
 

 1 

26/08/2023 

Use of neural networks to automate 
administrative dossier processing 

Author: Ortega Núñez, Daniel 

Supervisor: Chousa Arza, Brais 

Collaborating Entity: PricewaterhouseCoopers Asesores de Negocios S.L. 

 

ABSTRACT This paper presents the design and development of a first version of an automatic 

documental review system based on object detection techniques using neural networks and its 

combination with Optical Character Recognition (OCR). In this first version, the system focuses on the 

detection and verification of “Números de Identificación Fiscal” (NIF) or “Número de Identidad de 

Extranjero” (NIE) in legal representation documents. To achieve this detection, an architecture based on 

the YOLOv8 model has been implemented. The developed solution has been tested to evaluate the 

accuracy of the detection model, the execution times, and the validation threshold, from which results 

have been obtained showing that the system is able to detect and verify NIF or NIE accurately within the 

representation templates with which the model has been trained, and obtaining adequate execution times 

to handle a significant volume of dossiers. 

INDEX TERMS YOLO, OCR, Artificial intelligence, Dossiers, Neural network, CNN, Document 

review, Legal representation.

I. INTRODUCTION 

The documental review is a fundamental process in the 

administrative dossier processing. This process is mainly 

performed manually by document reviewers, which can be 

difficult and susceptible to errors, especially in 

environments with a high volume of dossiers. This manual 

aspect of the document review process can lead to an 

accumulation of dossiers due to the time required for this 

review, which can cause specific problems in this type of 

procedure, such as: delays in the resolution of dossiers, 

errors in the document review, or a possible increase in 

the cost of the staff in charge of the document review. 

 

This problem leads to the need to find a solution to 

automate document review, reducing the time and errors 

associated with manual review. To this end, we explore 

the integration of object detection models in digitized 

documents and the application of OCR to verify the 

validation of the document and, therefore, the applicant's 

compliance with the requirements. 

 

In summary, this article addresses the need to optimize the 

document review process in administrative procedures 

through automation, presenting a technological approach 

that integrates object detection techniques and OCR for 

document verification, specifically for legal representation 

documents. 

 

II. PROJECT DEFINITION 

The main objective of the project is to design and implement 

a solution to automate the document review in administrative 

documents of an existing platform, specifically it will focus 

on the review of the document that allows the accreditation 

of legal representation. For this purpose, in the first instance, 

a version of the object detector is developed to identify and 

validate the NIF/NIE in the corresponding document, 

providing a technological alternative to improve the speed 

and accuracy in the accreditation of legal representation. 

 

To carry out this development, the final system must have 

different essential requirements in order to confirm the 

validity of the solution provided: 

 

i) Detection of regions of interest: The system must be able 

to detect the position and area of the information of 

interest in the documents. 

ii) Verification of the information detected: Once the 

information in the document has been detected, it must 

pass through a verification process to confirm its 
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exactitude, which implies comparing the information 

extracted by the OCR with the actual values present in 

the dossier. 

iii) Document format flexibility: The system must be able to 

handle different types of documents and formats, 

adapting to variations in legal representation documents. 

iv) Integration with platform: The system must be designed 

in such a way that it can be easily integrated with the 

existing document review platform, without interrupting 

or affecting the current workflow. 

v) Transparent results: The system must provide clear and 

detailed results, including information about the regions 

of interest detected, object detector and OCR confidence 

scores, and the verification decision, to be fully 

transparent about the decisions made. 

vi) Scalability potential: The solution must be scalable to 

handle a considerable volume of documents and 

dossiers, with reasonable processing times. 

 

Based on these requirements, a solution can be designed to 

reduce the manual workload, minimize human errors, and 

speed up the document review process in administrative 

scenarios. 

 

III. SYSTEM DESCRIPTION 

The designed solution uses as main technologies a neural 

network based on YOLO to locate the fields of interest of 

the document (trained to detect NIF/NIE), and OCR to 

digitize the detected information and compare it with the 

real information of the file.  

 

To detail the operation, it is necessary to start by 

describing the tasks performed to prepare the model used 

in the solution: 

 

A. DATA COLLECTION AND ANNOTATION 

First of all, in order to carry out the training of the data 

detection model, it is necessary to create a training 

dataset. In this case, as it is going to be trained for a 

particular set of objects (NIF/NIE detection), a dataset had 

to be developed manually from templates of the legal 

representation document of the existing platform. 

 

From this dataset, it is necessary to label the positions of 

the fields of interest within the image, in other words, the 

coordinates where the detector model should find that 

field. Therefore, the location of the NIF/NIE in the used 

templates of the dataset was manually labeled for the 

specific casuistic of the project. For this, the manual 

annotation tool "Computer Vision Annotation Tool 

(CVAT)" was used, which allowed drawing bounding 

boxes around the NIF/NIE on the image and stored the 

coordinates of these boxes. When exporting the labels, the 

CVAT allows to use a format suitable for training the 

YOLO model. 

 

It is worth mentioning that these labels include the 

coordinates (x, y) of the upper left corner and lower right 

corner of the bounding box around the NIF/NIE, and the 

class number of the object (necessary in case of detecting 

several objects). 

 

B. YOLOv8 OBJECT DETECTION MODEL 

The Ultralytics YOLOv8 model was selected as the basis 

for this project due to its ability to perform object 

detection with high accuracy and efficiency, as well as its 

large amount of documentation. 

 

The model was configured to suit the specific 

requirements of the project. To do so, from the YALM 

(Yet Another Markup Language) configuration file, the 

architecture of the model is defined. In this case, the 

YOLOv8n version was selected to speed up training, since 

it is the network with the fewest parameters. 

 

During the training process, the model is dedicated to 

adjust its weights and internal parameters to learn how to 

detect the classes of objects indicated in the images. The 

training was performed iteratively over 100 epochs, and 

multiple times for different dataset sizes. Once the 

training is finished, the last model, and the best model, is 

saved. The model used was a model trained from Google 

Colab, with a set of 300 images and only detecting one 

object class (NIF). 

 

Figure 1: Number of parameters depending on the model. 
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In addition to the main technologies mentioned above, the 

developed system has several image and data treatment 

processes. A general scheme of the system is shown 

below and all the processes that are carried out during the 

execution of the solution are detailed in order: 

 

A. LOADING DOSSIER INFORMATION 

The first stage of the process involves the collection and 

preparation of the necessary dossier data. In this test 

version, no direct communication with the database has 

been implemented, a data structure called "data_mapping" 

has been created containing the information of the test 

dossiers to be processed. This information is previously 

introduced and includes for each document name: the 

dossier identifier, the applicant's and representative's 

NIF/NIE, as well as the associated file addresses. In 

addition, the documents to be processed will have to be 

uploaded to the selected folder. 

 

B. DOCUMENT TRANSFORMATION 

To enable automated processing, a process of converting 

PDF documents to images is carried out using the 

pdf2image library. 

 

This is done for all documents to be analyzed at the same 

time. The list of all documents with PDF extension within 

the input folder is obtained, and all found documents are 

transformed to images. These images are stored with the 

same name in the same location as the transformed 

documents. 

 

C. DETECTION OF REGIONS OF INTEREST IN THE 

DOCUMENT 

Once the documents are converted to images, these 

images are processed one by one using the trained YOLO 

model. This model, trained to detect NIF/NIE, identifies 

the regions that it considers that store this object: 

 

If the NIF object is found in the processing, the 

information of the coordinates of the contour box of the 

object is used, and the image is cropped twice, for the 

detection of the NIF of the interested and for the NIF of 

the representative, saving them in the folder indicated as 

"output". In case no object is detected, a message detailing 

the event is displayed, and a negative verification is 

exported as the result of this processed document. 

 

D. IMAGE PROCESSING AND OCR 

Once the region of interest containing the NIF of an image 

has been identified, the text extraction process is carried 

out in several steps to guarantee an accurate and reliable 

reading.  

 

First, as discussed above, the images are cropped from the 

coordinates of the objects detected by the neural network. 

These cropped images must be processed using the OCR, 

but before this is done, they are processed to facilitate the 

reading of the OCR and improve the accuracy with which 

the information is extracted from the images.  

 

This treatment consists of transforming the image to 

grayscale, and then applying a binary threshold to 

segment the image in black and white, where the pixels of 

the image that exceed the indicated threshold value of the 

scale become white, and those below become black. In 

this way, the detection of image edges and details is 

Figure 3: Document processed. 

Figure 2: System design. 
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improved, highlighting the characters, and avoiding some 

possible OCR reading failures due to the image quality. 

 

Once the image has been treated, it is processed using 

OCR. Specifically, the EasyOCR library has been used for 

this character recognition task, extracting with it the 

contents of these images, in other words, the fields of 

interest (NIF of the interested party and representative) in 

string format. 

 

It is worth mentioning that this process also provides a 

confidence score for each text extraction, which could be 

considered for the document validation decision. 

 

E. TEXT PROCESSING 

The next step of the system is to process the text extracted 

from the OCR. The aim is to ensure that the text maintains 

the usual NIF/NIE format, avoiding reading errors when 

confusing similar characters, or even the introduction by 

the user of special characters that do not maintain the 

format stored in the database. 

 

To do this, first of all, all letters in the text are converted 

to capital letters, and symbols such as "-" or "." are 

eliminated. Secondly, all texts are processed by a function 

developed, which controls the specific formats of the NIF 

and NIE.  

 

 The formats of both NIF and NIE are shown below to 

understand the function: 

Taking these formats into account, the purpose is to 

control the correspondence of the characters in relation to 

numbers or letters to a certain point by means of the 

commented function. For this purpose: 

 

- The first character can be a number or a letter 

depending on whether it is a NIF or NIE. 

- The intermediate characters must always be 

numbers. 

- The last character must always be a letter. 

 

Following this guideline, dictionaries with similar 

numbers and letters that OCR may confuse have been 

declared, to be modified with this formatting criteria as 

appropriate. The controlled characters are shown below in 

Table I: 

 

TABLE I 

MONITORED CHARACTERS 

LETTER/ 

CHARACTER 
NUMBER 

O 0 

I 1 

J 3 

A 4 

G 6 

/ 1 

Z 2 

S 5 

 

F. CHARACTER STRING COMPARISON 

Once the text processing is finished, it is possible to 

compare with greater certainty the information extracted 

from the OCR with the real one. So, using the difflib 

library to compare the similarity of characters, a similarity 

coefficient is obtained. This comparison is carried out 

character by character, in other words, the first character 

of a string is compared with the first character of the other 

string, the second with the second, and so on. 

 

Through this process, the comparison information can be 

obtained from the similarity coefficient, the higher the 

similarity coefficient, the more similar are the two strings 

of characters. 

 

G. VERIFICATION PROCESS 

A key point is the formulation of the validation threshold, 

which determines the required similarity between the text 

extracted by the OCR and the actual NIF/NIE values to 

consider a document revision as valid. This threshold is 

based on the similarity coefficient calculated by 

comparing character strings but could be further defined 

Figure 4: Image treatment before 

OCR. 

Figure 5: NIF and NIE format. 
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from the OCR confidence score, or if available, from the 

detection of other objects. 

 

In this project, a validation threshold of 89% has been set 

as a balance between strictness of validation and 

acceptance of minor differences, which corresponds to 

one distinct character between strings. 

 

In situations where the similarity coefficient does not meet 

the validation threshold, the system records the 

verification as invalid. This allows the document 

reviewers to manually verify the case without affecting 

the original flow of the file. 

 

H. RESULTS EXTRACTION 

Once the similarity coefficient has been obtained and the 

document validation decision has been calculated, all the 

data obtained during the processing of each document is 

collected. These data include: the dossier information ( 

identifier and real NIF/NIE), the extracted NIF/NIE, the 

OCR scores, the YOLO contour box scores, the similarity 

percentages, and the final verification decision. 

 

These data are stored in a data structure called "results", 

with which finally a "dataframe" of pandas will be created 

to later extract them with Excel format. In Table II below 

it is shown how the results table is structured, and the 

different data types of each variable. 

 

TABLE II 

TABLE DESIGN FOR RESULTS 

CAMPO DATA TYPE DESCRIPTION 

id_expediente UUID Unique dossier identifier 

applicant_nif VARCHAR 
NIF/NIE of the interested coming 

from the database 

representative_

nif 
VARCHAR 

NIF/NIE of the representative 

coming from the database 

applicant_extra

cted_nif 
VARCHAR 

NIF/NIE of the interested from the 

extraction of the document 

representative_

extracted_nif 
VARCHAR 

NIF/NIE of the representative from 

the extraction of the document 

applicant_box_

confidence 
FLOAT 

Score of detection by the YOLO 

model for the NIF/NIE of the 

interested 

representative_

box_confidenc

e 

FLOAT 

Score of detection by the YOLO 

model for the NIF/NIE of the 

representative 

applicant_ocr_

score 
FLOAT 

Reliability of the reading by the 

OCR of the interested NIF/NIE 

representative_

ocr_score 
FLOAT 

Reliability of the reading by the 

OCR of the representative's 

NIF/NIE 

applicant_simil

arity 
FLOAT 

Percentage of similarity between the 

extracted NIF/NIE of the interested 

and the one in the DB 

representative_

similarity 
FLOAT 

Percentage of similarity between the 

extracted NIF/NIE of the 

representative and the one in the DB 

verification_de

cision 
BOOLEAN 

Decision for the verification of the 

document based on the results 

obtained 

 

It is worth mentioning that this data may be loaded into 

the platform's database when deemed appropriate, 

showing users the corresponding interface in each case. 

 

IV. RESULTS 

This section presents the results obtained after the 

implementation of the automatic document review system, 

analyzing the most relevant aspects of the project and 

evaluating the efficiency and performance of the 

developed solution. 

A. YOLO EXECUTION TIMES 

One of the aspects evaluated in depth is the execution time 

of the YOLO model trained and used for the detection of 

objects in the documents.  

 

During this object detection phase, the YOLO model 

processes each image in order to identify the NIF/NIE 

positions in the document.  

 

The execution times oscillate between 135 and 155 

milliseconds per image, which are considered appropriate 

times to handle large amounts of documents without 

generating significant waits in the execution of the 

solution. 

 

Therefore, these values suggest that the YOLO model is 

efficient and scalable to a significant volume of files, 

affecting in the scale of hours for hundreds of thousands 

of additional documents. It is important to note that, as 

execution time is not critical for this particular project, 

there is scope to employ more complex models in order to 

achieve greater accuracy. 

 

B. MODEL PERFORMANCE 

Another aspect evaluated is the performance of the model 

in terms of accuracy and its limitations. 
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In relation to this, the developed model can successfully 

detect the NIF/NIE fields in documents based on the legal 

representation template used in the training, but its 

accuracy may be affected when facing different types of 

documents with different formats and structures. 

 

In the context of object detection, this means that the 

model presents overfitting, and may have difficulties 

detecting regions of interest in documents that do not 

exactly follow the template used in training. 

 

The overfitting of the model is a major concern, as it 

affects the flexibility and adaptability of the system, 

leading to the fact that, in the case of documents with 

different formats, the system fails to detect regions of 

interest, decreasing its accuracy drastically and reducing 

the number of dossiers that can be automatically review. 

 

As a result, the solution has a limitation in that it is not 

generalizable to multiple document types without a model 

retraining. However, in the specific context of the 

document review platform on which the project is 

focused, it is working with the defined template, so the 

result obtained is valid. 

 

C. VALIDATION THRESHOLD ANALYSIS 

The last aspect evaluated in detail is the validation 

threshold used to decide where the detection of a region of 

interest in the digitized documents is correct or erroneous. 

This is a crucial component in the document review 

process, because depending on how strict the threshold is, 

the number of documents validated will increase or 

decrease. 

 

When a strict validation threshold is used, that is, a high 

verification threshold, the tendency is to validate only 

those documents in which the extracted text coincides 

more exactly with the expected values. This leads to 

higher validation accuracy, as false positives are 

minimized. However, this approach can also lead to a 

reduced number of validated documents, as even small 

discrepancies in the extracted text due to reading errors 

can result in a negative validation. On the other hand, 

using a less stringent validation threshold, meaning a low 

threshold, increases the likelihood that more documents 

will be validated. However, this may lead to a higher 

number of false positives. 

 

The choice of validation threshold should be a 

compromise between the accuracy desired, and how strict 

the threshold is. This should be based on an analysis of 

system requirements and tolerance for validation errors. 

 

After an iterative adjustment, a validation threshold of 

89% is defined for this project. This threshold allows for 

some variation in the extracted characters without 

compromising the validity of the document. It is important 

to note that the validation threshold is adjustable 

according to the needs of the process and can be refined 

according to the review requirements. Moreover, 

parameters such as OCR accuracies, or even additional 

parameters such as the requirement to detect other objects 

through YOLO, for example signatures (if the document 

does not have a signature, it will not be considered valid 

regardless of the percentage of similarity of the NIFs), 

could be added to this validation threshold. 

 

V. CONCLUSIONS 

This chapter presents the conclusions obtained after the 

execution of the automatic document review project. 

Through the definition of requirements, a functional 

solution has been achieved that meets the challenges 

proposed. The main conclusions are summarized below: 

 

With the project, it has been possible to design and 

develop a document review system that speeds up the 

administrative dossier verification process. This system 

uses an object detection based on YOLOv8, which has 

proven to be effective in identifying regions of interest 

containing NIF and NIE, which could be expanded to new 

objects. In addition, OCR technology has been 

incorporated to extract information from the images, and a 

validation threshold has been established that determines 

the required similarity between the extracted values and 

the real values. 

 

One of the main challenges of the project was the 

overfitting of the detection model, which limits its ability 

to adapt to different document formats. Although this 

problem does not have a major impact on this project, it is 

essential to consider it if a more versatile solution is 

needed. In addition, it should be considered that the 

detection model only identifies NIF and NIE, so a 

complete document review would require the detection of 

additional fields such as names or signatures. 

 

In addition, automating verification reduces manual 

workload and minimizes human error, resulting in a faster 

and more reliable process. This improves the experience 

of both the reviewers and the applicants of the dossiers. 

 

Despite the identified limitations, the solution meets the 

defined requirements, and it is possible to integrate the 

results easily into the existing document review platform 

when required.  
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In summary, the project has demonstrated the viability of 

implementing an automated document review system for 

administrative dossiers. Although there are areas for 

improvement, the current solution can significantly affect 

the document review process and have a positive impact 

on the management of administrative records. 

 

VI. FUTURE TASKS 

Opportunities for expansion and improvement have been 

identified for the developed system. Below are some areas 

where future work could be carried out to further optimize 

the system: 

 

i) Expand the training data set to include different types of 

documents and templates, which will allow the model to 

generalize better in different contexts, solving the 

problem of overfitting.  

ii) Use a model with a more powerful architecture, since by 

using a larger volume of parameters a higher accuracy 

could be obtained. This would affect the model 

execution speed but has a reduced impact since it can be 

performed independently from the manual review 

process without interrupting it. 

iii) The current solution focuses on the detection of NIF and 

NIE, which meets the project objective of evaluating the 

viability of the system. However, in order to achieve a 

complete validation of the legal representation 

document, it would be beneficial to include the detection 

and validation of other fields such as signatures, which 

would require a retraining of the model and adjustments 

in the image processing stage. 

iv) Research and implement new and more advanced OCR 

technologies to improve the accuracy of character 

reading. This would have a direct impact on the quality 

of the extracted information and, therefore, on the 

accuracy of the validation process. 

v) Carry out tests in real production situations. This will 

allow evaluating the solution under more realistic 

conditions and collecting additional data to adjust and 

optimize detection and validation parameters. In 

addition, feedback from real users can provide valuable 

information for future improvements. 

 

In conclusion, a solution has been designed and 

implemented to meet the objectives and requirements 

defined for the project, although it is true that during its 

execution, potential actions for improvement have been 

identified, with which the solution could be implemented 

in any type of document review platform, beyond the one 

used as a reference for the project. 
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APPENDIZ I –MAIN FILE CODE 

The following section show the main.py file developed for 

the execution of the designed solution: 

import os 

from ultralytics import YOLO 

import cv2 

from pdf2image import convert_from_path 

 

import easyocr 

import difflib 

import pandas as pd 

 

 

 

# definir funciones  

def convertir_pdf_a_imagen(archivo_pdf): 

    imagenes = convert_from_path(archivo_pdf, 

first_page=1, last_page=1) 

     

    nombre_archivo = 

os.path.splitext(archivo_pdf)[0]  

     

    for i, imagen in enumerate(imagenes): 

        ruta_guardado = f'{nombre_archivo}.jpg' 

        imagen.save(ruta_guardado, 'JPEG') 

 

def ocr_nif(img):    

    text_detections = ocr.readtext(img) 

 

    for text_detection in text_detections: 

        _, text, score = text_detection 

         

    return text, score 

 

def format_nif(text): 

 

    formatted_nif = text[0]   

     

    for i in range(1, len(text) - 1):  

        if text[i] in dict_char_to_int.keys(): 

            formatted_nif += 

dict_char_to_int[text[i]] 

        else: 

            formatted_nif += text[i] 

 

    if text[-1] in dict_int_to_char.keys(): 

        formatted_nif += dict_int_to_char[text[-

1]] 

    else: 

        formatted_nif += text[-1] 

     

    return formatted_nif 

 

dict_char_to_int = {'O': '0', 

                    'I': '1', 

                    'J': '3', 

                    'A': '4', 

                    'G': '6', 

                    '/': '1', 

                    'Z': '2', 

                    'S': '5'} 

 

dict_int_to_char = {'0': 'O', 

                    '1': 'I', 

                    '3': 'J', 

                    '4': 'A', 

                    '6': 'G', 

                    '2': 'Z', 

                    '5': 'S'} 

 

# ------------------------------------------------ 

# ------------------------------------------------ 

 

# CARGAR MODELOS 

nif_detector = YOLO('H:/TFM/best_collab.pt')  

ocr = easyocr.Reader(['es'], gpu=False) 

results = [] 

 

# OBTENER REGISTROS DE BBDD 

data_mapping = { 

    'REPRESENTATIVE_LEGAL_ONE1.jpg': { 

        'petition_id': '', 

        'dossier_id': '', 

        'applicant_NIF': '', 

        'representative_NIF': '', 

        'file_add': '' 

    }, 

    'REPRESENTATIVE_LEGAL_ONE2.jpg': { 

        'petition_id': '', 

        'dossier_id': '', 

        'applicant_NIF': '', 

        'representative_NIF': '', 

        'file_add': '' 

    } 

    # Agregar más entradas según sea necesario 

} 

 

 

# CONVERTIR DOC A IMAGEN 

input_path = 'H:/TFM/data/input'  

save_path = 'H:/TFM/data/output' 

 

# Obtén una lista de todos los archivos PDF en la 

carpeta 

archivos_pdf = [archivo for archivo in 

os.listdir(input_path) if 

archivo.endswith('.pdf')] 

 

# Convierte cada archivo PDF en imágenes 

for archivo_pdf in archivos_pdf: 

    ruta_archivo_pdf = os.path.join(input_path, 

archivo_pdf) 

    convertir_pdf_a_imagen(ruta_archivo_pdf) 

 

 

images = [archivo for archivo in 

os.listdir(input_path) if 

archivo.endswith('.jpg')] 

print(images) 

 

for image in images: 

    ruta_img = os.path.join(input_path, image) 

    print("-------------------------------------") 

    print(ruta_img) 

 

    data=data_mapping[image] 

 

 

    # PRECEDIR CON YOLO LA POSICION DEL NIF 

    detections = nif_detector(ruta_img)[0] 

     

    if len(detections) == 0: 

        print('No se encontraron NIFs') 

         

        results.append({ 

            'petition_id': data['petition_id'], 

            'dossier_id': data['dossier_id'], 

            'applicant_nif ': 

data['applicant_NIF'], 

            'representative_nif': 

data['representative_NIF'], 
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            'applicant_extracted_nif ': 

'NOT_FOUND', 

            'representative_extracted_nif': 

'NOT_FOUND', 

            'applicant_box_confidence': '-', 

            'representative_box_confidence': '-', 

            'applicant_ocr_score': '-', 

            'representative_ocr_score': '-', 

            'applicant_similarity': '-', 

            'representative_similarity': '-', 

            'verification_decision': 0 

        }) 

        continue 

     

    print('detecciones:') 

    detection = detections.boxes.data.tolist() 

    print(detection[0]) 

    print(detection[1]) 

     

 

 

# RECORTAR NIF A PARTIR DE LA PREDICCION 

    img = cv2.imread(ruta_img) 

 

    image_name, image_ext = 

os.path.splitext(image) 

    new_image_name = f"{image_name}_1{image_ext}" 

    image_path = os.path.join(save_path, 

new_image_name)  

    x1, y1, x2, y2, confidence1, type = 

detection[0] 

    nif1 = img[int(y1):int(y2), int(x1):int(x2)] 

    cv2.imwrite(image_path, nif1) 

 

    new_image_name = f"{image_name}_2{image_ext}"  

    image_path = os.path.join(save_path, 

new_image_name) 

    x1, y1, x2, y2, confidence2, type = 

detection[1] 

    nif2 = img[int(y1):int(y2), int(x1):int(x2)] 

    cv2.imwrite(image_path, nif2) 

 

 

# PROCESAR IMAGEN DEL NIF 

     

    nif1_gray = cv2.cvtColor(nif1, 

cv2.COLOR_BGR2GRAY) 

    _, nif1_gray_th = cv2.threshold(nif1_gray, 

180, 255, cv2.THRESH_BINARY) 

     

    nif2_gray = cv2.cvtColor(nif2, 

cv2.COLOR_BGR2GRAY) 

    _, nif2_gray_th = cv2.threshold(nif2_gray, 

180, 255, cv2.THRESH_BINARY) 

 

 

# OCR DEL NIF 

    nif1_text, nif1_score = ocr_nif(nif1_gray) 

    nif2_text, nif2_score = ocr_nif(nif2_gray) 

 

# PROCESAR TEXTO OBTENIDO 

    nif1_text = nif1_text.upper().replace(' ', 

'').replace('-', '').replace('.', '') 

    nif2_text = nif2_text.upper().replace(' ', 

'').replace('-', '').replace('.', '') 

 

    nif1_text = format_nif(nif1_text) 

    nif2_text = format_nif(nif2_text) 

 

    print(nif1_text) 

    print(nif2_text) 

 

 

# COMPARACION DE STRINGS (DDBB y OCR) 

 

    similarity_ratio_applicant = 

difflib.SequenceMatcher(None, nif1_text, 

data['applicant_NIF']).ratio() 

    similarity_ratio_representative = 

difflib.SequenceMatcher(None, nif2_text, 

data['representative_NIF']).ratio() 

 

    print(f"Porcentaje de similitud interesado: 

{similarity_ratio_applicant:.2f}") 

    print(f"Porcentaje de similitud representante: 

{similarity_ratio_representative:.2f}") 

 

# UMBRAL DE VERIFICACION 

    if similarity_ratio_applicant > 0.75 and 

similarity_ratio_representative > 0.75: 

        verification_decision = 1 

    else: 

        verification_decision = 0 

 

# ESCRIBIR RESULTADOS 

 

    results.append({ 

            'petition_id': data['petition_id'], 

            'dossier_id': data['dossier_id'], 

            'applicant_nif ': 

data['applicant_NIF'], 

            'representative_nif': 

data['representative_NIF'], 

            'applicant_extracted_nif ': nif1_text, 

            'representative_extracted_nif': 

nif2_text, 

            'applicant_box_confidence': 

confidence1, 

            'representative_box_confidence': 

confidence2, 

            'applicant_ocr_score': nif1_score, 

            'representative_ocr_score': 

nif2_score, 

            'applicant_similarity': 

similarity_ratio_applicant, 

            'representative_similarity': 

similarity_ratio_representative, 

            'verification_decision': 

verification_decision 

    }) 

# Crear un DataFrame de pandas con los resultados 

results_df = pd.DataFrame(results) 

 

# DataFrame en archivo Excel para cargar en bbdd 

excel_file = os.path.join(save_path, 

'resultados_nif.xlsx') 

results_df.to_excel(excel_file, index=False) 
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