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A B S T R A C T   

A successful energy transition will be firmly based on the effective integration of distributed energy resources 
and on the integration of new flexibility providers into the energy system. To make this possible, a deep 
transformation in the design, operation and planning of power distribution systems is required. Currently, a lack 
of comprehensive planning tools capable of supporting operators in their investment plan options exists. As a 
result, reinforcements of conventional grid assets are common solutions put in place. This paper proposes a 
methodology to obtain cost-optimal distribution network expansion plans, by modelling a single-stage distri
bution network planning tool, using conventional assets as well as flexibility contracting from demand response. 
A Tabu Search metaheuristic has been implemented in order to solve the optimization problem. A case study 
based on a realistic large-scale city network model is presented, for a planning horizon of ten years with sig
nificant load growth due to electromobility penetration. Results show that, in the case study analysed, the use of 
load flexibility in combination with conventional reinforcements can reduce the total expansion network cost by 
about 7.5 %. Furthermore, a sensitivity analysis on the cost of flexibility contracting is undertaken. Remarkably, 
the methodology presented generalises to further alternative solutions by providing a straightforward financial 
benchmark between the latter and conventional grid expansion.   

1. Introduction 

The proceeding energy transition requires a transformation of the 
design, operation and planning of power systems internationally in 
order to accommodate high shares of distributed energy resources 
(DER). As DER are connected to power distribution networks, these 
could require expansions that should be optimized to efficiently inte
grate DER, ensuring the minimum cost for society. These expansion 
measures can comprise: i) conventional expansion of primary equipment 
capacity (transformers, cables, etc.) or ii) non-conventional expansion 
with active technologies such as advanced control and automation of 
grid infrastructure equipment and coordination of DER behaviour. The 
non-conventional approach turns formerly passive distribution net
works, dominated by the fit-and-forget approach, into active distribu
tion networks (ADN). 

In power system analysis, energy system scenarios are used to model 
future situations (e.g. in one or more decades) in terms of projected 
demand and generation. For distribution networks, the types and 
amount of distributed generation (photovoltaic (PV), wind, combined 

heat and power, etc.) together with the new loads (electric vehicle (EV) 
chargers, heat-pumps, etc.) provide the expected load curves over the 
years. Taking a scenario as given, the peak load can be derived as a 
reference for the planning analysis [1]. Here it is important to consider 
that new active loads which respond to some internal or external signal, 
e.g. demand response (DR), can alter the expected peak-load considered 
for planning. Therefore, as the peak-load of an ADN becomes more 
flexible with the increasing amount of active elements and controlla
bility of ADN, the operational conditions of ADN need to be considered 
already in the planning stage [2]. The next step is then to identify the 
changes/expansions to be implemented in the network under study to 
match generation and demand at peak time while achieving technical 
feasibility. Generally, an increase in the demand with the same infra
structure can cause two types of violations of the operational con
straints: in terms of voltage and thermal limits. Exceeding them in non- 
transient steady-state conditions for a certain time can cause unac
ceptable system states, posing a menace to assets, people and the envi
ronment. Given the aforementioned, the goal of the grid planner is to 
make optimal investment decisions that alleviate all operational 
constraint violations for the network under study at future load. The 
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optimization of investment decision-making mostly considers economic 
objectives based on investment and operational cost, while potentially 
other objectives such as reliability, environmental impact and DER 
hosting capacity can be considered as well. The decision-making for 
distribution grid expansion comprises decisions on grid capacity, tech
nology choice as well as investment and installation time. The decision 
on grid capacity is largely dependent on the projected load flows at a 
certain time, based on the modelled network at future peak-load. 

The technology chosen to solve the projected grid violations should 
ideally depend on the overall benefits of the individual technology as 
well as their lifetime costs, including initial investment, operation and 
maintenance cost. The investment related benefits contain not only the 
benefits of mitigating grid congestions but can also provide further 
benefits such as increased grid observability, higher resilience, or 
improved voltage control. To address violations at specific network 
components or in specific network areas, various technology solutions 
can be applied in distribution network planning (DNP) and operation. 
Besides the conventional technology options, such as capacity expansion 
of transformer or power line rating, non-conventional grid expansion 
technology options such as the use of flexibility, such as from DR, or 
actively controlled network elements are gaining increasing attention in 
research as well as application. 

2. State-of-the-art 

2.1. Conventional versus active distribution planning 

As mentioned, several options can be considered, whose adequate 
value and long-term effectiveness is understudied under different energy 
system scenarios [3]. Consequently, today’s, existing technology options 
such as DR are not fully considered in investment decision making, 
leading to non-optimal investment decisions with respect to technology 
option, capacity, and time of the investment. 

Historically, conventional distribution planning is undertaken for 
two basic conditions, normal operational conditions as well as emer
gency conditions. Depending on the expected load growth, the existing 
network and related preconditions, the planning decisions are based on 
the optimal location of substations, location and number of feeders and 
their design, optimal allocation of load and substation capacity, as well 

as the optimal mix of transformers by substation. 
ADN are distribution networks with a higher degree of automation 

and control. Therefore, ADN planning extends the complexity of con
ventional planning with additional operational considerations. Some of 
the operational schemas involve loads, distributed generation (DG) and 
storage, such as active and passive feed-in management, like the auto
matic or on-demand curtailment of DG as well as the use of the load 
flexibility provided by DR. Other operational schemas in ADN are more 
focused on active grid elements such as the switching of regulation taps 
of distribution transformers (i.e. on-load tap changer (OLTC)), network 
reconfiguration and generally advanced control schemas for voltage 
control (e.g. involving voltage regulators, DER control, OLTC, etc.) 
[4,5]. Each of these active technologies can defer network investment or 
even replace a conventional network investment. However, these non- 
conventional technologies usually entail higher operational costs, 
which deserve further investigation. 

Large-scale integration into distribution networks of electrically 
chargeable vehicles (ECV) and DER in general, creates the need to plan 
the distribution grid expansion along the expansion of distributed gen
eration and new loads [6]. 

2.2. Meta-review of conventional and ADN planning review papers 

A significant number of review papers on conventional and ADN 
planning have recently been published. Henceforth, in this paper we 
carry out a meta-review. Table 1 shows a brief description of the char
acteristics considered in the review papers. To solve conventional 
planning problems, various exact (mathematical programming) as well 
as approximate optimization approaches have been taken [7–11]. While 
some of the authors classify the overall optimization approach as opti
mization method [8–10], others divide the later into mathematical 
formulation and solution method [7,11]. 

Embedded in these optimization methods are solution methods with 
common problem simplification techniques to handle the computational 
complexity of distribution grid expansion planning models, such as 
constraint relaxation, problem decomposition or stopping the search 
process early when a feasible solution is found. When computational 
time with exact mathematical models reach limits, clustering techniques 
as well as (meta-) heuristic algorithms can be applied [12,13]. 

Nomenclature 

Ωbr set of branches 
Ωl set of conductor branches 
Ωs set of transformer branches 
Ωdr set of buses with contractable flexibility 
Ωcon set of available conductor types for investment 
Ωtra set of transformer types for investment 
Ωfl set of contractable flexibility types 
i, j index of buses 
brij index of branches 
con index of conductor types 
tra index of transformer types 
fl index of contractable flexibility 
n planning horizon [a] 
r discounting rate [%] 
ll length of conductor l [km] 
∝n,r annuity factor for planning horizon n and discounting rate 

r [%/a] 
Cop

con annual operational cost of all available conductor types 
[€/km/a] 

Cop
tra annual operational cost of all available transformer types 

[€/a] 

Cop
fl annual cost for contracting of all available flexibility types 

[€/kw/a] 
Cinv

con investment cost of all available conductor types [€/km] 
Cinv

tra investment cost of all available transformer types [€] 
Vmin

i minimum allowed voltage at bus i [kV] 
Vmax

i maximum allowed voltage at bus i [kV] 
Imax
br maximum allowed current in branch br [A] 

Aop ∑
of all annuities based on operational cost [€/a] 

Ainv ∑
of all annuities based on investment cost [€/a] 

Cop
con,tot 

∑
of all operational cost for conductors [€/a] 

Cop
tra,tot 

∑
of all operational cost for transformers [€/a] 

Cop
fl,tot 

∑
of all operational cost for flexibility contracts [€/a] 

Cinv
con,tot 

∑
of all investment cost for conductors [€/a] 

Cinv
tra,tot 

∑
of all investment cost for transformers [€/a] 

bbrij ,con binary variable indicating conductor investment decision 
at branch brij 

bbrij ,tra binary variable indicating transformer investment decision 
at branch brij 

bi,fl binary variable indicating decision to contract flexibility at 
bus i  
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Metaheuristics are generalized heuristic optimization methods, often 
inspired in nature, that do not guarantee optimality but can generate 
good results. Therefore, these are mostly classified as part of the family 
of approximate optimization algorithms [13]. Such algorithms, as 
mathematical programming based approximate optimization in [14] 
and knowledge-based expert systems in [15], have a long history in 
operations research and specifically in conventional DNP often included 
alongside Artificial Intelligence approaches [16,17]. Within meta
heuristics, one can distinguish between population-based and single- 
solution based algorithms [13,16,18]. Common examples of 
population-based metaheuristics are genetic algorithms (GA) [16,19] 
and particle swarm optimization (PSO) [20]. While Tabu Search (TS), 
Simulated Annealing and Iterative Local Search are popular single- 
solution based metaheuristic search algorithms [18,21]. 

Generally, the various approaches found in literature share some 
commonalities, such as the mathematical formulation which describes 
how the objective function of the optimization approach is formulated; 
The decision variables, such as the location and/or size of substation, 
feeder, reclosers, storage systems, ECV charging stations and DG [8–11]; 
the objective function, such as minimization of system losses, 
enhancement of reliability, and minimization of environmental impact 
or cost-effective DER integration; The objective type, which describes 
whether an objective function is formulated as single-objective or multi- 
objective; and the planning type, which differentiates between single- 
period or static models and multi-period or multistage models [8–11]. 

None of the authors of the review papers use flexibility modelling as 
a characteristic for benchmarking ADNP publications. Also, more 
generically, loads are distinguished as elastic or non-elastic in ADN load 
model formulation. Demand side management has not been taken into 
consideration in the reviewed DNP problems [9]. Flexibility is not dis
cussed in general in [20], though DR (as load dependent electricity 
price) is mentioned once in reference to a reviewed paper. 

2.3. Review of papers on DNP including load, generation and storage 
flexibility 

A large number of papers treating DNP and some type of flexibility, 
such as from loads, generation or storage, have been reviewed. The 
twelve most relevant of those are analysed in this paper in greater detail, 

and classified in Table 2. Publications that present general planning 
frameworks, DG or DER hosting studies or papers that are focused on 
energy system scenario studies, have not been included in this review. Of 
the reviewed papers, there are only few publications with DNP models 
that incorporate load flexibility, and none of them presents a validation 
of the model by a case study on a realistic large-scale network. Of those 
reviewed papers, seven apply some type of load flexibility as non- 
conventional expansion measure (e.g. DR, EV smart charging, etc.); six 
apply flexibility from DGs (e.g. DG dispatch, DG curtailment); three 
apply flexibility from storage (e.g. EV including vehicle-2-grid, distrib
uted energy storage systems, etc.). Regarding the solution method for 
the DNP problem, six of the reviewed papers use mathematical pro
gramming, one in combination with a heuristic method (i.e. combining 
OPF with a heuristic). The other five papers use metaheuristics, one in 
combination with a numerical method to solve the Distribution Optimal 
Power Flow (DOPF) [22], and one paper uses a heuristic method [23]. 
Most of the papers use a feeder-type network model, while two use a real 
network model, obtained from DSOs. The number of buses in the 
network models of the reviewed publications ranges from 18 to 355. 
While all papers model the medium voltage (MV) level, some include 
network elements of the low voltage (LV) or high voltage (HV) levels. 
Only one paper includes all three voltage levels, though only 118 buses 
are included, based on a real network, and the solution method used is a 
simple heuristic [23]. 

While relatively small feeder-type network models are convenient 
for many DNP studies, they have various limitations. Their representa
tiveness in large areas with diverse socio-economic and technical char
acteristics can be limited, especially when large-scale grid 
modernization is expected. Also, their value and accuracy with respect 
to benchmarking of advanced optimization algorithms such as network 
reconfiguration, Volt/Var optimization, etc. is limited [24]. Finally, 
feeder-type models usually lack geographical information, which limits 
their meaningfulness in topological studies on reconfiguration as well as 
for resilience studies in the wake of natural disasters. Self-explanatory, 
real network models do not incorporate these constraints, though they 
can mostly not be used in public research, due to their confidentiality as 
they are considered critical infrastructure [25]. Therefore, realistic 
network models can be a effective alternative to confidential real 
network models, while also overcoming the limitations of the feeder- 
type models [26,27]. 

The International Smart Grid Action Network (ISGAN) defines flex
ibility in the context of power systems as “… the ability of power system 
operation, power system assets, loads, energy storage assets and generators, 
to change or modify their routine operation for a limited duration, and 
responding to external service request signals, without inducing unplanned 
disruptions.” [28]. Among all the existing types of flexibility that could 
be applied in power systems, we focus on DR. In this paper we consider 
flexibility contracting as the ability of the distribution system operator 
(DSO) to contract load flexibility from DR through a third party. We 
assume that these contracts are concluded such that the DR service is 
provided reliably. Therefore, considerations regarding the uncertainty 
of successful DR provision from loads participating in DR schemas as 
well as operational and financial considerations of DR service provision 
are beyond the scope of this paper. From the DSO perspective, the 
flexibility is contracted as a result of the long-term planning exercise, 
with possible adoptions in the operational time frames of the DSO. 

In this paper, we contribute to the state of the art by proposing a 
decision-making tool for the use of load flexibility from DR as an 
alternative to conventional network reinforcements for future peak-load 
in a realistic large-scale distribution network. This tool for DNP 
leveraging DR is based on the TS metaheuristic and implemented in 
Python 3. Using this model, we study the conventional grid expansion 
necessary to accommodate the future peak-load caused mostly by the 
growth of loads in the form of chargers for ECV in a Spanish city with 
approximately 160,000 inhabitants. Naturally, the DNP model can be 
applied to other case studies internationally, underlying different 

Table 1 
Characteristics used for various classifications by review papers.   

Resener 
et al. 2018 
[10] 

Xiang 
et al. 
2016  
[11] 

Georgil. 
et al. 2015 
[8] 

Jordehi 
2015 [9] 

Ganguly 
et al. 2013 
[7] 

Optimization 
method 

X  X X  

Mathematical 
formulation  

X   X 

Solution 
method  

X   X 

Decision 
variables 

X X X X  

Objectives X X X X  
Objective type X    X 
Planning type X X X X  
Planning 

duration    
X  

Greenfield vs. 
Brownfield  

X X   

Uncertainty 
modelling  

X   X 

Environment of 
the model 

X     

Network model   X X  
Load model    X  
Reliability 

feature     
X  
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technical standards and power system regulations. We then compare the 
economic cost, in terms of annuities, of conventional expansion with 
that of conventional expansion combined with the use of flexibility. We 
assume that flexibility contracts can be activated at a given set of nodes 
in the network, while it is up to the optimization algorithm to decide 
which of those flexibility contracts will finally be activated. 

The rest of the paper is organized as follows. Section 3 describes the 
problem formulation for ADN planning. Section 4 explores the TS al
gorithm as a solution method. Section 5 presents the case study for ADN 
planning. Next, section 6 shows the results obtained with a detailed 
discussion of our findings and section 7 concludes the study. 

3. Problem formulation 

The single-stage ADN planning problem in this paper aims at iden
tifying optimal investment decision-making by considering conven
tional (power lines and transformers) and non-conventional (contracted 
flexibility) distribution network expansion technologies and solutions. 

The objective function minimizes the sum of annuities for investment 
and operational cost resulting from the overall network expansion in the 
year of the planning horizon. The annuity for investment entails the 
investment cost for lines and transformers discounted with the dis
counting factor over the expected lifetime of the asset. The calculation of 
the total annual cost is based on the annuity for investment plus the 
annual maintenance cost for transformers and lines and the annual 
contracting cost for flexibility. The annuities are used to make costs 
relative to assets with different expected lifetime comparable (e.g. 
flexibility). This ensures a better comparability of conventional network 
expansion investments, e.g. on power lines and transformers, with very 
long lifetimes of up to 40 years with non-conventional alternatives, such 
as flexibility products which have a much shorter life cycle and generally 
a different cost structure. 

Voltage limits for each voltage level are defined by an upper and a 
lower admissible operational voltage. Thermal limits are defined by a 
maximum admissible current in steady-state conditions for transformers 
and power lines or cables. Full connectivity and radiality of the network 
are ensured, when lines or transformers are removed or added. 

The simultaneity of consumption and generation throughout the 
network and over the duration of a year, can create various network 

loading situations. Due to the increasing penetration of DG in many 
distribution networks, reverse power flows can occur locally, which 
must be accounted for in planning. The loading situation with the pro
jected maximum loading of the system is the relevant one for planning 
and defined as network-peak. The future network at the peak-load sit
uation is defined by loads, generators, upper-level system supply and 
their consumption and generation profiles. It is based on a deterministic 
input, describing the distribution and sizing of loads and generators 
throughout the network at peak-load. The detailed future network under 
peak-load considered in the case study is reported in section 5. 

The future network at the planning horizon year results in constraint 
violations, which are removed by determining the optimal set of binary 
expansion decision variable states for all branches (transformers and 
lines) as well as binary contracting decision variables for flexibility 
contracts present at some network nodes. While the former decision 
variables represent the installation of additional or capacity expansion 
of existing transformers and lines, the latter represent the load reduction 
of contracted flexibility at the time of the network peak relevant for 
planning. The optimal set of decision variables, produces a network 
candidate with the lowest total annual cost at the planning horizon, 
while all operational constraints are met and all loads are supplied. 
Power distribution losses are not included in the optimization objective 
but are relevant and they are considered in the calculation of voltage 
drops and therefore are taken into account to ensure no constraint vio
lations occur. 

3.1. Mathematical problem formulation 

Below, the objective function and the respective constraints are 
described mathematically. 

3.1.1. Objective function 

minof = Ainv +Aops.t.investment constraints network security constraints
(1)  

Ainv = Cinv*∝n,r (2)  

Aop = Cop
con,tot +Cop

tra,tot +Cop
fl,tot (3) 

Table 2 
Reviewed DNP papers treating flexibility, their methods and network modelling.  

Reference Mathematical 
programming 

Meta- 
heuristic 

Optimization 
method 

Load 
flexibility 

Generation 
flexibility 

Storage 
flexibility 

Network 
model 

No. of 
buses 

LV 
modelled 

MV 
modelled 

HV 
modelled 

[29] ✓  MILP* ✓   feeder-type 24  ✓  
[30]  ✓ MO-PSO† ✓   feeder-type 33  ✓  
[31] ✓  MINLP‡ ✓   feeder-type 69  ✓  
[23]   heuristic ✓ ✓  real network 118 ✓ ✓ ✓ 
[22]  ✓ SPEA2§ & 

DOPF**  
✓  feeder-type 355  ✓  

[33] ✓  heuristic & 
OPF††

✓  feeder-type 27 ✓ ✓  

[34]  ✓ GA  ✓  real network 267  ✓  
[35]  ✓ PSO   ✓ feeder-type 30  ✓  
[36] ✓  MILP   ✓ feeder-type 18  ✓  
[37] ✓  SOCP‡‡ ✓   feeder-type 122  ✓  
[38] ✓  SOCP ✓ ✓ ✓ feeder-type 50  ✓ ✓ 
[39]  ✓ GA ✓ ✓  feeder-type 33  ✓ ✓ 
This 

paper  
✓ TS ✓   realistic 

large-scale 
network 

2762 ✓ ✓ ✓  

* MILP – Mixed Integer Linear Programming. 
† MO-PSO – Multiobjective PSO. 
‡ MINLP – Mixed Integer Non-Linear Programming. 
§ SPEA2 – (improved) strength pareto evolutionary algorithm[32]. 
** DOPF – solved here using backward-forward sweep as numerical method to solve the OPF problem for radial distribution systems with sufficient precision. 
†† OPF – Optimal Power Flow, here solved using mathematical programming (within MATPOWER). 
‡‡ SOCP – Second Order Cone Programming. 
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∝n,r =
r

1 − 1
(1+r)n

(4)  

Cinv = Cinv
con,tot +Cinv

tra,tot (5)  

Cop
con,tot =

∑

brij∈Ωl

∑

con∈Ωcon

bbrij ,con*Cop
con*ll (6)  

Cop
tra,tot =

∑

brij∈Ωs

∑

tra∈Ωtra

bbrij ,tra*Cop
con (7)  

Cop
fl,tot =

∑

i∈Ωdr

∑

fl∈Ωfl

bi,fl*Cop
fl (8)  

Cinv
con,tot =

∑

brij∈Ωl

∑

con∈Ωcon

bbrij ,con*Cinv
con*ll (9)  

Cinv
tra,tot =

∑

brij∈Ωs

∑

tra∈Ωtra

bbrij ,tra*Cinv
tra (10)  

3.1.2. Network security constraints 
The network security constraints describe the operational limits for 

network equipment. A maximum and minimum permissible voltage as 
well as a maximum permissible current are given in section 5.1. 

Vmin
i ≤ Vi ≤ Vmax

i (11)  

Ibr∨ ≤ Imax
br (12) 

Furthermore, a network connectivity constraint ensures full network 
connectivity at all times. This means that all nodes and consequently all 
loads are connected and none remains isolated. A network radiality 
constraint ensures that the network remains radial after new trans
formers and lines are added. 

To validate the feasibility of network candidates and identify 
constraint violations, AC power flows based on the Newton Raphson 
method are executed. Further details on the implementation of the 
power flow solver in pandapower networks can be found in [40]. 

4. Solution Method: Tabu search 

Developing a model for long-term planning of large-scale ADN is a 
challenging undertaking. Remarkably, the large number of decision 
variables and the large non-convex search space characterized by many 
local optima make the optimization problem very hard to solve. To 
overcome these limitations, we rely on a metaheuristic optimization 
algorithm. Among the metaheuristic search algorithms, population- 
based algorithms seem easier to initially implement as there are many 
generic template programs available, but they require often complex 
mechanisms to manage the solutions of the population. Generally, their 
performance for large-scale DNP has yet to be proven. The selected so
lution method to find the optimal expansion decisions for the year of the 
planning horizon is based on the TS meta-heuristic. Using TS, one can 
leverage the broad expert knowledge of the system behaviour, 
combining technically and economically appropriate simple heuristics 
with the guiding intelligence of the TS algorithm. This feature allowing 
expert knowledge to be encoded to produce technologically likely 
feasible candidate solutions combined with the guided search of the TS 
algorithm implementation was promising as regards tackling realistic 
large-scale networks [41,42]. In TS, simple heuristic rules, that are in- 
line with power system engineering principles and network design 
standards, can be defined as elementary moves. This approach helps to 
navigate and reduce the search space by constraining the neighborhood 
solutions (or network candidates) created during the search process. 

4.1. Algorithm overview 

An overview of the TS algorithm developed is depicted below and 
displayed in Fig. 1. A random candidate as an initial solution for TS 
would not be promising in the combinatorial optimization problem at 
hand. This is because the theoretical or unconstrained search space 
contains only scarcely feasible solutions, which would most likely result 
in a high computational burden to find the first feasible solution from 
which the TS algorithm could work efficiently. Thus, the TS procedure 
starts from an initial feasible solution that might be far from the 
optimum. 

Starting from the initial solution, a set of neighborhood solution 
candidates is generated. Thereafter, the objective function value of each 
solution candidate is calculated. The list of candidate solutions is sorted 
by the OF value and starting from the candidate with the best value, the 
feasibility is checked by power flow analysis and connectivity checks. In 
metaheuristic approaches for DNP, this is a common approach to check 
for constraint violations [22,30,35,39]. In our implementation, using 
pandapower, running the power flow takes only 50 ms for the case of the 

Fig. 1. TS flowchart.  
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realistic large-scale network presented in section 6.2 (on an intel core i7, 
dual core @ 1.8 GHz, 4 GB RAM). This procedure is repeated until a first 
feasible candidate is found. Consecutively, the current best solution as 
well as the tabu list are updated. The update of the tabu list comprises 
the tabu-activation for moves that lead to the newly accepted, current 
best solution as well as the deactivation of tabu-active moves, based on 
the tabu-tenure criteria. Finally, if the termination criterion is not 
reached, a new set of solution candidates are created from the neigh
borhood of the newly assigned current best solution. 

Below, the production of the initial solution with a simple heuristic 
and the metaheuristic TS implementation are described in more detail. 

4.2. Heuristic solution 

The simple heuristic solution (HS) algorithm produces the initial 
solution (network) to be used as the starting point in the TS algorithm. 
As mentioned, this represents the network expanded to cover the load 
situation resulting from the future scenario. The algorithm as well as the 
necessary input data and parameters are described below. 

4.2.1. General HS procedure 
The HS method provides a feasible network that is not optimized for 

cost or any other objective. 
Initially, the pre-processing based on the scenario analyzed is un

dertaken, as shown in Fig. 2. The RNM files are parsed into a geo- 
referenced pandapower network. Operational and planning parame
ters are defined. The resulting network is populated with loads and 
generators, according to the input scenario. Such a network, here called 
“network 2030”, is not feasible, as it suffers constraint violations due to 
the new loads and generators. This network is then passed to the HS 
algorithm (Fig. 3), which expands it until no constraint violations are 
present. Finally, the feasible network, called “expanded network HS 
solution”, is obtained. 

Note that the heuristic solution produced with this HS algorithm is 
not optimal, and very likely over-dimensioned. However, it is a feasible 
solution and the initial point from which the TS algorithm starts its 
optimization search. 

5. Case studies 

In this section, a set of case studies analyse the impact of projected 
equipment/investment cost, combining conventional network expan
sion and non-conventional flexibility solutions. 

5.1. General modelling assumptions 

The network security constraints are parametrised as follows. The 
voltage constraint for the MV network and for the LV network levels are 
set to +/-10% of the nominal voltage. The power capacity limit for lines 
is set to 100% and for transformers is set to 90% of their respective 

nameplate capacity values. 
Economic assumptions regarding asset investment are parametrized 

as follows. The discounting rate for the remuneration of assets is based 
on the Weighted Average Cost of Capital (WACC). This discounting rate 
is set at 6 %. The regulatory expected lifetime of 40 years for trans
formers, power lines and cables is based on Spanish regulation [43]. The 
planning horizon is set to ten years. The investment and maintenance 
cost for conventional network expansion assets is based on the official 
state gazette no. 297 [44]. The economic assumptions regarding the 
provision of flexibility are formulated as an estimated annual capacity 
price for the contracted flexibility that indirectly entails the cost of the 
energy used when providing the flexibility service. The cost for flexi
bility contracting used for the large-scale case in section 6.2, is based on 
the result of the sensitivity analysis undertaken in section 6.1.3. A 
possible price range for the flexibility contracts found in the literature is 

Fig. 2. Pre-processing for HS.  

Fig. 3. HS algorithm flowchart.  
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50 to 140,000 €/MW per year, which is derived from various cost in
formation sources on the electric power system in Spain [45], the 
Spanish electricity market operator [46,47] as well as the relevant 
sources from the flexibility market operation in the UK [48,49]. Inspired 
by this literature research and tested with the planning model, a range of 
annual flexibility cost ranging from 0 to 5,000 €/MW is used in this 
sensitivity analysis. 

For the heuristic search procedure, the minimum additional capacity 
margin of new transformers is set to 40 %; the limit on maximum par
allel power lines to be added is set to 4; the maximum number of parallel 
transformers after expansion is set to two and four for the MV and LV 
level, respectively. 

The peak load hour relevant for expansion planning is based on the 
dataset on load curves by the Spanish transmission system operator REE 
[50]. The peak load is then scaled with respect to the total installed load 
of the case study in the Albacete network. 

5.2. Load scenarios and initial solution 

The initial solution is based on the simple heuristic described in 4.3, 
and used as a starting point for the TS algorithm. The two load scenarios 
considered (2020 and 2030) and results are described below. 

5.2.1. Albacete district in 2020 
The network model, shown in Fig. 4, comprises roughly one third of 

the urban area of the city of Albacete in the autonomous region of 
Castilla-La Mancha, Spain with its roughly 165,000 inhabitants residing 
in an area of approximately four by four km. This open-source network 
model (CC BY-SA 4.0) is publicly available to download [51]. 

The displayed network is a subset of the full Albacete network that is 
built applying the Greenfield RNM [52,53]. At the beginning of the 
planning period, in the year 2020, the network contained two voltage 

levels, namely 20 kV (with 134 buses and 32 km of power lines), and 1 
kV (with 2628 buses and 66.55 km length). There are 121 MV/LV dis
tribution transformers installed with a total nameplate capacity of 61.5 
MVA. There are 2507 LV loads totaling 40.24 MW and 12.07 Mvar as 
well as 12 MV loads totaling 35.59 MW and 10.68 Mvar. The power 
consumption at peak hour is the relevant time slice for expansion 
planning and is estimated using simultaneity factors applied to indi
vidual consumer peaks, as described in [53]. 

5.2.2. Albacete district in 2030 
Based on load growth assumptions considered in this case study, the 

Albacete district system introduced in the previous section undergoes a 
significant load growth due to substantial installation of ECV chargers 
until the year 2030. Based on the Eurelectric scenario with a high ECV 
penetration, four million ECV are expected to be operational in Spain by 
2030 [54]. This translates to 11,335 ECV chargers with a total installed 
capacity of 47.77 MW for Albacete and 3575 ECV chargers with 14.9 
MW for the district modelled in this case study. Following the ECV 
charger classification contained in IEC 61851 [55], the charging power 
is allocated to 93.5% of the chargers (39.19 MW) assumed to be slow 
chargers with a power rating of 3.7 kW each, 6.2% (7.77 MW) to be 
quick chargers with 11 kW each and 0.3% (0.8 MW) to be fast chargers 
with 22 kW rated power each. These are normally distributed over the 
city and installed on LV buses only. The total ECV load active in the 
network represents 25 % of the total expected charging capacity, which 
is the peak-load contribution expected in the Eurelectric scenario. 

For this network model, we assume that all ECV quick, rated at 11 
kW, and fast chargers, rated at 22 kW, are capable to participate in DR 
by reducing their load to 50 % of their contracted power at peak hour 
[55]. Furthermore, 392 pre-existing loads with sum of 12.53 MW pro
vide flexibility similar to the ECV chargers, reducing their load to 50 % 
and providing a total load reduction potential of 6.26 MW. This results 

Fig. 4. Network model of district of Albacete.  
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in a total DR potential of 7.67 MW. 

5.3. MV/LV-Feeder: Optimization of conventional expansion 

To illustrate the conventional and non-conventional expansion 
optimized by the TS algorithm developed, a small MV/LV-Feeder from 
the northeastern corner of the Albacete district, described in section 
5.2.1, is presented below. The MV feeder with five MV/LV distribution 
transformers and their respective LV feeders are isolated from the 
original network (section 5.2). This feeder contains two voltage levels, 
namely 20 kV with five buses and 1,196 m of power lines and 1 kV with 
91 buses and 2,718 m in length. The five MV/LV transformers have a 
total nameplate capacity of 2.45 MVA. The loads consist of 222 LV loads 
totaling 2.53 MW and 0.57 Mvar. 

In this case study, multiple analyses are carried out to understand the 

functioning and the consistency of the solutions obtained by the TS al
gorithm based on the MV/LV feeder presented. 

6. Results and discussion 

Firstly, the initial solution produced by the HS algorithm is pre
sented. Secondly, solutions optimized by the TS algorithm are shown, 
both with and without non-conventional expansion using flexibility 
contracting. Next, under a reduced load-growth scenario, a comparison 
is made between two levels of flexible load activation potential. Where 
in one case, and the base scenario in this paper, the load reduction of 
activated flexibility contracts is reduced to 70% of the installed load 
capacity, in the other case the load reduction of activated flexibility 
contracts is reduced to 0 %, practically switching off the entire flexible 
load. Finally, the results of a sensitivity analysis are presented, showing 

Fig. 5. Feeder case studies, network plot results and results of flexibility cost sensitivity analysis.  
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how sensitive the application of flexibility as an expansion measure is to 
the price of flexibility. This sensitivity analysis is conducted on a large 
number of values for flexibility cost, though only a small selection of the 
corresponding results is presented and discussed below. In addition, to 
further test the results found, the sensitivity analysis is undertaken for 
two scenarios, varying the load reduction of activated flexibility con
tracts, with a reduction to 0 % as well as to 70% of the installed load 
capacity. 

6.1. Feeder-type network 

6.1.1. Standard scenario with and without flexibility 
The initial solution based on the simple HS algorithm described in 

section 4.3 contains five transformer expansions with a total of 1.47 
MVA additional nameplate capacity and eleven parallel line expansions 
with additional 250 m of length. As can be observed in Fig. 5.1, all 
transformers are expanded, from the transformer situated directly at the 
slack bus (indicated as a yellow square) to the one situated at the end of 
the MV-feeder. The expanded LV line segments appear in all LV net
works below the expanded transformers. This results in a total annuity of 
16,664.37 € for the MV/LV feeder for the initial solution produced with 
the simple heuristic. 

Running the TS algorithm on the initial solution presented in the 
previous paragraph produces an optimized solution as shown in Fig. 5.2. 
This solution contains five transformer expansions with a total of 1.24 
MVA additional nameplate capacity and eight parallel line expansions 
with additional 210 m of length. Compared to the initial solution, three 
parallel line expansions totaling 40 m have been removed and one 
transformer expansion has been downgraded from 630 kVA to 400 kVA. 
With 16,534.89 € the total annuity for the MV/LV feeder expansion is 
2.16 % lower compared to the initial solution presented in the previous 
case. This is achieved by avoiding the expansion of three LV power lines. 

In this case the use of flexibility contracting as an alternative to 
conventional expansion is introduced, assuming the 2030 scenario, as 
described in section 5.2.2. The price considered for flexibility is 5,000 
€/MW and year. Compared to the initial solution, this results in a 
network expansion with five transformers and additional nameplate 
capacity of 1.24 MVA, as in the previous case. The expansion of power 
lines results in six LV power lines with a total of 180 m, instead of eight 
power lines with 210 m compared to the previous case. Additionally, 
four flexibility contracts are activated, with a total load reduction of 
11.6 kW, as shown in Fig. 5.3. The resulting expansion annuity is 
16,420.62 €, which is 0.7 % less than the solution only with conven
tional expansion measures presented in the previous case. It can be 
observed that in this scenario, a significant reduction of total annuity is 
not achieved, as the available flexibility does not provide sufficient load 
reduction to allow for less transformer expansion, compared to the 
previous case. 

6.1.2. Scenario with reduced load including flexibility 
In the case of reduced load-growth, the loads are scaled to lower 

levels than in the 2030 base scenario described in section 5.2.2. The 
reduced peak-load consequently results in the removal of all but two 
transformers and one power line expansion from the initial solution. A 
stronger reduction of the expansion measures is obtained as expected, as 
the initial solution is based on the peak-load of the 2030 scenario and the 
oversized expansion, as shown in the first two cases. No flexibility 
contracts are activated, as seen in Fig. 5.4. The resulting expansion an
nuity is 6,322.11 €, which is unsurprisingly, significantly lower than in 
the scenarios at 2030 load-growth. This confirms the sensitivity of the 
planning algorithms to the future load in the year where the expansion is 
projected. 

The prior case reduces the contracted flexible loads to 70% of their 
installed power. The following case assumes the same as the previous 
scenario but allows the flexible loads to be reduced to 0 %, in case of 
flexibility contract activation. As may be observed in Fig. 5.5, this results 

in the removal of all but one transformer and the removal of all power 
line expansions from the initial solution. Additionally, seven flexibility 
contracts are activated, resulting in a 54.03 kW load reduction. It can be 
clearly observed that the second to last transformer in the MV-feeder is 
not expanded, as compared to the previous case; instead, some of the 
flexibility downstream of the transformer is activated. Likewise, it can 
be observed that in this case the power line expansion, that was present 
in the previous case is removed, while some flexibility downstream of 
this power line is activated. 

This illustrated well how flexibility, if sufficiently available, can 
work as an alternative to conventional power line expansion, selected by 
the TS algorithm due to the use of ejection chains, as described in section 
4.4. The overall annuity, with 3,221.12 €, is therefore unsurprisingly 
low. Despite representing this extreme case, these results highlight the 
importance of the amount of flexibility that can be made available for 
each load, being a critical factor for flexibility to serve as an alternative 
to conventional reinforcements. 

6.1.3. Scenarios with sensitivity to flexibility cost 
In order to identify the sensitivity of the ADN planning methodology 

to the cost of flexibility, a brief sensitivity analysis is undertaken. As in 
the previous section, two levels of load reduction in case of flexibility 
contract activation are analyzed. In the more conservative case, the 
flexible loads active power consumption is reduced to 70 % of its peak- 
load contribution. In other words, 30% of the nominal active power of 
the load is available as flexibility. In the more extreme case, this 
reduction reaches 0 %, practically corresponding to a deactivation of the 
respective loads. In other words, 100 % of the nominal active power of 
the load is available as flexibility. 

The sensitivity analysis has been undertaken by running the TS 
optimization for a wide range of flexibility cost, from 0 to 5,000 €/MW. 
It is to be noticed that the values on the horizontal axis are not on a 
linear scale, but skewed around some of the threshold values for the cost 
of flexibility. The results of this analysis, for both levels of load reduc
tion, are shown in Fig. 5.6. It can be observed how the more extreme 
load reduction level leads to a significantly higher share of flexibility 
contract activation, here up to 27%, as long as the cost of flexibility 
remains below roughly 860 €/MW. This is due to the fact that the higher 
total load reduction in the respective network segments allows the 
flexibility contracting to serve as an effective alternative to non- 
conventional expansion measures such as power line or transformer 
expansion. 

For the case with the more extreme load reduction, it shows that 
below an annual cost of 150 €/MW the cost did not limit the application 
of flexibility as an alternative to conventional expansion. For more 
conservative load reduction, on the other hand, it shows that this 
threshold value is at 860 €/MW. 

The results of all the case studies presented in sections 6.1.1, 6.1.2 
and 6.1.3 serve to illustrate the basic behavior of the planning method, 
reducing the network expansion cost from the initial solution to the 
minimum while serving the peak-load and satisfying the technical 
constraints. Both for the case with conventional and non-conventional 
(flexibility) expansion measures. In addition, the different load reduc
tion potentials for activated flexibility contracts in section 6.1.2, dem
onstrates that flexibility can work well as an alternative to conventional 
grid expansion, if it is available in sufficient capacity at the relevant 
locations of the network. The last case study in section 6.1.3 exemplifies 
the impact of different cost for flexibility contracting on the application 
of flexibility as an alternative to conventional expansion. Furthermore, 
the more complex injection of moves in the form of ejection chains, with 
flexibility contracting as an alternative to transformer expansion, is 
observable. 

6.2. Realistic large-scale network 

In the first case, flexibility is not available to be contracted, but the 
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TS algorithm searches for network candidates with a better objective 
function value that fulfils all constraints. The resulting network is shown 
in Fig. 6. The expansion needs for conventional expansion is shown in 
Table 4, with a total annual cost of 282,609.18 € for a load growth of 
19.78 % between 2020 and 2030. The evolution of the objective func
tion value during the search procedure of the TS optimization is shown 
in Fig. 7. 

The load and asset data between this case and the one in the next 
paragraph is compared in Table 3. 

In the second case, flexibility contracting is available as an alterna
tive expansion measure. Based on some values from real-world appli
cations of flexibility in distribution systems [48,49], a value of 5,000 
€/MW has been selected for this case study on the realistic large-scale 
network. 

This results in the activation of 87 flexibility contracts at 78 buses, 
reducing the peak load contribution of those loads by 50%, which 
translates to a total of 618.27 kW load reduction. At 5,000 €/MW for the 
contracting of flexibility, this results in savings of 21,189.56 € or 7.5 % 
compared to the annual cost for conventional expansion only. The 
expansion needed for conventional expansion with the peak-hour relief 
by contracting load flexibility is shown in Table 4, with a total annual 
cost of 261,419.62 €. As shown in Table 3, these savings are mostly 
realized due to a reduction of 2.61 MVA in transformer capacity and an 
reduction of 0.92 km in the LV power lines expanded, compared to the 
case with conventional expansion only. 

The network after expansion with conventional and flexibility 
measures is shown in Fig. 9. The evolution of the objective function 
value during the search procedure of the TS optimization is shown in 
Fig. 8. 

In Table 3, load and asset data between the cases with and without 
flexibility contracting are compared, as depicted above. 

6.3. Future challenges and research 

These results, based on the DNP methodology introduced in section 
4, show the potential for contracting flexibility to reduce the peak hour 

Fig. 6. Network expansion plot without flexibility activation.  

Fig. 7. Total annuity of selected candidate solutions during the search pro
cedure, without flexibility. 

Table 3 
Load growth and network elements at 2020 and 2030 after expansion.  

RNM 2020 2030 2030 + DR 

P_load_tot [MW] 75.83 90.83 90.21 
Q_load_tot [Mvar] 22.78 22.75 22.62 
P_losses [MW] 1.59 2.23 2.21 
P_losses [%] 2.1 2.46 2.45 
Transformers    
MV/LV count 121 129 129 
MV/LV capacity [MVA] 61.5 78.99 76.38 
Power lines    
MV power lines [km] 32.01 32.17 32.17 
LV power lines [km] 66.55 82.0 81.08  
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load critical to the planning problem. For further research, illustrative 
challenges are to be presented, for instance on how to use the potential 
flexibility provided by larger ECV charging stations in car parks or 
commercial buildings on the MV level or decarbonized heating systems 
such as heat-pumps. 

While we have shown that flexibility contracts can significantly 

reduce conventional network investments for capacity expansion, it 
remains to be seen how reliable the flexibility provision at the peak-load 
can be assumed. Compared to flexibility contracts, conventional 
network expansion measures are characterized by high investment cost 
upfront, but once installed, the equipment provides the capacity 
constantly and reliably. Generally, two approaches are taken to rely on 
flexibility. Explicit flexibility provision through flexibility contracts, in 
which the provider has the obligation to fulfil the contract and implicit 
flexibility, which relies on dynamic network tariffs that are high enough 
at peak hours and therefore incentivize load reduction. In the case of 
implicit flexibility, the fulfilment of the load reduction depends on socio- 
economic preferences of consumers which cannot be ensured deter
ministically. In the case of explicit flexibility provision, the providers’ 
fulfilment of the obligation to provide contracted flexibility is ensured 
by financial reward as well as penalties in the event of non-compliance 
with the reaction to the control-signal sent by the DSO. At the cost of 
flexibility of 5,000 €/MW or 5 €/kW per year, the economic incentive to 
provide flexibility seems too low to sufficiently mobilise DR partici
pants. Especially as this cost must not only incentivize the consumer to 
adopt consumption behaviour but also serve to recuperate the cost for 
the installation and maintenance of ICT and the operation of the 
aggregator service. 

Further research shall be undertaken to evaluate the impact on 
expansion cost due to various DER (heat-pumps, PV, storage, etc.) at 
different scales deployed in the network. Furthermore, the impact on 
expansion cost due to more smart grid technologies such as distribution 
transformers with OLTC, dynamic network reconfiguration through 
switching operations or dynamic line rating shall be evaluated. The TS 
optimisation method can be improved by introducing more specific and 
better-targeted move insertions to create a higher rate of feasible and 
high-quality candidates per iteration. Lastly, upgrading the model to
wards a multistage planning model is a promising future line of research. 

Table 4 
Total cost for conventional expansion and for conventional plus flexibility 
contracts.   

2030 2030 + DR* 

Total annuity: 282,609.18 € 261,419.62 € 
of which:   
Power lines 60,493.59 € 56,910.99 € 
Transformers 222,115.60 € 201,417.26 € 
Flexibility 0 € 3,091.38 €  
* at 5,000 €/MW per year. 

Fig. 8. Total annuity of selected candidate solutions during the search pro
cedure, with flexibility. 

Fig. 9. Network expansion plot with flexibility activation.  
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7. Conclusions 

This paper demonstrates that Tabu Search is effective in solving the 
distribution network planning problem using load flexibility as an 
alternative to conventional network reinforcements. The approach to 
first produce a technically feasible but not cost-optimal solution with a 
rather simple heuristic method, which is consecutively optimized by the 
Tabu Search algorithm has proven to be successful. In addition, the 
usage of ejection chains, as they are known in Tabu Search literature, is 
shown to be useful to swap non-conventional with conventional 
expansion measures. The use of Tabu Search as a metaheuristic opti
mization algorithm, whose implementation allows relatively much 
freedom to implement the very domain-specific technical and regulatory 
characteristics and planning requirements, allows us to deal well with 
even large-scale networks on city scale with 2762 buses. 

A sensitivity analysis with respect to the cost of flexibility contracting 
has shown that different thresholds exist, depending on the particular 
feeder conditions and the available load flexibility, below which load 
flexibility provision is preferably used over conventional expansion, in 
discrete steps. 

The paper shows that the use of load flexibility, as an alternative to 
conventional expansion can reduce the total cost with respect to the 
conventional expansion solution by 7.5 % for the analysed large-scale 
case study, at a load flexibility cost of 5,000 €/MW and year. Taking 
into account the high costs of distribution system expansion for the 
underlying load growth scenario, this would translate into major savings 
if applied for the whole distribution systems of a country or region. 

Some recommendations for further research entail the analysis of the 
impact of a range of relevant energy system scenarios, the modelling of 
smart grid technologies as well as performance improvements on the 
Tabu Search algorithm. 
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