, Firewall, Switches, Routers an
a variety of operating systems). The implementation topology tries to recreate a
real client-server network, but the variety of protocols and attacks compared to
real-world traffic is very limited. Real network conditions such as packet loss and
different TTLs and applications like social networking are not present in these
datasets. These shortcomings lead to an oversimplified scenario compared to the
real world [RCCL22].

In contrast to the previous datasets, the UNSWNB15 and the Kyoto 2006+
reflect modern low foot print attacks. The former is a hybrid of real modern
and contemporary attack activities of network traffic. The latter was developed
in the real time environment between 2006 and 2009. But although the attack
families of both datasets address current attacks, the Kyoto 2006+ does not provide
information about the attack type[MS15].
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Datasets are one of the main components to train network attack detection
systems and judge the reliability of its algorithms. In 2021 Aljabri [AAM+21]
reviews and analyzes research studies that use contemporary intelligent models
to detect different cyberattacks. The majority of the models were trained on the
KDD Cup ’99, NSL-KDD, Kyoto 2006+, UNSWNB15, CIC-IDS2017 and CSE-
CIC-IDS2018 benchmark datasets.

The studies use supervised and unsupervised Machine Learning (ML) and Deep
Learning (DL) algorithms. The ML models include classification regression; clus-
tering techniques such as logistic regression and random forest; support vector
machines; naÏve Bayes; and K-nearest neighbor. The Deep Learning techniques
mainly concern the development of different neural networks such as deep neural
network or multi-layer perceptron.

The algorithms learn from both labeled and unlabeled data. The use of labeled
data enables the analysis and detection of insider threat, DDoS attacks, phishing
attacks, malware attacks, zero-day attacks and botnet attacks. The aim of using
unlabeled data is to detect intrusions at network and at DNS level and to classify
malicious traffic to its corresponding attack.

The techniques exposed in the different research papers have proven to have
very high accuracy within the specific domains. But non of the techniques has
proven useful in mitigating all kinds of network attacks [AAM+21]. The results
of the research demonstrate the existing gap between controlled environment and
real-world network attack detection.

In contrast to the previous research papers, Malecot et al. [ELML08] and
Najafabadi et al. [NKK+11] focus their research on effectively identifying brute
force attacks. Malecot et al. [ELML08] aim to detect distributed brute force
attacks through information visualization. Each local host generates a quad tree.
A mapping structure that resembles the hosts attempting to connect to the local
host in question. Coordinated attackers should appear in the quad trees of multiple
hosts enabling their detection. However, this approach has two major downsides.
It requires a network expert’s analysis and it is unable to automatically detect the
attacking hosts.

To find simpler, more effective and automatic approaches Najafabadi et al.
[NKK+11] study the application of machine learning methods to detect brute force
attacks at network level by studying traffic data. The dataset to train the classifiers
contains real world flow data labelled by network experts. The investigation trains
4 different models and evaluates the results of each of them based on average AUC
values obtained across 4 runs of 5-fold cross-validation. The conclusions state that
ML algorithms can achieve pretty accurate predictions in the detection of SSH
brute force attacks. Additionally, the study tries to include ports in the dataset.
Though results show that ports can improve the classification accuracy, they also
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suggest that classifiers, such as decision trees, can neglect other meaningful features
when building the model. This tread off can lower the performance in case of new
ports due to the categorical nature of this ports. The wide range of potential
values they can take, biases the decision tree classifier to develop specific rules for
each port, instead of generating more general rules based on other discriminating
features. The challenges of this research lie within correctly choosing the most
appropriate features to train the classifiers, the need to label traffic data to train
the models and collecting additional network traffic to evaluate the performance
of the fitted models on real-world unknown data.

A solution to avoid having to label flow data is to use unsupervised machine
learning algorithms. These models identify underlying hidden structures of un-
labelled data. Clustering is a very wide spread technique in the field. Cluster
analysis groups data points that share similarities through the dataset to reveal
hidden connections and patterns that are undetectable to infer from single data
points. According to [KGB20] unsupervised learning has a higher detection rate
than supervised learning; however, they are prone to a high false-positive rate.

Wang et al. [WYWA17] use a clustering technique called Seed-Expanding
(SE). This algorithm employs the Two-Seed-Expanding network traffic clustering
scheme, which clusters attack traffic into phases. Attacks are divided into multi-
steps and all attacks are presumed to share default steps, allowing the algorithm
to detect attacks before they damage the system. Experimental results show that
the implementation of discretization methods and asymmetric binary attributes
to process traffic data, greatly improves the clustering performance of SE. Seed-
Expanding manages to outdo K-Means and other seed-expanding with different
seed numbers. The remaining challenge for the seed-expanding model in this
research is to identify attack flows from normal flows based on the clustering
results.

Another clustering technique to detect network attacks is the MeanShift algo-
rithm. A non-parametric clustering technique that tries to find the dense areas in
a set. Non-parametric clustering means there is no need to specify the amount of
clusters or their shape. Since it automatically detects clusters based on data den-
sity, the development of empty clusters is minimal. Kumar et al. [KGB20] apply
the MeanShift algorithm with the KDD 99 dataset. The research throws promising
results achieving high performance rates of the algorithm, but solely tested on the
KDD 99 set. The results could be non-representative for other datasets. Further
work could involve analyzing the application of other normalization approaches to
the dataset, that could potentially improve the detection rate and accuracy of the
MeanShift algorithm.

Roeling et al. [RN18] apply Stochastic Block Models (SBM) to botnet data
with the aim of identifying infected clusters without the need of a labelled dataset.
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The rationale is to apply an unsupervised method to discover blocks of nodes in
the network given the connectivity pattern and identify latent malicious traffic.
Simulation results show that SBM can be insightful in networks with multiple in-
fected users visiting the same addresses, whether or not malicious. However, in
real world applications, the performance is notoriously lower, due to some lim-
itations in the training of the stochastic block model. The training data might
not provide an adequate snapshot of real botnet network activity, since only one
cluster includes botnet data and is entirely treated as infected in the simulation.
In real life multiple clusters or nodes across clusters would be infected. The lack
of this feature would lead to a very high false positive rate in a real life network.
Further, the data comes from separate environments. Instead of collecting the
data from the same setting, the botnet data is collected with Virtual Machines
(VM) and afterwards put together through IP mapping to resemble one network.

Stephan et al. [SKK22] deploy AwareNet, a system based on Weighted Stochas-
tic Block Models (WSBMs), in a campus network. In the study AwareNet learns
an internal representation of the network structure to detect scanning attacks that
they initiate. Results show that AwareNet successfully detects anomalies like tar-
geted host scans.
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Chapter 3

Description of the Project

3.1 Motivation

External threats are what usually comes to people’s minds when discussing cy-
bersecurity. But external attackers are not the only threat modern organizations
need to worry about. Malicious, negligent and compromised users are a growing
risk. The 2022 Cost of Insider Threats Global Report [Ins22a] reveals that insider
threats have increased in cost, frequency and time to contain since 2020. Over the
past two years incidents have risen 44% with costs up to $15.38 million. There
exist three insider threat profiles, negligent insider, which is the root cause of most
incidents; malicious insiders; and credential theft incidents, which have almost
doubled since 2020 and are the costliest to remediate.

Credential theft remains one of the top attack methods employed by hackers.
The last report from the Ponemon Institute [Ins22b], a pre-eminent research center
dedicated to privacy, data protection and information security policy, shares that
stolen or compromised credentials remain the most common cause of data breaches.
Figure 3.1 portrays the average cost and frequency of the most common attacks
in 2022. Credential theft was the most common primary attack vector, making
up to 19% of successful attacks in 2022. The average cost of attacks caused by
credential theft amounted to $4.50 million. The most critical factor to reduce
the damage of a security breach is time. Time to discover and to disarm and
isolate the intruder are strongly correlated to the damaging impact of a breach.
Figure 3.2 shows that attacks initialized through credential theft have the longest
lifecycle. It took an average of 243 days to identify the breach and another 84
days to contain it in 2022, which is 16.6% greater than the overall mean time to
identify and contain a breach. Credential stealing is one of the most appealing
initial attack vectors, since it allows hackers to operate undetected throughout the
network for the longest average time. This thesis aims to develop mechanisms to
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detect credential theft through brute-force attacks. Hence, trying to contribute to
mitigate its impact on organizations’ data breaches and monetary losses.

Figure 3.1: Average cost and frequency of data breaches by initial attack vector
[in USD millions]

There exist two main approaches to detect malicious activities and ensure the
intended functioning of a network and the secure transfer of user data. The al-
ternatives comprise monitoring data at host or at network level. A key limitation
of host-based mechanisms is their limited view of the network, which incapac-
itates them to detect distributed attacks that are prevalent in today’s world.
Network-based detection is more scalable and provides additional protection to
hosts. However, encrypted traffic data and high speed networks make detection
only more challenging. This study will use both approaches to profit from their
respective upsides. The host-based approach will monitor the activity of the host.
The aim is to find out if a brute-force login attack against a MySQL server leaves
any tracks of anomalous behavior in the host flow data. The network level analysis
will monitor the traffic passing through the central monitoring. The objective is
to detect a brute-force login attack within the campus’ network traffic.

The monitoring at host level, but specially at network level, is most insightful
if all the traffic under analysis stems from the same environment as is the case in
real life. One of the major drawbacks of [RN18] is that the data is gathered from
separate environments and afterwards combined through IP mapping to resemble
a single network. To prevent the combination of different data flows, the thesis
automates the brute-force login attack and samples possible behaviors of the real
user working on the MySQL server before and after the attack. The purpose is
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Figure 3.2: Average time to identify and contain a data breach by initial attack
vector

that the malicious and non malicious traffic originates in the same network and
under the same circumstances. This avoids the problems or conflicts that can arise
when putting together data from different environments or when neglecting the
existing links between traffic generated within a network. Traffic data is inherently
dependent, due to unobserved latent factors that act locally on each network.
Disregarding these dependencies can provide limited validity to the detection of
abnormal network behaviour or other malicious traffic.

Another problem exposed in research papers such as [KGB20] is the utilization
of benchmark intrusion detection datasets to train models that report excellent
performances of their detection mechanisms on training and validation datasets,
but have not been tested in real life scenarios. The purpose of datasets is to store
information. However, sometimes it might be necessary to adjust the amount or
type of data collected to answer the question ”what should be monitored?”. The
KDD Cup ’99, the Kyoto 2006+ and the CSE-CIC-IDS2018, for example, are very
standardized datasets in the field of cybersecurity. But, as their name implies, they
store fixed sets of data. The specificity and immutability of the data may turn
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them uninteresting or useless for certain purposes or circumstances. In addition,
for some of the available datasets the testbed environments are not accessible
for researchers. The data is therefore collected in an unknown environment and
may not be representative for other networks, potentially misleading about the
efficiency of the methods tested once implemented in real networks.

Datasets are contributing to develop algorithms and methods to detect network
attacks. But their contribution could have a higher impact if researchers had
access to the testbeds. Monitoring the environment and network traffic directly
generates tailored datasets. Customed datasets give real actual insight into what
is specifically taking place in the network, leading to the development of more
efficient detection methods. Aljabri et al. [AAM+21] address the existing gap
between controlled environments and real world network attack detection systems.
Training models on fixed sets of data gathered in unknown networks often do not
reliably represent conditions suitable to the later implementation of the algorithm.

The testbed environment of the thesis mimics the internal attack scenario of a
campus network with three major goals: provide a topological description on how
a credential theft occurs; achieve attack pattern extraction from raw sniffed data;
and establish attack pattern identification as a parameter to visualize real-time
attacks at host and network level. The advantage of using a self-developed testbed
is to have all knowledge around the traffic generated, the conditions of the network,
the devices involved, etc. and to have the capacity to unlimitedly apply any
changes to make it more suitable to any needs. The stochastic block model trains
with data directly collected from the central monitoring of the network. Given the
real life conditions of its training, the performance should not experience much
fluctuation, hence closing the aforementioned gap between controlled environments
and real world network data.

Empirical results show that machine learners are quite successful in detecting
brute force attacks with high detection rate and low false alarm. Still, the seed-
expanding model of Wang et al. [WYWA17] exposes the main challenge for many
of these researches. The inability to distinguish between attack flows and normal
flows. Additionally, researches like Najafabadi et al. [NKK+11] use different ma-
chine learning classifiers, such as decision trees, that rely heavily on the availability
of a labelled dataset and on a closed set of features to detect a brute force attack.
Having to label the data and choosing the features to train the algorithm are ma-
jor disadvantages. It creates the need for a network’s expert to properly label the
data and to accurately and correctly choose the features, which supposedly are
more relevant or insightful to detect the attack.This can potentially lead to the
disregard of other meaningful features.

The thesis applies stochastic block models to identify infected clusters without
the need of a labelled dataset or a set of predefined features. The rationale is
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to apply an unsupervised approach to discover blocks of nodes in the network
given the connectivity pattern and identify latent malicious traffic automatically.
Unlike Malecot et al. [ELML08] the investigation provides a new insight of brute
force attacks with the main goal of coming up with automatic attack patterns
visualization that may help the network administrator to analyze easily any similar
attacks.

Lastly, the motivation behind targeting a MySQL server is the widespread us-
age of MySQL servers that makes it a frequent target of attacks. MySQL alongside
Oracle is the most popular database management system worldwide. Many large
companies such as Facebook, NASA, Google and Boeing, as well as small busi-
nesses and individual developers use MySQL [Ora23]. The reason is that MySQL
is very versatile and easy to use. From powering a simple website to running large
and complex e-commerce sites, MySQL has endless applications.

3.2 Project objectives

The goal of the thesis is to lay the groundwork for applying data-driven methods
to network attack traffic, through the collection and analysis of network flow at a
campus network.

To achieve the final purpose of the project some previous stages need to be
fulfilled. The first step consists on setting up a testbed environment where known
attacks can be carried out in a secure and observable manner. In this environment
attacker hosts target VMs with dedicated vulnerabilities using pentesting tools
like Metasploit. The attack is scripted in Python to allow the automatic execution
at any time.

Ground truth network data from the involved hosts and the related data from
central network monitoring is collected and should result in an extensive dataset
containing network traffic from a brute-force login attack. The data needs to be
processed and prepared to be suitable for its analysis.

As last step a thorough exploratory data analysis of the collected data takes
place. The results should support identifying suitable data-driven methods for
autonomous network attack detection and help towards answering the question
”How should monitoring be designed to enable detection of network attacks?”.

3.3 Methodology and Planning

The project has three major phases: testbed environment; attack and data collec-
tion; and data analysis. The first part consists on setting up the testbed environ-
ment with the virtual machines. Within the environment the attacker VM needs
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the installation of the metasploit framework to perform the MySQL brute-force
login attack. The target VM needs to install the MySQL server that will suffer the
attack. Once the environment is set the application of pentesting tools to carry
out attacks follows. The attack queries are scripted in python. With the script
the attack can run automatically at any time with a simple command. After the
success of the attack, the code to resemble the behavior of the actual user working
on the MySQL databases is scripted as well. The final script combines both the
attack and the user behavior after working as expected independently.

During this phase the data from the involved hosts and the related data form
the central network monitoring is gathered in a dataset with tcpdump [tcp23] and
caplon respectively. Lastly, once the data collected is sufficient, the analysis to
extract valuable insight follows. The exploratory analysis at host and network
level uses the python library matplotlib [mat23]. This part consists mainly on
visualizing the behavior over time, the sizes of the packets and the protocols in-
volved in the network flow. Stochastic block models analyze traffic data from the
central monitoring data. Throughout the development of the thesis the results,
challenges and conclusions met are written down in a report. The following Gantt
diagram roughly portrays the time distribution of the course of actions throughout
the whole project.

February March April May June July

Mysql server set up

Scripting of brute-force attack

Scripting of MySQL User

Attack data collection

Host-based analysis

Network-based analysis - SBM

Written work
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3.4 Economic Estimation

An economic estimation is a crucial step to grant the feasibility of the thesis. The
estimation considers all costs incurred during the development of the project and
writes them off over the duration of the project. The first project-related issues
began in November 2022. The real work though did not start until February 2023.
For that reason the timespan considered for the project starts in February 2023
and lasts until June 2023.

The elements employed during the thesis are the computer, where the whole
project was scripted, visualized and set up; the server of the campus network; and
different tools, libraries and applications for the brute-force attack, data gathering
and visualization. Still, only two of the elements mentioned have a contribution
to the economic estimation. The laptop had an acquisition price of 1.082,31€
and a lifespan of 6 years. Distributing the price of the lifespan of the laptop the
amortization price amounts to 180,39€/year. Since the duration of the project is
of 5 months, the total cost is of 75,16€. The other element that adds to the cost
of the project is the server of the campus that hosts the virtual machines. To the
advantage of this project the server of the campus wrote off last year and is pending
to be exchanged by a new one. Hence, the contribution to the economic estimation
is cero. All programming and pentesting tools used throughout the whole project,
such as matplotlib, metasploit, AwareNet and tcpdump, are publicly available and
do not add any costs either.

Lastly, the labour costs need to be considered. In Germany the hourly salary
for a junior engineer adds up to 26.92€/h. Taking into account that the esti-
mated invested time approximates 330h, the labour costs reach 8.883,60€. Taking
into account the aforementioned costs, the total economic estimation of the thesis
amounts to 8.958,76€. It may seem a fairly high cost for a Bachelor’s Thesis.
However, it should be bared in mind that the thesis resembles an investment in
the enhancement of the security of the campus network and in the application of
probabilistic algorithms for the detection of network attacks.
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Architecture

The project implements a brute-force login attack to generate attack traffic and
analyse it for pattern recognition. The attack has three parts. An initial run,
that resembles the legitimate user working on the MySQL server. The proper
attack, where the password is cracked and again the behavior of a legitimate user.
The purpose is to generate ”normal” and ”attack” traffic on the network. Having
both types of traffic enables the comparison between behaviors and facilitates the
identification of odd behaviors and patterns. During the whole execution the VMs
store the data for the posterior data analysis.

4.1 Implementation

The thesis uses a small-scale network testbed consisting primarily of 3 virtual
machines: attacker as kali1, control as ctrl and victim as target1. In addition to
the hardware, the testbed uses supporting software such as MySQL, Metasploit and
tcpdump. The control and target virtual machines use the Linux operating system.
The attacker machine, kali1, uses Kali Linux and runs the Metasploit [met23]
framework on top of it. Metasploit is an open-source project geared towards
penetration testing and is one of the most popular tools in the field. Target1 hosts
the MySQL server with various databases. Tcpdump runs on the attacker VM to
gather the data for the host level analysis. The control VM collects the network
traffic from the central monitoring and pseudomizes it with a docker container.
The central monitoring uses caplon and special capture hardware to collect the
traffic mirrored from the core switches of the datacenter. Caplon provides an
extensive overview of all the traffic in the network and complete control over IT
and OT-infrastructures.

Figure 4.1 portrays a schema of the testbed environment. The diagram displays
two main threads corresponding to the different roles of the virtual machines during
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the attack phase. The first thread represents both the brute-force login attack and
the use by the rightful user of the MySQL databases, as well as the corresponding
data gathering at host level. The second thread resembles the data collection and
pseudonymization that stores the data from the central monitoring into datasets.

Figure 4.1: Testbed environment schema

4.2 Algorithms

The thesis makes use of different tools to accomplish the goals. The different
implementations of algorithms and tools are further explained in the following
section. The section is divided in 4 parts. The setting of the brute-force attack,
the scripting of the attack and normal behavior, the visualizations with python
and lastly the application of Weighted Stochastic Block Models.

4.2.1 Metasploit Framework

Msfconsole is one of the most frequently used command-line user interfaces to
access the Metasploit framework and work with all the available tools for exploiting
vulnerabilities, collecting data or scanning targets. There are two types of modules
in Metasploit, exploit and auxiliary modules. Though none of the modules provides
a script to gain control over a remote machine, they are extremely valuable for
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performing penetration testing. Auxiliary modules allow the framework to extend
to a variety of purposes different than mere exploitation, such as DoS, scanning,
fuzzing, sniffing or data gathering. The credential theft against the MySQL server
of the target1 VM uses the scanner of the auxiliary module. More precisely it
employs the mysql login auxiliary module, a brute-force login tool for MySQL
servers. To conduct the brute-force login some parameters need to be defined.
The command ’show options’ shows the name, current setting, whether or not the
parameter is required and the description of all tunable parameters.

The 4.1 listing portrays the default configuration of the brute-force login ex-
tension. The only parameters of interest for the credential theft of the project
are PASS FILE, RHOSTS, STOP ON SUCCESS, USERNAME and VERBOSE.
USER FILE is not specified, since the knowledge of the username or lack of it
cannot be a requirement to preserve the security of a system. Lines 14 to 20 of
listing 4.2 contain the command to execute the attack with the specification of
each of the parameters. Conducting the attack itself is quite simple, since it only
requires 4 steps. Accessing the msfconsole; entering the module of interest, in this
case the command needed is ’use auxiliary\scanner\mysql\mysql login’; specify
the parameters of interest; and lastly let the console run the attack.

RHOSTS holds the IP address of the target. The list of passwords assigned to
PASS FILE for the attack is a million passwords long and contains very diverse and
frequently found passwords. Since the project recreates an insider attack, knowing
the username is a plausible assumption. Possessing the username facilitates the
attack, considerably reducing the time required and the possibility of triggering
any security parameter, such as maximum connections allowed. USERNAME is
set to the known username. Specifying these three parameters is the minimum
requirement to conduct the brute-force login attack. The remaining settings are
non-essential, but contribute to a more efficient attack. VERBOSE prints only
the successful attempts, when it is set to false, as is the case. This reduces the
attack time significantly, since the command line only prints out a couple of results
instead of the over a million attempts. The STOP ON SUCCESS setting stops
guessing as soon as one of the credentials is successful. To the purpose of the
thesis guessing one password is enough, since it already provides full access to
the MySQL server. The mysql login module tries to connect to the specified host
and user with all of the passwords in the PASS FILE. The attack lasts until it
either succeeds or runs out of passwords, in which case the credential stealing has
failed. Something worth mentioning is the fact that RPORT automatically points
to port 3306. The reason behind is that the module in use is the mysql login and
the default port for the classic MySQL protocol is number 3306. Though it could
be possible to run a MySQL server on a different port, the module makes this
assumption, since usually the port of the MySQL server is rarely changed.

37



4.2. Algorithms

Listing 4.1: Default mysql login setting
1

2 Module o p t i o n s ( a u x i l i a r y / s canne r /mysql / my s q l l o g i n ) :
3

4 Name Cur r en t S e t t i n g Requ i r ed D e s c r i p t i o n
5 −−−− −−−−−−−−−−−−−− −−−−−−− −−−−−−−−−−−
6 BLANK PASSWORDS t r u e no Try b l ank passwords f o r a l l u s e r s
7 BRUTEFORCE SPEED 5 yes How f a s t to b r u t e f o r c e , from 0 to 5
8 DB ALL CREDS f a l s e no Try each u s e r / password coup l e s t o r e d
9 i n c u r r e n t DB

10 DB ALL PASS f a l s e no Add a l l pas swords i n c u r r e n t
11 DB to the l i s t
12 DB ALL USERS f a l s e no Add a l l u s e r s i n c u r r e n t DB
13 to the l i s t
14 DB SKIP EXISTING none no Sk ip e x i s t i n g c r e d e n t i a l s
15 i n c u r r e n t DB
16 PASSWORD no A s p e c i f i c password to
17 a u t h e n t i c a t e w i th
18 PASS FILE no F i l e c o n t a i n i n g passwords ,
19 one pe r l i n e
20 P r o x i e s no A proxy cha i n o f fo rmat
21 t ype : hos t : po r t
22 RHOSTS yes The t a r g e t hos t ( s )
23 RPORT 3306 yes The t a r g e t po r t (TCP)
24 STOP ON SUCCESS f a l s e ye s Stop gu e s s i n g when c r e d e n t i a l works
25 THREADS 1 yes Number c on cu r r e n t t h r e ad s
26 (max 1 pe r hos t )
27 USERNAME roo t no A s p e c i f i c username to
28 a u t h e n t i c a t e as
29 USERPASS FILE no F i l e c o n t a i n i n g u s e r s and passwords
30 s e p a r a t e d by space , one p a i r pe r l i n e
31 USER AS PASS f a l s e no Try username as password
32 f o r a l l u s e r s
33 USER FILE no F i l e c o n t a i n i n g usernames ,
34 one pe r l i n e
35 VERBOSE t r u e ye s Whether to p r i n t output
36 f o r a l l a t t empts

4.2.2 Python Scripting of Linux commands

To automate and accelerate the execution of the brute-force attack, the commands
are scripted. The script takes over all the tasks: opening the tmux sessions,
running the commands, accessing the msfconsole, among others. For the purpose of
simulating the credential theft insider attack by a host embedded in normal traffic,
the attack is divided into 3 main time-based stages, normal traffic (preAttack),
attack (msfconsole and flush-hosts) and normal traffic (postAttack and tshark).
This division allows for a clear distinction between both types of data flow, which
should pop up in the exploratory host-based and network-based data analysis.
Listing 4.2 holds the python function create attack list(). The name is not very
accurate, since it creates the list of all the actions to simulate both the attack and
the normal behavior of the host. The attack list contains five different actions
in total. The preAttack, that resembles the normal behavior of the host before
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the brute-force attack. The msfconsole, which does the actual credential stealing.
Flush-hosts as a precaution in case the MySQL server blocks the host because of
too many connection errors. The postAttack, which performs the same action as
the preAttack, but after the brute-forcing attack has taken place. Lastly, tshark
converts the pcap dataset into a csv file to facilitate the exploratory analysis with
python.

Listing 4.2: Attack code
1 def c r e a t e a t t a c k l i s t ( s e l f ) :
2 ”””
3 Crea t e s the a t t a c k l i s t .
4 Checks f o r the a t t a c k type and adds a t t a c k command to the l i s t .
5 Same a t t a c k can be run mu l t i p l e t imes beh ind each o th e r
6 and i s s p e c i f i e d i n the i t e r a t i o n s key .
7 ”””
8 s e l f . a t t a c k l i s t = [ ]
9 f o r i i n range ( l e n ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] ) ) :

10 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” preAt tack ” :
11 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
12 s e l f . a t t a c k l i s t . append ( ’ mysql −u username −p password
13 −h d s t i p −e \ ’ ’ + s e l f . random commands (0 ) + ’ \ ’ ’ )
14 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ”ms f con so l e ” :
15 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
16 s e l f . a t t a c k l i s t . append ( ’ ms f con so l e −q −x \ ’ use
17 a u x i l i a r y / s canne r /mysql / my s q l l o g i n ;
18 s e t RHOSTS d s t i p ; s e t VERBOSE f a l s e ;
19 s e t USERNAME username ; s e t PASS FILE passwords . t x t ;
20 s e t STOP ON SUCCESS t r u e ; run ; e x i t \ ’ ’ )
21 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” f l u s h −ho s t s ” :
22 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
23 s e l f . a t t a c k l i s t . append ( ’ mysqladmin −u username −p password
24 −h d s t i p f l u s h −ho s t s ’ )
25 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” pos tAt tack ” :
26 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
27 s e l f . a t t a c k l i s t . append ( ’ mysql −u username −p password
28 −h d s t i p −e \ ’ ’ + s e l f . random commands (0 ) + ’ \ ’ ’ )
29 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” t s h a r k ” :
30 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
31 s e l f . a t t a c k l i s t . append ( ’ t s h a r k −r ’ + s e l f . l o g p a t h
32 +’ a t t a c k k a l i 1 ’ + s e l f . o v e r a l l s t a r t t i m e +’ . pcap −t ud
33 −T f i e l d s −e ws . c o l . Time −e i p . s r c −e i p . d s t
34 −e frame . l e n −e ws . c o l . P r o t o co l −E s e p a r a t o r =,
35 −E oc cu r r e n c e=f > ’ + s e l f . l o g p a t h + ’ a t t a c k k a l i 1 ’+
36 s e l f . o v e r a l l s t a r t t i m e +’ . c sv ’ )
37

38 s e l f . t o t a l a t t a c k s e t i t e r a t i o n s = s e l f . c o n f i g d a t a [ ” a t t a c k s e t i t e r a t i o n s ” ]
39

40 def s t a r t a t t a c k h a n d l e r ( s e l f ) :
41 ”””
42 Main a t t a c k hand l e r .
43 Tra v e r s e s th rough the a t t a c k l i s t and runs the a t t a c k commands .
44 Checks i f c u r r e n t a t t a c k has f i n i s h e d . I f y e s nex t a t t a c k command
45 o f the l i s t w i l l be s t a r t e d .
46 ”””
47 f o r i n range ( s e l f . t o t a l a t t a c k s e t i t e r a t i o n s ) :
48

49 s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r = 0
50 wh i l e s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r < l e n ( s e l f . a t t a c k l i s t ) :
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51 i f s e l f . c u r r e n t a t t a c k f i n i s h e d :
52 s e l f . c u r r e n t a t t a c k s t a r t t i m e = date t ime . da t e t ime . now(
53 da te t ime . t imezone . utc )
54 s e l f . s t a r t n ew a t t a c k ( )
55 s e l f . s e t a t t a c k s t a t e t o r u n n i n g ( )
56

57 i f s e l f . c h e c k a t t a c k s t a t e ( ) :
58 s e l f . c r e a t e a t t a c k l i s t ( )
59 s e l f . s e t a t t a c k s t a t e t o f i n i s h e d ( )
60 s e l f . a d d c u r r e n t a t t a c k t ime s t amp s ( )
61 s e l f . s t r i n g s t a r t t i m e = date t ime . da t e t ime . s t r p t im e (
62 s e l f . o v e r a l l s t a r t t i m e , ”%Y %m %d−%I %M%S %p UTC” )
63 s e l f . c u r r e n t t ime s t amp = date t ime . da t e t ime . s t r p t im e (
64 da te t ime . da t e t ime . now ( ) . s t r f t i m e ( ”%Y %m %d−%I %M%S %p UTC” ) ,
65 ”%Y %m %d−%I %M%S %p UTC” )
66 i f ( s e l f . c u r r e n t t ime s t amp − s e l f . s t r i n g s t a r t t i m e >
67 da te t ime . t im e d e l t a ( hour s=1) and s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r
68 ==0)
69 or ( s e l f . c u r r e n t t ime s t amp − s e l f . s t r i n g s t a r t t i m e >
70 da te t ime . t im e d e l t a ( hour s=3) and s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r
71 ==3)
72 or s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r i n [ 1 , 2 , 4 ] :
73 s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r += 1
74

75 t ime . s l e e p ( 1 . 0 )
76

77 s e l f . s top tmux ( )

The preAttack and the postAttack aim to simulate actions the legitimate user
performs on the MySQL server. To do so, both actions connect to the MySQL
server and run the function random commands() 4.3. The function adds some
randomness to the script and avoids repeating in each execution of the script the
exact same steps and attack. The brute-force attack lasts around 40 minutes (see
Figure 5.2). The pre and postAttack are designed to last more or less one hour each.
The idea is to generate traffic over a similar amount of time. This should allow
to better draw parallelisms and compare both events under the same conditions.
The function random commands() is very basic and executes different commands
during the specified timespan. The function selects in every run a random number
between 0 and 5. With an index value of 0 the fucnion executes a SELECT
query. The function select() uses another random process to select the database,
table and column to read the data from. Index 1 drops and creates a table from
a database. Again the creation of the table follows a separate random process
started with the function dropCreate(). Lastly for the remaining values insertions
on different tables take place. The value of the index chooses the table that will
suffer the new INSERT queries. The queries themselves, however, are chosen with
the fuction insert(). The actions nor the syntax are very complicated, but the
function random commands() serves the purpose of generating a constant flow of
traffic in the network to enable the comparison between different parameters. To
see all the MySQL queries executed during these stages turn to Appendix C.
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Listing 4.3: Normal Behavior
1 def random commands ( s e l f , t ypeAt tack ) :
2 randomIndex = random . r a n d i n t ( 0 , 5 )
3 i f randomIndex == 0 :
4 r e t u r n s e l f . s e l e c t ( )
5 e l i f randomIndex == 1 :
6 r e t u r n s e l f . d ropCrea t e ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ t ypeAt tack ]
7 [ ” d e t a i l s ” ] [ randomIndex ] [ ”Command” ] )
8 e l i f randomIndex i n range ( 2 , 7 ) :
9 r e t u r n s e l f . i n s e r t ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ t ypeAt tack ]

10 [ ” d e t a i l s ” ] [ randomIndex ] [ ”Command” ] )

The msfconsole action carries out the whole brute-force attack, following the
steps explained at the beginning of the section. It connects to the msfconsole,
it specifies the parameters of interest for the project in the auxiliary module,
RHOSTS, VERBOSE, USERNAME, PASS FILE and STOP ON SUCCESS. Fi-
nally it runs the attack and once it ends it exists the console.

Flush-hosts empties the host cache and unblocks any blocked hosts. In the
script the command is a precaution to ensure the correct development of all the
actions. If the host at some point fails too many times to connect, the MySQL
server will block it, preventing the host from connecting at all. If the host cannot
connect, the traffic will not hold much data of interest, since any connection will
be rejected.

The kali1 VM records the host traffic with tcpdump. Tcpdump directly cap-
tures all network traffic packets using the libcap library and produces raw data
stored in a pcap file. The pcap file contains a huge amount of information on
each of the packets. For the preliminary exploratory data analysis of this project
a lot of that information is superfluous. Listing 4.6 shows the raw data of a single
packet captured and stored in the pcap file. To extract insight of the data flow the
information is translated into visualizations through matplotlib. To work more
easily with the traffic in the pcap file, tshark transforms the data into a csv file
keeping only the fields of interest to the exploratory analysis. The specifications
for the tshark command are in lines 31 to 36 of listing 4.2. The fields extracted
are the source and destination ip, the timestamp of each packet, the packet size
and the protocol in the highest layer. In the command in listing 4.2 the protocol
and time fields are not directly imported, but have the suffix ws.col. This suffix
makes both fields more understandable to the user. It resolves the name of the
protocol instead of loading it as a number and it translates the UNIX timestamp
to UTC format.

The other function in listing 4.2 is start attack handler(). This is the main
attack handler and it traverses through the previously defined attack list running
the five explained actions. The function checks if the attack has finished (line 51).
If the statement is true the next attack command of the list that corresponds to
the self.attack set iteration counter starts executing with self.start new attack()
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(line 54). The function self.check attack state() reads the last line of the cur-
rent attack.log file to check whether or not the current action has finished. If the
current action finishes the last line of the log file holds the string: ”Checked: Attack
finished!”. This condition is enough to increase the self.attack set iteration counter
if the commands are either msfconsole, flush-hosts or tshark. If the actions are
preAttack or postAttack a second condition exists in order to move on, namely
the time condition. The preAttack lasts one hour. Until that timespan does not
elpase the self.start new attack() function will keep executing random queries with
self.random commands. The situation repeats with postAttack.

Tmux is a terminal multiplexer that allows to start several ”pseudo terminals”
from a single terminal. This is very helpful, since the connection to the virtual
machines of the testbed is remote. The connection may fail or be interrupted.
Tmux ensures that the attack and further actions take place regardless of any
interruption or failure. The script launches two tmux sessions during the attack
4.4. The sessions involve the attack and the gathering of network flow data, since
the non-interruption of both processes is crucial. The first pane of listing 4.4 is
responsible for the execution of the attack per se. Meanwhile the second pane
records the traffic data through tcpdump and stores it at the end of the attack
in a pcap file. The function start attack handler() kills the tmux sessions once all
the actions on the attack lists finish (line 75 of listing 4.2).

Listing 4.4: Tmux sessions
1 def i n i t i a l i z e t m u x s e r v e r ( s e l f ) :
2 ”””
3 S t a r t the Tmux s e r v e r and s e s s i o n .
4 Opens two panes f o r tcpdump and a t t a c k commands .
5 ”””
6 s e l f . tmux s e r v e r = l i b tmux . S e r v e r ( )
7 s e l f . tmux s e s s i o n = s e l f . tmux s e r v e r . n ew s e s s i o n (
8 s e s s i on name=” k a l i 1 a t t a c k ” ,
9 k i l l s e s s i o n=True , a t t a ch=Fa l s e )

10 s e l f . tmux window = s e l f . tmux s e s s i o n . new window ( a t t a ch=True ,
11 window name=” k a l i 1 a t t a c k ” )
12 s e l f . tmux pane1 = s e l f . tmux window . a t t a ched pane
13 s e l f . tmux pane2 = s e l f . tmux window . s p l i t w i n d ow ( v e r t i c a l=Fa l s e )
14 s e l f . tmux window . s e l e c t l a y o u t ( ’ even−h o r i z o n t a l ’ )

The details regarding all functions involved in the process are in Appendix C.

4.2.3 Python packages for Visualization

The visualization, preparation and transformation of the data use different python
libraries. Only two are really worth mentioning, matplotlib for visualization and
pandas for data treatment. Matplotlib [mat23] is a powerful python library to cre-
ate static, animated, and interactive visualizations. The project uses this python
module to do different representations of the traffic at host and network level. The
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loading of the data into python uses pandas [pan23]. A powerful, easy and flexible
open source tool to perform data manipulation and analysis.

At host level after loading the data, the filtering process keeps only the data
flow between the attacker VM and the victim. The reason is to solely focus on the
parameters of the brute-force login and the normal behavior of the user and have
the clearest picture possible. The visualizations focus on the three fields extracted
with tshark besides the ip addresses. The visualizations illustrate the behavior
over time of the traffic, the packet sizes and their frequency, and the frequency of
each protocol.

At network level the visualizations combine average behaviors of all the con-
nections with the traffic generated only between the attacker and target VM. The
plots focus on the parameters packet frequency, number of bytes sent and average
packet size. The resulting visualizations are discussed in section 5.

4.2.4 Weighted Stochastic Block Models

Figure 4.2: AwareNet steps
[SKK22]

For the application of Weighted Stochastic Block Models (WSBM) this thesis
uses AwareNet [SKK22]. AwareNet implements probability theory to generate a
probabilistic model for network flows and behaviors. Figure 4.2 portrays the ar-
chitecture of AwareNet. The attack traffic collected from the central monitoring
nurtures the model to construct different graphs. As a starter AwareNet takes the
first 10 minutes of the monitored data to develop a graph of the network flow. In
the graph IP addresses represent nodes and data flows the edges of the communica-
tions over that first 10 minute slice. The edges also have some associated statistics,
such as amount of packets sent. Consecutively, AwareNet fits the parameters of
a WSBM with the library GraphTool [gra23]. An efficient Python module to ma-
nipulate and statistically analyse graphs. This fitting process results in a partition
z of all nodes in the graph into k groups. Figure 4.2 illustrates the architecture of
AwareNet. The partition the model uses pairs nodes with similar communication
behaviors into the same group. The grouping can already reveal some underlying
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network-inherent structures that are imperceptible at first sight. The matrix in
Figure 4.2 portrays in a grey-scale the statistics about edge existence and weight
distribution at a group-to-group level. These statistics are employed to calculate
edge likelihoods. The following formula calculates the log-likelihood of an edge eij
between node i and node j with weight wij of the fitted WSBM model θ:

logL(eij|θ) = logPoisλzi,zj
(1) + logNµzi,zj ,σzi,zj

(wij) (4.1)

The first summand of the equation 4.1 assumes a Poisson distribution for edge
existence. λ represents the ratio of observed edges from the group of node i,zi
to the group of node j,zj and the amount of possible edges between both groups,
|zi|·|zj|. The second summand assumes the edge weights to follow a normal distri-
bution and represents through µ and σ for edges from group zi to zj the related
maximum likelihood estimates of all their weights. Since the edge existence and
weight are also assumed to be independent, the total edge log-likelihoods for the
fitted model result from adding the log-likelihoods for existence and weight. The
memory complexity for AwareNet is of O(k2 + n). The computational complexity
to calculate edge log-likelihoods on the other hand is linearly dependent on the
amount of edges in upcoming observations.

The rationale behind using a 10 minute slice to generate the initial graph is to
calculate the values for what will be considered the ”normal” and expected behav-
ior of the network traffic. After this first fitting process AwareNet processes the
complete data flow and assigns nodes to groups and calculates edge log-likelihoods.
The likelihoods that greatly deviate from the initial 10 minute slice values need to
be deeply looked into, to identify the reason for portraying an odd and unexpected
behavior.

4.3 Data

The function random commands() [4.3] emulates the normal behavior of the le-
gitimate user of the MySQL server. The function uses two different repositories
to implement the different actions of selecting, inserting, dropping and creating
tables. Both repositories contain simple multi-purpose data sets with various dif-
ferent tables. Since the information transmitted during the normal behavior is
irrelevant, the repositories selected are star-wars-data and hogwarts-sql. The up-
side of using these repositories is the abundance of rows of data and the different
query sizes.The star wars repository [Rol18] has very large queries, while the hog-
warts [Sud16] queries are rather short. The packet length of the traffic is therefore
heterogeneous, displaying a non-uniform behavior over the MySQL server. The
star wars repository has two tables, planet and people. The hogwarts database has

44



4.3. Data

6 tables, houses, parents, students, teachers, classes and class rosters. Both repos-
itories have a vast amount of entries for the tables, offering wide and verstatile
possibilities for the random command() function.

The data used to mirror the normal behavior with the MySQL server is the
only one that stems from external sources. The rest of the data employed in the
project is generated internally in the testbed environment. Listing 4.5 and 4.6
show an extraction of the csv file and of the pcap file respectively at host-level.
The first packet in listing 4.5, index 8, is the transformation and simplification of
the raw packet presented in the pcap file 4.6. The data in the csv file leads to
the visualizations of the host level exploratory data analysis. More details can be
extracted from the pcap file, but the five fields selected are enough key indicators
to detect a brute-force login attack, as demonstrated in section Results.

Listing 4.5: Extraction of csv file
1 Time I P s r c I P d e s t S i z e P r o t o co l
2

3 8 2023−05−30 11 : 10 : 30 . 684731 i p a t t a c k e r i p t a r g e t 74 TCP
4 9 2023−05−30 11 : 10 : 30 . 685345 i p t a r g e t i p a t t a c k e r 74 TCP
5 10 2023−05−30 11 : 10 : 30 . 685370 i p a t t a c k e r i p t a r g e t 66 TCP
6 11 2023−05−30 11 : 10 : 30 . 686563 i p t a r g e t i p a t t a c k e r 161 MySQL
7 12 2023−05−30 11 : 10 : 30 . 686581 i p a t t a c k e r i p t a r g e t 66 TCP
8 13 2023−05−30 11 : 10 : 30 . 686756 i p a t t a c k e r i p t a r g e t 294 MySQL
9 14 2023−05−30 11 : 10 : 30 . 686977 i p t a r g e t i p a t t a c k e r 66 TCP

10 15 2023−05−30 11 : 10 : 30 . 687122 i p t a r g e t i p a t t a c k e r 114 MySQL
11 16 2023−05−30 11 : 10 : 30 . 687128 i p a t t a c k e r i p t a r g e t 66 TCP
12 17 2023−05−30 11 : 10 : 30 . 687163 i p a t t a c k e r i p t a r g e t 90 MySQL

Listing 4.6: Example of raw packet information in pcap file
1 Packet ( Length : 74)
2 Laye r ETH:
3 De s t i n a t i o n : d s t e t h
4 Address : add e th
5 . . . . . . 1 . . . . . . . . . . . . . . . . . = LG b i t : L o c a l l y a dm i n i s t e r e d add r e s s
6 ( t h i s i s NOT the f a c t o r y d e f a u l t )
7 . . . . . . . 0 . . . . . . . . . . . . . . . . = IG b i t : I n d i v i d u a l a dd r e s s ( u n i c a s t )
8 Source : s r c e t h
9 . . . . . . 1 . . . . . . . . . . . . . . . . . = LG b i t : L o c a l l y a dm i n i s t e r e d add r e s s

10 ( t h i s i s NOT the f a c t o r y d e f a u l t )
11 . . . . . . . 0 . . . . . . . . . . . . . . . . = IG b i t : I n d i v i d u a l a dd r e s s ( u n i c a s t )
12 Type : IPv4 (0 x0800 )
13 Address : add e th
14 Laye r IP :
15 0100 . . . . = Ve r s i on : 4
16 . . . . 0101 = Header Length : 20 by t e s (5 )
17 D i f f e r e n t i a t e d S e r v i c e s F i e l d : 0 x00 (DSCP: CS0 , ECN: Not−ECT)
18 0000 0 0 . . = D i f f e r e n t i a t e d S e r v i c e s Codepo int : De f au l t (0 )
19 . . . . . . 0 0 = E x p l i c i t Conges t i on N o t i f i c a t i o n : Not ECN−Capable Transpo r t (0 )
20 Tota l Length : 60
21 I d e n t i f i c a t i o n : 0 xa0 f7 (41207)
22 010 . . . . . = F l ag s : 0x2 , Don ’ t f ragment
23 0 . . . . . . . = Rese rved b i t : Not s e t
24 . 1 . . . . . . = Don ’ t f ragment : Set
25 . . 0 . . . . . = More f r agment s : Not s e t
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26 . . . 0 0000 0000 0000 = Fragment O f f s e t : 0
27 Time to L i v e : 64
28 Pro t o co l : TCP (6)
29 Header Checksum : 0x5966 [ v a l i d a t i o n d i s a b l e d ]
30 Header checksum s t a t u s : U n v e r i f i e d
31 Source Address : i p a t t a c k e r
32 De s t i n a t i o n Address : i p t a r g e t
33 Laye r TCP:
34 Source Port : s r c p o r t
35 De s t i n a t i o n Port : 3306
36 Stream index : 0
37 Conve r s a t i o n comp l e t ene s s : I n comp l e t e (0 )
38 TCP Segment Len : 0
39 Sequence Number : 0 ( r e l a t i v e sequence number )
40 Sequence Number ( raw ) : 389017798
41 Next Sequence Number : 1 ( r e l a t i v e sequence number )
42 Acknowledgment Number : 0
43 Acknowledgment number ( raw ) : 0
44 1010 . . . . = Header Length : 40 by t e s (10)
45 F l ag s : 0 x002 (SYN)
46 000 . . . . . . . . . = Rese rved : Not s e t
47 . . . 0 . . . . . . . . = Accura te ECN: Not s e t
48 . . . . 0 . . . . . . . = Conges t i on Window Reduced : Not s e t
49 . . . . . 0 . . . . . . = ECN−Echo : Not s e t
50 . . . . . . 0 . . . . . = Urgent : Not s e t
51 . . . . . . . 0 . . . . = Acknowledgment : Not s e t
52 . . . . . . . . 0 . . . = Push : Not s e t
53 . . . . . . . . . 0 . . = Reset : Not s e t
54 . . . . . . . . . . 1 . = Syn : Set
55 Expe r t I n f o ( Chat/Sequence ) : Connect ion e s t a b l i s h r e q u e s t (SYN) : s e r v e r po r t 3306
56 Connect ion e s t a b l i s h r e q u e s t (SYN) : s e r v e r po r t 3306
57 S e v e r i t y l e v e l : Chat
58 Group : Sequence
59 . . . . . . . . . . . 0 = Fin : Not s e t
60 TCP F l ag s : S
61 Window : 64240
62 Ca l c u l a t e d window s i z e : 64240
63 Checksum : 0x408d [ u n v e r i f i e d ]
64 Checksum Sta tu s : U n v e r i f i e d
65 Urgent Po i n t e r : 0
66 Opt ions : (20 by t e s ) , Maximum segment s i z e , SACK permi t t ed , Timestamps ,
67 No−Opera t i on (NOP) , Window s c a l e
68 TCP Option − Maximum segment s i z e : 1460 by t e s
69 Kind : Maximum Segment S i z e (2 )
70 Length : 4
71 MSS Value : 1460
72 TCP Option − SACK pe rm i t t ed
73 TCP Option − Timestamps
74 Timestamp va l u e : 664962153: TSval 664962153 , TSecr 0
75 Timestamp echo r e p l y : 0
76 TCP Option − No−Opera t i on (NOP)
77 TCP Option − Window s c a l e : 7 ( mu l t i p l y by 128)
78 S h i f t count : 7
79 Mu l t i p l i e r : 128
80 Timestamps
81 Time s i n c e f i r s t f rame i n t h i s TCP stream : 0.000000000 seconds
82 Time s i n c e p r e v i o u s frame i n t h i s TCP stream : 0.000000000 seconds
83 Kind : SACK Permi t t ed (4 )
84 Kind : Time Stamp Option (8 )
85 Kind : No−Opera t i on (1 )
86 Kind : Window Sca l e (3 )
87 Length : 2
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88 Length : 10
89 Length : 3

The central monitoring captures all traffic flowing through the campus net-
work. The ctrl VM uses a docker container to save the traffic into csv files.
The csv files contain the information about all the packets detected between two
end-to-end devices in the network during one minute The csv file saves the Unix
timestamp as name of the file. Listing 4.7 holds an extraction of one of the csv
files with all relevant information for the project. A total of 8 fields describe the
traffic flow. The index, which indicates the total amount of different communi-
cations during the time interval; source IP; destination IP; direction; the times-
tamp of the captured csv file in UNIX format; the time interval, which equals
the duration of the gathering process and should always equal 60 seconds; the
amount of packets detected; and the number of bytes counted. The docker con-
tainer encrypts the raw source and destination IP out of security reasons. The
kali1 IP corresponds to 037df6969ca851b7c627ff07f47b90d3 and the target1 to
4f895c4848ee12cc2f3aa0b12bd3f9c9 for example in this pseudomization.

Listing 4.7: Extraction of central monitoring data
1 , s r c , dst , d i r e c t i o n , t ime , t i m e i n t e r v a l , packet s , nb by t e s
2 0 ,3 dc fdcd f e6 f 9b59467 f aacc f 6242499c ,35 fb3b62c33d1388f f1659a876c2ed8c ,MAIN,
3 1686124800 ,60 ,677864 ,1022547400
4 1 , c04c5dc8db5f14ab279bcbc9463b93d6 ,35 fb3b62c33d1388f f1659a876c2ed8c ,MAIN,
5 1686124800 ,60 ,383776 ,547959184
6 2 ,35 fb3b62c33d1388f f1659a876c2ed8c , c04c5dc8db5f14ab279bcbc9463b93d6 ,MAIN,
7 1686124800 ,60 ,121282 ,164282688
8 3 ,35 fb3b62c33d1388f f1659a876c2ed8c , 3 dc fdcd f e6 f 9b59467 f aacc f 6242499c ,MAIN,
9 1686124800 ,60 ,62874 ,7811912

10 4 ,38 d2bfaee1ec2497d2b8a7d12a16dfba ,35 fb3b62c33d1388f f1659a876c2ed8c ,MAIN,
11 1686124800 ,60 ,34872 ,50273336
12 5 ,75633 a fcc4b8c3b28 fac99aae683c7c3 ,35 fb3b62c33d1388f f1659a876c2ed8c ,MAIN,
13 1686124800 ,60 ,32440 ,46326552
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Chapter 5

Results

The testbed environment hosts two kinds of behavior, brute-force attack and regu-
lar work on a MySQL server. The thesis analyses the behaviors with three different
approaches to discover features and patterns to target during the future monitoring
of the network. First, a host-level exploratory data analysis aims to reveal what
protocols, packet sizes and packet frequencies appear on the host traffic and how
they vary during a brute-force login attack. At network level two different proce-
dures scrutinize the data flow. A network-level exploratory analysis investigates
the amount of packets and bytes sent, as well as average packet sizes. Stochas-
tic Block Models try to discover groups or clusters of connections that reveal the
brute-force attack.

5.1 Host-level exploratory data analysis

The host based analysis uses the data collected through tcpdump by the attacker
VM. The purpose is to identify odd behaviors during the brute-force attack and
differences in the data flow between the normal actions of the legit user and the
attacker. The odd behaviors can manifest as sudden spikes and drops or as repet-
itive behaviors, for example. The parameters visualized on the plots are packet
frequency, protocol sizes, protocol frequencies and their respective behaviors over
time.

Tcpdump captures data over a timespan of 190 minutes. Graphs 5.1, 5.2,
5.6, 5.10 and 5.7 illustrate the behavior over the complete time interval. These
representations show the contrast between the two traffic types. Figures 5.3, 5.11
and 5.12 dissect the time behavior and packet size graphs into normal usage and
attack traffic. The separation of both scenarios allows to more precisely analyze
the patterns and characteristics of both behaviors and determine which features
to target during the monitoring of the network.
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The CDF of the average number of packets sent per minute over the whole
interval appears in Figure 5.1. The CDF of the traffic flow from the attacker to
the victim, blue line, and the traffic flow from the victim to the attacker, orange
line, have a similar shape. The difference between both cumulative distribution
functions is the range of the average packets per minute. The packets/minute
stemming from the target VM top out at 125.000, whereas the ones sourcing from
the attacker VM reach a maximum frequency of 175.000. The difference in packet
density resembles that the whole process presents an asymmetric network traffic
between the hosts.
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Figure 5.1: CDF packets/minute

Figure 5.2 portrays the clear distinction between the three phases of the sce-
nario under study. The first hour features the legitimate user working on the
MySQL server. Immediately afterwards the credential stealing begins and takes
almost 40 minutes to guess the correct credential for the known user. Once the
auxiliary module cracks the password, for the remaining 80 minutes the simula-
tion of the legit user repeats. The attack works with a list of 1.000.002 different
passwords. The credential stealing stops as soon as one of the passwords succeeds.
Given this configuration and the position of the correct password in the list of
passwords, the brute-force login tries only about half of the passwords in the file.
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The mysql login module of Metasploit tries to crack the password as quickly as
possible. The constant testing of passwords generates a very high network flow in
the host during the brute-forcing. The network traffic of the normal usage on the
other side is very low. Figure 5.3 illustrates the data flow prior and posterior to the
attack, without featuring the credential stealing. The space between the dashed
lines corresponds to the omitted brute-force traffic. Despite the randomness of the
MySQL queries the data flow has a very similar and fairly constant behavior.

To compare the absolute difference in packet frequency per minute, histograms
5.4 and 5.5 represent the packet flow of both hosts during the attack and during
the normal behavior. During the normal behavior the traffic flow concentrates on
a pretty narrow range between 350 and 500 packets per minute. On the other
side, the packet rate of the attack ranges between 282250 and 287750 packets per
minute, which is a significantly wider interval.
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Figure 5.2: Behavior over time of protocols

Both scenarios share similarities and differences in their behaviors. The most
noticeable difference is the packet frequency per time unit of the attack and the
normal usage. A possible explanation for the divergence in packet rate could be
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the difference in query sizes of both scenarios. During the normal behavior the
user is actually working with the databases, not only trying to access them. The
queries range from selecting information, to entering new information or creating
and dropping tables. Any of these queries will require more execution time than
simply trying out a password. Taking up more execution time means lower packet
processing capacity per time unit, leading to a drop in packet density per minute.
Further, the brute-force attack tries to crack the password as quickly as possible.
The quicker and the higher the amount of packets are sent, the earlier the attack
succeeds. Another remarkable difference is the range of packets per minute. The
normal behavior has a fairly constant traffic flow. The brute-force attack however,
can vary its traffic flow in over 5.000 per minute. But despite the differing density
of packet flows in the network, the TCP and MySQL protocol present a parallel
behavior throughout the whole process. Both protocols spike and collapse at the
same timestamps.
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Figure 5.3: Behavior over time of protocols during normal behavior

Another distinction is the the gap between the packet frequency of both proto-
cols during both behaviors. The attack sends considerably more TCP packets than
MySQL ones, whereas the normal usage sends a very similar amount of packets
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of both protocols. As Figure 5.6 illustrates, the amount of packets of the MySQL
protocol reaches 2.065.222 in contrast to the TCP protocol, which quadruples the
quantity with an amount of 8.203.949 packets. The diagram shows the combined
network traffic of the attack and the normal behavior.
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Figure 5.4: Packets per minute during normal behavior

Figure 5.7 offers a narrower picture of the protocols depicting the behavior
of both protocols with respect to their source IP over time. During the normal
behavior the MySQL traffic stemming from the target VM seemingly disappears.
There does exist packet flow of the MySQL protocol from the target to the at-
tacker. The problem is that the packet frequency is so similar, that both MySQL
flows overlap, hiding the MySQL flow starting from the victim. One of the most
interesting aspects of this graph is the change in protocol behavior from normal to
attack behavior. During the normal behavior both MySQL threads have an equal
distribution. Meanwhile, the TCP packets starting from the target VM present a
lower frequency than the TCP from the attacker. During the attack however, the
plot experiences an abrupt change. The four features keep presenting a parallel
behavior, but the packet frequencies experience considerable changes. The TCP
packets of both actors increase by a factor around 103, keeping a similar ratio
between their respective packet frequencies. The MySQL protocol of the different
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connections on the other side no longer overlaps. The target is responsible for a
considerably higher flow of MySQL packets.
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Figure 5.5: Packets per minute during brute-force attack

The behavior of the MySQL protocol resembles the scenario illustrated in fig-
ures 5.4 and 5.5 perfectly. During the normal behavior the MySQL packet flow
overlaps corresponding to the narrow margin the histogram exposes. During the
attack however the traffic density varies significantly. This behavior seems almost
counterintuitive. As if the behavior during normal usage and the attack had been
exchanged. It would seem logical that queries handling different amount of data,
executing different actions and working on different databases would generate vary-
ing frequency responses. Whereas the brute-force attack, that sends packets only
containing a username and a password, would cause immediate responses. Hence,
what can be inferred is that the normal behavior generates a more constant flow
of packets for both protocols and a symmetric MySQL traffic flow. Whereas the
attack showcases a completely asymmetric traffic with considerable fluctuations in
its packet density flow.
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Figure 5.6: Packet frequency of protocols

The only protocols that intervene during the whole procedure are the TCP and
the MySQL protocol. The Transmission Control Protocol (TCP) is a connection-
oriented transport layer protocol. It establishes the connection prior to the com-
munication allowing packet transmission between computing devices within a net-
work. The MySQL protocol connects MySQL Clients with a MySQL Server and is
stateful. MySQL runs on top of the TCP protocol and stays alive until the connec-
tion terminates. The analysis works with the highest layer protocol to gain deeper
insight into all the protocols involved in the host traffic. Not doing so would reduce
the detection possibilities for the attack. The TCP protocol appears constantly on
the network traffic and is the basis for the majority of connections. Recognising
patterns or odd behaviors in the MySQL protocol is a very useful discovery. The
MySQL protocol is very specific for MySQL server connections and less frequent
in data flows, making it easier to detect there odd behaviors.
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Figure 5.7: Behavior over time of protocols differentiated by source IP

Protocol frequency is not the only feature that experiences changes during
the brute-force attack. The packet sizes flowing through the network also present
changes in their behavior. As opposed to packet frequency, the range in packet size
during the normal behavior is much wider than during the attack. Figures 5.8 and
5.9 provide an overall picture of the most frequent packet size ranges in the traffic.
Almost the complete traffic flow during the normal behavior concentrates between
60 and 110 bytes 5.8. The range of packet sizes though reaches to over 3000 bytes.
These cases are left out, since they are outliers. But the range of common packet
size values goes from 50 to 600 bytes. Figure 5.9 shows the distribution of the
attack packets. 80% of the packets concentrate between 65 and 80 bytes. The
remaining ones have larger packet sizes around 160 bytes. But the scope of values
is of 120 bytes as opposed to the 550 byte range of the normal behavior. The
following graphs narrow down on the specific packet sizes of the network traffic.

Figure 5.10 provides a more exact representation of the packet size values of the
whole attack, but differentiating by protocol. Diagrams 5.11 and 5.12 break the
distribution down into both scenarios. The protocols present different distributions
in their packet sizes. Neither of the protocols though works with big packet sizes,
since the maximum size of a TCP packet is 65.535 bytes.
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Figure 5.9: Packet sizes during brute-force attack
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3/4 of the TCP packets have a length of 66 bytes and close to the remaining
quarter are 74 bytes long. The MySQL protocol packets present slightly bigger
lengths with around two times more bytes than the TCP packets. The protocol
distributes the bytes reasonably even among 128, 161 and 173 bytes. There are
more than 24 packet sizes in the host traffic, but the graph only depicts the most
frequent ones. Despite the selection of the 24 most frequent packet sizes, some
are so insignificant in comparison to 66 and 74 bytes, that their frequency is
imperceptible in the graph.
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Figure 5.10: Packet sizes of protocols

As seen before in the time behavior of the normal usage, the quantity of MySQL
and TCP protocols is very similar. The TCP protocol concentrates the majority of
its traffic in 66 bytes long packets and the rest in 74 bytes long packets. MySQL
distributes the packet sizes fairly even among all the packet sizes. The most
frequent packet size is 90 bytes. But there is no length that predominates over
the rest. Again, the MySQL protocol works with marginally bigger packet sizes,
though in general terms the sizes are rather small.

During the attack the packet sizes of the TCP protocol are very similar to the
ones of the normal usage, only with a much higher frequency. 66 bytes packets
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clearly dominate the network traffic when communicating with the MySQL server.
The MySQL protocol uses in this case somewhat bigger packet sizes, but as is the
case with the TCP protocol, the distribution of the packets between the different
sizes is very similar. In this scenario 161 bytes predominates, and 128 and 173
bytes split evenly the remaining half. On the overall graph 5.10 with both types
of traffic, the packet sizes of the normal usage are negligible. The low frequency
of the normal behavior makes its impact on plot 5.10 imperceptible.
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Figure 5.11: Packet sizes of protocols during normal behavior
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Figure 5.12: Packet sizes of protocols during attack

5.2 Network-level analysis

The network level analysis uses the data collected from the central monitoring.
The control VM uses a docker container to anonymize the source and destination
IP addresses from the network traffic of the central monitoring and stores the
data flow. The exploratory data analysis studies different visualizations of the
data flow featuring different parameters and tries to extract valuable patterns.
The Stochastic Block Model uses some initial traffic to establish the values that
should correspond to the expected behavior of the network. Afterwards, the model
groups the traffic into different communities and analyzes the relations within and
between said groups.

5.2.1 Exploratory data analysis

The exploratory analysis develops different visualizations of the traffic network
based on packet frequency, number of bytes sent and average packet sizes. The
visualizations throughout the section go from broader to more specific graphs.
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The traffic flow of the central monitoring contains information about hundreds of
connections and thousands of packets per minute. For that reason many visualiza-
tions employ more generic approaches working with averages. The analysis of the
average behaviors leads to the development of more specific and revealing plots.
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Figure 5.13: Amount of connections with same average packets per day

The histogram above 5.13 portrays the average packets a connection sends
per minute during a day. The curve of the bars follows more or less a negative
exponential distribution. The majority of connections send on average between 10
to 50 packets per minute during the whole day. Hence, the average sending rate
of the majority of connections is of one packet every 2 seconds. The results of the
histogram represent a normal and expected traffic flow in the network, with no
remarkable odd behavior.

Figure 5.14 changes the perspective and displays the average amount of packets
per minute over a whole day with regards to time. The dark blue line represents
the average and the light blue region the standard deviation. It is remarkable to
observe higher packet frequencies at night rather than over the day. Throughout
the day the traffic flow is not very consistent and experiences constant fluctua-
tions. The graph displays the average packets of all hosts transmitting at the
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different timestamps during the 3rd of June. However, it is difficult to recognise
any peculiarity from such a general view.
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Figure 5.14: Average packets per minute over a day

Figure 5.15 zooms on the time interval of the brute-force login attack on the
3rd of June. The graph displays the time of the attack and fifteen minutes of
normal usage of the MySQL server before and after the attack. This allows to
compare the different impacts of both behaviors. The dark blue line still resembles
the average number of packets sent on each minute through the network and the
light blue region its respective standard deviation. The orange line represents the
bidirectional traffic flow between the attacker and the victim. During the normal
usage the amount of packets sent per minute is considerably below average and
the distribution is non-uniform. On the contrary, all frequencies related to packets
in the brute-force traffic are outliers. The quantity of packets sent per minute is
very constant in contrast to the normal behavior.

Given the homogeneous behavior of the outliers of the attack traffic, studying
the outliers on the network could provide insightful patterns. For that purpose
figure 5.16 represents all the outliers detected during the same period of time. A
green line with constant spikes and drops clouds the graph. Graph 5.17 filters
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Figure 5.15: Average packets per minute during attack

this connection, leading to a clearer graph. There are two lines belonging to two
different connections that portray the exact same behavior over a certain amount
of time, though with differing packet frequencies. Both connections correspond to
the attack. The slightly higher frequencies, the dark blue line, corresponds to the
traffic flowing from the attacker to the target VM. The turquoise line displays the
traffic flowing in the opposite direction.

After looking at the traffic flow from a more generic view through averages
and standard deviations, Figure 5.18 scatters the connections during the duration
of the attack and the 15 minutes prior and posterior to it. The original scatter
plot portrays a lot of connections and does not provide any clear picture that
allows to extract any patterns. Figure 5.18 represents a filtered selection of the
connections. The filtering process uses two conditions to consider a connection
valid. A valid connection is one that shares some basic characteristics with the
brute-force attack. The first condition is that the connection does not cease over a
certain period of time. The length of the interval is irrelevant, since a brute-force
login attack can be of any length, from a couple of minutes to days. What matters
is that over that period the connection remains uninterrupted. The other condition
is that the difference in the average packet size does not surpass 10 bytes. This
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Figure 5.16: Outliers during attack

condition is drawn from the host level analysis, where the packet sizes during the
attack are mainly 66 bytes long and the range of differing values is fairly narrow.
Further, the central monitoring presents the total amount of packets and number
of bytes of each connection per minute and not individually, which also diminishes
the variance in packet sizes.

In graph 5.18 every color represents a different connection. The dark green
connection at a frequency slightly over 200.000 packets and the olive green con-
nection at a little over 300.000 packets share a parallel behavior. The olive green
connection belongs to the traffic from the attacker VM and the other connection
corresponds to the traffic from the victim VM. The shape of both traffics is exactly
the same. The only difference is the downwards shift of the victim’s traffic. This
behavior reminds of the one that appears on the outliers graph 5.17. The shapes
are very similar and the parallelism between both traffic flows match. The scatter
plot offers an alternate way to discover a brute-force login attack in the central net-
work traffic without assuming that the attack is going to produce outliers. Among
the rest of connections there does not seem to exist any relation or pattern.
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Figure 5.17: Outliers during attack filtered
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Figure 5.18: Filtered packets per minute during attack 64
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Figure 5.19: Average packets per minute over a different day

Figures 5.19 and 5.20 illustrate again the average packets per minute and the
average packets per minute during the brute-force attack, but on a different day.
The network traffic on the 8th of June is substantially different to the network
flow of the 3rd of June. The amount of packets sent throughout the whole day
remains fairly constant, regardless of night or day, except for the lapse between
12:00 and 15:00. The aim is to make sure that the brute-force login can still be
detected and that the previous analysis on the outliers is consistent. Figure 5.20
displays in dark blue the average packet frequency at each moment for all the
connections in the network traffic. The light blue region represents its respective
standard deviation. The orange line depicts the average packet frequency of the
attacker and the target. Again the attack traffic between the hosts presents a fairly
constant and repetitive behavior, considered outliers in comparison to the average
traffic. Therefore, the parallel behavior of two connections when scrutinizing the
outliers of the traffic flow is a reasonably valid indicator. Identifying this feature
should set off an alarm that a potential brute-force login attack against a MySQL
server is taking place.

65



5.2. Network-level analysis

08-06-23 09:10:00

08-06-23 09:20:00

08-06-23 09:30:00

08-06-23 09:40:00

08-06-23 09:50:00

08-06-23 10:00:00

08-06-23 10:10:00

08-06-23 10:20:00

103

104

105

Fr
eq

ue
nc

y
avg behavior
hosts behavior

Figure 5.20: Average packets per minute during attack of a different day

The central monitoring also gathers information about the number of bytes
sent per minute 5.21 and the average packet size 5.22. Graph 5.21 displays the
number of bytes sent every minute during the attack and shares some similarities
with figure 5.15. The frequency, as is logical, is much higher, but the shape of
the average behavior of all connections is akin. The hosts traffic though remains
within the standard deviation. The resolution of Figure 5.21 is smaller than the
resolution of Figure 5.15, which does not allow to recognize as clearly the peaks
and drops in the number of bytes per minute during the brute-force attack. During
the normal behavior the number of bytes remains on a range of 3·105 to 7·105, but
the shape is completely random and does not respond to any pattern or uniformity.

The similarity and proportionality between the number of packets and number
of bytes sent per minute during the attack phase leads to graph 5.22. The average
behavior of all the connections during the whole interval is flatter than the averages
of Figure 5.15 and 5.21. The logarithmic scale of the chart may misguide about
the variance of the traffic of the normal behavior and the attack. But comparing
the values of the y-axis, it becomes clear, that the most constant values belong to
the average packet size. During the brute-forcing the average packet size presents
a periodical shape, that repeats itself throughout the duration of the brute-force
login in a fairly narrow margin of bytes. The host-level analysis may provide a
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Figure 5.21: Number of bytes sent during attack

feasible explanation for this behavior. The packet sizes during the brute-force
attack don’t vary much, specifically 60 and 74 bytes long packets make up for 80%
of the packets sent. An increase in packet frequency per minute directly increases
the number of bytes sent. Given the fairly constancy of the packet sizes, the ratio
between packet frequency and number of bytes is likely to work within a narrow
range of values. The range of values lies within the standard deviation of the
average packet size of all the connections. However, the zigzag shape is certainly
peculiar and presents an odd behavior. But the behavior gets lost within all of
the connections, regardless of the application of any filters to the central network
monitoring traffic.

Neither of the parameters, number of bytes and average packet size, present
any outliers. The number of bytes scratch the limit of the standard deviation and
the average packet size lies considerably lower than the average behavior of the
connections. Though they lie within the average region, they show a characteristic
and constant behavior over the attack phase. Contrary to the frequency of packets,
the peculiarity of the number of bytes and the average packet size is not identifiable
in the network flow. Despite applying a filter, the overall traffic flow concentrates
the majority of the packets around the same values as the parameters do during
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the credential stealing. The closeness and similarity of the values makes it very
difficult to filter out any further data to recognise any patterns within the traffic.
None of the parameters lead to the identification of any underlying pattern or
succession of data points that stands out from the rest.
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Figure 5.22: Average packet size during attack

5.2.2 Evaluation of using WSBMs for Detection of Brute
Force Attack

Previous work used Weighted Stochastic Block Models (WSBMs) to detect tar-
geted host scanning attacks [SKK22]. Weighted Stochastic Block Models are la-
tent generative probabilistic graph models often used to generate new graphs with
certain properties. WSBMs fit to observed traffic can be used to represent net-
work communication behaviors. Communication patterns and structures manifest
in node to group membership and in group-to-group relations described through
block matrices. The comparison of network traffic to the model allows to calculate
likelihoods and therefore detect abnormal behaviors. As a final evaluation, we use
AwareNet as proposed in [SKK22] to detect brute-force login attacks against a
MySQL server.
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Figure 5.23: Initial distribution log-likelihoods

Figure 5.23 illustrates the distribution of edge log-likelihoods for the initial
data. The initial data is a slice of 10 minutes of the traffic flow in the network.
All the values fall between -6 and -22. These values establish a notion of the
values that the model expects to encounter in the traffic based on the initial data.
By themselves the values are meaningless. After fitting the model, AwareNet
calculates the edge log-likelihoods for subsequent 10 minute blocks of the central
monitoring data. The data contains the brute-force attack, which lasts almost
40 minutes, as well as 10 minutes of normal traffic prior and posterior to the
attack. Figure 5.24 displays edge log-likelihoods from source group 105 over time.
The graph plots the nodes assigned to the group considering the source address.
Figure 5.25 does the same with the nodes of group 102. As a note, the numbering
of the groups does not represent the amount of groups that exist. However, the
assignment and calculation of the group numbering goes beyond the scope of the
thesis. The target VM belongs to group 102 as source and the attacker VM to
group 105 .

The blue line in both figures uses the average value of all nodes except the
attacker in group 105 and the target in group 102. The line represents the average
values of all ”normal” edges. The rationale for averaging the log-likelihoods of the
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Figure 5.24: log-likelihoods group 105 over time

nodes instead of plotting each node separately is that all present a very ”normal”
behavior and all lines overlap. The average behavior of group 105 does not drop
below -11.95 and group 102 stays above -12.20 all the time. Both values are close
to the mean of the initial log-likelihoods in Figure 5.23. For that reason the edges
are considered ”normal” and the traffic ordinary.

In contrast, the log-likelihood values for the attack edge, shown in orange, drop
under -8k for group 105 and under -35k for group 102 and never exceed -15.20 and
-12.21 respectively. The numeric value itself of the log-likelihood lacks any special
interest. The only important feature for the purpose of the project is whether or
not the log-likelihood has a similar value to the expected behavior or not. The
resulting plots showcase that AwareNet is capable of detecting brute-force login
attacks against MySQL servers. This discovery encourages the possibilities to use
probabilistic models for network traffic analysis and the application of AwareNet
to try to detect other attack types.
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Figure 5.25: log-likelihoods group 102 over time
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Chapter 6

Conclusions and Outlook

To reduce the impact of breaches in cybersecurity the development of detection
and mitigation mechanisms plays a key role. Due to the wide range of attack forms
and vectors and the constant increase in cyberthreats, detection and mitigation is
one of the main research fields in cybersecurity. There exist countless researches
on different attacks and detection approaches with promising results. The high
accuracy of the algorithms and methods under study, however, often apply only
within specific domains. When implemented on other networks or attacks the
effectiveness of the technologies tend to drop considerably. This phenomenon
exposes the existing gap between controlled environment and real-world network
attack detection.

One of the rationales for the inability of the algorithms to work on real-world
environments is the training data to develop the algorithms. Many studies use
benchmark intrusion detection datasets to train models that report excellent per-
formances of their detection mechanisms on training and validation datasets, with-
out including testing in real life scenarios. Benchmark IDDs, such as the Kyoto
2006+ or the CSE-CIC-IDS2018 dataset, are very useful for preliminary training
and modelling of the algorithms. But they do not come without their shortcom-
ings. One of the most important ones most of the datasets share is the inability
to represent a valid real life scenario with all its complexity. Further, the purpose
of datasets is to store information. Sometimes though, it is necessary to adjust
the data collected answering the question ”what should be monitored?”. These
benchmark datasets are very standardized in the field of cybersecurity, but the
specificity and immutability of their data limits the usage and utility for certain
purposes.

In addition, for some of the available datasets the testbed environments are
not accessible. The data is therefore collected in unknown environments. Traffic
data is inherently dependent, due to unobserved latent factors that act locally on
each network. Disregarding these dependencies and neglecting the existing links
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between traffic generated within a single network can provide limited validity to
the detection of abnormal network behaviour or other malicious traffic.

Machine learning algorithms are frequently chosen for detection purposes. An
important challenge for many of the algorithms is the inability to distinguish be-
tween attack traffic flows and normal traffic flows. Moreover, many ML algorithms
for example rely heavily on the availability of a labelled dataset. Data labelling
and the complexity of the results of certain algorithms require a network expert,
which is not very optimal.

The thesis focuses on laying the groundwork for applying data-driven methods
to network attack traffic analysis. To overcome some of the stated problems the
project implements a self-developed environment, where a brute-force login attack
can be carried out in a secure and observable manner. Ground truth network data
from the involved hosts and the related data from central network monitoring is
collected. The resulting dataset undergoes a thorough exploratory data analysis
at host and at network level. The knowledge acquired should contribute to the
development of methods for identifying traffic patterns of a brute force-login attack
against a MySQL server, directly contributing to the improvement of network
security.

One of the key elements of this project is the self-developed testbed environ-
ment.The testbed environment of the thesis mimics the internal attack scenario
of a campus network with three major goals: provide a topological description on
how a credential theft occurs; achieve attack pattern extraction from raw sniffed
data; and establish attack pattern identification as a parameter to visualize real-
time attacks at host and at network level. The advantage of using a self-developed
testbed is being able to access all knowledge around the traffic generated, the con-
ditions of the network and the devices involved, as well as having the capacity
to unlimitedly apply any changes to the testbed to make it more suitable to any
specific needs.

The exploratory analysis both at host and at network level generates different
visualizations of the traffic data. The plots do not require a deep knowledge of
communication networks and have the purpose that at simple sight any viewer
recognizes any patterns or odd behaviors. The visualizations apply some basic
filtering, but do not rely on any algorithm or machine learning method. The
Weighted Stochastic Block Models, on the other hand, are based on slightly more
complicated algorithms. But the resulting graphs, as is the case with the ex-
ploratory data analysis, are fairly simple to interpret and provide valuable insight
for brute-force login attacks recognition.

The exploratory analysis at host level reveals that, while working with a MySQL
server, the TCP and MySQL protocol present a parallel behavior with simultane-
ous drops and spikes. During a brute-force login attack against a MySQL server
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there is a sudden and prolonged spike of the TCP and MySQL packet protocols.
During the normal usage of the server both protocols present a fairly low packet
frequency, with bare packet density changes within a narrow margin. During the
attack, however, the packet frequency increases substantially and experiences con-
siderable fluctuations. In regards to packet lengths, the most common packet sizes
are 66 bytes for the TCP and 161 bytes for the MySQL protocol during both be-
haviors. All in all, the packet flow concentrates on the lower packet sizes between
54 and 80 bytes during the attack, and between 66 and 110 bytes for the normal
behavior.

At network level, anew the most relevant and insightful parameter is the packet
frequency. The average packets sent per minute during the attack rank as outliers
in comparison to the average behavior of the packet frequency of all the involved
connections in the central monitoring. When picturing all outliers in the traffic,
two connections stand out because of their parallel behavior. The connections
correspond to the traffic flowing from the attacker to the target VM and viceversa.
The same behavior is also perceivable among the whole traffic from the central
monitoring after a filtering process. The filtering keeps the connections that gen-
erate an uninterrupted flow of data over a period of time and whose packet fre-
quency does not fluctuate much. These are two characteristics of the brute-force
login attack inferred from the host-level data exploratory analysis. Within the
turmoil of the filtered network traffic the same parallel behavior pops up. The
other two features under scrutiny are the number of bytes sent and the average
size of the packets. Despite portraying some odd behaviors, the values are too
close to the average values of the rest of connections and are non-conclusive in the
traffic flow of the brute-force login attack.

The WSBM fits a model that allows to calculate log-likelihoods based on some
initial traffic data from the central monitoring. The model divides the traffic net-
work into groups and compares afterwards the traffic from each group to the fitted
model. Both virtual machines, attacker and victim, present abnormal behaviors in
their traffic, with log-likelihoods very far from the values the model considers ”nor-
mal” or expected network traffic. This showcases that WSBMs have the capability
to detect a brute-force login attack against a MySQL server.

The thesis manages to build a testbed environment to perform a brute-force
attack in a secure and observable manner. The data analysis successfully uses
the monitoring data at host and network level to visualize the traffic and identify
traces of the brute-force attack. The Weighted Stochastic Block Model AwareNet
evaluates the data and manages to distinguish the anomaly case, meaning the
brute-force attack, from the expected normal network traffic.

One improvement for the project could involve designing the MySQL behavior
to be more specific and particularize the actions, instead of performing random
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and basic queries. Resembling a specific behavior or usage may have a different
outcome in the network traffic. Future work may include the application of other
probabilistic models or machine and deep learning methods for network traffic
analysis. Another possibility could include broadening the scope of attacks and
testing the ability of AwareNet to detect them. Since AwareNet has the capability
to detect brute-force attacks, it could be interesting to test its effectiveness with
distributed brute-force attacks. The attacks are increasing in popularity and are
more challenging to detect, since multiple machines carry out the attack instead.
Other attack possibilities include DoS or man-in-the-middle attacks, which are
very frequent attack vectors.

As final remark it is worth mentioning that the fact that some parameters reveal
odd behaviors is non-conclusive for other attacks or networks. Each network has
its own traffic flow. Though the thesis provides answers to the question ”How
should monitoring be designed to enable detection of network attacks?”, there is
no universal truth. For that reason it is important to not treat networks as a
black-box and design tailored systems. The thesis has found some parameters and
features that partially answer the question for the specific campus network under
study, since the monitoring to enable network attack detection is a very broad
subject. For other traffic flows the insightful features for this network may not
provide any valid results and vice versa.
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Appendix A

Alignment of the Project with
SDGs

All United Nations Member States adopted the 2030 Agenda for Sustainable De-
velopment. The Agenda sets a shared blueprint to promote peace and prosperity
across the planet for every individual. The Sustainable Development Goals (SDGs)
at the core of the Agenda are 17 issues calling for an urgent action worldwide. The
thesis tries to contribute to the promotion of the SDGs within its possibilities.

Cyberattacks are one of the biggest challenges companies, individuals, govern-
ments and organizations are currently confronted with. It is therefore of utter
relevance to develop detection and prevention mechanisms to detect these attacks,
that are not only highly reliable, but also accessible to everybody. Cybersecurity
Ventures, one of the world’s leading researcher and publisher covering the global
cyber economy, expects the costs of cybercrime worldwide to grow by 15 percent
per year, from 3 trillion USD in 2015 to 10.5 trillion USD annually by 2025, with-
out any prospects of cybercrime stagnating or slowing down in the near future
[cyb18].

The main objective of the thesis focuses on developing mechanisms to detect
attacks to contribute to the network security of a campus. The project therefore
aligns with SDGs 8, Decent work and Economic growth; 9, Industry, Innovation
and Infrastructure; and 16, Peace, Justice and Strong Institutions. The preven-
tion of attacks allows entities to allocate part of the money lost due to security
breaches in other sectors. The investment in Industry, Infrastructure and Innova-
tion would thereby increase, leading to more development in these branches, which
automatically translates into economic growth.

Besides, developing detection methods fosters innovation and leads to the pro-
tection of infrastructures. Not only private information is threatened by hackers,
ports, airports, in brief, modern infrastructures, have also proven to be vulner-
able to cyberattacks. Preventing the threats or at least mitigating them would
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greatly benefit these sectors contributing to their increase in safety and further
development.

With regards to the 16th goal, the project contributes to the enhancement of
network security in a campus. The idea is to reduce the risk of suffering severe
data breaches through the development of detection and monitoring mechanisms.
Lastly, the 5th SDG, Gender equality, is also promoted as a side-effect of conduct-
ing the thesis. Male figures predominate in the IT field. Having a woman carry
out this research is a statement that gender does not play a role, regardless of the
field of work. Hopefully this will open up the door or at least encourage more
female students to pursue researches and careers in this area.
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Appendix B

Notation and Abbreviations

CDF Cumulative Distribution Function
DoS Denial of Service
IDD Intrusion Detection Dataset
IDS Intrusion Detection System
ML Machine Learning
SBM Stochastic Block Model
SDG Sustainable Development Goals
SQL Structured Query Language
TCP Transmission Control Protocol
UN United Nations
VM Virtual Machine
WSBM Weighted Stochastic Block Model
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Appendix C

Attack code

Listing C.1: Complete Code
1

2 import l i b tmux
3 import s ubp r o c e s s
4 import paramiko
5 import t ime
6 import da te t ime
7 import j s o n
8 import os
9 import random

10 import c sv
11

12

13 c l a s s AttackHand l e r :
14 ”””
15 AttackHand l e r c l a s s w i l l hand l e the whole a t t a c k . Th i s c o n s i s t s o f :
16 − c r e a t i n g tmux s e r v e r and s e s s i o n
17 − s t a r t i n g tcpdump i n s i d e tmux s e s s i o n
18 − s t a r t i n g a t t a c k s by s end i ng the a t t a c k commands i n t o tmux s e s s i o n
19 − check i ng whether a t t a c k has f i n i s h e d
20 − s a v i n g l o g f i l e s and t imestamps o f the a t t a c k s
21 ”””
22 def i n i t ( s e l f ) :
23 ”””
24 I n i t i a l i z e the At tackHand l e r o b j e c t pa ramete r s .
25 : param tmux s e r v e r : c u r r e n t tmux s e r v e r
26 : param tmux s e s s i o n : c u r r e n t tmux s e s s i o n
27 : param tmux window : c u r r e n t tmux window
28 : param tmux pane1 : tmux pane f o r a t t a c k commands
29 : param tmux pane2 : tmux pane f o r tcpdump
30

31 : param o v e r a l l s t a r t t i m e : s t a r t t ime o f s c r i p t / a t t a c k
32 : param l o g p a t h : path f o r l o g f i l e s
33 : param c o n f i g p a t h : path o f c o n f i g . j s o n f i l e
34 : param c o n f i g d a t a : j s o n c o n f i g data w i l l be l oaded i n t o t h i s v a r i a b l e
35 : param c u r r e n t a t t a c k s t a r t t i m e : s t a r t t ime o f the c u r r e n t a t t a c k
36 f o r t imestamps
37 : param c u r r e n t a t t a c k e n d t im e : end t ime o f the c u r r e n t a t t a c k
38 f o r t imestamps
39 : param c u r r e n t a t t a c k f i n i s h e d : e l a p s e d t ime o f the c u r r e n t a t t a c k
40 : param a t t a c k c o u n t e r : c oun t e r f o r t o t a l number o f execu t ed a t t a c k s
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41 : param t o t a l a t t a c k s e t i t e r a t i o n s : amount o f t imes the a t t a c k
42 s e t shou l d be ran
43 : param a t t a c k s e t i t e r a t i o n c o u n t e r : c oun t e r f o r i t e r a t i n g through
44 the a t t a c k l i s t
45 : param a t t a c k l i s t : l i s t w i th a l l the a t t a c k commands tha t
46 w i l l be execu t ed
47

48 C a l l s the i n t i a l i z a t i o n method .
49 ”””
50 s e l f . tmux s e r v e r = None
51 s e l f . tmux s e s s i o n = None
52 s e l f . tmux window = None
53 s e l f . tmux pane1 = None
54 s e l f . tmux pane2 = None
55

56 s e l f . o v e r a l l s t a r t t i m e = date t ime . da t e t ime . now ( ) .
57 s t r f t i m e ( ”%Y %m %d−%I %M%S %p UTC” )
58 s e l f . l o g p a t h = ’ /home/ l kn / at tack−t r a f f i c −t e s t b e d / k a l i 1 / l o g s / ’
59 s e l f . mysq l pa th = ’ /home/ l kn / at tack−t r a f f i c −t e s t b e d / k a l i 1 /mysql / ’
60 s e l f . c o n f i g p a t h = ’ /home/ l kn / at tack−t r a f f i c −t e s t b e d / k a l i 1 /
61 c o n f i g my s q l . j s o n ’
62 s e l f . c o n f i g d a t a = None
63 s e l f . c u r r e n t a t t a c k s t a r t t i m e = None
64 s e l f . c u r r e n t a t t a c k e n d t im e = None
65 s e l f . c u r r e n t a t t a c k f i n i s h e d = True
66 s e l f . s t r i n g s t a r t t i m e = None
67 s e l f . c u r r e n t t ime s t amp = None
68 s e l f . a t t a c k c o u n t e r = 0
69 s e l f . t o t a l a t t a c k s e t i t e r a t i o n s = 0
70 s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r = 0
71 s e l f . a t t a c k l i s t = [ ]
72

73 s e l f . i n i t i a l i z a t i o n ( )
74

75 def i n i t i a l i z a t i o n ( s e l f ) :
76 ”””
77 I n i t i a l i z a t i o n c a l l s the methods which shou ld be run
78 once b e f o r e s t a r t i n g the a t t a c k s .
79 ”””
80 s e l f . c r e a t e j s o n ( )
81 s e l f . c r e a t e l o g f i l e ( )
82 s e l f . r e a d c o n f i g ( )
83 s e l f . c r e a t e a t t a c k l i s t ( )
84 s e l f . i n i t i a l i z e t m u x s e r v e r ( )
85 s e l f . s t a r t t cpdump ( )
86

87 def c r e a t e j s o n ( s e l f ) :
88 ”””
89 Crea t e s an empty j s o n s k e l e t on , to which the t imestamps
90 o f the s e v e r a l a t t a c k can be added .
91 ”””
92 j s o n s k e l e t o n = {” a t t a c k s ” : [ ] }
93 with open ( s e l f . l o g p a t h + ’ a t t a c k t ime s t amps ’ + s e l f . o v e r a l l s t a r t t i m e +
94 ’ . j s o n ’ , ’w ’ ) as f :
95 j s o n . dump( j s o n s k e l e t o n , f , e n s u r e a s c i i=Fa l s e , i n d en t=4)
96

97 def c r e a t e l o g f i l e ( s e l f ) :
98 ”””
99 Crea t e s empty l o g f i l e s .

100 Cu r r e n t a t t a c k l o g f i l e i s used to check the s t a t e ( runn ing or f i n i s h e d )
101 o f the c u r r e n t a t t a c k .
102 Attack l o g f i l e l o g s the commandline output o f an a t t a c k .
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103 ”””
104 with open ( s e l f . l o g p a t h + ” c u r r e n t a t t a c k ” + s e l f . o v e r a l l s t a r t t i m e +
105 ” . l o g ” , ’w ’ ) as f :
106 pass
107

108 with open ( s e l f . l o g p a t h + ” a t t a c k ” + s e l f . o v e r a l l s t a r t t i m e +
109 ” . l o g ” , ’w ’ ) as f :
110 pass
111

112 def r e a d c o n f i g ( s e l f ) :
113 ”””
114 Reads the c o n f i g . j s o n and save the data to s e l f . c o n f i g d a t a v a r i a b l e .
115 Data w i l l be used to c r e a t e the a t t a c k l i s t .
116 ”””
117 with open ( s e l f . c o n f i g p a t h ) as j s o n f i l e :
118 s e l f . c o n f i g d a t a = j s o n . l oad ( j s o n f i l e )
119

120 def s e l e c t ( s e l f ) :
121 da taba s e s = { ’ s t a r w a r s ’ : { ’ p l a n e t ’ : [ ’ ∗ ’ , ’ name ’ , ’ r o t a t i o n p e r i o d ’ ,
122 ’ o r b i t a l p e r i o d ’ , ’ d i amete r ’ , ’ c l ima t e ’ , ’ g r a v i t y ’ , ’ t e r r a i n ’ ,
123 ’ s u r f a c e w a t e r ’ , ’ p o pu l a t i o n ’ , ’ c r e a t e d d a t e ’ , ’ upda ted da te ’ , ’ u r l ’ , ’ i d ’ ] ,
124 ’ p eop l e ’ : [ ’ ∗ ’ , ’ name ’ , ’ h e i g h t ’ , ’ mass ’ , ’ h a i r c o l o r ’ , ’ s k i n c o l o r ’ ,
125 ’ e y e c o l o r ’ , ’ b i r t h y e a r ’ , ’ gender ’ , ’ p l a n e t i d ’ , ’ c r e a t e d d a t e ’ ,
126 ’ upda ted da te ’ , ’ u r l ’ , ’ i d ’ ]} ,
127 ’ hogwarts ’ : { ’ p a r e n t s ’ : [ ’ ∗ ’ , ’ name ’ ] ,
128 ’ s t u d e n t s ’ : [ ’ ∗ ’ , ’ name ’ , ’ y e a r ’ , ’ h o u s e i d ’ ] ,
129 ’ t e a c h e r s ’ : [ ’ ∗ ’ , ’ i d ’ , ’ name ’ , ’ h o u s e i d ’ ] ,
130 ’ c l a s s r o s t e r s ’ : [ ’ ∗ ’ , ’ c l a s s i d ’ , ’ s t u d e n t i d ’ ] ,
131 ’ houses ’ : [ ’ ∗ ’ , ’ i d ’ , ’ name ’ ] ,
132 ’ c l a s s e s ’ : [ ’ ∗ ’ , ’ i d ’ , ’ s u b j e c t ’ , ’ t e a c h e r i d ’ ]}}
133

134 rndDB = random . r a n d i n t (0 , l e n ( da t aba s e s . key s ())−1)
135 database = l i s t ( da t aba s e s . key s ( ) ) [ rndDB ]
136 rndTab le = random . r a n d i n t (0 , l e n ( da t aba s e s [ l i s t ( da t aba s e s . key s ( ) )
137 [ rndDB ] ] ) −1)
138 t a b l e = l i s t ( da t aba s e s [ l i s t ( da t aba s e s . key s ( ) ) [ rndDB ] ] . key s ( ) ) [ rndTab le ]
139 rndColumn = random . r a n d i n t (0 , l e n ( da t aba s e s [ da tabase ] [ t a b l e ])−1)
140 column = l i s t ( da t aba s e s [ da tabase ] [ t a b l e ] ) [ rndColumn ]
141 r e t u r n ’USE ’+ database + ’ ; ’ + ’SELECT ’+ column + ’ FROM ’ + t a b l e +’ ; ’
142

143 def i n s e r t ( s e l f , f i l e ) :
144 l i s t a = [ ]
145 with open ( f i l e , ’ r ’ ) as doc :
146 c s v r e a d e r = csv . r e a d e r ( doc , d e l i m i t e r=’ ) ’ )
147 f o r row i n c s v r e a d e r :
148 l i s t a . append ( row [0]+ ’ ) ’ )
149 l i s t a = random . sample ( l i s t a , random . r a n d i n t (1 , min ( l e n ( l i s t a ) , 2 5 ) ) )
150 l i s t a = s t r ( l i s t a ) . r e p l a c e ( ’ [ ’ , ’ ’ )
151 l i s t a = l i s t a . r e p l a c e ( ’ ] ’ , ’ ’ )
152 i f f i l e == ’ mysql / planetsSW . c sv ’ :
153 r e t u r n ’USE s t a r w a r s ; INSERT INTO p l a n e t (name , r o t a t i o n p e r i o d ,
154 o r b i t a l p e r i o d , d iameter , c l ima t e , g r a v i t y , t e r r a i n , s u r f a c e wa t e r ,
155 popu l a t i on , c r e a t e d da t e , updated date , u r l , i d ) VALUES ’ +
156 l i s t a . r e p l a c e ( ’ \ ’ ’ , ’ ’ ) + ’ ; ’
157 e l i f f i l e == ’ mysql /peopleSW . c sv ’ :
158 r e t u r n ’USE s t a r w a r s ; INSERT INTO peop l e (name , he i gh t , mass , h a i r c o l o r ,
159 s k i n c o l o r , e y e c o l o r , b i r t h y e a r , gender , p l a n e t i d , c r e a t e d da t e ,
160 updated date , u r l , i d ) VALUES ’ + l i s t a . r e p l a c e ( ’ \ ’ ’ , ’ ’ ) + ’ ; ’
161 e l i f f i l e == ’ mysql / parentsHw . c sv ’ :
162 r e t u r n ’USE hogwarts ; INSERT INTO pa r e n t s ( name) VALUES ’ +
163 l i s t a . r e p l a c e ( ’ \ ’ ’ , ’ ’ ) + ’ ; ’
164 e l i f f i l e == ’ mysql / studentsHw . c sv ’ :

84



165 r e t u r n ’USE hogwarts ; INSERT INTO s t ud en t s (name , year , h ou s e i d )
166 VALUES ’ + l i s t a . r e p l a c e ( ’ \ ’ ’ , ’ ’ ) + ’ ; ’
167 e l i f f i l e == ’ mysql / c l a s s r o s t e r sHw . c sv ’ :
168 r e t u r n ’USE hogwarts ; INSERT INTO c l a s s r o s t e r s ( c l a s s i d , s t u d e n t i d )
169 VALUES ’ + l i s t a . r e p l a c e ( ’ \ ’ ’ , ’ ’ ) + ’ ; ’
170

171 def d ropCrea t e ( s e l f , f i l e ) :
172 c r e a t e = [ ]
173 with open ( f i l e , ’ r ’ ) as doc :
174 c s v r e a d e r = csv . r e a d e r ( doc , d e l i m i t e r=’ ; ’ )
175 f o r row i n c s v r e a d e r :
176 c r e a t e . append ( row [ 0 ] )
177 c r e a t e = random . sample ( c r e a t e , 1 )
178 c r e a t e = s t r ( c r e a t e ) . r e p l a c e ( ’ \ ’ ’ , ’ ’ )
179 c r e a t e = c r e a t e . r e p l a c e ( ’ [ ’ , ’ ’ )
180 c r e a t e = c r e a t e . r e p l a c e ( ’ ] ’ , ’ ’ )
181 t a b l e = c r e a t e [ c r e a t e . f i n d ( ’ t a b l e ’ )+5: c r e a t e . f i n d ( ’ ( ’ ) ]
182 i f ’ p l a n e t ’ i n t a b l e or ’ p eop l e ’ i n t a b l e :
183 r e t u r n ’USE s t a r w a r s ; DROP TABLE IF EXISTS ’+t a b l e+’ ; ’+ c r e a t e +’ ; ’
184 e l s e :
185 r e t u r n ’USE hogwarts ; DROP TABLE IF EXISTS ’+t a b l e+’ ; ’+ c r e a t e +’ ; ’
186 def random commands ( s e l f , t ypeAt tack ) :
187 randomIndex = random . r a n d i n t ( 0 , 5 )
188 i f randomIndex == 0 :
189 r e t u r n s e l f . s e l e c t ( )
190 e l i f randomIndex == 1 :
191 r e t u r n s e l f . d ropCrea t e ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ t ypeAt tack ]
192 [ ” d e t a i l s ” ] [ randomIndex ] [ ”Command” ] )
193 e l i f randomIndex i n range ( 2 , 7 ) :
194 r e t u r n s e l f . i n s e r t ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ t ypeAt tack ]
195 [ ” d e t a i l s ” ] [ randomIndex ] [ ”Command” ] )
196

197 def c r e a t e a t t a c k l i s t ( s e l f ) :
198 ”””
199 Crea t e s the a t t a c k l i s t .
200 Checks f o r the a t t a c k type and adds a t t a c k command to the l i s t .
201 Same a t t a c k can be run mu l t i p l e t imes beh ind each o th e r
202 and i s s p e c i f i e d i n the i t e r a t i o n s key .
203 ”””
204 s e l f . a t t a c k l i s t = [ ]
205 f o r i i n range ( l e n ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] ) ) :
206 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” preAt tack ” :
207 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
208 s e l f . a t t a c k l i s t . append ( ’ mysql −u username −p password
209 −h d s t i p −e \ ’ ’ + s e l f . random commands (0 ) + ’ \ ’ ’ )
210 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ”ms f con so l e ” :
211 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
212 s e l f . a t t a c k l i s t . append ( ’ ms f con so l e −q −x \ ’ use
213 a u x i l i a r y / s canne r /mysql / my s q l l o g i n ;
214 s e t RHOSTS d s t i p ; s e t VERBOSE f a l s e ;
215 s e t USERNAME username ; s e t PASS FILE passwords . t x t ;
216 s e t STOP ON SUCCESS t r u e ; run ; e x i t \ ’ ’ )
217 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” f l u s h −ho s t s ” :
218 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
219 s e l f . a t t a c k l i s t . append ( ’ mysqladmin −u username −p password
220 −h d s t i p f l u s h −ho s t s ’ )
221 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” pos tAt tack ” :
222 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
223 s e l f . a t t a c k l i s t . append ( ’ mysql −u username −p password
224 −h d s t i p −e \ ’ ’ + s e l f . random commands (0 ) + ’ \ ’ ’ )
225 i f s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” type ” ] == ” t s h a r k ” :
226 f o r i n range ( s e l f . c o n f i g d a t a [ ” a t t a c k s e t ” ] [ i ] [ ” i t e r a t i o n s ” ] ) :
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227 s e l f . a t t a c k l i s t . append ( ’ t s h a r k −r ’ + s e l f . l o g p a t h
228 +’ a t t a c k k a l i 1 ’ + s e l f . o v e r a l l s t a r t t i m e +’ . pcap −t ud
229 −T f i e l d s −e ws . c o l . Time −e i p . s r c −e i p . d s t
230 −e frame . l e n −e ws . c o l . P r o t o co l −E s e p a r a t o r =,
231 −E oc cu r r e n c e=f > ’ + s e l f . l o g p a t h + ’ a t t a c k k a l i 1 ’+
232 s e l f . o v e r a l l s t a r t t i m e +’ . c sv ’ )
233

234 s e l f . t o t a l a t t a c k s e t i t e r a t i o n s = s e l f . c o n f i g d a t a [ ” a t t a c k s e t i t e r a t i o n s ” ]
235 def c h e c k a t t a c k s t a t e ( s e l f ) :
236 ”””
237 Reads the l a s t l i n e o f c u r r e n t a t t a c k . l o g f i l e to check whether
238 the c u r r e n t a t t a c k has f i n i s h e d .
239 Cur r en t a t t a c k has f i n i s h e d when l a s t l i n e ho l d s the s t r i n g :
240 ”Checked : Attack f i n i s h e d !”
241 Retu rns True or F a l s e a c c o r d i n g l y .
242 ”””
243 with open ( s e l f . l o g p a t h + ” c u r r e n t a t t a c k ” + s e l f . o v e r a l l s t a r t t i m e +
244 ” . l o g ” , ” rb ” ) as f i l e :
245 t r y :
246 f i l e . s e ek (−2 , os . SEEK END)
247 wh i l e f i l e . r ead (1 ) != b ’ \n ’ :
248 f i l e . s e ek (−2 , os . SEEK CUR)
249 except OSError :
250 f i l e . s e ek (0 )
251 l a s t l i n e = f i l e . r e a d l i n e ( ) . decode ( )
252

253 p r i n t ( l a s t l i n e )
254

255 i f l a s t l i n e == ” I n f o : Attack f i n i s h e d .\ n” :
256 p r i n t ( ”Checked : Attack f i n i s h e d ! ” )
257 with open ( s e l f . l o g p a t h + ” c u r r e n t a t t a c k ” +
258 s e l f . o v e r a l l s t a r t t i m e + ” . l o g ” , ’w ’ ) as f :
259 pass
260 r e t u r n True
261 e l s e :
262 r e t u r n Fa l s e
263

264 def s e t a t t a c k s t a t e t o f i n i s h e d ( s e l f ) :
265 ”””
266 When a t t a c k has f i n i s h e d , c u r r e n t a t t a c k f i n i s h e d w i l l be s e t to True ,
267 c u r r e n t a t t a c k e n d t im e w i l l be s e t to the c u r r e n t t ime and s k i p f i s h f i l e
268 w i l l be removed from the d i r e c t o r y , so tha t a t t a c k can be s t a r t e d aga in .
269 ”””
270 s e l f . c u r r e n t a t t a c k f i n i s h e d = True
271 s e l f . c u r r e n t a t t a c k e n d t im e =date t ime . da t e t ime . now( da te t ime . t imezone . utc )
272

273 def s e t a t t a c k s t a t e t o r u n n i n g ( s e l f ) :
274 ”””
275 New a t t a c k s t a r t e d , c u r r e n t a t t a c k f i n i s h e d w i l l be s e t to Fa l s e .
276 ”””
277 s e l f . c u r r e n t a t t a c k f i n i s h e d = Fa l s e
278

279 def add cu r r e n t a t t a c k t ime s t amp s ( s e l f ) :
280 ”””
281 Gets the a t t a c k s t a r t and a t t a c k end t imestamp and c a l c u l a t e s
282 the e l a p s e d t ime .
283 Timestamps o f the c u r r e n t a t t a c k w i l l be appended to the
284 a t t a ck t ime s t amps . j s o n f i l e .
285 ”””
286 s e l f . c u r r e n t a t t a c k s t a r t t im e s t amp = s e l f . c u r r e n t a t t a c k s t a r t t i m e .
287 t imestamp ( )
288 s e l f . c u r r e n t a t t a c k e nd t ime s t amp = s e l f . c u r r e n t a t t a c k e n d t im e .
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289 t imestamp ( )
290 a t t a c k t im e e l a p s e d = s e l f . c u r r e n t a t t a c k e nd t ime s t amp −
291 s e l f . c u r r e n t a t t a c k s t a r t t im e s t amp
292

293 c u r r e n t a t t a c k t im e s t amp s = {” i d ” : s e l f . a t t a c k c oun t e r , ” type ” :
294 s e l f . a t t a c k l i s t [ s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r ] . s p l i t ( ) [ 0 ] , ” t s t a r t ” :
295 s t r ( s e l f . c u r r e n t a t t a c k s t a r t t i m e ) , ” t end ” : s t r (
296 s e l f . c u r r e n t a t t a c k e n d t im e ) , ” t e l a p s e d ” : s t r ( a t t a c k t im e e l a p s e d )}
297 s e l f . a t t a c k c o u n t e r += 1
298

299 with open ( s e l f . l o g p a t h + ’ a t t a c k t ime s t amps ’ + s e l f . o v e r a l l s t a r t t i m e +
300 ’ . j s o n ’ ) as j s o n f i l e :
301 o v e r a l l a t t a c k t im e s t amp s = j s o n . l o ad ( j s o n f i l e )
302 temp = o v e r a l l a t t a c k t im e s t amp s [ ” a t t a c k s ” ]
303 temp . append ( c u r r e n t a t t a c k t im e s t amp s )
304

305 with open ( s e l f . l o g p a t h + ’ a t t a c k t ime s t amps ’ + s e l f . o v e r a l l s t a r t t i m e +
306 ’ . j s o n ’ , ’w ’ ) as f :
307 j s o n . dump( o v e r a l l a t t a c k t im e s t amp s , f , e n s u r e a s c i i=Fa l s e , i n d en t=4)
308

309 def i n i t i a l i z e t m u x s e r v e r ( s e l f ) :
310 ”””
311 S t a r t the Tmux s e r v e r and s e s s i o n .
312 Opens two panes f o r tcpdump and a t t a c k commands .
313 ”””
314 s e l f . tmux s e r v e r = l i b tmux . S e r v e r ( )
315 s e l f . tmux s e s s i o n = s e l f . tmux s e r v e r . n ew s e s s i o n ( s e s s i on name=
316 ” k a l i 1 a t t a c k ” , k i l l s e s s i o n=True , a t t a ch=Fa l s e )
317 s e l f . tmux window = s e l f . tmux s e s s i o n . new window ( a t t a ch=True ,
318 window name=” k a l i 1 a t t a c k ” )
319 s e l f . tmux pane1 = s e l f . tmux window . a t t a ched pane
320 s e l f . tmux pane2 = s e l f . tmux window . s p l i t w i n d ow ( v e r t i c a l=Fa l s e )
321 s e l f . tmux window . s e l e c t l a y o u t ( ’ even−h o r i z o n t a l ’ )
322

323 def s t a r t t cpdump ( s e l f ) :
324 ”””
325 tcpdump w i l l be s t a r t e d i n Tmux pane 2 .
326 ”””
327 s e l f . tmux pane2 . s e nd k e y s ( ’ sudo tcpdump −n i eth0 −w ’ + s e l f . l o g p a t h +
328 ’ a t t a c k k a l i 1 ’ + s e l f . o v e r a l l s t a r t t i m e + ’ . pcap ’ )
329

330 def s t a r t n ew a t t a c k ( s e l f ) :
331 ”””
332 Attack commands w i l l be run i n Tmux pane 1 .
333 ”””
334 s e l f . tmux pane1 . s e nd k e y s ( s e l f . a t t a c k l i s t [
335 s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r ] + ’ | t e e ’ + s e l f . l o g p a t h +
336 ’ c u r r e n t a t t a c k ’ + s e l f . o v e r a l l s t a r t t i m e + ’ . l o g >> ’ + s e l f . l o g p a t h +
337 ’ a t t a c k ’ + s e l f . o v e r a l l s t a r t t i m e + ’ . l o g && echo ” I n f o :
338 Attack f i n i s h e d . ” | t e e ’ + s e l f . l o g p a t h + ’ c u r r e n t a t t a c k ’ +
339 s e l f . o v e r a l l s t a r t t i m e + ’ . l o g >> ’ + s e l f . l o g p a t h + ’ a t t a c k ’ +
340 s e l f . o v e r a l l s t a r t t i m e + ’ . l o g ’ )
341

342 def s top tmux ( s e l f ) :
343 ”””
344 K i l l s tmux s e r v e r to s top tcpdump on both VMs .
345 ”””
346 # k i l l s e r v e r on hmp1 VM to s top tcpdump
347 c l i e n t = paramiko . SSHCl ient ( )
348 c l i e n t . s e t m i s s i n g h o s t k e y p o l i c y ( paramiko . AutoAddPol icy ( ) )
349 c l i e n t . connect ( ’ i p d s t ’ , username=’ username ’ , k e y f i l e n ame=
350 ’ /home/username / . s sh / i d r s a ’ )
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351 s s h s t d i n , s s h s t d ou t , s s h s t d e r r =c l i e n t . exec command ( ’ tmux k i l l −s e r v e r ’ )
352

353 # k i l l on t h i s k a l i 1 VM to s top tcpdump
354 s e l f . tmux s e r v e r . k i l l s e r v e r ( )
355

356 def s t a r t a t t a c k h a n d l e r ( s e l f ) :
357 ”””
358 Main a t t a c k hand l e r .
359 Tra v e r s e s th rough the a t t a c k l i s t and runs the a t t a c k commands .
360 Checks i f c u r r e n t a t t a c k has f i n i s h e d . I f y e s nex t a t t a c k command
361 o f the l i s t w i l l be s t a r t e d .
362 ”””
363 f o r i n range ( s e l f . t o t a l a t t a c k s e t i t e r a t i o n s ) :
364

365 s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r = 0
366 wh i l e s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r < l e n ( s e l f . a t t a c k l i s t ) :
367 i f s e l f . c u r r e n t a t t a c k f i n i s h e d :
368 s e l f . c u r r e n t a t t a c k s t a r t t i m e = date t ime . da t e t ime . now(
369 da te t ime . t imezone . utc )
370 s e l f . s t a r t n ew a t t a c k ( )
371 s e l f . s e t a t t a c k s t a t e t o r u n n i n g ( )
372

373 i f s e l f . c h e c k a t t a c k s t a t e ( ) :
374 s e l f . c r e a t e a t t a c k l i s t ( )
375 s e l f . s e t a t t a c k s t a t e t o f i n i s h e d ( )
376 s e l f . a d d c u r r e n t a t t a c k t ime s t amp s ( )
377 s e l f . s t r i n g s t a r t t i m e = date t ime . da t e t ime . s t r p t im e (
378 s e l f . o v e r a l l s t a r t t i m e , ”%Y %m %d−%I %M%S %p UTC” )
379 s e l f . c u r r e n t t ime s t amp = date t ime . da t e t ime . s t r p t im e (
380 da te t ime . da t e t ime . now ( ) . s t r f t i m e ( ”%Y %m %d−%I %M%S %p UTC” ) ,
381 ”%Y %m %d−%I %M%S %p UTC” )
382 i f ( s e l f . c u r r e n t t ime s t amp − s e l f . s t r i n g s t a r t t i m e >
383 da te t ime . t im e d e l t a ( hour s=1) and s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r
384 ==0)
385 or ( s e l f . c u r r e n t t ime s t amp − s e l f . s t r i n g s t a r t t i m e >
386 da te t ime . t im e d e l t a ( hour s=3) and s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r
387 ==3)
388 or s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r i n [ 1 , 2 , 4 ] :
389 s e l f . a t t a c k s e t i t e r a t i o n c o u n t e r += 1
390

391 t ime . s l e e p ( 1 . 0 )
392

393 s e l f . s top tmux ( )
394

395

396 i f name == ” ma i n ” :
397 a t t a c k = AttackHand l e r ( )
398 a t t a c k . s t a r t a t t a c k h a n d l e r ( )

88


	Introduction
	Background
	Description of the technologies
	Brute-force attack and Credential stealing
	Host-based and Network-based intrusion detection systems
	Testbed environment
	Stochastic Block Models

	Current research

	Description of the Project
	Motivation
	Project objectives
	Methodology and Planning
	Economic Estimation

	Architecture
	Implementation
	Algorithms
	Metasploit Framework
	Python Scripting of Linux commands
	Python packages for Visualization
	Weighted Stochastic Block Models

	Data

	Results
	Host-level exploratory data analysis
	Network-level analysis
	Exploratory data analysis
	Evaluation of using WSBMs for Detection of Brute Force Attack


	Conclusions and Outlook
	Alignment of the Project with SDGs
	Notation and Abbreviations
	Attack code



