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 A B S T R A C T

As Machine Learning models are considered for autonomous decisions with significant social impact, the need 
to understand how these models work rises rapidly. Explainable Artificial Intelligence (XAI) aims to provide 
interpretations for predictions made by Machine Learning models, in order to make the model trustworthy and 
more transparent for the user. For example, selecting relevant input variables for the problem directly impacts 
the model’s ability to learn and make accurate predictions. One of the main XAI techniques to obtain input 
variable importance is the sensitivity analysis based on partial derivatives. However, existing literature of this 
method provides no justification of the aggregation metrics used to retrieved information from the partial 
derivatives. In this paper, a theoretical framework is proposed to study sensitivities of ML models using metric 
techniques. From this metric interpretation, a complete family of new quantitative metrics called 𝛼-curves is 
extracted. These 𝛼-curves provide information with greater depth on the importance of the input variables for 
a machine learning model than existing XAI methods in the literature. We demonstrate the effectiveness of 
the 𝛼-curves using synthetic and real datasets, comparing the results against other XAI methods for variable 
importance and validating the analysis results with the ground truth or literature information.
1. Introduction

Artificial Intelligence (AI) has gained popularity in the last few 
years, exceeding expectations in a variety of fields. One example is 
in the field of predictive analytics, where Machine Learning (ML) 
models are used to make predictions about future events based on 
data patterns [1–4]. As data availability increases and more complex 
problems are tackled, models with a higher number of parameters are 
needed to accurately learn from data [5].

This increase in the complexity of the model is associated with a 
lack of interpretability and affects its credibility and trust. Explainable 
Artificial Intelligence (XAI) is a relatively recent field whose main 
objective is to make ML models trustworthy [6–8]. There is a growing 
interest in XAI, as it can help address some of the concerns around 
responsible AI. For example, if an AI system is used to make decisions 
that could have significant social impact (such as in healthcare or 
finance), then it is important that there is a way to understand how 
and why the system arrived at its decisions [9–11]. This would allow 
for accountability and transparency, two key components of responsible 
AI. Furthermore, XAI techniques are not only useful for validating a ML 
model, but can also be used to retrieve information from the dataset 
itself. This information can be used to corroborate the prior knowledge 
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of a field, which is an important aspect for evaluating the quality of a 
model [12].

One important aspect of explainable models is the ability to under-
stand and interpret the factors that drive their predictions. Variable 
importance metrics are a key tool in this endeavor, as they provide 
insights into which features of the input data are most important in 
determining the model’s output. This can be useful for building trust 
in a model, as well as for identifying potential biases or errors in the 
model. On the one hand, some ML model topologies such as decision 
trees or linear regression are inherently transparent and provide vari-
able importance measures based on model parameters. On the other 
hand, neural networks (NN) models are hard to interpret and additional 
methods must be used to calculate variable importances.

NN models have gained popularity in recent years due to their 
ability to learn complex patterns from data and make accurate predic-
tions. Despite their high performance, NN models are not commonly 
used in critical applications due to their lack of interpretability [13]. 
Consequently, improving the methods to provide interpretability to NN 
models would unlock the potential of this type of models in applications 
where their adaptation capabilities provide a higher added value than 
traditional interpretable models [6,14].
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Some techniques are already available to estimate variable impor-
tance of NN models. The most commonly used are Input Permuta-
tion [15], which consists in perturbing the input data and observing 
the effect on the model’s output and SHAP (SHapley Additive exPla-
nations) [16], which assigns an importance value to each feature by 
averaging over all possible coalition of features. These techniques have 
notable advantages: they do not depend on the topology of the ML 
model being analyzed (model-agnostic method) and provide quantifi-
able information of variable importance [17,18]. In addition, some 
model-specific methods have been developed for feature importance 
in NN, such as Garson’s feature importance [19] and Olden’s feature 
importance [20].

However, all of these techniques provide a global variable im-
portance without analyzing the distribution of the local importance 
along the input space. This lack of information can make it difficult 
to understand how a feature is impacting the model’s predictions in 
different regions of the input space, which can be critical for many 
applications. A potential consequence of not addressing this question 
is to consider a variable which only affects the output in a specific 
region of the input space as less important compared to a variable 
with a wider-range impact, even if its individual effect is smaller. This 
could lead to flawed decision making and incorrect conclusions about 
the data, potentially neglecting a variable with a notable effect on the 
output of the model for some cases. This highlights the need for further 
research on developing variable importance metrics that can provide a 
more comprehensive understanding of feature importance. As far as the 
authors are aware, there is currently no XAI method that quantitatively 
addresses this question.

In this paper, a method to obtain information about local and global 
importances of input variables is presented. The developed method 
combines the sensitivity analysis of ML models using partial deriva-
tives [21–25] with a mathematical study of certain metric spaces and 
operator metrics which can be associated to the model and the dataset. 
These partial derivatives, also called sensitivities, measure the degree 
to which the output of the model is affected by changes in the input 
variables. These sensitivities can be calculated for the samples in the 
input dataset, obtaining a distribution of sensitivity values for each of 
the input variables. Information of the model can be retrieved from 
these distributions, such as which variable has the greatest impact 
on the predictions. This sensitivity analysis method is being applied 
in numerous fields such as traffic crash modeling [26], chemical in-
dustry [27], meteorological modeling [28] and social studies [29,30]. 
However, it only provides global-level feature importance information, 
often overlooking local non-linearities that can significantly impact the 
model’s behavior in specific regions of the input space.

A global theoretical metric interpretation of the sensitivity of a 
ML model which takes into account the whole dataset at once is 
presented and metrics which aggregate the local sensitivities across 
the dataset are derived from it as pointwise Lipschitz constants of a 
certain variation operator associated to the model and the dataset. 
The pointwise Lipschitz constant of a function between two metric 
spaces is a mathematical tool used precisely to quantify to what extent 
a variation of an input affects its output (see, for instance, [31]). 
Computing local and global Lipschitz constants of the NN model itself 
has been used in the literature for other purposes as measures of 
NN robustness [32,33] and deep NN stability [34], however, to the 
authors’ knowledge, analyzing sensitivity from the perspective of this 
mathematical tool is a new approach. Moreover, the novel proposed 
metric framework allows us to obtain novel sensitivity measures for 
general ML models with relevant applications to obtaining variable 
importance metrics.

Hence, a complete family of new quantitative metrics called 𝛼-
curves is extracted. These 𝛼-curves provide information with greater 
depth of the variation of the output of a ML model with respect to a 
specific variable throughout the entire input space. This information 
not only allows to determine which are the most important input 
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variables for the model, but also detects if there are regions in the input 
space where a variable is specially relevant.

Our contributions are summarized as follows:

• We propose the novel 𝛼-curves XAI method, which integrates a 
metric interpretation of partial derivatives into a unified frame-
work for sensitivity analysis of machine learning models whose 
jacobian can be computed. This is specially useful for neural 
networks, as their jacobian can be computed using automatic 
differentiation methods.

• The 𝛼-curves approach simultaneously captures global variable 
importance and uncovers detailed local variations, enabling a 
transition from overall influence to region-specific sensitivities. 
Unlike traditional techniques such as SHAP or Input Permutation, 
our method does not assume linear relationships between inputs 
and outputs, thus preserving and revealing complex non-linear 
behaviors and interactions.

• By analyzing the evolution of aggregated sensitivities over vary-
ing 𝛼 values, 𝛼-curves provide deeper insights into how feature 
effects vary across the input space, identifying regions where 
variables have an exceptionally high impact—information that 
existing XAI methods often overlook.

• The computational complexity of 𝛼-curves is comparable to that 
of standard partial derivative-based sensitivity analysis, scaling 
linearly with the number of samples and features, which makes it 
highly efficient for large-scale models.

The rest of the paper is organized as follows. Section 2 collects 
a state-of-the-art review of XAI techniques applied to obtaining vari-
able importance metrics. In Section 3, the theoretical framework and 
the 𝛼-curves quantitative metrics are presented. Section 4 provides a 
methodology to use 𝛼-curves as sensitivity analysis method of ML mod-
els. Section 5 presents examples of this methodology applied to both 
synthetic and real datasets, demonstrating that the method presented in 
this paper is able to retrieve information from ML models with greater 
detail than other XAI techniques. Section 7 concludes the article and 
presents future research lines.

2. State of the art

At the time of writing, XAI (Explainable Artificial Intelligence) 
techniques can be categorized based on three characteristics as outlined 
by Molnar (2022). Firstly, techniques can be intrinsic or post-hoc; 
the model’s simple structure may provide an intrinsic explanation for 
its decisions, or a separate method may be applied post-training to 
extract insights. Secondly, techniques may be model-specific or model-
agnostic; some methods are tailored for specific machine learning 
models, while others can be applied universally. Lastly, techniques can 
be global or local in their scope; some methods aim to explain the 
behavior of the model across the entire input space, whereas others 
focus on individual data points.

It is out of the scope of this paper to provide an in-depth state-of-
the-art review of XAI techniques, so we only gather a review of post-hoc 
regression techniques focused on variable importance metrics. For a 
broader review of XAI methods, we refer the reader to [9,35–38]. Apart 
from the intrinsic explainable models, such as linear regression and 
the family of decision trees [39], the main variable importance XAI 
methods are:

1. Input permutation [15,22]. The technique involves shuffling the 
values of one input feature and observing the effect on the 
model’s prediction. The resulting change in a chosen error metric 
for each Input Permutation represents the relative importance of 
each input variable.
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2. Input perturbation [22,40]. Similar to Input Permutation, it con-
sists in adding a small perturbation to each input variable while 
maintaining the other inputs at a constant value. The resulting 
change in a chosen error metric for each input perturbation 
represents the relative importance of each input variable.

3. Partial derivatives method for sensitivity analysis [21–23,41–
43]. It performs a sensitivity analysis by computing the partial 
derivatives of the model output with regard to the input neurons 
evaluated on the samples of the training dataset (or an analogous 
dataset).

4. Shapley values [16,44]: originated in game theory, the shapley 
value is essentially the average expected marginal contribu-
tion of one variable after all possible input variable combi-
nations have been considered. An evolution of this method is 
the SHapley Additive exPlanation (SHAP) [45] method, where 
the Shapley Values for an ML model are calculated based on 
LIME (instead of calculating all combinations), reducing the 
computational resources.

5. Garson’s method for variable importance [19]. It consists of sum-
ming the product of the absolute value of the weights connecting 
the input variable to the response variable through the hidden 
layer. Afterwards, the result is scaled relative to all other input 
variables. The relative importance of each input variable is given 
as a value from zero to one.

6. Olden’s method for variable importance [20]. This method is 
similar to Garson’s, but it uses the real value instead of the 
absolute value of the connection weights and it does not scale 
the result.

The following section presents a brief explanation of the sensitivity 
analysis based on partial derivatives, which is the basis for developing 
the 𝛼−curves methodology.

2.1. Sensitivity analysis based on partial derivatives

Given a Neural Network model fitted for a certain dataset, the 
sensitivity of the 𝑘th output of the model with respect to the 𝑗th input 
variable evaluated in the sample �̄�𝑖 is given by:

𝑠𝑗𝑘
|

|

|

�̄�𝑖 =
𝜕𝑦𝑘
𝜕𝑋𝑗

(

�̄�𝑖
)

.

Feature importance is taken as the mean squared sensitivity of the 
output with regard to the input variable:

𝑆𝑠𝑞
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√

√

√

√

√

∑𝑁
𝑖=1

(

𝑠𝑗
|

|

|
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)2

𝑁
,

where 𝑗 is the index of the feature whose importance we want to 
calculate, 𝑁 is the number of samples in the dataset we are using for 
the sensitivity analysis.

Two other sensitivity-based measures are presented in [46]: mean 
and standard deviation of sensitivities:

𝑆𝑎𝑣𝑔
𝑗 =

∑𝑁
𝑖=1 𝑠𝑗

|

|

|

�̄�𝑖
𝑁

𝑆𝑠𝑑
𝑗 = 𝜎

(

𝑠𝑗
|

|

|

�̄�𝑖
)

; 𝑖 ∈ {1,… , 𝑁} .

Based on these measures, the following information can be obtained 
from a ML model:

• Input variable 𝑗 has a non-linear relationship with the output if 
𝑆𝑠𝑑
𝑗  is far from 0.

• Input variable 𝑗 has a linear relationship with the output if 𝑆𝑠𝑑
𝑗 ≈

0 and 𝑆𝑎𝑣𝑔
𝑗 ≠ 0.

• Input variable 𝑗 has no relationship with the output if standard 
deviation 𝑆𝑠𝑑 ≈ 0 and 𝑆𝑎𝑣𝑔 ≈ 0.
𝑗 𝑗
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These are useful measures to retrieve information from a ML model. 
In [46] a comparison of sensitivity analysis using partial derivatives 
with most of the other methods is performed. The main advantage 
of this method is that it provides feature importance measures to-
gether with information about the relationship between the output and 
the input, requiring less computational resources compared to other 
techniques.

However, the feature importance measures give few information 
about the sensitivity distribution along the input space. An input vari-
able that has low sensitivity in most of the input space but high 
sensitivity in specific regions could be incorrectly deemed unimportant, 
misleading the user. The 𝛼−curves method is an evolution of sensitivity 
analysis, providing a metric interpretation of the partial derivatives 
distribution. This provides extra information by not only giving the 
same feature importance information, but also provides information 
about how the sensitivity with respect to a variable is distributed in 
the input space.

It must be noted that exists other XAI techniques based on using 
partial derivatives for analyzing neural networks, particularly in the 
context of image data. For instance, Saliency Maps highlight the most 
important pixels in an image for a neural network’s prediction by com-
puting the gradient of the output with respect to the input image [47]. 
Grad-CAM (Gradient-weighted Class Activation Mapping) uses gradi-
ents of any target concept flowing into the final convolutional layer 
to produce a coarse localization map highlighting important regions 
in the image [48]. Additionally, SmoothGrad enhances gradient-based 
sensitivity maps by adding noise to the input and averaging the re-
sulting gradients, leading to more visually coherent and stable saliency 
maps [49]. These techniques are specifically designed for image data 
and visual explanations. In contrast, the proposed method in this paper 
focuses on developing a comprehensive metric framework for analyzing 
sensitivities and variable importance in machine learning models ap-
plied to regression tasks, providing both local and global insights across 
the input space.

3. A metric interpretation of sensitivity

Let 𝑓 ∶ R𝑛 ⟶ R𝑚 be a differentiable function. Let  = {�̄�𝑖}𝑁𝑖=1
be a dataset with �̄�𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑛) ∈ R𝑛 for each 𝑖 = 1,… , 𝑁 . We 
propose the following metric framework for analyzing the sensitivity of 
the function 𝑓 (𝑥1,… , 𝑥𝑛) with respect to variable 𝑋𝑗 over the dataset 
 . We will analyze variations of the values of 𝑓 at the points of  when 
we perturb each point �̄�𝑖 with a variation in the 𝑗th component of the 
point in the following way. We will measure the total variation of the 
values

𝑓 (𝑥𝑖,1,… , 𝑥𝑖,𝑗 + ℎ𝑖,… , 𝑥𝑖,𝑛)

when we introduce small perturbations ℎ1,… , ℎ𝑁 ∈ R on the variable 
𝑋𝑗 of each point �̄�1,… , �̄�𝑁 ∈  respectively.

In order to make this precise, we need to fix a way to measure 
the total variation of 𝑓 across the dataset  and a way to measure 
the perturbation (ℎ1,… , ℎ𝑁 ). Let us fix metrics ‖ − ‖𝐻  and ‖ − ‖𝑌  on 
𝐻 ∶= R𝑁  and 𝑌 ∶= Fun( ,R𝑚) ≅ R𝑚𝑁  respectively. Then we define the 
total variation of 𝑓 over  by a perturbation ℎ̄ = (ℎ1,… , ℎ𝑁 ) ∈ 𝐻 on 
variable 𝑋𝑗 as

𝑣 ,𝑗 (𝑓, ℎ̄) = ‖

(

𝑓 (𝑥𝑖,1,… , 𝑥𝑖,𝑗 + ℎ𝑖,… , 𝑥𝑖,𝑛) − 𝑓 (𝑥𝑖,1,… , 𝑥𝑖,𝑛)
)𝑁
𝑖=1 ‖𝑌 .

We define the sensitivity of 𝑓 with respect to variable 𝑋𝑗 over the 
dataset  for the metrics ‖ − ‖𝐻  and ‖ − ‖𝑌  as the maximum variation 
𝑣 ,𝑗 (𝑓, ℎ̄) relative to the size of small perturbations ℎ̄.

𝑠 ,𝑗 (𝑓 ) ∶= lim
𝜀→0

sup
‖ℎ̄‖𝐻=𝜀 𝑣 ,𝑗 (𝑓, ℎ̄)

𝜀
.
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A natural setup for this metric analysis is to choose the involved 
metrics to be 𝐿𝑝 norms. Recall that for each 𝑝 ∈ [1,∞), we define the 
𝐿𝑝 norm as

‖(𝑥1,… , 𝑥𝑀 )‖𝑝 =

( 𝑀
∑

𝑖=1
|𝑥𝑖|

𝑝

)1∕𝑝

.

Taking the limit when 𝑝 → ∞, we also have

‖(𝑥1,… , 𝑥𝑀 )‖∞ = max{|𝑥𝑖|} .

In this case, explicit formulas for 𝑠 ,𝑗 (𝑓 ) can be computed in terms of 
the differential of 𝑓 at each point in  .

Let 𝑑𝑗𝑓 denote the differential of 𝑓 with respect to variable 𝑋𝑗 , 
i.e., if 𝑓 = (𝑓1,… , 𝑓𝑚), then

𝑑𝑗𝑓 =
(

𝜕𝑓1
𝜕𝑋𝑗

𝑑𝑋𝑗 ,… ,
𝜕𝑓𝑚
𝜕𝑋𝑗

𝑑𝑋𝑗

)

.

Then the following theorem (whose complete proof can be found at 
Appendix  A) enables an efficient and simple computation of the metric 
sensitivity invariant 𝑠 ,𝑗 when the chosen metrics are 𝐿𝑝 metrics.

Theorem 3.1.  Let 𝑓 = (𝑓1,… , 𝑓𝑚) ∶ R𝑛 ⟶ R𝑚 be a 2 function. Assume 
that ‖ − ‖𝐻 = ‖ − ‖𝑝 and ‖ − ‖𝑌 = ‖ − ‖𝑞 .

• If 𝑝 ≤ 𝑞 then

𝑠 ,𝑗 (𝑓 ) = max
𝑖

{

‖

‖

‖

𝑑𝑗𝑓 (�̄�𝑖)
‖

‖

‖𝑞

}

.

• Otherwise, if 𝑝 > 𝑞 then

𝑠 ,𝑗 (𝑓 ) =
⎛

⎜

⎜

⎝

𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗
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|

|

|

|

|

𝑞)
𝑝

𝑝−𝑞 ⎞
⎟

⎟

⎠

𝑝−𝑞
𝑝𝑞

.

Remark 3.2.  Observe that when we take 𝐿𝑝 and 𝐿𝑞 norms on 𝐻 and 
𝑌  respectively, then 𝑠 ,𝑗 (𝑓 ) is a norm.

3.1. Sensitivity 𝛼-curves associated to a real function

Some interesting additional analysis can be derived from Theorem 
3.1 when the function 𝑓 is scalar. Let 𝑓 ∶ R𝑛 ⟶ R be a scalar 
function and let  = {�̄�𝑖}𝑁𝑖=1 be a dataset with �̄�𝑖 ∈ R𝑛. The previous 
Theorem allows us to compute explicitly the sensitivity 𝑠 ,𝑗 (𝑓 ) for each 
choice of 𝐿𝑝 norms on the perturbation and the target values. We 
observe, however, that when the target of the function is R, some of 
the sensitivities agree for different choices of (𝑝, 𝑞), resulting in the fact 
that all the 𝐿𝑝 norm choices can be summarized on a 1-parametric set 
of metrics which can then be rewritten in terms of the 𝛼-mean of the 
values ||

|

|

𝜕𝑓
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

 when �̄�𝑖 runs through the dataset  and 1 ≤ 𝛼 ≤ ∞.

Corollary 3.3.  If 𝑓 ∶ R𝑛 ⟶ R is a 2 function, ‖ − ‖𝐻 = ‖ − ‖𝑝 and 
‖ − ‖𝑌 = ‖ − ‖𝑞 with 𝑝 > 𝑞, then

𝑠 ,𝑗 (𝑓 ) = 𝑁1∕𝛼𝑀𝛼
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|

|

|

|

𝜕𝑓
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

}

,

where 𝛼 = 𝑝𝑞
𝑝−𝑞  and

𝑀𝛼{𝑡1,… , 𝑡𝑁} =

(

∑𝑁
𝑖=1 𝑡

𝛼
𝑖

𝑁

)1∕𝛼

is the generalized 𝛼-mean of the values. When 𝑝 ≤ 𝑞 then

𝑠 ,𝑗 (𝑓 ) = 𝑀∞
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}

= max
𝑖
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|

|

}
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𝑗
| |
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This motivates the following definition. Let us define the 𝛼-mean 
sensitivity of  𝑓 with respect to variable 𝑋𝑗 on the dataset  as

ms𝛼 ,𝑗 (𝑓 ) ∶= 𝑀𝛼

{
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|

}

.

Then, define the sensitivity 𝛼-curve as the map
ms ,𝑗 (𝑓 ) ∶ [1,∞] ⟶ [0,∞)

𝛼 ↦ ms𝛼 ,𝑗 (𝑓 )
.

On the other hand, observe that the Generalized Mean Inequality 
implies that for each 0 ≤ 𝛼 < 𝛽 ≤ ∞ we have
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so we conclude that ms ,𝑗 (𝑓 ) is an increasing bounded curve whose 
limit when 𝛼 → ∞ is ms∞ ,𝑗 (𝑓 ). In virtue of the metrical interpretation 
of the sensitivity from the previous section, a representation of this 
curve, together with the asymptotic value ms∞ ,𝑗 (𝑓 ), yields an interesting 
visualization of the whole sensitivity analysis which is independent on 
the choice of the 𝐿𝑝 norms on the perturbation and target spaces. We 
will call this representation the sensitivity 𝛼-curve associated to 𝑓 with 
respect to variable 𝑋𝑗 over the dataset  . See Section 4.1 for plotting 
details and Figs.  1, 4(b) or 8(b) for examples.

3.2. Relation with distributions of partial derivatives

The 𝛼-curves from the previous section can be given an alternative 
description in terms of the distribution of partial derivatives [46] 
mentioned in the introduction. This duality reinforces the usefulness 
of the 𝛼-mean sensitivities and the 𝛼-curve as quantitative tools for 
performing deep meaningful sensitivity analysis.

Assume that the points of the dataset  have been drawn randomly 
uniformly and that, therefore, they inherit a uniform discrete distribu-
tion on them (with probability 1∕𝑁 over each point). Let us consider 
the function 𝑔𝑗 (𝑥) =

|

|

|

|

𝜕𝑓
𝜕𝑋𝑗

(𝑥)
|

|

|

|

 representing the (local) sensitivity of 𝑓
with respect to 𝑋𝑗 at the point 𝑥. Then a direct computation shows 
that for each 𝛼 ∈ [1,∞):

E[𝑔𝛼𝑗 ] =
(

ms𝛼 ,𝑗 (𝑓 )
)𝛼

.

As a consequence, all moment maps of the distributions of partial 
derivatives 𝑔𝑗 can be computed as polynomials in the 𝛼-mean sensi-
tivities. In particular, this proofs that the 𝛼-mean sensitivities encode 
exactly as much information as the moment maps of the distributions 
of partial derivatives across the dataset.

This dual interpretation has interesting theoretical ramifications on 
the interpretation and validity of several sensitivity analysis method-
ologies. On the one hand, it proves that any qualitative analysis on the 
distributions of local sensitivities can be aggregated as an analysis of 
the corresponding 𝛼-curve instead, showing that 𝛼-curves are at least 
as informative as the distribution of local sensitivities. Nevertheless, we 
will provide some experimental evidences which prove that an analysis 
on 𝛼-curves allows an easier detection of certain qualitative properties 
of the dependence of a function with respect to a variable than the 
analysis on moment maps of the distributions of partial derivatives. 
For instance, the quantitative variation in the tail and higher moment 
maps of a distribution associated to the existence of regions of the 
space where a variable is locally relevant is much more subtle than 
the variations of the corresponding 𝛼-mean sensitivities for high 𝛼. 
This implies that it is easier to detect these patterns by observing the 
corresponding 𝛼-curves than by observing the derivative distributions.

On the other hand, this allows to provide an additional metric 
interpretation (and, thus, additional theoretical support) for the usage 
of the moments of derivative distributions as sensitivity measures, as 
used in [42,46,50].
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Fig. 1. 𝛼-curves of the cubic root synthetic dataset (see Section 5.1 for details). This plot shows, on the horizontal axis, the parameter 𝛼 ranging from 1 to 16, and then a break 
at 𝛼 = ∞. Each line corresponds to one input variable (𝑋1 ,… , 𝑋9), and the vertical axis measures ms𝛼 ,𝑗 (𝑓 ), i.e., the 𝛼-mean sensitivity of the output with respect to that variable. 
As 𝛼 increases, the metric increasingly emphasizes regions where the variable has very high local sensitivity. Variable 𝑋3 shows a high localized sensitivity, as indicated by their 
sharp increase at higher 𝛼 values and their high asymptotic sensitivity at 𝛼 = ∞. In contrast, variables like 𝑋7, 𝑋8, and 𝑋9 remain constant and close to zero, indicating irrelevance 
across the dataset. The steady increase in 𝑋1 shows a general non-linear relationship with the output, and the horizontal line of 𝑋2 shows a linear relationship.
4. Methodology of the 𝜶-curves analysis

As a consequence of the previous theoretical analysis, we have built 
a family of metrics capable of quantifying the sensitivity of any model 
𝑓 with respect to a variable 𝑋𝑗 . In this section, we will explain some 
methodologies capable of exploiting this new theoretical framework to 
detect some patterns in the roles that each variable play in the model. 
Contrary to other sensitivity analysis methodologies, our proposed 
method will be able to capture high sensitivity behaviors of a variable 
which may only occur in a certain local region of the phase space, even 
if that variable presents generally a low sensitivity across the rest of the 
dataset.

For simplicity, we will focus the analysis on scalar regression prob-
lems. In this case, we have proven that computing the 𝛼-curves of the 
function for each input variable allows a complete and simultaneous 
study of all the possible 𝐿𝑝 metric interpretations of sensitivity for 
each variable across the whole dataset. Each 𝛼-mean sensitivity can 
be used individually as a theoretically sound sensitivity metric, but 
analyzing the differences between the values of the 𝛼-sensitivities ms𝛼 ,𝑗
for different variables 𝑋𝑗 and different choices of 𝛼 opens new deeper 
layers to the sensitivity analysis and can be used to detect further 
properties and interactions between the variables of a model than other 
methods used in the literature. We proceed to describe a methodology 
for retrieving some of the properties of the variables of a model from 
an 𝛼-curve plot.

We would like to clarify that this is not an exhaustive description of 
the types of analysis that can be done within the 𝛼-curve framework. 
For instance, we believe that this family of sensitivity metrics and the 
theoretical framework which supports them can be incorporated as part 
of more complex XAI analysis. It is just a showcase of some of its basic 
properties and further exploration of this methodology will be subject 
of future work.

4.1. Model sensitivity analysis and 𝛼-curve plots

The 𝛼-curve analysis presented in this work is a tool designed to 
study scalar regression data models (in particular, as stated in Theorem 
5 
3.1 and Corollary  3.3, 2 data models). Thus, in order to analyze 
raw data with this method, the first step is to build an appropriate 
representative data model 𝑓 . An important example is to choose 𝑓 to 
be an AI system of some type trained over the data. The 𝛼-sensitivity 
analysis is always meant to study properties of the chosen model 𝑓 and 
not necessarily on the data which generated it (eg., it will analyze the 
way a trained AI model interacts with its input variables, not the data 
which was used to train it).

In order to have proper comparisons between variables, it is impor-
tant that the variables are normalized or have comparable magnitudes 
before constructing the model 𝑓 and performing the 𝛼-sensitivity anal-
ysis. Otherwise, renormalizations may need to be taken into account 
when performing the study (the 𝛼-curve equation is homogeneous of 
degree 1 on linear scaling of the functions and variables).

The 𝛼-curves are visualized in a two-dimensional plot where the 
𝑥-axis represents the varying 𝛼 values in the interval [1,∞] and the 𝑦-
axis corresponds to the computed 𝛼-mean sensitivities. For each input 
variable 𝑋𝑗 , its 𝛼-curve is plotted by computing ms𝛼 ,𝑗 (𝑓 ) across a 
range of 𝛼 values (see an example in Fig.  1). By the Generalized Mean 
Inequality, we know that each 𝛼-curve is increasing and bounded, and 
that the limit for 𝛼 = ∞ coincides with the maximum sensitivity of 𝑓
with respect to variable 𝑋𝑗 reached at some point in the dataset. In 
our experiments, we found that evaluating 𝛼 up to order 16 captures 
most of the informative changes, as further increases provide negligible 
additional insight until reaching the asymptotic value at 𝛼 = ∞, which 
we have found to be of high utility for the analysis. Thus, values 
between the chosen maximum plotted 𝛼 value (e.g., 𝛼 = 16) and 𝛼 = ∞
are omitted from the visualization to avoid unnecessary computation.

To effectively display the asymptotic behavior, the 𝑥-axis is broken 
to include a second plot specifically dedicated to showing the 𝛼-mean 
sensitivity at 𝛼 = ∞, which corresponds to the maximum sensitivity 
value ms∞ ,𝑗 (𝑓 ). Each 𝛼-curve is linked to a label identifying its corre-
sponding feature via a pointed line extending toward the right-hand 
plot, where the asymptotic values are marked. This visual linkage aids 
in associating each curve with its feature identity, especially when 
multiple curves converge or exhibit similar trends for lower 𝛼 values.
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4.2. Comparison of variables for a fixed 𝛼

For each value of 𝛼, the set of values ms𝛼 ,𝑗 (𝑓 ) provides a sound 
measure of the sensitivity of the model 𝑓 with respect to each variable 
𝑋𝑗 . Thus, it can be used to compare which input variables are more 
relevant for the output in the model.

In the literature, the metrics obtained from 𝛼 = 1 and 𝛼 = 2 (or, 
derived ones, like the variance of the distribution of partial derivatives, 
which can be computed from these two values, cf. Section 3.2), have 
been used as sensitivity metrics [42,46,50] and utilized, for instance, 
for variable pruning [51,52]. As a consequence of the discussion from 
Section 3.2, the mean sensitivity ms1 ,𝑗 (𝑓 ) for 𝛼 = 1 represents the 
average of the pointwise absolute sensitivities of the model with respect 
to variable 𝑋𝑗 across the dataset. Similarly, ms2 ,𝑗 (𝑓 ) for 𝛼 = 2 computes 
second standard moment of the distribution of punctual sensitivities of 
the model with respect to variable 𝑋𝑗 across the dataset.

Corollary  3.3 now provides additional sound theoretical framework 
which supports mathematically the choice of any of these aggregation 
functions as a way to derive a total sensitivity metric from the values 
of the derivatives of the function across the dataset.

On the other hand, each vertical cut 𝛼 to the 𝛼-curve plot can be 
used to compare the variables and draw quantitative and qualitative 
conclusions about their relative relevance to the model. If there are 
model-driven reasons to fix a certain metric on the input and perturba-
tion spaces (see 3.1), then the corresponding 𝛼-value should be chosen 
for the comparison. Otherwise, any value of 𝛼 could, theoretically, be 
used for the sensitivity comparison task independently. Nevertheless, 
analyzing the whole picture across all different 𝛼 allows a deeper 
understanding of the behavior of the model.

Due to the properties of 𝛼-means, as 𝛼 increases, the average value 
ms𝛼 ,𝑗 (𝑓 ) takes more into account the existence of regions in the dataset 
where the sensitivity with respect to the variable is higher than average 
(‘‘exceptionally sensitive’’ or ‘‘localized high sensitivity’’ behavior). 
Lower values of 𝛼 focus instead on the ‘‘average behavior’’ of the 
function with respect to the variable.

The analysis of high values of 𝛼 may be crucial for certain tasks like 
variable pruning. It is possible that a variable has almost no impact 
on a regression problem if one looks at a generic point in the phase 
space, but that there exists a mode change in the model making the 
variable very relevant for the analysis when the inputs move inside a 
certain critical region (think, for instance, in the case where there exist 
‘‘activation’’ variables or states, which enable a different variable to 
influence the result but otherwise disable it). A general pruning analysis 
with 𝛼 = 1 or 𝛼 = 2 could ‘‘discard’’ the variable as irrelevant for 
the model, whereas it might be the most relevant variable for high 𝛼
metrics (see, for instance, Fig.  1).

The limit values ms∞ ,𝑗 (𝑓 ) included in the plot help identify the ex-
tremal cases. They measure the maximum sensitivity of 𝑓 with respect 
to the input variable 𝑋𝑗 that can be found at any point in the dataset.

4.3. Analysis of the variation of an 𝛼-curve

Due to the aforementioned properties of the 𝛼-means (consequence 
of the convexity of the power functions for exponents at least 1), 
studying the variation of the 𝛼-sensitivity when 𝛼 changes can give a 
lot of information on the dynamics of the variables of the model 𝑓 . Let 
us study some examples.

4.3.1. Linearity analysis
By the Generalized Mean Inequality, the 𝛼-curve of variable 𝑋𝑗 is 

constant if and only if 𝑓 is of the form
𝑓 (𝑋1,… , 𝑋𝑛) = 𝑔(𝑋1,… , 𝑋𝑗−1, 𝑋𝑗+1,… , 𝑋𝑛) + 𝐶𝑋𝑗

for some function 𝑔 depending only on the rest of the variables. By 
extension, the closer an 𝛼-curve is to be flat, the closer the dependence 
of 𝑓 with respect to 𝑋  is to a linear dependence. For instance, when 
𝑗
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an 𝛼-curve starts almost flat and then starts increasing more starting at 
some alpha, this can mean that the derivative 𝜕𝑓

𝜕𝑋𝑗
 has a low variation 

through the majority of the dataset, but that there are one or more 
regions of the phase space where it changes more, either due to its own 
non-linear behavior (like an activation function, or function where the 
derivative increases close to a point, like a 2-approximation of a square 
root), or due to an interaction with other variables.

4.3.2. Irrelevant variables
As a particular case of the previous analysis, 𝑓 does not depend on 

a variable 𝑋𝑗 if and only if the 𝛼-curve is constantly zero. The closer a 
curve is to 0, the less important the variable is for the model.

If a curve starts very constant and close to 0 but increases after-
wards, this indicates that the output of the model has, in general, a 
low dependence on the variable, but that there exists a region in the 
phase space in which the variable is indeed relevant for the model.

These properties can be used to improve the specificity of variable 
pruning methodologies. If a variable presents a low value of ms∞ ,𝑗 (𝑓 )
(and, thus, the whole 𝛼-curve is low) then it is not important for 
the model and it can be safely removed. On the contrary, a variable 
presenting higher values of the curve for some 𝛼 (and thus, a higher 
ms∞ ,𝑗 (𝑓 )) should not be pruned without a deeper analysis.

4.3.3. Detection of local regions with high sensitivity
As outlined before, it is possible for a variable to have low sensitivity 

for low 𝛼 but high sensitivity in higher 𝛼. This makes comparing its 𝛼-
sensitivity with the 𝛼-sensitivity of other variables depend heavily on 
𝛼. When this happens and a variable is not sensitive for low 𝛼 but it 
becomes highly sensitive for high 𝛼, two things can happen.

• The variable shows a non-linear behavior on 𝑋𝑗 which makes the 
partial derivative 𝜕𝑓

𝜕𝑋𝑗
 increase only on certain values of 𝑋𝑗 .

• There exists an interaction between the variable and a combina-
tion of other variables which makes the derivative become high 
in a certain region of the phase space.

The higher the variation of the 𝛼-curve and the earlier this variation 
appears, the stronger and more generalized the interaction or non-
linear effect is across the dataset. If the 𝛼-curve starts flat and then 
there is a sudden increase, it is more probable that the interaction or 
non-linear input effect on the output is relevant only in certain bounded 
areas of the dataset.

A limitation of this method (see Section 7) is that it is difficult to 
distinguish between the increase in sensitivity produced by an interac-
tion between variables (eg. when they are equally distributed) and a 
non-linear input effect (which can be thought of as a self-interaction of 
the variable). We expect to solve this limitation in future work through 
the usage of complementary interaction analysis methodologies.

4.4. Example of qualitative analysis through the graphical representation of 
𝛼-curves

Fig.  1 illustrates a practical example of such an 𝛼-curve plot. The 
details on the synthetic dataset and model used to obtain the plot will 
be further described in the following Section 5.1. In this example we 
can deduce the following qualitative information from the 𝛼-curve plot:

• Variables 𝑋4 to 𝑋10 exhibit no relationship with the output, 
resulting in flat horizontal lines at zero across all 𝛼 values.

• Variable 𝑋2 shows a linear relationship with the output, depicted 
by a flat horizontal line at a constant value different from zero 
throughout the 𝛼-range.

• Variable 𝑋1 has a non-linear relationship with the output, re-
flected in an 𝛼-curve that slowly rises from low 𝛼 values, indi-
cating an absence of regions with exceptionally high sensitivity.
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Fig. 2.  3D plots of partial derivatives of output 𝑌  with respect to inputs 𝑋1, 𝑋2 and 𝑋3 ((a), (b) and (c) respectively) for square root synthetic dataset. 𝑋-axis follows 𝑋1 and 
𝑦-axis follows 𝑋3 in the three plots. 𝑋2 is not used as plot axis due to the irrelevance of this variable on the derivative plots. Figure shows a non-linear relationship of the output 
with input variable 𝑋1, a linear relationship with 𝑋2 and a non-linear relationship in a localized region with 𝑋3.
• Variable 𝑋3 also has a non-linear relationship, but its 𝛼-curve dis-
plays a rapid increase at higher 𝛼 values, indicating the presence 
of local regions with very high sensitivity compared to its global 
behavior.

This plotting strategy allows analysts to visually compare the sensitivity 
profiles of different variables, identifying both their average impact and 
localized effects within the model.

5. Experimental results

This section contains XAI analysis performed on various synthetic 
and real datasets using sensitivity analysis based on partial derivatives, 
SHAP, Input Permutation and the 𝛼-curves method.

5.1. Synthetic dataset

A synthetic dataset with known derivatives is used to illustrate the 
usefulness of the 𝛼-curves to retrieve information about how the model 
uses the input variables to predict the output variable. The dataset is 
composed by 8 input variables [𝑋1,… , 𝑋9] and one output variable 
𝑌 ∈ R created as a function of the input variables, i.e., 𝑌 = 𝑓 (𝐗). 
Input variables 𝐗 are 50000 samples drawn from a normal distribution 
with 𝜇 = 0 and 𝜎 = 1. Partial derivatives and SHAP values are 
calculated analytically from the output expression for each dataset 
to avoid inherent modeling error which might obfuscate relationships 
between inputs and outputs.

In this case, the output follows the next expression: 

𝑌 = (𝑋1)2 + 2 ⋅𝑋2 +
1
10

⋅ 3
√

𝑋3 . (1)

From Fig.  2, we can conclude that 𝑋2 has a linear relationship with 
𝑌  as 𝜕𝑌

𝜕𝑋2
 is constant and different from zero for all samples. 𝑋1 and 

𝑋3 have a non-linear relationship with 𝑌 , as 𝜕𝑌
𝜕𝑋1

 and 𝜕𝑌
𝜕𝑋3

 are not 
constant for all samples. Furthermore, Fig.  2(c) shows that 𝜕𝑌

𝜕𝑋3
= 0

for most samples, except for the samples where 𝑋3 is close to 0. In 
these samples, sensitivities with respect of 𝑋3 are far higher than for 
the other input variables, so changes of 𝑋3 in this region of the input 
space shall provoke large changes on 𝑌 . This can be understood as a 
local importance of 𝑋3, and it shall be detected by XAI methods.

Results of XAI analysis performed on Eq. (1) are presented in Fig. 
3. Fig.  3(a) shows the sensitivity plots as introduced in [46]. First plot 
shows two sensitivity metrics: mean (x-axis) and standard deviation 
(y-axis). Second plot of Fig.  3(a) shows the mean squared sensitivity 
for each of the input variables, which could be used as a variable 
importance metric. A broader explanation of these metrics can be found 
in Section 2. According to this metrics, the following information can 
be retrieved from Fig.  3(a):

• 𝑋  variable has a linear relationship with the output.
2
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• 𝑋1 variable has a non-linear relationship with the output.
• 𝑋3 is almost irrelevant to predict the output, with much lower 
importance than 𝑋1 and 𝑋2, but greater than 𝑋4 −𝑋8.

• The remaining variables have no relationship with the output.
The same information is obtained using SHAP from Figs.  3(b) and

3(c). In Fig.  3(b), linear relationship of 𝑌  and input 𝑋2 can be seen in 
the perfect correlation between the values of 𝑋2 and its impact on 𝑌 . 
Non-linear relationships of 𝑌  and inputs 𝑋1 is also easily detected, as 
there is no correlation between the values of 𝑋1 and its impact on 𝑌 . 
Fig.  3(c) is analogous to second plot of Fig.  3(a), but showing mean 
of the absolute SHAP values instead of mean squared sensitivity as 
variable importance measure.

Fig.  3(d) shows the importance metrics assigned to the input vari-
able with the Input Permutation technique. These metrics are almost 
identical to SHAP importance metrics presented in Fig.  3(c), with sim-
ilar relative importances between input variables. This technique does 
not provide information about the type of relationship between output 
and input variables, but it is notably less computationally expensive 
than the others.

Using the 𝛼−curves methodology described in Section 4, the in-
formation obtained from the other XAI methods can also be obtained 
from Fig.  1. However, it also shows that, apart from the non-linearities 
presented in 𝑋1 and 𝑋3, there are regions where output 𝑌  is far more 
sensitive to 𝑋3 than to 𝑋2. In fact, peak sensitivities in some samples are 
detected, as can be seen by the rapid increase of ms𝛼 ,3(𝑓 ) for 𝛼 > 4. This 
information could not be retrieved using the other two methods, which 
assigned little importance to 𝑋3, due to the aggregation techniques used 
to calculate importance of the input variables.

5.2. Real datasets

Based on the analysis performed in the previous section, simi-
lar analysis can be conducted on datasets from real sources. In this 
section, sensitivity analysis is performed on the California housing 
dataset [53] and the Parkinson’s Disease regression dataset [54]. These 
datasets were selected because they both represent regression tasks 
with varying numbers of input features, allowing for an evaluation 
of the interpretability and scalability of the proposed methodology. 
While other larger datasets were considered, they were dismissed to 
ensure the resulting plots remained comprehensible when analyzed 
with sensitivity and explainable AI (XAI) methods. A scalability study 
to demonstrate the methodology’s performance on larger datasets is 
included in Section 5.3.

To model the relationship between input and output variables, a 
Multi-Layer Perceptron (MLP) with one hidden layer is trained for each 
dataset. The model hyperparameters, including the number of neurons 
in the hidden layer, activation functions, and learning rate, were op-
timized using 10-fold cross-validation to ensure robust performance 
while avoiding overfitting.
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Fig. 3.  XAI analysis of the cubic root synthetic dataset. Sensitivity metrics, SHAP values, and Input Permutation metrics illustrate the relationships between the model output 
and input variables. The plots highlight the importance and type of relationship (linear or non-linear) of each input variable (𝑋1, 𝑋2) with the output, while demonstrating the 
irrelevance of the remaining variables (𝑋4 to 𝑋9), and a doubtful relationship with 𝑋3.
The first partial derivatives of the trained MLP models were cal-
culated using the neuralsens package [46], which enables efficient 
computation of derivatives for sensitivity analysis. It should be noted 
that the 𝛼-curves methodology directly applies to these calculated 
partial derivatives, meaning that any user-preferred package capable of 
computing partial derivatives of a machine learning model can be em-
ployed. For comparison, SHAP values were calculated and analyzed for 
each experiment using the homonymous shap package [45] and Input 
Permutation Importance was calculated using the dalex package [55].

5.2.1. California housing
This dataset was derived from the 1990 U.S. census, using one row 

per census block group. A block group is the smallest geographical unit 
for which the U.S. Census Bureau publishes sample data (a block group 
typically has a population of 600 to 3000 people). The target variable is 
the median house value for California districts, expressed in hundreds 
of thousands of dollars ($100,000) [56].

This dataset is composed of the following variables:

• MedInc: median income in block group
• HouseAge: median house age in block group
• AveRooms: average number of rooms per household
• AveBedrms: average number of bedrooms per household
• Population: block group population
• AveOccup: average number of household members
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• Latitude: block group latitude
• Longitude: block group longitude
• MedHouseVal: median price of block group
To model the relationship between these input variables and the 

target variable, a Multi-Layer Perceptron (MLP) was employed. The 
MLP obtained using 10-fold cross validation consisted of a single hidden 
layer with 5 neurons and a sigmoid activation function. It was trained 
with a learning rate of 0.1 for 150 epochs.

Following the methodology for sensitivity analysis, Fig.  4(a) shows 
that longitude and latitude of the block group are the most important 
variables with a highly non-linear relationship with the output, fol-
lowed by the median income of the families in block group and the 
average number of household members with a more linear relationship. 
The rest of the variables have almost no relationship with the output 
and may be discarded from the model. This result seems intuitive 
because location is typically one of the key factors affecting house 
value. Additionally, the number and type of neighbors in the area 
often indicate a block’s overall economic status, where fewer people 
with higher income might indicate exclusive villas and more people 
with lower income might indicate residential blocks. The remaining 
variables correlate with factors we would expect to influence house 
prices, this is, size of the house (𝐴𝑣𝑒𝑅𝑜𝑜𝑚𝑠) and how up-to-date house 
features are (𝐻𝑜𝑢𝑠𝑒𝐴𝑔𝑒) is more important than population of the 
block. One might object that 𝐴𝑣𝑒𝐵𝑒𝑑𝑟𝑚𝑠 also correlates with the size 
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Fig. 4.  Sensitivity and 𝛼-curve analyses of the California housing dataset. These analyses reveal that location-related variables (Latitude and Longitude) play a dominant 
role in predicting house prices, with Longitude showing consistently high importance and Latitude demonstrating localized impacts in specific regions, such as coastal areas. 
The 𝛼-curves highlight the nuanced relevance of variables like HouseAge and AveRooms in specific subsets of the data.
of the house and shall be assigned a higher importance. However, size 
of the house can be determined with 𝐴𝑣𝑒𝑅𝑜𝑜𝑚𝑠, so the information 
provided by 𝐴𝑣𝑒𝐵𝑒𝑑𝑟𝑚𝑠 may only be used to distinguish between same 
size houses with different number of bedrooms. This information might 
not influence house price as much as the house size, so consequently 
the 𝐴𝑣𝑒𝐵𝑒𝑑𝑟𝑚𝑠 variable is not as important as 𝐴𝑣𝑒𝑅𝑜𝑜𝑚𝑠.

More information can be retrieved using the 𝛼−curves methodology. 
The location of the house is still the most important information to 
predict the price, but Fig.  4(b) shows that, although 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 have a 
lower mean sensitivity, there are regions of the input dataset where the 
𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 sensitivity is the highest. This might indicate a region where a 
small change in latitude switches between two blocks with significantly 
different prices, maybe between first and second beach line blocks. Rest 
of the variables shows similar information than the retrieved from Fig. 
4(a), although it can be seen than the maximum sensitivity of 𝐻𝑜𝑢𝑠𝑒𝐴𝑔𝑒
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is similar to the maximum sensitivity of 𝐴𝑣𝑒𝑅𝑜𝑜𝑚𝑠. This might indicate 
that, although the mean effect of the 𝐻𝑜𝑢𝑠𝑒𝐴𝑔𝑒 is not as important 
as the 𝐴𝑣𝑒𝑅𝑜𝑜𝑚𝑠 variable, the house age might influence the price of 
the house as much as the size if the house. This makes sense, as an 
older house usually needs house renovations and this might decrease 
the price.

It must be noted that it was not computationally feasible to analyze 
all the samples of the dataset using SHAP, so only 1000 random samples 
were analyzed. Figs.  5(a) and 5(b) shows that the most important 
variable is the average number of bedrooms per household followed 
by the average number of household members. Relationship between 
these inputs and the output seems linear, where a large number of 
bedrooms and fewer households corresponds to a higher house price. 
This correlates with the idea of luxury villas and residential blocks 
stated earlier. However, it appears counter-intuitive that the location 
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Fig. 5.  SHAP and Input Permutation analyses of the California housing dataset. SHAP values emphasize the importance of socioeconomic variables such as AveBedrms and
AveOccup, while assigning less importance to location variables (Latitude and Longitude), which contrasts with the sensitivity and 𝛼-curve analyses. Input permutation 
metrics identify house size and occupancy-related variables (AveRooms and AveOccup) as the most significant predictors.

Fig. 6.  Heatmap showing the spatial distribution of median house prices in California based on latitude and longitude. The color scale represents the median house price, while 
the size of the circles indicates the block group population. The figure highlights that house prices inversely correlate with the distance to the shoreline, which is reflected in the 
interaction between latitude and longitude variables in the dataset.
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of the block given by the 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 and 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 variable is barely 
important compared with the rest of variables.

Considering the Input Permutation Importances shown in Fig.  5(c), 
it can be seen how the importances assigned to the input variables 
vary depending on the permutation performed on the variable. In this 
case, age of the house 𝐻𝑜𝑢𝑠𝑒𝐴𝑔𝑒 and population of the block 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
does not influence on the performance of the model (importance of 
these variables being zero is related to no change in the error metric 
when this variables are permutted), coinciding with the rest of the 
XAI techniques. House size occupation related variables are the most 
important according to this technique, assigning the lowest importances 
to the location related variables (𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 and 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 variables). 
Moreover, this technique assigns a negative importance to these vari-
ables, implying that permutting 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 and 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 results in a 
more accurate model. Again, this appears counterintuitive and may be 
misleading, possibly because of the way the variables were permuted.

Fig.  6 shows the distribution of prices in California state, where 
we can see that based on latitude and longitude great differences in 
house price can be distinguished. As expected, the highest house prices 
are in the population centers on the beachfront (in this case, San 
Francisco and Los Angeles). This corroborates the information provided 
by the 𝛼−curves method, where location related variables are the most 
important to predict house prices, which contradicts the explanation 
provided by SHAP.

5.2.2. Parkinson’s disease
This dataset contains biomedical voice measurements from 42 in-

dividuals with early-stage Parkinson’s disease who were part of a 
six-month trial utilizing a telemonitoring device for remote symptom 
progression monitoring [54]. This dataset is composed by the following 
variables:

• Jitter (%): The percentage of jitter, which represents the short-
term variability of the fundamental frequency.

• Jitter(Abs): Absolute jitter, representing the absolute differences 
in consecutive periods, measured in seconds.

• Jitter:RAP: Relative Amplitude Perturbation, a measure of the 
variability in the amplitude of vocal fold vibration.

• Jitter:PPQ5: Five-point Period Perturbation Quotient, a measure 
of the variability in pitch period size over five pitch periods.

• Jitter:DDP: Dimensionless Drift Parameter, a composite measure 
derived from RAP.

• Shimmer: A measure of the amplitude variability of the vocal fold 
vibration.

• Shimmer(dB): The logarithmic measure of shimmer, expressed in 
decibels.

• Shimmer:APQ3: Three-point Amplitude Perturbation Quotient, a 
measure of the variability in amplitude over three pitch periods.

• Shimmer:APQ5: Five-point Amplitude Perturbation Quotient, a 
measure of the variability in amplitude over five pitch periods.

• Shimmer:APQ11: Eleven-point Amplitude Perturbation Quotient,
a measure of the variability in amplitude over eleven pitch 
periods.

• Shimmer:DDA: A composite measure derived from APQ mea-
sures.

• NHR: Noise-to-Harmonics Ratio, a measure of the ratio of noise 
to tonal components in the voice signal.

• HNR: Harmonics-to-Noise Ratio, a measure of the ratio of tonal 
components to noise components in the voice signal.

• RPDE: Recurrence Period Density Entropy, a non-linear measure 
that quantifies the predictability and complexity of a signal.

• DFA: Detrended Fluctuation Analysis, a method for determining 
the statistical self-affinity of a signal.

• PPE: Pitch Period Entropy, a measure of the regularity and sta-
bility of the pitch.

• Sex: The gender of the individual.
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Fig. 7. Heatmap of the correlation between the input features in the Parkinson’s 
Disease Voice dataset. This figure illustrates the relationships among the various 
biomedical voice measurements. The heatmap reveals significant collinearity within 
groups of variables, such as the Jitter and Shimmer families, which could result 
in multicollinearity challenges in modeling. For instance, variables like Jitter(%)
and Jitter(Abs), as well as Shimmer and Shimmer(dB), exhibit strong positive 
correlations. To address this, representative variables (Jitter(Abs) and Shimmer) 
were selected for further analysis, following insights from the literature that highlight 
their relevance in Parkinson’s Disease diagnosis.

• Age: The age of the individual (not used in this analysis).
• Motor UPDRS: Unified Parkinson’s Disease Rating Scale; Motor 
section score, a measure of motor function (not used in this 
analysis).

• Total UPDRS: Unified Parkinson’s Disease Rating Scale; Total 
score, a comprehensive measure of disease progression (used as 
the target variable).

The target variable, in this case, is the Total UPDRS, a quantitative 
measure of disease progression. Predicting this output based on the 
selected input variables is an important task for proactive healthcare 
and disease management, enabling timely interventions that could 
potentially slow down the disease progression or manage the symptoms 
more effectively.

Before training the model, it is crucial to understand the inter-
relationships among the input variables. A widely used tool for this 
purpose is the correlation matrix, which provides a numerical and 
visual representation of how variables interact with each other. The 
correlation matrix was computed for all the variables present in the 
Parkinson’s Disease Voice Dataset.

Fig.  7 showcases the correlation matrix of the dataset variables. 
It shows that some variables present high collinearity, which may 
lead to multicollinearity issues in the model. For example, the sets 
of Jitter and Shimmer variables were highly correlated among them-
selves. To mitigate this, only one representative from each set, namely
Jitter(Abs) and Shimmer, were retained for the analysis. These 
variables were selected based on existing literature, where Chiaramonte 
and Bonfiglio [57] presents a meta-study of PD diagnosis based on voice 
measurements. This meta-study suggested that the variables Shimmer
and Jitter(Abs) were the most affected compared to the other 
Shimmer and Jitter related variables in the revised studies, underscor-
ing their significance in analyzing voice disorders related to Parkinson’s 
Disease.

Additionally, the Age variable was excluded from the model as it 
acted as an identifier for the patients: its values remained constant 
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Fig. 8.  Comparative sensitivity and 𝛼-curve analyses of the Parkinson’s Disease dataset. These plots highlight the importance of key variables like Jitter(Abs), PPE, and sex
in predicting Parkinson’s Disease progression. Sensitivity analysis provides a global view of variable relevance, while 𝛼-curves reveal localized patterns of variable importance, 
offering insights into cohort-specific impacts not captured by other methods.
during the trials, hence providing information to the model that is not 
expected to be present in unseen data.

To model the relationship between these input variables and the 
target variable, a Multi-Layer Perceptron (MLP) was employed. The 
MLP obtained using 10-fold cross validation consisted of a single hidden 
layer with 15 neurons and a sigmoid activation function. It was trained 
with a learning rate of 0.001 for 500 epochs.

Following the methodology for sensitivity analysis, Fig.  8(a) reveals 
a non-linear correlation among all variables in predicting Parkinson’s 
Disease (PD) progression. The most crucial variables identified are the 
patient’s sex (sex), absolute jitter (Jitter (Abs)), and Pitch Period 
Entropy (PPE), followed by Shimmer. Conversely, DFA and the noise-
related variables NHR, HNR and RPDE are deemed less significant, 
with DFA being the most significant by a little margin. According 
to literature, Azadi et al. [58] determines that jitter emerged as a 
pivotal parameter for differentiating PD patients due to its capability to 
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measure frequency changes from cycle to cycle in speech signals. It also 
highlights the sex of the individual (sex) as a crucial variable in this 
analysis. They found substantial differences in speech characteristics 
between men and women, thus necessitating a segregated analysis for 
male-only and female-only populations. It was observed that the values 
of the extracted jitter and shimmer features varied distinctly between 
male and female subjects when compared between PD patients and 
healthy individuals. This implies that the sex of the individuals signifi-
cantly impacts the acoustic parameters being studied, hence influencing 
the diagnostic accuracy. Vizza et al. [59] found that the amplitude 
variability of the vocal fold vibration, represented by Shimmer, exhibit 
significant variations in PD patients compared to healthy controls. This 
correlates with the importance in the Shimmer variable to diagnose 
PD based on voice recordings. Regarding PPE, Little et al. [60] found 
that this measure provides a nuanced assessment of abnormal pitch 
variations, distinguishing PD-induced dysphonic variations from nat-
ural pitch variations. By analyzing pitch on a perceptually-relevant, 
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Fig. 9.  SHAP and Input Permutation analyses of the Parkinson’s Disease dataset. SHAP value and importance metrics emphasize the non-linear contributions of variables like
Jitter(Abs), PPE, and Shimmer to the model’s predictions. Input permutation analysis highlights discrepancies in variable rankings, including counterintuitive negative 
importances for some features.
logarithmic scale, PPE more accurately captures the non-Gaussian fluc-
tuations in pitch period variation associated with PD-related dysphonia. 
This methodological shift offers a more precise tool for analyzing voice 
disorders in PD, enhancing the diagnosis of the disease. Regarding
HNR, NHR and RPDE variables, Lahmiri [61] defends the potential 
of discerning PD progression through noise-associated variables. Yet, 
newer studies [62,63] suggests that these metrics are not as signifi-
cantly influenced by the disease compared to the Jitter, Shimmer, or 
PPE measures derived from the patients’ voice recordings. In the case 
of DFA, Minamisawa et al. [64] and Kirchner et al. [65] found DFA to 
be a suitable indicator of PD, although Miranda et al. [66] found this 
variable not as important as Jitter regarding model performance.

Although results from sensitivity analysis are coherent with the liter-
ature reviewed, more information can be retrieved using the 𝛼−curves 
methodology presented in this paper. Fig.  8(b) shows that, on a global 
scale, sex is the variable with the highest importance. Nonetheless, 
the variables Jitter (Abs) and PPE have nearly as much relevance 
as sex globally, yet they are more important for specific cohorts of 
patients to determine the PD progression. Notably, by 𝛼 = 4, they 
are already the most influential variables, indicating their notable 
impact across the majority of patients. This trend might be associated 
with different subtypes of PD, as elucidated in Tsanas and Arora 
[67], where distinct PD subtypes exhibited differential impacts on a 
patient’s voice frequency. At a local level, both Jitter (Abs) and
PPE markedly surpass the rest of the variables in importance. Here, 
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the 𝛼−curves could be highlighting those patients for whom the PD 
subtype significantly influences the PPE and Jitter (Abs) variables. 
On the contrary, the small slope of the 𝛼-curve of the sex variable 
denotes a comparatively consistent impact of the patient’s gender on 
how PD progression affects the patient’s voice capabilities. This is 
corroborated by Azadi et al. [58], who found that even amidst the 
presence of gender-specific PD symptoms, voice alterations attributable 
to PD maintained a consistency within each gender group. With respect 
to Shimmer, its ascending curve reflects a low global-level relevance of 
the variable, with a subgroup of patients where the importance of this 
variable is similar to the sex variable. This potentially correlates once 
again with PD subtypes, where an specific group of patients presents 
deeper symptoms of voice amplitude variability than others. Regarding 
the rest of the variables, DFA, NHR, HNR, and RPDE all exhibit a lesser 
impact on the analysis. Among these, the average impact of DFA, NHR, 
and HNR is similar to that of Shimmer, albeit slightly lower, while
RPDE demonstrates a significantly lower impact. Interestingly, DFA and
NHR show a degree of relevance in certain portions of the dataset, 
nearly as much as Shimmer or sex. The curves of these two variables 
are almost identical and almost parallel to that of Shimmer, albeit 
lying below it, suggesting that the magnitude of the regions (i.e., types 
of patients) where these three variables are relevant for PD diagnosis 
might be similar. Conversely, HNR and RPDE are less relevant than the 
others at any level of analysis, being the two least influential variables 
in the dataset for PD diagnosis.
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Analyzing SHAP results presented in Figs.  9(a) and 9(b), it empha-
sizes the importance of the Jitter (Abs) variable, with a substantial 
drop in importance for the Shimmer variable, and virtually no signif-
icance attributed to the remaining variables. However, the summary 
plot 9(a) mainly showcases a non-linear relationship between all vari-
ables and the output, without providing much more information. It 
does hint at a diverse level of variable contributions across different 
patients, suggesting that certain variables may have a higher impact on 
the output for some individuals. It shall be noted that the SHAP anal-
ysis operates under the assumption of input variables’ independence 
and local linearity for each sample, which might overlook potential 
interactions among variables . As a result, this could lead to a scenario 
where some variables appear irrelevant, whereas their effects may only 
be discernible when considered in conjunction with other variables.

Fig.  9(c) shows the Input Permutation results. Among these, the 
high negative importance associated with Jitter(Abs) is particu-
larly noteworthy as it contrasts with the reviewed literature, which 
often underscores the significant positive role of jitter in differentiating 
Parkinson’s Disease (PD) patients. Similarly, DFA showcasing the high-
est importance is not consistent with the revised literature [66], where 
this variable is often described as having lesser or varied importance 
across different studies. On the other hand, the positive importance of
Shimmer aligns well with literature [59], reaffirming its relevance in 
PD progression analysis. The lower importances of PPE and sex hint 
at a possible oversight of their interactions with other variables or their 
nuanced influence in PD progression which might not be fully captured 
in the permutation importance analysis.

Based on the information retrieved from the previous methods, the 
only common information is the relevance of the Shimmer variable to 
predict PD progression. Importance assigned for the rest of the variables 
depends on the method used to analyze the model, being sensitivity 
analysis and the 𝛼−curves method the most coherent with the reviewed 
literature.

5.3. Computational cost

Using the NeuralSens package [46], the computational cost of ob-
taining the Jacobian of a feed forward neural network at a set of 
samples involves the same number of matrix multiplications as an 
evaluation of the network at the samples. If 𝑓 is a model with 𝑀 fea-
tures and the dataset has 𝑁 samples, computing the 𝛼-mean sensitivity 
ms𝛼 ,𝑗 (𝑓 ) of a model 𝑓 from the set of derivatives of 𝑓 at the samples 
has only cost (𝑁) for each 𝛼, so the cost of computing the 𝛼-means 
of all variables is of the same order as (𝑁) model evaluations. It is 
particularly relevant that this cost is linear in the number of samples 
and only grows on the number of features at the same rate as the 
cost of a model evaluation. This is much less than the computational 
cost of methods like SHAP, which has a computational complexity of 
(𝑁2𝑀 ) model evaluations and Input Permutation Importance, with a 
computational complexity of (𝑀2𝑁 ) model evaluations.

Furthermore, to evaluate the computational efficiency of SHAP, 
Input Permutation Importance, and the 𝛼-curves method, we conducted 
a comprehensive experiment involving various configurations of a MLP 
model with different configurations. To train this MLP model, we have 
created a synthetic regression dataset with varying number of input 
features and samples. Specifically, we varied the number of features 
from 5 to 100 in steps of 5, the number of samples from 100 to 5100 
in steps of 100, and the number of neurons in the hidden layer of the 
MLP model from 10 to 200 in steps of 10. For each configuration, we 
measured the execution time required to compute the explainability 
metrics using the three methods. The results of this experiment are 
shown in Fig.  10.

The experiment was conducted on a laptop equipped with an Intel 
Core i7-13700H processor, 32 GB of RAM, and running on a 64-bit 
Windows 11 Enterprise operating system. During the execution of the 
experiment, it was observed that the computation of SHAP values for 
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more than 20 features was not feasible due to excessive memory usage 
and processing time, making it impractical for larger feature sets. In 
contrast, the 𝑎𝑙𝑝ℎ𝑎−curves method demonstrated superior scalability 
with the number of features and consistently outperformed both SHAP 
and Input Permutation Importance in terms of execution speed. Our 
method not only scaled efficiently as the number of features increased 
but also proved to be the fastest among the three, highlighting its 
effectiveness for large-scale sensitivity analysis in machine learning 
models.

5.4. Advantages and limitations of 𝛼-curves analysis

The experimental comparisons of the 𝛼-curves method against es-
tablished XAI approaches, such as SHAP and Input Permutation Impor-
tance, reveal a number of notable advantages and some limitations.

Among its key advantages, 𝛼-curves provide both global and local 
insights in a single framework, allowing practitioners to detect input-
space regions where a specific variable may have an unusually high 
impact, information that pure aggregation approaches might overlook. 
Furthermore, by examining how sensitivities evolve as 𝛼 increases, the 
approach captures non-linear relationships and potential variable inter-
actions, revealing localized high-sensitivity regions that average-based 
techniques might miss. The method also rests on a robust mathemati-
cal foundation by interpreting sensitivities through the lens of metric 
spaces and differential operator norms, ensuring theoretically sound 
metrics that directly connect to the distribution of partial derivatives. 
In terms of computational efficiency, 𝛼-curves exhibit a linear com-
plexity with respect to the number of samples and features, making 
the technique substantially more scalable than alternatives like SHAP 
whose computational time grows exponentially with dimensionality, 
becoming unfeasible for large datasets. Finally, because it is a natural 
extension of derivative-based sensitivity analysis, 𝛼-curves can be in-
tegrated seamlessly with prior derivative-focused methods, preserving 
established workflows while adding richer diagnostic capabilities.

Nonetheless, 𝛼-curves have certain limitations. First, they are cur-
rently designed for scalar regression scenarios with differentiable func-
tions, which constrains their direct applicability to classification prob-
lems, non-differentiable models, or settings where analytical deriva-
tives are inaccessible. This limitation would be addressed in future 
developments of the method where other suitable metrics for discrete 
input and output variables are used. Second, the observed steep rise 
in an 𝛼-curve can signify either a pronounced non-linear dependence 
on one variable or an interaction among multiple variables, and the 
method does not inherently distinguish between these possibilities. 
Other methods that provide information about interaction between 
variables may be needed for clarity. Finally, the focus on partial deriva-
tives implies a vulnerability to large derivative values or outliers, which 
can disproportionately influence the higher end of the 𝛼 range and thus 
skew sensitivity results. In general, this outlier effect would be marginal 
and affect mostly in very high values of alpha, but should be taken into 
account when analyzing the 𝛼-curve shape.

6. Method availability and applicability

The developed 𝛼-curves method has been implemented and is read-
ily available in the NeuralSens package [46] for both Python and R 
programming languages. The code is available for inspection at https:
//github.com/JaiPizGon/NeuralSens.

In this paper, the utility of the 𝛼-curves method has been demon-
strated using Multi-Layer Perceptron (MLP) models, showcasing its 
effectiveness in providing detailed insights into feature importance 
within neural network-based regression models. However, the utility 
of this method extends beyond MLP models. It can be applied to any 
regression model, provided that the partial derivatives of the output 
with respect to the inputs can be computed. These partial derivatives 
can be obtained through the use of automatic differentiation tools such 
as the autograd package from PyTorch [68]. By leveraging these tools, 
users can apply the 𝛼-curves method to gain deeper insights into the 
behavior and sensitivity of their regression models.

https://github.com/JaiPizGon/NeuralSens
https://github.com/JaiPizGon/NeuralSens
https://github.com/JaiPizGon/NeuralSens
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Fig. 10. Execution time comparison between SHAP, Input Permutation Importance, and 𝛼-curves XAI methods. This plot evaluates the scalability of each explainability method 
with respect to the number of features, number of samples, and number of neurons in the model. The 𝑦-axis is displayed on a logarithmic scale to better capture the differences 
in execution times across methods. SHAP exhibits the highest execution time across all scenarios, particularly as the number of features increases, making it unfeasible for 
high-dimensional datasets. Input permutation importance demonstrates moderate scalability but still shows significant time increases with higher feature counts. In contrast, the 
𝛼-curves method maintains consistent and significantly lower execution times across varying model complexities and dataset sizes, demonstrating its computational efficiency and 
suitability for large-scale problems.
7. Conclusions and future work

In this paper, we have proposed a novel XAI method to interpret ML 
models based on a metric interpretation of partial derivatives. Given a 
fitted ML model, the sensitivities of the output variable with respect to 
the inputs provide a relevant measure of the significance of the features 
in the problem analyzed [50]. However, obtaining a meaningful metric 
to quantify feature importance based on the sensitivities remained an 
open issue.

This paper presents one major advantage with respect to previous 
works in this field. It provides theoretical proof and practical use of the 
𝛼−curves methodology, a novel technique to obtain feature importance 
information by aggregating the effect of sensitivities across the whole 
input space. While many existing XAI techniques tend to focus either 
on global or local explanations, our proposed method bridges the gap 
between these two levels of interpretation. By providing a coherent 
framework that seamlessly transitions from global to local interpre-
tations, it ensures that users gain a holistic understanding of feature 
importance at both levels. This dual-level insight makes it easier for 
practitioners to trust and validate the model’s decisions, fostering a 
more robust and transparent ML application in real-world scenarios.

In this paper, the 𝛼−curves methodology is applied to the analysis of 
Neural Networks. Nevertheless, it can be applied to any model whose 
partial derivatives can be calculated, allowing for a higher flexibility 
when facing a ML problem.

The comparative analysis performed against other commonly used 
XAI methods (SHAP and Input Permutation Importance) in synthetic 
and real datasets sharply demonstrate the effectiveness of the method 
to detect relevant features in the datasets. On the one hand, it provides 
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information about the type of relationship between inputs and the 
output (linear, nonlinear). On the other hand, the method can detect 
if there exists regions in the input space where certain variables have 
a greater effect on the output than others. Detecting these regions is 
crucial, for example, to avoid removing features considered irrelevant 
when they only have a strong impact on a reduced area of the input 
space.

Finally, it is worth remarking that the proposed theoretical frame-
work and the 𝛼-curves methodology can be applied to both numerical 
and categorical features, provided that the data model embeds those 
variables in some R𝑛. For instance, these methods can be used to study 
neural networks trained over a dataset containing discrete variables, as 
they analyze the continuous model (the neural network, which receives 
real inputs) and not the dataset itself, whose categorical variables are 
embedded in the real inputs of the network. Nonetheless, using this 
theoretical framework as a starting point, more intrinsic methodologies 
for explaining categorical inputs or outputs could be examined in 
detail in future works by replacing the 𝐿𝑝 metrics by other suitable 
information metrics.
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Appendix A. Proof of the main theorem

This section contains the full mathematical proof of the main The-
orem  3.1.

Let us start the analysis with some useful notations. Let 𝑓 ∶ R𝑛 ⟶

R𝑚 be a function and let  = {�̄�𝑖}𝑁𝑖=1 be a set of points. Given a 
perturbation vector ℎ̄ = (ℎ1,… , ℎ𝑁 ) ∈ R𝑁  with the same size as the 
dataset, denote 

𝛥ℎ̄,𝑗 �̄�𝑖 = (0,… ,
𝑗
⌣
ℎ𝑖 ,… , 0) ∈ R𝑛

 so that for each 𝑖
(𝑥𝑖,1,… , 𝑥𝑖,𝑗 + ℎ𝑖,… , 𝑥𝑖,𝑛) = �̄�𝑖 + 𝛥ℎ̄,𝑗 �̄�𝑖.

Recall that 𝑑𝑗𝑓 denotes the differential of 𝑓 with respect to variable 
𝑋𝑗 , i.e., if 𝑓 = (𝑓1,… , 𝑓𝑚), then 𝑑𝑗𝑓 is the R𝑚-valued differential form

𝑑𝑗𝑓 =
(

𝜕𝑓1
𝜕𝑋𝑗

𝑑𝑋𝑗 ,… ,
𝜕𝑓𝑚
𝜕𝑋𝑗

𝑑𝑋𝑗

)

.

Finally, let  ,𝑗𝑓 ∶ R𝑁 ⟶ R𝑁𝑚 be the linear operator

 ,𝑗 =
𝑁
⨁

𝑖=1
𝑑𝑗𝑓 (�̄�𝑖).

It is then the operator that for each ℎ̄ ∈ R𝑁  yields
 ,𝑗𝑓 (ℎ̄) ∶=

(

𝑑𝑗𝑓 (�̄�1)ℎ1,… , 𝑑𝑗𝑓 (�̄�𝑁 )ℎ𝑁
)

.

We can state the following estimate. Recall that given a linear map 
between finite dimensional normed spaces 𝐴 ∶ (𝐸, ‖−‖𝐸 ) ⟶ (𝐹 , ‖−‖𝐹 )
we define the norm of 𝐴 with respect to the norms of 𝐸 and 𝐹  as

‖𝐴‖
‖−‖𝐸 ,‖−‖𝐹 = max

�̄�≠0

‖𝐴�̄�‖𝐹
‖�̄�‖𝐸

= max
‖�̄�‖𝐸=1

‖𝐴�̄�‖𝐹 .

Recall that ‖−‖𝐻  denotes a norm on R𝑁  and ‖−‖𝑌  is a norm on R𝑚𝑁 .

Theorem A.1.  Let 𝑓 be a 2 function. Then
𝑠 ,𝑗 (𝑓 ) = ‖ ,𝑗𝑓‖‖−‖𝐻 ,‖−‖𝑌 .

Proof.  By Taylor’s Theorem, at each �̄�𝑖 ∈ 

𝑓 (�̄�𝑖 + 𝛥ℎ̄,𝑗 �̄�𝑖) − 𝑓 (�̄�𝑖) = 𝑑𝑗𝑓 (�̄�𝑖)ℎ𝑖 + 𝑟𝑖(ℎ𝑖),

where 𝑟𝑖(ℎ𝑖) = 𝑜(|ℎ𝑖|). Thus, we have
𝑣 ,𝑗 (𝑓, ℎ̄) = ‖(𝑑𝑗𝑓 (�̄�𝑖)ℎ𝑖)𝑁𝑖=1 + (𝑟(ℎ𝑖))𝑁𝑖=1‖𝑌 = ‖ ,𝑗𝑓 (ℎ̄) + 𝑟(ℎ̄)‖𝑌 ,

where 𝑟(ℎ̄) = (𝑟1(ℎ1),… , 𝑟𝑁 (ℎ𝑁 )). By triangular inequality, we have
sup

‖ℎ̄‖𝐻=𝜀
‖ ,𝑗𝑓 (ℎ̄)‖𝑌 − sup

‖ℎ̄‖𝐻=𝜀
‖𝑟(ℎ̄)‖𝑌 ≤ sup

‖ℎ̄‖𝐻=𝜀
𝑣 ,𝑗 (𝑓, ℎ̄)

≤ sup
‖ℎ̄‖𝐻=𝜀

‖ ,𝑗𝑓 (ℎ̄)‖𝑌 + sup
‖ℎ̄‖𝐻=𝜀

‖𝑟(ℎ̄)‖𝑌

so

lim
𝜀→0

sup
‖ℎ̄‖𝐻=𝜀 ‖ ,𝑗𝑓 (ℎ̄)‖𝑌 − sup

‖ℎ̄‖𝐻=𝜀 ‖𝑟(ℎ̄)‖𝑌
𝜀

≤ 𝑠 ,𝑗 (𝑓 )

≤ lim
𝜀→0

sup
‖ℎ̄‖𝐻=𝜀 ‖ ,𝑗𝑓 (ℎ̄)‖𝑌 + sup

‖ℎ̄‖𝐻=𝜀 ‖𝑟(ℎ̄)‖𝑌
𝜀

.

Observe that, by linearity of  ,𝑗𝑓 (ℎ̄),

sup ‖ ,𝑗𝑓 (ℎ̄)‖𝑌 = 𝜀‖ ,𝑗𝑓‖‖−‖𝐻 ,‖−‖𝑌 .

‖ℎ̄‖𝐻=𝜀

16 
On the other hand, as all norms on 𝑌 = R𝑚𝑁  are equivalent, we have 
that 𝑟(ℎ̄) = 𝑜(‖ℎ̄‖𝑌 ), so

lim
𝜀→0

sup
‖ℎ̄‖𝐻=𝜀 ‖𝑟(ℎ̄)‖𝑌

𝜀
= 0

and, therefore, we obtain that

lim
𝜀→0

sup
‖ℎ̄‖𝐻=𝜀 ‖ ,𝑗𝑓 (ℎ̄)‖𝑌 − sup

‖ℎ̄‖𝐻=𝜀 ‖𝑟(ℎ̄)‖𝑌
𝜀

= lim
𝜀→0

sup
‖ℎ̄‖𝐻=𝜀 ‖ ,𝑗𝑓 (ℎ̄)‖𝑌 + sup

‖ℎ̄‖𝐻=𝜀 ‖𝑟(ℎ̄)‖𝑌
𝜀

= ‖ ,𝑗𝑓‖‖−‖𝐻 ,‖−‖𝑌

and the Theorem follows. □

Using this operator norm framework allows us to analyze explicitly 
the cases where the norms ‖−‖𝐻  and ‖−‖𝑌  are 𝐿𝑝-norms and to prove 
the main Theorem  3.1. We will split the proof depending on which 
norm corresponds to an 𝐿𝑝 norm with the highest value of 𝑝.

From this point on, we will assume that ‖ − ‖𝐻  is an 𝐿𝑝-norm and 
that ‖ − ‖𝑌  is an 𝐿𝑞 norm.

Proof of the main theorem when 𝑝 = 𝑞

Theorem A.2.  Let 𝑓 be a 2 function. If ‖ − ‖𝐻  and ‖ − ‖𝑌  are the 𝐿𝑝

norms, then

𝑠 ,𝑗 (𝑓 ) = max
𝑖

{

‖

‖

‖

𝑑𝑗𝑓 (�̄�𝑖)
‖

‖

‖𝑝

}

.

Proof.  By Theorem  A.1, we have

𝑠 ,𝑗 (𝑓 ) = ‖ ,𝑗𝑓‖𝑝,𝑝.

Thus, we have to compute

max
‖ℎ̄‖𝑝=1

‖ ,𝑗𝑓‖𝑝 = max
‖ℎ̄‖𝑝=1

( 𝑁
∑

𝑖=1

𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑝

|ℎ𝑖|
𝑝

)1∕𝑝

under the constraint ∑𝑖 |ℎ𝑖|
𝑝 = 1. Changing the variable 𝐻𝑖 = |ℎ𝑖|

𝑝

and rising to power 𝑝 the optimized function yields the following linear 
optimization problem.

max
∑

𝑖 𝐻𝑖 = 1
𝐻𝑖 ≥ 0 ∀𝑖

𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑝)

𝐻𝑖

which is attained by taking 𝐻𝑖 to be 1 when its coefficient is the biggest 
possible and 0 in any other case. Thus

max
∑

𝑖 𝐻𝑖 = 1
𝐻𝑖 ≥ 0 ∀𝑖

𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑝)

𝐻𝑖 = max
𝑖

𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑝

and, therefore,

max
‖ℎ̄‖𝑝=1

‖ ,𝑗𝑓‖𝑝 =

(

max
𝑖

𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑝)1∕𝑝

= max
𝑖

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑝)1∕𝑝

= max
𝑖

‖𝑑𝑗𝑓 (�̄�𝑖)‖𝑝. □

Proof of the main theorem when 𝑝 > 𝑞

Theorem A.3.  Let 𝑓 be a 2 function. If ‖−‖𝐻 = ‖−‖𝑝 and ‖−‖𝑌 = ‖−‖𝑞
with 𝑝 > 𝑞, then

𝑠 ,𝑗 (𝑓 ) =
⎛

⎜

⎜

𝑁
∑

( 𝑚
∑

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

𝑞)
𝑝

𝑝−𝑞 ⎞
⎟

⎟

𝑝−𝑞
𝑝𝑞

.

⎝

𝑖=1 𝑘=1 | |

⎠
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Proof.  As before, by Theorem  A.1, we have
𝑠 ,𝑗 (𝑓 ) = ‖ ,𝑗𝑓‖𝑝,𝑞 .

We have to compute

‖ ,𝑗𝑓‖𝑝,𝑞 =

(

max
‖ℎ̄‖𝑝=1

𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)

|ℎ𝑖|
𝑞

)1∕𝑞

.

Changing the variable 𝐻𝑖 = |ℎ𝑖|
𝑞 , setting �̄� = (𝐻1,… ,𝐻𝑁 ) and rising 

to power 𝑞 the optimized function, we need to find the maximum of
𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)

𝐻𝑖

under the constraint ‖�̄�‖𝑝∕𝑞 = 1. Taking 𝑝′ = 𝑝
𝑝−𝑞  and 𝑞′ = 𝑝∕𝑞 (so that 

1
𝑝′ +

1
𝑞′ = 1) and applying Hölder’s Inequality with norms 𝐿𝑝′  and 𝐿𝑞′

yields
𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)

𝐻𝑖 ≤
‖

‖

‖

‖

‖

‖

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)𝑁

𝑖=1

‖

‖

‖

‖

‖

‖𝑝′

‖�̄�‖𝑞′

=
‖

‖

‖

‖

‖

‖

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)𝑁

𝑖=1

‖

‖

‖

‖

‖

‖𝑝′

with equality when ℎ𝑖 ∝
(

∑𝑚
𝑘=1

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

𝑞)𝑝′∕𝑞′

. Finally, taking the 𝑞th 
root of this quantity yields

‖ ,𝑗𝑓‖𝑝,𝑞 =
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)𝑁

𝑖=1

‖

‖

‖

‖

‖

‖𝑝′

⎞

⎟

⎟

⎠

1∕𝑞

=
⎛

⎜

⎜

⎝

𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)𝑝′
⎞

⎟

⎟

⎠

𝑞∕𝑝′

obtaining the desired result. □

Proof of the main theorem when 𝑝 < 𝑞

Theorem A.4.  Let 𝑓 be a 2 function. If ‖−‖𝐻 = ‖−‖𝑝 and ‖−‖𝑌 = ‖−‖𝑞
with 𝑝 < 𝑞, then
𝑠 ,𝑗 (𝑓 ) = max

𝑖

{

‖

‖

‖

𝑑𝑗𝑓 (�̄�𝑖)
‖

‖

‖𝑞

}

.

Proof.  By Theorem  A.1, we have
𝑠 ,𝑗 (𝑓 ) = ‖ ,𝑗𝑓‖𝑝,𝑞 .

Thus, we have to compute

‖ ,𝑗𝑓‖𝑝,𝑞 =

(

max
‖ℎ̄‖𝑝=1

𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)

|ℎ𝑖|
𝑞

)1∕𝑞

.

Changing the variable 𝐻𝑖 = |ℎ𝑖|
𝑝, setting �̄� = (𝐻1,… ,𝐻𝑁 ) and rising 

to power 𝑞 the optimized function, we need to find the maximum of
𝑁
∑

𝑖=1

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)

𝐻𝑞∕𝑝
𝑖

under the constraint ∑𝑖 𝐻𝑖 = 1, with 𝐻𝑖 ≥ 0 for all 𝑖. As 𝑞∕𝑝 > 1, the 
objective functional is a convex function on 𝐻𝑖 and, thus, it attains its 
maximum value at one of the vertices of the domain. It is then clear that 
the maximum is attained taking 𝐻𝑖 = 1 precisely where the coefficient 
∑𝑚

𝑘=1
|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

𝑞
 attains its maximum value and 𝐻𝑖 = 0 for the rest of 

the values, so

max
̄

‖ ,𝑗𝑓‖𝑞 =

(

max
𝑖

𝑚
∑

|

|

|

|

𝜕𝑓𝑘 (�̄�𝑖)
|

|

|

|

𝑞)1∕𝑞
‖ℎ‖𝑝=1 𝑘=1 | 𝜕𝑋𝑗
|
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= max
𝑖

( 𝑚
∑

𝑘=1

|

|

|

|

|

𝜕𝑓𝑘
𝜕𝑋𝑗

(�̄�𝑖)
|

|

|

|

|

𝑞)1∕𝑞

= max
𝑖

‖𝑑𝑗𝑓 (�̄�𝑖)‖𝑞 . □

Appendix B. Pseudocode for 𝜶-curves analysis

Below is the pseudocode for performing the 𝛼-curves analysis on 
pre-computed derivatives to quantify the feature importances from 
both global and local perspectives. These derivatives could be from 
any machine learning model. Package neuralsens, which includes 
functions to perform the 𝛼-curves method analysis, directly computes 
these partial derivatives for multi layer perceptron (MLP) models.

Algorithm 1 alpha_sens_curves: Compute 𝛼-Curves
Require: Jacobian ∈ R𝑁×𝑛: Jacobian of machine learning model.
Require: max_𝛼: maximum alpha to analyze. Defaults to 16.
Require: step_𝛼: increment between consecutive alphas. Defaults to 

1.
1: 𝐴 ← { 1, 1 + step_𝛼, 1 + 2 ⋅ step_𝛼,… , max_𝛼}
2: 𝛼_curves ← empty 2D array of shape (|𝐴|, 𝑛)
3: for 𝑗 ← 0 to 𝑛 − 1 do
4:  for 𝑡 ← 0 to |𝐴| − 1 do
5:  𝛼 ← 𝐴[𝑡]

6:  𝛼_mean←
(

1
𝑁

𝑁
∑

𝑖=1

|

|

|

Jacobian[𝑖, 𝑗]||
|

𝛼)
1
𝛼

7:  𝛼_curves[𝑡, 𝑗] ← 𝛼_mean
8:  end for
9: end for
10: return 𝛼_curves

Explanation of the steps:.
• Input Data. The matrix Jacobian ∈ R𝑁×𝑛 contains pre-computed 
partial derivatives of the model’s output with respect to each 
input variable. Specifically, Jacobian[𝑖, 𝑗] is 𝜕�̂�𝑖

𝜕𝑋𝑗
= 𝜕𝑓

𝜕𝑋𝑗
(�̄�𝑖), for 

sample index 𝑖 and feature index 𝑗.
• Alpha Range. An array 𝐴 is constructed to hold the discrete 𝛼
values from 1 to 𝚖𝚊𝚡_𝛼, spaced by 𝚜𝚝𝚎𝚙_𝛼. Each 𝛼 ∈ 𝐴 corresponds 
to a particular way of aggregating partial derivatives (𝛼-mean).

• Initialize 𝛼-Curves. An empty 2D array, 𝛼_𝑐𝑢𝑟𝑣𝑒𝑠, of shape (|𝐴|, 𝑛)
is allocated to store, for each feature 𝑗 (columns) and each 𝛼
(rows), the aggregated sensitivity metric.

• Double Loop.
– Outer loop: 𝚏𝚘𝚛𝑗 ← 0 to 𝑛 − 1. Iterates over each feature 𝑗.
– Inner loop: 𝚏𝚘𝚛𝑡 ← 0 to |𝐴|−1. Iterates over each 𝛼 value in 

𝐴.
– Inside the inner loop, the 𝛼-mean quantity is computed as:

(

1
𝑁

𝑁
∑

𝑖=1

|

|

|

Jacobian[𝑖, 𝑗]||
|

𝛼
)

1
𝛼

– The 𝛼-mean is stored in the corresponding [𝑡, 𝑗] element of 
the 𝛼_curves object.

• Return. The function returns 𝛼_𝑐𝑢𝑟𝑣𝑒𝑠, a matrix whose rows repre-
sent different values of 𝛼 and whose columns represent different 
features. This can be plotted to visualize how feature sensitivities 
evolve from global (small 𝛼) to local (large 𝛼).

Data availability

Data will be made available on request.
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