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CHAPTER 1. INTRODUCTION 

Manufacturing processes play a critical role in the production of goods and 

services, and their efficiency and effectiveness can have a significant impact on 

business success. Traditionally, manufacturing projects that had the aim of 

improving production processes using data have relied on statistical methods 

to identify correlations and patterns in data. However, the limitations of 

statistical inference, particularly when it comes to identifying causal 

relationships, have become increasingly apparent in recent years. 

Causal inference can provide a more rigorous framework for understanding the 

underlying mechanisms that drive manufacturing processes. By accounting for 

confounding variables and identifying the causal effect of interventions, causal 

inference can help manufacturing organizations make more informed decisions 

and improve their operations. 

This thesis will begin by providing an overview of causal inference and an 

explanation on the different current approaches and limitations there are in this 

field. After explaining the foundations, the thesis will explain the relationships 

and synergies of applying causal inference in manufacturing. A high-level 

methodology for applying causal techniques in manufacturing will be 

explained. The thesis will then present a case study that illustrates the 

application of causal inference methods to a real-world manufacturing project 

and will evaluate the effectiveness of these methods in improving process 

efficiency and product quality.  
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CHAPTER 2. CAUSAL INFERENCE 

2.1 CORRELATION VS CAUSATION: 

Correlation and causation are two concepts that are often used interchangeably, 

but they refer to different types of relationships between variables. Correlation 

refers to a statistical relationship between two variables, where the occurrence 

of one variable is related to the occurrence of another variable. Causation, on 

the other hand, refers to a relationship where one variable directly influences 

or causes a change in another variable. Whilst causation implies correlation 

between two variables, the inverse, need not hold true. It is possible that 

variables are correlated but there is no causal relationship between these.  

Machine learning models are designed to identify patterns and relationships in 

data, and they rely heavily on association to make predictions and generate 

insights. These models use statistical algorithms to identify correlations 

between variables, and predict outcomes based on these correlations. However, 

while machine learning models can be effective at identifying associations 

between variables, they do not necessarily capture causation. This is because 

statistical relationships between variables do not always imply causation. For 

example, a machine learning model might identify a correlation between the 

number of ice cream sales and the number of shark attacks on humans, but this 

does not mean that eating ice cream causes sharks attacks to increase. Rather, 

both variables are likely to be influenced by a third variable, such as 

temperature or seasonality. 
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There are three different ways to exemplify the difference between correlation 

and causation between variables:  

1. When variables have coincidentally similar behavior 

 

In a study conducted by Tyler Vigen [3], he realized that there was a 99% 

correlation between the divorce rate in Maine and the per capita consumption 

of margarine. This type of correlation is known as spurious correlation because 

it has appeared by random coincidence. 

2. When the causal direction is unknown:  

Figure 1. Correlation between divorce rate in Maine and per capita consumption of 

margarine [3] 

Figure 2. Correlation between corruption and GDP per 

capita of a country [4] 
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There are several studies that show the correlation between high levels of 

corruption in a country as measured by the Global Corruption Index (GCI) and 

having a low GDP [4]. Some of the conclusions of these studies imply that by 

fighting against corruption, then the GDP of a country will increase, but this is 

unclear. 

In this case, correlation is not able to show the direction of what variable is 

causing the other. It could be the case that in poor countries, people must rely 

on corruption to survive, therefore the solution would not be to act against 

corruption but trying to increase each of the countries GDP’s.  

Causal analysis, as opposed to correlation analysis alone, can show the 

direction and strength of the relations and give insights on how to solve the 

underlying root cause of the problem. 

3. When there is a common cause (confounder):  

Figure 3. Correlation between shark attacks and ice cream 

sales 
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Variables that are caused by the same variable usually are correlated, but that 

does not give any insight if the common causal variable is not observed. 

Looking at the case of shark attacks and ice cream sales, the only reason why 

the correlation between both variables exists is due to the variable 

“temperature” which influences both variables in a common way. 

Causal analysis can show this type of relations when correlation stays blind to 

this type of associations. 

2.2 HOW CAUSAL RELATIONS ARE INFERRED: 

There are multiple approaches to infer causal relationships between variables. 

The easiest way to understand the underlying logic behind causal inference is 

by examining the formula for the Average Treatment Effect (ATE): 

𝐴𝑇𝐸 = 𝐸[𝑌𝑇=1 − 𝑌𝑇=0] 

Y = Outcome 

T = Treatment 

 

The ATE formula essentially calculates the difference in outcomes between 

two treatment variables. For example, let's consider an outcome where Y=1 

represents a person getting cured and Y=0 represents a person not getting cured. 

Additionally, let´s assume T=1 represents giving a person a treatment and T=0 

represents giving them a placebo. By comparing the outcomes of two groups 

separated by treatment variable, we can infer if the treatment is causing the 

desired outcome of curing people. The following graph illustrates this example. 
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By giving different treatments to two samples of the population of size 100, it 

is observed that 80% of the sample of people that received the actual treatment 

is cured vs the 20% of the people that received the placebo treatment. This 

implies that there is a difference of 60% between both groups and the ATE is 

of 0.6, which is significantly high so we could conclude that the treatment is 

causing people to get cured.  

 

This technique to infer causal knowledge is known as Randomized Control 

Trials (RCT) and it is considered the golden rule for causal inference. It is 

important to note that both selected groups are completely random samples to 

test the treatment. If the group that received T=1 was formed just by girls and 

the group that received T=0 was formed by boys, it would be impossible to 

assess if the effect was caused by the treatment T or the difference in gender.  

 

Figure 4. Treatment and Placebo diagram 
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Randomized controlled trials (RCTs) have been used for a long time to study 

cause-and-effect relationships. However, there are cases in which conducting 

RCTs is not possible, such as in manufacturing. Testing different product 

configurations and analyzing multiple variables can be expensive and 

impractical as the search space can be enormous. This is why, inferring causal 

knowledge in manufacturing requires a different and more sophisticated 

causal inference technique. 

 

In situations where randomized control trials cannot be executed, using 

observational data becomes a viable alternative for causal analysis. By 

leveraging existing data on production processes, product quality, and other 

relevant variables, using a machine learning approach can help manufacturers 

gain valuable insights into the factors that impact product outcomes.  

While inferring causal relations just on observational data may have some 

limitations, such as potential biases or confounding factors, analyzing it 

carefully can provide valuable insights for optimizing manufacturing processes 

and improving product quality without disrupting production. In chapter 2.4 

this thesis will delve deeper into the limits of building causal knowledge on 

observational data and the different approaches that try to solve this complex 

problem.  

2.3 CAUSAL STRUCTURES: 

In the previous chapters, we have explored the concept of causality and the 

traditional methods used for inferring causal relationships. Building upon that 

foundation, this chapter will focus on causal structures.  
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Causal structures represent the underlying mechanisms that govern how 

variables and events interact between each other. Understanding them is crucial 

for comprehending the complex dynamics of cause and effect. These structures 

are represented in the form of graphs, and they obey some properties.  

The two most important properties are:  

 

1) Directedness. Causal structures are directed, meaning that the 

relationships between variables or events have a specific directionality. 

There must be a direction to represent that one variable or event (the 

cause) influences or affects another variable or event (the effect). In 

association this is not the case because the relationships are symmetric 

or bidirectional. 

 

2) Acyclicity: Causal structures shall-not have cycles or loops, meaning 

that a variable or event cannot cause itself, either directly or indirectly 

through a chain of causal relationships. This property helps establish a 

clear sequence of events over time and ensures that causality flows in a 

consistent and one-way direction. 

Figure 5. Example of a Directed Acyclic Graph (DAG) 
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These two properties define that causal structures are Directed Acyclic Graphs, 

or DAG’s.  

DAGs are graphical representations of causal structures that consist of nodes 

and arrows. The nodes represent variables or features, and arrows depict the 

direction of causality, indicating which node is the cause and which is the 

effect. Arrows also can have a weight that represents the strength of the relation. 

In DAG’s, there are three basic structures: forks, chains, and colliders. Forks 

occur when a node has multiple outgoing edges, causing the graph to split into 

two or more branches. Chains are sequential connections between nodes, 

where each node has only one incoming and one outgoing edge, creating a 

linear structure. Colliders, also known as "v-structures," are nodes with 

multiple incoming edges that converge into a single outgoing edge, forming a 

"V" shape. Colliders are special because they have a unique property: they are 

blocked by their descendants, meaning that they do not directly affect each 

other but can be affected by a common ancestor. Understanding these basic 

structures is crucial in identifying and interpreting causal relationships within 

DAGs. 

Figure 6. Chain, Fork and Collider structures in DAGs 
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2.4 CAUSAL INFERENCE LIMITATIONS: 

Although causal inference can be a powerful technique, it has some underlying 

limitations especially when inferring causal relations without conducting trials, 

limited to observational data only. Some of these limitations are: 

 

• Selection bias: Occurs when the process of selecting study participants 

is not random, leading to a biased sample that may not accurately 

represent the target population. This can result in misleading or incorrect 

causal conclusions. This thesis has already mention selection bias when 

explaining what RCT was. In figure 4, if there was a difference in gender 

between the placebo and the testing group, the selection of the groups 

could be causing a potential bias in the effect of the treatment.  

 

• Confounding variables: Refers to the presence of uncontrolled 

variables that are associated with both the treatment and the target 

variable, leading to spurious associations. Confounders can distort causal 

inference and may need to be accounted for to establish true causal 

relationships. The shark attacks and ice cream sales correlation example 

perfectly illustrate this limitation, since the relation between both 

variables just makes sense when including the confounding variable 

(temperature). 

 

• Data quality and measurement errors: As in every Machine Learning 

model, inaccuracies in data collection, measurement, or reporting can 
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introduce errors and bias into the analysis, leading to incorrect causal 

inferences. 

 

• Generalizability: Findings from one study or population may not be 

directly applicable to other populations or settings, limiting the external 

validity and generalizability of causal inferences. 

 

2.5 GENERAL APPROACHES TO INFERRING CAUSAL 

RELATIONS WITH OBSERVATIONAL DATA: 

There are several approaches to discovering causality when relying on 

observational data. These approaches aim to find the best possible 

configuration of a Directed Acyclic Graph (DAG) given a set of data. However, 

the number of possible DAGs is very large, making it difficult to find the 

optimal configuration. In fact, finding the optimal DAG is considered an NP-

hard problem. Therefore, the only feasible option is to attempt to find a good 

enough solution heuristically or by using traditional Machine Learning 

methods.  

The four groups of approaches to solutions are:  

• Constraint-based 

• Score-based 

• Functional 

• Gradient-based 
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Constraint-based methods:  

The approach involves analyzing the statistical independence between triplets 

of variables in the system. By analyzing these independence relationships, the 

methods can begin to infer the causal relationships between variables. 

Essentially, if variables A and B are independent, but variable A and C are not 

independent, this suggests that there may be a causal relationship between A 

and C. Variables are analyzed in triplets because as explained in 2.3, there are 

only 3 possible structural combinations when analyzing the relations between 

3 nodes (Chains, Forks, and Colliders). 

Constraint-based methods are a useful tool for inferring causal relationships 

between variables, particularly when other information or prior knowledge 

about the system is not available. 

The most used algorithm that follows this approach is the PC algorithm 

(Sprites & Glymour, 1991).  

 

The algorithm works as follows: 

 

Figure 7. PC algorithm iterations 
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It begins with a fully connected undirected graph (B). Then on the next step, 

the edges between variables that are unconditionally independent are removed 

(C). After that, the ones that are also conditionally independent are removed 

(D). Once the graph is pruned, then the directions are inferred using as base the 

grounding blocks of DAGs, colliders, chains, and forks (E and F).   

 

Score-based methods: 

Score-based methods for causal discovery aim to identify the best causal 

structure of a given system by iteratively generating candidate graphs, 

evaluating how well each one explains the data, and selecting the best one. 

These methods start with an initial graph structure, such as a fully connected or 

empty graph, and then modify the graph by adding, removing, or reversing 

edges. After each modification, the resulting graph is evaluated based on how 

well it explains the observed data, using some criterion or scoring function. 

Common scoring functions are the Bayesian Information Criterion (BIC), the 

Akaike Information Criterion (AIC), or the Maximum Likelihood Estimation 

(MLE). 

One well-known example of a score-based method for causal discovery is the 

Greedy Equivalence Search GES algorithm.  

The GES algorithm starts with an empty graph and iteratively adds, removes, 

or reverses edges based on a set of conditional independence tests until it arrives 

to a high score where the structure had converged on the best causal structure 

for the system. The score-based approach is a powerful tool for causal 
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discovery, but it is resource intensive, meaning that it is computationally 

expensive, and it requires a careful tuning of the scoring function to converge 

to an optimal solution. 

Functional methods: 

Functional methods for causal discovery aim to identify the underlying causal 

relationships between variables by analyzing their functional dependencies. 

This involves estimating the parameters of a statistical model that describes the 

relationship between variables, and then using this model to infer the causal 

structure of the system. Functional approaches also use a score function to 

estimate the goodness of the solution, but the mechanics of functional methods 

are different from score-based methods. Rather than searching through 

candidate graphs to find the best fit to the data, functional methods make use 

of the distributional imbalances present in the data to detect the causal 

connections between variables. 

 

The Linear Non-Gaussian Acyclic Model (LiNGAM) algorithm is a classic 

functional method that uses the non-Gaussianity of the data to identify the 

causal structure. LiNGAM exploits the non-Gaussian nature of the data to 

determine the probable causal relationships between variables. More 

specifically, when two variables have a non-Gaussian correlation, it implies a 

potential direct causal connection between them. On the other hand, if two 

variables have a Gaussian correlation, it indicates a possible indirect or 

confounding relationship between them. 
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Gradient-based methods: 

Gradient-based methods for causal discovery are the latest and most advanced 

methods developed to date. In fact, for the use case project that will be 

presented in chapter 4, the algorithm used to infer the causal structure followed 

the gradient optimization method. Gradient descent approaches are particularly 

useful for solving optimization problems, where the objective function can be 

expressed as a gradient of a scalar function. The gradient is a vector that points 

in the direction of steepest increase of the function. By iteratively updating the 

parameters in the direction of the negative gradient, the algorithm can converge 

to the optimal solution. This approach has been applied in a wide range of 

applications in Machine Learning and Artificial Intelligence, including deep 

learning, image recognition, and natural language processing. 

 

The algorithm that was used in the case study is called NoTEARS and it was 

developed by Xun Zheng, Bryon Aragam, Pradeep Ravikumar and Eric P. 

Xing. Quantum Black by McKinsey added an implementation of this algorithm 

to the python library we used called CausalNex. 

2.6 NOTEARS ALGORITHM: 

The NoTEARS algorithm is considered to be the current state-of-art algorithm 

for building causal knowledge on observational data. There has been several 

updates and improvements in the algorithm like DyNoTEARS, which include 

causal relationships on the temporal domain.  

The NoTEARS algorithm was revolutionary because it was the first algorithm 

to frame structure learning as a purely continuous optimization problem. This 
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was a perfect approach to search optimal solutions in the huge DAG solution 

space. 

 

The algorithm works as follows: 

 

The first step is to build the data matrix and the DAG matrix. In this case, X is 

the data matrix and is composed by n rows and d columns. n is the number of 

observations of the data and d is the number of features (nodes of the causal 

structure). The W matrix is the weight matrix, and it encodes the causal weights 

between variables. This is a non-symmetrical matrix, so the causal direction is 

established as rows point to columns. The size of the matrix is d x d, and the 

direction is encoded as row features cause column features. The causal weight 

encodes how much a feature is causing another feature to occur.  

 

 

 

 

The next step is to build the cost function that it is going to be optimized. To 

understand the cost function, it is essential to understand the basic assumption 

that is made before optimizing: 

In a noiseless case, this equation tends to be equal when W is optimal. It seems 

to be counterintuitive, but it is the grounding block of this algorithm and the 

reason why it works. Once this assumption is made then the cost function can 

be easily understood because it penalizes the difference between X and XW.  

𝑋 ∈  ℝ𝑛×𝑑 
W ∈  ℝ𝑑×𝑑 

𝑋 ≈ 𝑋𝑊 
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The causal weight loss function looks like this:  

The first term of F penalizes the suboptimality of W. As we know from the 

assumption, in the optimal case, the first term will tend to be zero. The second 

term is a regularization term of norm one that penalizes having non-important 

weights. This is a widely used technique that helps the equation to converge to 

a solution faster and reduces non crucial weights directly to zero instead of 

having causal relations with and insignificant causal weight. 

The non-DAGness behavior of the weight matrix penalization function (h) that 

looks like this:  

This function computes the DAG-ness of W. The higher the value of h the more 

cycles the matrix contains. The way to do this is by computing the Trace of the 

exponential matrix of the Hadamard product of the W matrix. The computation 

and convergence of this function is slow and complex. The higher the 

dimension of W the slower the computation, so there is a limit to how many 

features can be included in the causal structure. This thesis will explain the 

consequences of this limit in chapter 3.  

 

Finally, the general loss function is built as a mixture of function F and function 

h, so both the DAG-ness and the weight optimization are considered.  

 

𝐹(𝑊) =
1

2𝑛
∥ 𝑋 − 𝑋𝑊 ∥𝐹

2 +  𝜆 ∥ 𝑊 ∥1 

ℎ(𝑊) = 𝑇𝑟𝑒𝑊⨀𝑊 − 𝑑 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN 

 

CHAPTER 2. CAUSAL INFERENCE 

20 

Once the L function is built, then the gradient descent method is applied to 

optimize for a solution of W.  

 

There are some limitations to this algorithm, and it does not always work 

perfectly. The main limitation occurs because the algorithm converges to what 

is known as a Markov Equivalence class. This is because the following 

expressions are mathematically equivalent:  

 

The weights of the W function can converge to a DAG graph that has some 

rotated causal directions. In the following figure, one can observe the Markov 

equivalence classes. Graphs that belong to the same Markov class are enclosed 

within the same box. 

𝐿𝜌(𝑊, 𝛼) = 𝐹(𝑊) +
𝜌

2
|ℎ(𝑊)|2 + 𝛼ℎ(𝑊) 

Figure 8. Mathematically equivalent expressions 
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As it can be observed, graphs that belong to the same class are equivalent if the 

direction of the causes are not considered. 

In most of the cases, the algorithm converges to an optimal solution, but there 

are exceptions where some of the causal directions are wrongly encoded. 

Usually, domain understanding will help finding these mistakes, but in some 

cases contacting with a subject matter expert is needed. We will talk about the 

importance of SME in chapter 3.  

 

Figure 9. Markov Equivalent Classes 
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CHAPTER 3. CAUSALITY IN MANUFACTURING 

In this chapter, the thesis is going to focus on explaining the implementation of 

causal inference in manufacturing. Firstly, it will introduce the general 

applications and then describe a general methodology explaining the key 

principles that must be considered.  

3.1 GENERAL APPLICATIONS: 

Causal analysis can have a wide range of applications in the manufacturing 

sector. Although the focus of this thesis is to explain a general methodology to 

apply causal analysis, it is important to explain the power of causal analysis by 

using two general use cases where causality can bring great insight and 

potentially help as a key tool in solving or addressing problems.  

The first and main one is fault detection: 

Every manufacturing line can arrive to a fault situation where the process is 

stopped due to a misbehavior of an element in the line. Fault detection is the 

process of identifying when a process is not behaving as expected and 

determining which are the variables that are causing the problem. It can be hard 

to figure out how a complex production system works, especially when it's too 

complicated to make a model of it from scratch and the underlying physics of 

the system are hard to parameterize and compute. Thanks to Machine Learning 

techniques, using data together with ML tools can help to show the system's 

dynamics better. As we have already explained in chapter 2, most of the 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS DE TELECOMUNICACIÓN 

 

CHAPTER 3. CAUSALITY IN MANUFACTURING 

23 

traditional ML methods are not enough to find the cause of a problem because 

the models make conclusions using correlation and association, not causation. 

Causal analysis can help identify how the system works and how problems 

spread through the system. So, when a system is failing and the reasons that 

cause this fault are hard to see for an expert, applying causal discovery can be 

the solution. 

Causal inference is also a helpful technique when applying root cause analysis 

to any manufacturing plant. 

Industrial processes are becoming more complex and interconnected, with 

many different parts and controls. If something goes wrong in one part of the 

process, it can affect the entire production line and cause problems like a 

reduction of the product quality and incremental costs. It's important to quickly 

find the causes and fix them to keep the process running smoothly. Usually, 

experts that oversee the manufacturing line have built an intuition on how each 

production step is interconnected and are able to quickly identify the causes 

and act accordingly. But when this is not the case, causal structures can show 

in the underlying levers that regulate a manufacturing system. It can also 

provide deep insights and motivate changes and experiments in the process to 

improve the overall productivity and effectiveness. Understanding the system 

and how each part interacts with another also reduces the search space when 

trying to optimize for a variable inside the system. 
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3.2 BUILDING THE CAUSAL STRUCTURE: 

There are several things that one must keep in mind when building any causal 

structure given a set of data. To build a robust and resilient causal structure, a 

two-step approach that tries to minimize the bias and errors in causal structures 

defining any manufacturing process is going to be explained. The first step 

focuses on the reduction of the error introduced by confounding effects. The 

second step focuses on the reduction of the run-time and complexity of the 

algorithm that oversees building the causal structure. In chapter 4, a real use-

case of this methodology is provided.  

3.2.1THE DANGERS OF CONFOUNDERS: 

Confounders are variables that affect both the cause and the effect variables in 

a study. Since these affect simultaneously both variables, if these are not 

considered, the causal analysis can be greatly biased. Therefore, it is important 

to account for confounders in causal inference to ensure that the causal relations 

extracted from the data are representative of the reality and it is not just a 

relationship caused because there is a hidden confounder that hasn’t been taken 

into account.  
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Together with the shark and ice cream example, there is another example that 

is widely used to explain the confounders effect. This example states the 

following: sleeping wearing shoes is causing people to wake up with a 

headache. 

A statistical analysis was made to find if sleeping wearing shoes was causing 

people to wake up with headaches. When observing just the cause and effect, 

it seems to be clear that sleeping with shoes causes headache, but the reason 

both variables are related is because there is a common confounder, in this case 

drinking alcohol the previous night. If this confounder is not taken into account, 

then the inferences obtained conducting causal inference are incorrect. This 

example clearly shows the importance of including all the possible confounders 

in a study when conducting causal inference. 

The way to fight against the negative effect of confounding variables in a 

manufacturing system is to enclose the system by adding all the variables and 

features that affect the system in any possible way. When including all the 

variables in a system, then, all the system confounders are observed, and the 

causal structure includes them in the graph removing the confounding effect.  

Figure 10. Confounder variable example 
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Figure 11 explains how by enclosing the system, the causal structure built on 

observational data is more resilient to biases caused by not including 

confounding variables. There is also a possibility that an exogenous variable, 

which is not considered as a variable of the system, may be influencing the 

system in an unobserved manner. For example, imagine you are analyzing a 

factory that oversees manufacturing chairs. You measure the quality of the 

chairs at the end of the process and track how all the machines are working. If 

the quality of the chairs depends solely on how the machines behave, then your 

analysis is fair. But if how the wood was chopped an important factor in making 

a good chair, and you don't consider it in your analysis, then you'll have a biased 

result due to the confounding effect. How the wood was initially chopped is an 

example of an exogenous variable. By paying attention to these exogenous 

confounding variables, you can improve your analysis and reduce errors and 

biases in your results. 

Figure 11. Enclosed system diagram 
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Therefore, before building a causal structure based on observational data, it is 

important to enclose the system subject to study. This means including all the 

system variables and the possible exogenous variables that can have a 

confounding effect in the target variable. This is the first step of the general 

methodology for conducting causal inference on manufacturing processes. 

3.2.2THE COMPLEXITY PROBLEM: 

As this thesis has explained in chapter 2, algorithms that build causal structures 

just relying on observational data are complex algorithms that take some time 

to converge to a solution. The complexity of these algorithms depends on the 

quantity of nodes (variables) that are forming the graph. This is because most 

of the algorithms work by analyzing the relationships between variables one to 

one, so the number of iterations increases exponentially with the number of 

variables. 

Some manufacturing process need large complex machines to work and the 

amount of sensors that parametrize the system can be really large.  In those 

cases, pre-processing techniques are required to reduce the number of variables. 

Pre-processing and variable reduction is a typical step that must be done in 

almost every data science project, but there are differences in what to consider 

when doing pre-processing for a prediction algorithm and doing it for a causal 

inference algorithm.  

In Chapter Two, the distinction between association and causation in the 

relationship between variables was explained. In the context of predictive 

modeling, association relations are sufficient, which means that grouping 
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associated variables during pre-processing does not affect the accuracy of the 

model, even if the variables are not causally related. One example of this 

approach is seen in the application of principal component analysis (PCA) to a 

dataset, where the principal components are formed by combinations of the 

original variables, and their combinations depend on the original associations 

between them. However, it is important to note that this approach is not suitable 

for analyzing causality. In causality it is important to keep the raw variables to 

understand what is really happening. If different variables are combined, the 

causation between those variables will be diluted and the whole purpose of the 

analysis is lost.  

So, to obtain un-biased results, it is important to keep in mind that creating 

artificial variables by combining them can reduce information on causal 

relationships. Normally, the best way to deal with this situation is with the help 

of a Subject Matter Expert (SME), we will explain in the next section (3.3) of 

this chapter how an SME can help to empower causal analysis.  

After studying convergence times and the complexity of the NoTEARS 

algorithm (which is the one that was used for the case study that will be 

explained in chapter 4), the recommended maximum number variables to 

include into the analysis is in the order of less than 100. If more than 100 

variables are included, the convergence time breaks and increases 

exponentially.  
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3.3 THE IMPORTANCE OF SMES: 

Once the dataset is prepared, then the causal structure can be built. After 

building the causal structure, the next step is to look carefully at the 

relationships and check for possible errors. As we explained in chapter 2, the 

algorithms that extract causal knowledge solely on observational data 

approximate an NP algorithmic problem. 

An NP algorithmic problem is a type of problem in computer science that is 

difficult to solve quickly, but easy to verify a potential solution once it is found. 

It stands for "nondeterministic polynomial time" and refers to problems that 

can be solved in a reasonable amount of time by using heuristic searches or 

random exploration. This implies that finding the exact optimal solution may 

take an impractical amount of time as the problem size increases so we must 

settle for approximations to optimal solutions. NP algorithmic problems are 

commonly found in areas like optimization, cryptography, and scheduling. 

Markov equivalence classes are a materialization of the limitations of this 

algorithm. SMEs are the helpers that find better conversions to solutions by 

providing industry insights and guidance.  

Figure 12. SME icon 
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In the context of a work or project, a SME (Subject Matter Expert) is a person 

who has extensive knowledge and expertise in a particular field or subject. They 

are considered the go-to person for information and guidance in their area of 

expertise. SMEs are typically hired or consulted to provide specialized 

knowledge, advice, and support to a project or team. They may be brought in 

to solve complex problems, develop strategies, or provide technical guidance. 

Their expertise is crucial in ensuring the success of a project and achieving the 

desired outcomes. They can be helpful in different ways when building a causal 

inference pipeline.  

Firstly, they can help with the selection of variables and the data pre-

processing. As it was explained in last section, cleaning the dataset, and 

reducing the amount of variables is a complex task that needs precision and 

knowledge of how the system subject to study works. The SME can help with 

the selection of important variables and cleaning the independent variables that 

do not affect the system. It is important the data scientist and the SME work 

collaboratively, as the data scientist can clean and prune a dataset without 

losing information, the SME can help and guide the decisions with his 

knowledge of the system. 

It is important to note that the data cleaning and pre-processing phase is 

common to almost all the use cases, but when the number of variables surpass 

the hundredths then it becomes a risky phase because eliminating important 

information can affect the whole causal structure.  

Secondly, the SME can also guide the causal structure algorithm to converge 

to optimal solutions. This is done by providing constrains to the algorithm, 
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therefore decreasing the number of possible solutions and reducing the number 

of operations (algorithm converges faster). The SME can add constrains to the 

causal structures in three different ways:  

• Adding a causal relation: The SME can force a relation to appear in 

the causal structure. Maybe, it is the case that it is known for sure that 

the behavior of a variable directly causes the behavior of another 

variable.  

(E.g., Variable X1 is causing variable X2) 

 

• Removing a causal relation: The SME can also remove causal 

relations in the causal structure. It can be known that a variable is 

certainly not causing other variables to behave differently. 

(E.g., Variable X1 is not causing variable X2) 

 

• Changing causal directions: The last action an SME can force into a 

causal structure is to change the direction of causation between two 

variables. This action is helpful when correcting the problems with 

Figure 13. Adding a causal relation between X1 and X2 

Figure 14. Removing the causal relation between X1 and X2 
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Markov equivalent classes. Sometimes, if the NoTEARS algorithm is 

used to build the causal structure, it can happen that some of the 

directions are wrongly encoded. It is not frequent because there are not 

too many combinations to a possible solution that ensures the DAG 

property and has equivalent Markov classes. The SME can identify 

some relations that do not make sense and rearrange the direction. 

(E.g., Variable X1 is not causing variable X2, it is the other way around) 

 

3.4 OVERALL METHODOLOGY: 

In this section (3.4) the thesis is going to explain the overall methodology and 

the different steps that must be followed to ensure the development of a correct 

and unbiased causal structure when studying a manufacturing system.  

• Step 1 (Data Collection): Collect all the available data. It is important 

to include to the causal structure all the possible confounders. Be aware 

of exogenous variables that may be affecting the system. Use the SMEs 

to grant that every step of the system is covered with the data.  

Figure 15. Changing the direction of the causal relation 

Figure 16. Data collection icon 
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• Step 2 (Data Cleaning): Once all the data is collected, if the number of 

variables is higher than 100 then the algorithm is going to take a long 

time to converge. Also, it is recommended to use around 3000 rows to 

train the structure. Reduce all the redundant variables applying 

correlation analysis. Also, iterate with the SME and delete variables 

that are not providing any information. The creation of features is also a 

good idea when the features represent a physical item of the system. 

Once the dataset is cleaned and reduced to a reasonable amount of 

variables the causal structure can be trained.  

 

• Step 3 (Structure training): Train the causal structure with any of the 

available algorithms. NoTEARS is currently one of the most advanced 

ones so it will give the better results. Once the structure is trained, save 

it, and plot it.  

 

Figure 17. Data cleaning icon 

Figure 18. Structure training icon 
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• Step 4: Show the causal structure to the SME. It might happen that 

some of the causal associations are not there. The SME can add 

constrains to the causal structure by deleting, forcing, or changing the 

direction of the causal relations. Once the constrains are added, the 

structure can be retrained.  Iterate between Step 3 and Step 4 until a 

reasonable causal structure is achieved.  

 

• Step 5: Visualization is the last part of the step. To extract the 

maximum amount of insights and give the client a clear understanding 

of their system there are different tools to visualize the structure. 

CausalNex, the library that includes the NoTEARS algorithm, has a 

powerful and very customizable tool to create structure visualizations.  

Figure 19. SME icon 

Figure 20. Data visualization icon 
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CHAPTER 4. USE CASE – TISSUE MACHINE 

Chapter 3 presented a general methodology for developing causal inference 

analysis in a manufacturing project. In this chapter, we will explore how this 

methodology was implemented in a real-life project. Firstly, the context of the 

project will be established, giving an overview of its purpose and objectives. 

Then, we will detail the steps taken to apply the methodology, providing a 

comprehensive description of the process. Finally, the results obtained from the 

application of the methodology will be presented, providing an evaluation of 

the project's success. Overall, this chapter serves to provide an in-depth analysis 

of the practical application of the methodology presented in chapter 3 and its 

effectiveness in achieving project objectives. 

4.1 GENERAL CONTEXT: 

A tissue paper manufacturer wanted to develop several projects to improve 

their production of roll paper. The manufacturer had a problem because there 

were times during the production phase that the roll paper broke, delaying 

production and increasing scrap. The initial project consisted of developing a 

predictive model to make predictions on when the roll paper was going to break 

5 minutes before the break occurred. In addition to that, a causal prescriptive 

model was going to be developed to help understand the client which variables 

were causing the breaks to occur and help the workers achieve a better 

understanding of the whole system.  
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The roll paper machines are around 80 meters long, and the production is 

separated in many different phases. The first step is the creation of paper paste. 

This is done by processing wood pulp and refining it with different additives. 

Once the pulp is refined, it is sent to the tissue machine. The tissue machine 

oversees converting the paper paste to actual roll papers. This is the part that 

was analyzed during the project. The tissue machine is formed with several 

parts.  

• The headbox, initial step where the pulp is formed into a paper sheet. 

• The press section, it finishes the job of the headbox and completely 

press the pulp into a sheet. It squeezes out water and compress the 

fibers together.  

• The dryer section is where the paper is dried out and the rest of the 

water is taken out of the paper. The paper is dried up in big rotating 

cylinders inside the Yankee. In the Yankee dryer, the steam-heated 

surface of the cylinder dries the sheet as it rotates. The Yankee dryer 

can be several meters in diameter and is designed to produce a high-

quality, uniform finish on the paper sheet. 

• The next step is the creping process. In the creping process, the dried 

paper sheet is scraped off the Yankee dryer with a sharp blade or 

creping blade, which causes the fibers in the paper sheet to loosen and 

stretch. This process creates the unique soft, fluffy texture and stretchy 

properties that are characteristic of tissue products. 

• Finally, the paper is rolled in big reels preparing for the final step 

which consist of cutting and forming the rolling paper. 
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All these steps inside the tissue machine were sensorized and the process was 

parametrized from start to finish. Records of sensor data were taken each 5 

seconds. From time to time, the process failed and the paper that was getting 

rolled in the big reels broke before arriving to an optimal length. When this 

occurred, the process had to be stopped and the paper rolled up to that moment 

had to be recycled and reprocess again, so breaks caused high costs to the client.   

Machine operators where in charge of labeling when the breaks occurred. With 

the timestamps provided by the machine’s operators and all the data retrieved 

from sensors, the idea was to create a predictive and prescriptive model to help 

the client optimize the manufacturing process. To support the prescriptive 

model, a causal structure map was provided to explain which variables were 

causing the process to break. Some of the production conditions could be 

modified by machine operators so the causal map would provide insights on 

how to tweak them to reduce the number of breaks. 

Figure 21. Tissue paper machine diagram 
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4.2 DATA PREPARATION: 

Since the tissue machine is a large complex machine with streaming data from 

instrumentation, the available data to construct the causal model consisted in 

more than 1100 entries recorded from different sensors. In some way, this are 

good news because it is ensured that most of the variables affecting the system 

are tracked. This helps to solve the problem of confounder bias in causal 

structures. But there was a problem to solve because building a causal map with 

that many data entrances is no possible due to the complexity of the algorithms 

that infer causal structures on observational data. As the thesis explained on 

chapter 3, the first step when building the causal structure is to get all the 

available data, and the second step is pruning and rearranging the data so it can 

be adapted for the algorithms. In this case, step 1 was easily completed since 

the manufacturing plant was greatly monitored. Step 2 was harder to complete 

since the number of variables had to be reduced from around 1000 to a list of 

around 100.  

The approach that was followed was first to reduce redundant data by merging 

into one variable correlated measures of different sensors that measured the 

same phase of production. Also, by carrying out uni-variate analysis, data that 

has no variance was removed because it provided little insight. Then, with the 

help of the SME, other variables were discarded since they were not important 

and did not provide additional information. 

After carefully merging variables and working on feature engineering, a set of 

80 variables with one binary target variable indicating if a break occurred was 

provided to build the causal structure. 
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One of the variables, indicated the type of tissue paper that was being built 

during the time the sensors were collecting data. It was a categorical variable. 

In total, 12 different types of paper were being built, each one with significantly 

different characteristics and hence, different causal structures. The decision to 

split the data in 12 different datasets was made, one for each grade (type of 

tissue paper). In total, 12 different causal structures had to be built.  

4.3 STRUCTURE TRAINING: 

Having the 12 different datasets prepared, the next step was building the 

structures and iterating with the SMEs to obtain a reasonable optimal solution. 

With the first iteration, we realized that the causal weights pointing to the break 

variable were not high enough. We expected to obtain high causal weights 

pointing to the break variable, but that was not the case. We realized that the 

break variable in the dataset was not optimally tagged.  

Break variable was set to 0 when the process was running correctly, and it was 

set to 1 five minutes before each break occurred. NoTEARS algorithm works 

better with continuous data, so having a binary target variable was limiting the 

algorithm to perform well. The problem was solved by making the break 

variable to increase in small steps from 0 (five minutes before break) to 1 (when 

the break occurred). The results obtained with this modification were 

significantly better.  

There were several iterations over the causal structures adding and deleting 

causal relations. The results obtained consisted of a bundle of various DAGs, 

the biggest one contained the break variable. This means that there were other 
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causal structures independent of break causing. Those structures were not 

considered for the project. Some of the causation weight between variables 

were small, so to clean the causal graph from spurious relations we decided to 

apply a threshold on causal weight.  

Once the SMEs were in agreement with the obtained results, a custom 

visualization was created where the relations were shown in a clear manner.  

4.4 VISUALIZATION: 

It was decided that there were two graphs that could show the insights extracted 

from the causal maps. The first one was directly to show the resulting causal 

graph with the different connections and causal relations. The second one was 

conducting a Pareto analysis and showing the top variables that were causing 

the break to occur in each grade.  

4.4.1 CAUSAL MAPS: 

The causal map visualization consisted of making an easy to understand and 

clean representation of the DAGs. To do so, a color code was used to separate 

the variables in the different stages of production. Also, the thickness of the 

arrows showing the causal direction was dependent on the causal weight. The 

thicker the arrow, the bigger the causal weight. Finally, if a variable was 

causing the break (directly or indirectly), the edges and arrows coming out from 

that node were painted in blue. This representation was done for each of the 12 

different causal graphs we obtained. Here is an example of one of them: 
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As Figure 22 shows, there are nodes with different colors, each one 

representing the different stages of production. The white variables are general 

variables or variables that didn’t belong to a specific stage. Also, it can be 

observed how the arrows change in size depending on the strength of the causal 

relation. The most important ones were pointing directly to the variable break 

(target variable).  

Thanks to this visualization, SMEs and manufacturers could gain deep insights 

on how the system really worked and the variables that were affecting the 

misbehavior of the manufacturing line. This visualization also serves as a 

starting point for looking into modifying some of the flexible parameters in the 

Figure 22. Causal graph showing relations of the tissue making process. 
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production line to increase the productivity of the system and reduce the break 

occurrence.  

4.4.2 PARETO ANALYSIS: 

The pareto analysis visualization served as a summary of graph visualization. 

This visualization compiles the 20 variables that were causing the biggest 

impact in break occurrence for each type of tissue paper and for all the tissue 

papers in common. 

It showed a bar plot of the causal weights towards the target variable, a line plot 

with the causal weight accumulation. Also, a color code was added to differ 

between variables that were common across all the different types of papers 

(dark blue) and the specific variables for each type (light blue).  

 

Figure 23. Pareto analysis visualization 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

 

Applying causal inference to manufacturing projects is not an easy task. As it 

has been explained throughout this thesis, there are a lot of things that one must 

keep in mind when applying these techniques.  

Although it is a complex task, as it has been shown in Chapter 4, it is doable, 

and it provides very powerful insights to SMEs and manufacturers.  

 

The feedback we received from the client when we showcase the results were 

positive. The causal structures helped the SMEs understand more deeply how 

the production line behaves. Also, the visual representations where very useful 

to drive change and make manufacturers try new approaches. Causal maps can 

be considered as some kind of explainable AI, where the different levers that 

influence in production quality are clearly shown. 

 

Usually, SMEs and manufacturers are quite reticent about black box machine 

learning models. It is hard for them to trust predictions when they don’t 

understand how the model is constructed, but in the case of causal inference, 

this blockage to change don’t appear because the solution is clear and 

understandable.  

 

As future works, more causal inference algorithms could be tested, especially 

the DoWHY library from Microsoft.  
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ANNEX I: ALIGNMENT OF THE PROJECT 

WITH THE SDGS 

This project, with the aim of increasing the efficiency and productivity of 

manufacturing processes can contribute significantly to the development of 

Sustainable Development Goals (SDGs), particularly Goals 8, 9, and 12. 

 

• Goal 8: Decent Work and Economic Growth 

 

The eighth goal focuses on promoting inclusive and 

sustainable economic growth, full and productive 

employment, and decent work for all. By improving 

manufacturing processes' efficiency and productivity, 

the project can help generate more employment 

opportunities and enhance the quality of work. 

Increased efficiency often leads to cost savings, 

enabling businesses to expand and invest in workforce 

development. This, in turn, creates more job opportunities, reduces 

unemployment rates, and enhances overall economic growth.  

 

• Goal 9: Industry, Innovation, and Infrastructure 

 

Goal 9 emphasizes the development of resilient 

infrastructure, fostering sustainable industrialization, 

and encouraging innovation. A project targeting the 

improvement of manufacturing processes aligns 

perfectly with this goal. By implementing innovative 

technologies, streamlining operations, and optimizing 

resource utilization, the project can contribute to 

sustainable industrial growth. Efficient manufacturing 

processes reduce waste, minimize resource consumption, and enhance 

productivity, ultimately promoting the development of sustainable 

infrastructure and the adoption of cleaner technologies. 
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• Goal 12: Responsible Consumption and Production 

 

Goal 12 aims to ensure sustainable consumption and 

production patterns. Manufacturing processes often 

have significant environmental impacts due to energy 

consumption, waste generation, and resource 

depletion. By increasing efficiency, the project can 

reduce the environmental footprint of manufacturing 

activities. It can optimize material usage, minimize 

waste generation, and implement recycling and reuse 

practices. By promoting sustainable manufacturing practices, the project 

contributes to responsible production, supports sustainable supply chains, and 

encourages the efficient use of resources.  
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