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Abstract  

In recent years, the volume of Mergers and Acquisitions (“M&A”) has increased 

significantly, driving heightened interest in predicting these transactions due to their 

potential profitability for investors, attributed to the premium paid by the acquirer. This 

study investigates the use of Natural Language Processing (“NLP”) Transformers to 

predict potential M&A targets within the U.S. technology sector by analyzing textual data 

from companies' 10-K filings, specifically the Management Discussion and Analysis 

(“MD&A”) sections. 

Traditional prediction models often rely on financial metrics. However, this research 

explores the potential of integrating textual information to improve prediction accuracy. 

Utilizing deep learning models such as ALBERT, FinBERT, and Longformer, the study 

finds that combining textual and financial data enhances model performance. Among 

these models, FinBERT, which is trained in financial texts, demonstrates the highest 

accuracy. Despite these promising results, the study's small and imbalanced dataset limits 

the generalizability of the findings. 

Therefore, future research should focus on expanding the dataset and incorporating 

additional financial and textual variables to improve the performance of the analysis 

Keywords: Natural Language Processing, Mergers & Acquisitions, Transformers and 

Text analysis  
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Resumen 

En los últimos años, el volumen de Fusiones y Adquisiciones ha aumentado 

significativamente, generando un interés creciente en predecir estas transacciones debido 

a su potencial rentabilidad para los inversores, atribuida a la prima pagada por el 

adquirente. Este estudio investiga el uso de Transformadores de Procesamiento de 

Lenguaje Natural para predecir posibles objetivos de F&A en el sector tecnológico de 

EE.UU. mediante el análisis de datos textuales de los informes 10-K de las empresas, 

específicamente en las secciones de Discusión y Análisis de la Gestión. 

Los modelos de predicción tradicionales suelen basarse en métricas financieras; sin 

embargo, esta investigación explora el potencial de integrar información textual para 

mejorar la precisión de las predicciones. Utilizando modelos de aprendizaje profundo 

como ALBERT, FinBERT y Longformer, el estudio encuentra que la combinación de 

datos textuales y financieros mejora el rendimiento del modelo. Entre estos modelos, 

FinBERT, entrenado en textos financieros, demuestra la mayor precisión. A pesar de 

estos resultados prometedores, el pequeño y desequilibrado conjunto de datos del estudio 

limita la generalización de los hallazgos. 

Por lo tanto, la investigación futura debería centrarse en expandir el conjunto de datos e 

incorporar variables financieras y textuales adicionales para refinar el análisis 

Keywords: Procesamiento de Lenguaje Natural, Fusiones y Adquisiciones, 

Transformadores, Análisis de Texto 
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Chapter 1 

Introduction 

 

1. Introduction 
 

1.1. Objectives 

 

The objective of the paper is to analyze companies’ reports using Natural Language 

Processing (“NLP”) Transformers to predict possible targets for a Merger and Acquisition 

(“M&A”) buyside. The primary aim of the paper is to test whether the use of textual 

information rather than financial indicators is statistically meaningful in predicting a 

merger target/bidder. To delimit the data for the study, the focus of the study will be on 

the technological sector in United States.  

The choice of industry and geography is based on the volume of transactions and the 

characteristics of the industry. There has been a lot of consolidation over the 25 years in 

the technology sector as many companies are looking to buy competitors to acquire core 

competencies, emerging technologies, and specialized talent in order to remain 

competitive (Institute of Mergers, Acquisitions & Alliances, 2024). In addition, the 

development of new technologies over the last 25 years has favored this consolidation. In 

terms of geography, the study will focus on the United States, as this is where the vast 

majority of technology companies have their headquarters, and it is one of the places with 

the greatest technological innovation. The concentration of startups, large investments in 

Research and Development (“R&D”) with their respective research centers, frequency of 

operations and competitiveness make the US a key geography for the study. 

1.1.1. Specific objectives 

 

• Description of M&A and main motives behind the transactions and contextualize 

their relevance and impact in defining the industry landscape and fostering 

business and economic growth. 

• Develop a detailed literature review to identify and understand the quantitative 

techniques, particularly in the realm of Natural Language Processing, to 

understand and model human language patterns and structures. 

• Analysis of qualitative reports using Transformer Neural Networks 
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• Assessment and evaluation of the accuracy of the model and its viability  

• Explain the main limitations of the approach, conceptually and of the model itself. 

 

1.2. Topic motivation 

 

Since the late 1900s, the volume of Mergers and Acquisitions in terms of the number and 

value of transactions has increased exponentially, with a peak in 2021 with 58,308 

transactions and a total value of c.5,235 billion dollars (Institute of Mergers, Acquisitions 

& Alliances, 2024). Along with the increase in the number of deals goes the growing 

interest in predicting M&A operations and the companies that will be involved, because 

it has a lot of value for investors and other key stakeholders. Identifying targets before 

transactions take place is a strategy that can be highly profitable for investors due to the 

premium paid by the acquirer on the intrinsic value of the target share (Katsafados et al., 

2021). This implies that foreknowledge of future transactions enables the investor to 

preempt the market by purchasing said securities, which will subsequently be acquired 

by a bidder, thereby profiting from the premium to be paid for those securities in the 

future. Moreover, other research papers have demonstrated that investors could also 

benefit from prediction because the share prices of firms involved in M&A operations 

tend to increase right after the announcement (Parungao et al., 2022).  

As will be concluded from the literature review presented in section 2 of this paper, 

although there are studies on the prediction of M&A targets and bidders, the vast majority 

focus on the analysis of financial variables and key ratios such as: leverage, capital 

expenditure, or liquidity, which potentially limits the analysis as much of the information 

reported by the company is non-financial and contained in the management report, annual 

accounts, letters to shareholders or, increasingly, in sustainability reports. At its core, the 

alignment between a company's approach to acquiring capability targets and its 

overarching strategy is paramount, with the strategy of a corporation typically elucidated 

through textual exposition in most instances. This gap in literature allows us to seek a 

solution to the same problem from a much more qualitative approach.  

Drawing from my experience in the realm of investment banking, I perceive an even 

greater significance in predicting the parties involved in an M&A transaction, as it offers 

substantial value to the stakeholders of the companies, investors, regulators, and external 

advisors — primarily law firms and investment banks. 
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Moreover, with respect to the technology sector, characterized by its dynamic nature 

where innovations from small start-ups have the potential to disrupt the market, 

companies are compelled to remain vigilant and act swiftly and efficiently to avoid 

lagging behind. Moreover, from an investor's perspective, conducting such analyses for 

the tech sector is highly prudent, given the substantial premiums associated with 

acquiring technological assets, reaching multiples of up to 25 times Enterprise 

Value/EBITDA (Bain & Company, 2022), which can translate into significant gains for 

those able to identify opportunities. 

1.3. Methodology  

 

To conduct this quantitative analysis, we will rely on Python, leveraging its extensive 

libraries and frameworks known for their robustness and flexibility in data analysis and 

machine learning tasks. Regarding our data, we will construct our dataset using a 

comprehensive array of tools, notably Bloomberg and LSEG Refinitiv. In regard to the 

techniques used, we based our analysis on Natural Language Processing Deep learning 

models, more precisely on transformers, as this type of models have the ability to learn 

long-range dependencies and structures between words allowing the model to understand 

the context. More specifically, we will use ALBERT, FinBERT and Lonformer models to 

predict whether a company is likely to be a target of an M&A operation or not, based on 

the Management Discussion and Analysis (“MD&A”) of the 10-K filing 

However, it is imperative to underscore that this model does not seek to discredit the 

relevance of models that only incorporate financial variables. The model presents a series 

of constraints, as non-financial information alone does not gather the entirety of motives 

driving transactions. Moreover, numerous other variables remain unaccounted for in the 

study, such as exogenous market variables, macroeconomic indicators like interest rates, 

technological variables, as well as myriad other factors relating to corporate structures 

and governance, which ultimately dictate the occurrence or absence of M&A transactions. 

1.4. Structure 

 

The development of this research is made up of a second section in which we go over 

existing literature to further develop on the key elements of the paper. The third section 

describes the methodology employed, detailing the processes from data collection to the 

presentation of our model results. The subsequent section is dedicated to discussing and 
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debating our findings, as well as outlining the limitations of our analysis. Finally, the 

concluding section summarizes the key findings of our research and suggests potential 

avenues for future investigation. 
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Chapter 2 

Literature Review  

 

2. Literature review 
 

2.1. Definition and existing literature on prediction of Mergers and Acquisitions 
 

Companies to grow, expand or reinforce their market positioning can either rely on 

organic growth, i.e. with their own operations, or grow inorganically by acquiring 

transformative capabilities to scale up, using M&A. Mergers and Acquisitions are 

operations conducted by corporates that involve restructuring the shareholder structure of 

a company and imply a change of control within companies. These corporate strategies 

are conducted with the intention of improving firm performance through the obtention of 

synergies, access to new markets, or acquisition of a range of capabilities that could not 

be acquired organically and ultimately lead to considerable movements in stock prices.  

Predicting this type of transaction allows investors to benefit from timely information. 

According to existing literature (Bhabra & Hossain, 2017), an investor can achieve 

substantial returns by purchasing shares of the acquiring company two days before the 

announcement and selling them two days afterward. This strategy capitalizes on the 

typical market reaction where stock prices tend to rise following the announcement of a 

transaction. Having insider information or the ability to accurately predict these 

transactions is highly valuable as it allows investors to strategically position themselves 

to benefit from these market movements. 

Over the years, many authors have studied the main indicators for predicting this type of 

transaction, approaching the subject from different perspectives including econometric 

models, financial ratios (Flannery et at., 2020), qualitative approaches (Delis, et al., 2022) 

or using artificial intelligence and machine learning for the analysis (Katsafados et al., 

2021). From all of them is derived this list of key indicators for assessing whether a 

company might be the target of an acquisition. Including, being small in size yet growing 

companies that have not yet reached maturity, being undervalued in the market, having 

poor management or agency problems, and exhibiting a significant mismatch between 

resources and growth potential. This statement has important implications for our study, 
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as while company size and market valuation are purely financial variables, factors such 

as management quality, growth expectations, strategic planning, and how a company 

intends to finance its expansion plans cannot be adequately represented through ratios 

alone, thus needing the analysis of textual information. 

Therefore, it can be concluded that with M&A predictors classified into two broad 

categories: financial variables and non-financial variables, the sentiment communicated 

by managers through corporate strategy, market dynamics, and management may not 

correspond to current financial results and a common topic when explaining merger 

failure is the tendency of focusing on financial variables overlooking the human and 

organizational elements (Calipha et al., 2010). This discrepancy further underscores the 

importance of considering both types of variables when developing a predictive model. 

2.1.1. Artificial Intelligence applied to M&A prediction.  

 

With our focus on non-financial predictors, existing literature shows that the sentiment 

shown in annual reports has direct effect on the probability of a company becoming a 

target and, companies with a higher proportion of negative sentiment shown in their non-

financial reported information are much more likely to become M&A targets (Katsafados 

et al., 2021).   

Furthermore, there are additional studies that utilize state-of-the-art transformer-based 

sentiment analysis to enhance the predictive capabilities of traditional statistical models. 

These studies explore the potential of analyzing the sentiment in company-specific news 

texts to predict M&A targets (Hajek & Henriques, 2024). They aim to leverage advanced 

sentiment analysis techniques to provide deeper insights and improve the accuracy of 

predictions in identifying potential M&A activities. 

Additionally, numerous studies have focused on various industries and attempted to 

utilize machine learning to automate the analysis process when predicting whether a 

company is a suitable candidate to merge based on text documents from the Securities 

Exchange Commission, such as the full 10-K filing (Jiang, 2021) or specific sections like 

the Management Discussion (Routledge et al., 2013). Hence, our study broadens the 

literature on employing text analytics on market news or annual reports for M&A target 

predictions in an industry where research is still lacking. 
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However, all these models have certain limitations, primarily in the realm of data 

availability. The vast majority of data and reports for private companies are often not 

public, which limits the generalizability of the models. In addition to this, there is also the 

challenge of language ambiguity, which can be difficult for models to capture, and the 

issue of model interpretability. 

2.2. Technology industry in the United States; consolidation and growth prospects 
 

In recent years, the US Tech sector has undergone significant consolidation, with the need 

to acquire new technical and technological skills as the main driving force. More 

specifically, the high technology industry has been, by far, the industry with the largest 

number of deals, representing 19.9% of all deals announced between 2000 and 2018, and 

ranking third in terms of overall value (Institute of Mergers, Acquisitions & Alliances, 

2024), with some companies engaging in as many as 30 deals per year (Bain & Company, 

2022).  

 

Figure 1. US technology M&A activity evolution. Deals valued at +US$100m                                                    

Source: Ernst & Young, 2023 

As shown in figure 1, in the aftermath of COVID-19 crisis, most global M&A deals 

focused on technological innovation, a cross-sectional and transformative element of the 

contemporary economy, proving to be one of the most resilient sectors to the crisis. 

However, as shown in figure 1, in recent years the industry has experienced a significant 

reduction in both the volume and size in terms of value of deals. This trend can be 

attributed to the conservative approach that companies have adopted regarding M&A 

strategies, emerging in response to the interest rate hike in March 2022 due to Covid-19 

crisis and exacerbated by the Ukraine conflict. Furthermore, the decrease in deal value 

can also be explained by market dynamics. It is not solely high-value transactions that 
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companies are focusing on, but also thousands of low-profile/lower-value transactions 

aimed at adding capabilities that enhance performance rather than transformative 

transactions that seek to disrupt the core business. 

Despite these trends, the surge in artificial intelligence is expected to drive a new cycle 

of growth for the industry, with cloud computing and cybersecurity also identified as key 

growth drivers (Deloitte, 2023). Consequently, companies may need to acquire these new 

capabilities into their product portfolio, reactivating the M&A market in the upcoming 

years. Due to past volumes and expected future consolidation, we argue it would add great 

value to existing literature to study this industry in depth and to develop models to 

understand how consolidation functions within it. 

2.2.1. Drivers of consolidation 
 

Innovation is the source of competitive advantage for enterprises and a key growth driver.  

Additionally, buying external capabilities allows for quicker time-to-market rather than 

relying on internal R&D to improve technology, that is normally associated with high 

risk, large capital investment and long research and development cycle. Therefore, 

technology M&A is one of the most effective strategies for enterprises to quickly acquire 

innovative resources and enhance their technological innovation capabilities to cope with 

changes in their business models (Suo et al., 2023) 

In regards of motivation sources for mergers and acquisitions in this industry, research 

has demonstrated that the primary motivation for technology mergers and acquisitions is 

to acquire high-quality and scarce technological resources from the target enterprise, 

thereby enhancing innovation capabilities. Existing studies indicate that the largest 

technological companies—Apple, Alphabet, Amazon, Facebook, and Microsoft—all 

based in the United States, continuously compete in terms of products and services, and 

rely on these acquisitions to constantly update their ecosystems, restricting competition 

and consolidating the platform’s position in the market (Gautier & Lamesch, 2020).  

Existing literature also concludes that the specificity of the business model and the 

inherent uncertainty associated with companies whose values depend on future outcomes 

are among the primary drivers of this consolidation (Rossi et al., 2013). In this context, 

the acquisition of a small and promising startup can represent a significant competitive 
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advantage in the future, consequently, the introduction of new technologies and 

developments will be associated with a high volume of M&A transactions in this industry. 

2.3. Natural Language Processing (NLP) 

 

2.3.1. Introduction to NLP 

 

With the arrival of GPT-3 by OpenAI and similar technologies designed to process and 

represent language as humans do, Natural Language Processing has gained significant 

attention. This discipline of artificial intelligence used for understanding and processing 

human language and with applications in various fields such as customer service, 

healthcare, and education, traces its origins back to the 1950s. It emerged as a confluence 

of artificial intelligence and linguistics, seeking to create systems that could understand 

and interact using human language. Nadkarni et al. (2011) highlight that the earliest 

efforts during the Cold War included simplistic approaches such as automatic translation 

programs, developed with the objective of translating Russian sentences into English. 

These initial steps marked the beginning of a journey towards increasingly sophisticated 

computational understanding of human language. 

Prior to the 1980s, the vast majority of natural language processing systems were based 

on linguistics and were predominantly symbolic, relying on handcrafted sets of rules 

(Cambria & White, 2014). Due to these types of models not being economically feasible 

for everyday applications, owing to the cost and intensive requirements of computer 

resources (Liberman, 1991), a reorientation occurred during the 1980s. This shift led to 

the emergence of statistical NLP and the introduction of Hidden Markov Models for 

speech recognition (Rabiner & Juang, 1989). The following decades were marked by 

approaches based on supervised machine learning algorithms, based on training labelled 

texts for automatic classification (Manning & Schutze, 1999), until approximately the 

year 2010, when deep learning models and transformers were introduced.  These models 

are based on the application of deep neural network algorithms—or Deep Learning—and 

emerged as a response to the contextual limitations of previous models and to manage the 

inherent complexity of natural language. Thus, the neural network does not base its output 

solely on the input, but also on previous and even subsequent inputs, allowing the 

algorithm to understand the context. 



16 
 

2.3.2. Deep learning transformers 
 

Prior to the emergence of the Transformer architecture by Google creators in 2017, the 

most pioneering deep learning techniques for handling sequential data relied on 

convolutional and recurrent neural networks. Despite the capability of the recurrent 

network Long-Short Term Memory (“LSTM”) architecture or Gated Recurrent Unit 

(“GRU”) to use feedback connections to store representations of input events and 

maintain a type of memory (Hochreiter & Schmidhuber, 1997), these models still 

presented significant limitations when processing and storing large volumes of text. 

Therefore, the arrival of the Transformer architecture radically changed NLP technologies 

and machine translation by allowing models to manage long-range dependencies in the 

text simultaneously and non-sequentially, with greater computational efficiency. 

Transformers are a type of neural network based on attention mechanisms with significant 

contextual memory (Vaswani et al., 2017), introduced in 2017 as an evolution of 

previously mentioned sequential models. These models have the capability to relate 

different inputs over time, producing an output, accordingly, thereby providing a 

semblance of memory and solving issues with contextualization. Moreover, it is no longer 

necessary to present tokens in their natural order; instead, all words can be processed in 

parallel. Currently, most state-of-the-art NLP systems are based on deep Transformer 

models, generally comprised of several stacked transformer layers (Xiao & Zhu, 2023) 

As we will go through in Section 2.3.3., the transformer architecture is based on an 

encoder that reads an input string and a decoder that prints an output string. The 

connection between encoder and decoder is made by an attention mechanism, allowing 

modeling of dependencies without regard to their distance in the input or output sequences 

(Vaswani et al., 2017). 

Among the principal applications of Transformers, we find automatic translation, 

generation of outputs in chatbots and automatic responses, text and sentiment 

classification, and, in general terms, text comprehension and the extraction of patterns 

and structures (Devlin et al., 2018). 

2.3.3. Attention mechanisms and Transformer architecture   

 

Prior to the publication of the paper "Attention is All You Need" (Vaswani et al., 2017), 

other researchers had begun to explore how attention mechanisms applied to encoder-
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decoder models could enhance performance in automatic translation tasks (Bahdanau et 

al., 2014). These models implemented an attention mechanism in the decoder, easing the 

task of the encoder because it no longer had to compress all the information from the 

source sentence into a fixed-length vector and could decide which parts of the input 

sentence to pay attention to, laying the groundwork for future studies. It was in 2017 when 

the Transformer network architecture was introduced, the first transduction model relying 

entirely on self-attention. To understand how this model properly functions, it is important 

to distinguish between two types of attention mechanisms: self-attention and encoder-

decoder attention. 

Multi-head self-attention is named for its use of more than one attention matrix and serves 

as an attention mechanism that relates different positions of a single sequence to compute 

a representation of the sequence and to know which other words in the sequence are 

related to the one being processed. The input matrix, with dimension nx512, is 

decomposed into submatrices of self-attention that display the relationship between each 

of the tokens, and for each word, it calculates how much attention should be paid to the 

rest of the words in the sentence. 

On the other hand, encoder-decoder attention is similar to that described in the previous 

article but will only appear in the sub-layers of the decoder. The decoder layer indicates 

which output vectors from the encoder, and with assigned weights, should be used to 

formulate each of the output vectors of the decoder. 

Once the mechanisms of self-attention and encoder-decoder attention have been defined, 

we can examine the basic architecture of a transformer and how the attention mechanisms 

are integrated with the other elements. 

Both the encoder and the decoder consist of six identical layers, and each token input 

undergoes a process of embedding, which is a vector representation of each token in the 

first layer of the neural network where the dimensions represent semantic or syntactic 

aspects of the words (Mikolov et al., 2013), and a process of positional encoding, which 

describes the location of any token in a sequence so that each position is assigned a unique 

representation. The result of both transformations is a matrix of Nx512, where N refers 

to the total number of tokens. The attention units follow this position and embedding tags, 

calculating a sort of algebraic map of the way each vector relates to the others. The entire 

operation of the transformers revolves around the algebraic processing of this vector, 
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which is multiplied and added repeatedly as the information progresses from input to 

output. 

 

Figure 2. Transformer model architecture. Source: Vaswani et al., 2017, p.3 

As shown in Figure 2, each layer of the encoder (left hand-side of the figure) consists of 

two sublayers: a multi-head self-attention mechanism and a feed-forward network, each 

of which is applied separately and identically to each position. Both elements are followed 

by a layer normalization operation, ensuring that the resulting vectors maintain a unit 

dimension. These representations are then fed into the decoder (right hand-side of the 

figure). The first sublayer of the decoder receives the output and includes a self-attention 

unit. Subsequently, the second sublayer is an encoder-decoder attention unit that receives 

queries from the previous decoder sublayer and keys and values from the encoder's 

output. This configuration allows the decoder to attend to all the words in the input 

sequence. Finally, similar to the encoder, it includes a feed-forward network to introduce 

non-linearity and allow the model to learn more complex patterns.  
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Lastly, the model uses linear transformations and SoftMax function to transform the 

output of the decoder into predicted next token probabilities.  

2.3.4. Overview of pre-trained language models.  

 

The emergence of Transformers has led to the development of numerous language 

models, all of which are based on the Transformer architecture and offer increased 

accuracy and versatility for Natural Language Processing tasks. Among the most popular 

languages, we find; Generative Pre-Trained Transformer (GPT-3), Universal Language 

Model Fine-Tuning for Text Classification (ULMFiT), Bidirectional Encoder 

Representations from Transformers (BERT) o Text-to-Text Transfer Transformer (T5), 

each one focused on a specific NLP task. For instance, GPT-3, specifically designed for 

natural language generation, is focused on producing coherent text and automatic 

responses, while BERT is specialized in tasks related to reading comprehension. 

Pre-trained transformer models, consisting of dozens of layers and millions of parameters, 

have achieved in the last years state-of-the-art performance on NLP tasks and have been 

adopted as key tools for tasks such as question answering, natural language inference or 

sentiment analysis (Sajjad et al., 2023). The idea behind pre-training relates to transfer 

learning and applying existing knowledge to new tasks such as token prediction and 

existing languages are based on two approaches for model-training; fine-tuning and 

feature-based (Devlin et al., 2018). The fine-tuning strategy involves adjusting the entire 

pre-trained model to a new task using data specific to that task, in contrast to the feature-

based approach, where task-specific architectures of the model are used, and specific 

features are employed as input for the model dedicated to each task. 

Therefore, despite its limitations concerning interpretability, reasoning capability, and 

robustness, the emergence of Pre-trained Models (PTMs) has facilitated a significant 

breakthrough in the field of Natural Language Processing. It has been demonstrated that 

pre-trained models clearly outperform those without pre-training (Wang et al., 2023) and 

further findings in this realm are anticipated in the coming years. 
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Chapter 3 

Empirical study 

 

3. Empirical study  
 

In this chapter, we will go through the methodology employed to carry out this analysis, 

which will rely on the Python computer programming language because of its extensive 

available libraries and commands specifically designed to perform Natural Language 

Processing tasks, more specifically, Deep Learning Transformers. 

Fundamentally, our analysis aims to address a text-based classification task, categorizing 

companies as either “0”, meaning that are unlikely to be acquired, or "1", more likely to 

be acquired. This classification will be based on various textual and financial attributes 

derived from the dataset, enabling us to predict acquisition probabilities with higher 

accuracy. 

3.1. Data  

 

In this first section, the aim is to describe the data acquisition process and the sources, as 

well as to detail the data preprocessing tasks conducted prior to the implementation of the 

models. 

3.1.1. Data collection 

 

The first step in conducting our analysis involves obtaining the dataset. As previously 

mentioned, this analysis will focus on predicting M&A targets within the technology 

sector in the United States. To achieve this, we must first obtain historical data on 

transactions conducted in this sector over the last ten years. As perDealogic data, since 

2014, there have been over 39,126 acquisitions in the U.S. tech sector, with a total volume 

exceeding $4,460 billion. Therefore, this period is particularly relevant for our study, as 

it provides a comprehensive overview of recent trends and patterns in tech M&A 

activities, ensuring our analysis is based on a substantial and pertinent dataset. 

Our final dataset will consist of the merger of two subsets: Targets and Non-Targets. In 

this section, we will describe the process of obtaining each subset. 
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To gather the Targets data, we will make use of the Bloomberg Terminal, which allows 

us to download data with specific filters. We exclusively selected transactions categorized 

purely as "M&A", announced after "01-01-2014", and whose targets are public 

companies, ensuring access to their annual financial statements. After applying these 

filters via the Bloomberg Terminal, we exported the data containing the categories shown 

in Figure 3: 

 

Figure 3. Overview of model variables. Source: Own elaboration 

Once the dataset, hereinafter referred to as Targets, is loaded, we apply additional filters 

using Python. These filters include the following steps: removing all transactions that 

contain 'N.A.', retaining only those transactions with an 'Announced Total Value (mil.)' 

greater than 100, and ensuring the 'Deal Status' is marked as Completed. By implementing 

these filters, we ensure that the dataset is refined to include only relevant and complete 

data, which is crucial for the accuracy and reliability of our subsequent analysis. 

To construct the non-targets dataset, we will use the LSEG Refinitiv Data platform API, 

specifically employing the RDP peer-screening function. Choosing a set of comparable 

companies involves looking for firms that are similar to the company we are trying to 

assess, and therefore using peers, contributes positively towards determining whether a 

company is fit for your comparable universe, ensuring that the analysis and valuation are 

accurate and reflective of industry standards. 

We define the peers’ function from the LSEG Refinitiv Data platform in such a way that, 

for each input entry, which will be the Regulated Investment Company (“RIC”), a similar 

identifier to the Ticker, and the announcement date of each Target, we will obtain 50 

peers for the respective company and year. This ensures that the information remains 

comparable over time. Upon applying the function, we obtain a dataset with 870 rows, to 

which we will apply a series of filters. 
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Since we will focus our analysis on the United States, we will only use RICs ending in “. 

OQ”. Once filtered, we will use a random command to retain only 125 non-targets, 

maintaining a ratio of one-to-five targets to non-targets. The rationale for this ratio is 

based on existing literature. Approximately 13.1% of public firms engage in tech activity, 

acquiring smaller firms that are younger and more efficient (Jin et al., 2023) and public 

companies in the top or bottom deciles for growth, have on average a 21% probability to 

become acquisition targets in any given year (Moeller & Vitkova, 2016). Therefore, it is 

reasonable to assume a one-to-five ratio. 

After merging both datasets, Targets and Non-Targets, we will proceed to obtain the 

financial and textual variables necessary to construct our final dataset. 

Extract textual variables 

This textual variable will be the most relevant for the study. To carry out our analysis, we 

will use section 7 of the 10-K filings of our companies. The 10-K is a document that 

publicly traded companies in the United States are required to submit annually to the 

Securities and Exchange Commission (“SEC”). This document reports both their 

financial results and provides a highly detailed view of the company regarding ESG 

matters, key risks, and business outlook. One of the main advantages of this document is 

its standardized format, which allows us to access specific sections using the Electronic 

Data Gathering, Analysis, and Retrieval system (“EDGAR”) API. EDGAR is an online 

database introduced in 1984 to enhance transparency and facilitate the dissemination of 

information. Over the years, an API has been developed that enables users to query this 

database and extract data in various formats, such as JSON, XML, and CSV and by 

leveraging Python libraries such as requests or edgar, you can programmatically send 

queries to the API and handle the responses. 

For our purposes, we will use the Ticker and the Announcement Date year to perform 

these queries. From these queries, we will obtain the URL of 10-K filing and store the 

content in our dataset, under the variable named “MD&A”. More specifically, our 

analysis will focus on obtaining the text contained in Section 7 of the 10-K, known as the 

Management Discussion and Analysis. In the MD&A, management provides an overview 

of the company’s past performance, current financial condition, and future projections 

and outlook. This section is extremely useful for analysis, as any indication of potential 
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acquisitions or other negative sentiments that could signal high growth, scarce resources, 

or funding needs would be interpreted by our model as a sign of a possible target.  

After iterating through the data requests from the SEC and storing them in our dataset, 

we will proceed to the final step of data acquisition, which involves extracting the 

financial variables. 

Extract financial variables 

Lastly, to obtain the financial variables, we will again rely on the LSEG Refinitiv 

platform. Specifically, we will use the Excel Add-In, as making requests from Python 

entails higher computational consumption and fails when tried. We can directly download 

the data from Excel using a series of functions that will always be based on the RIC.  For 

each record on our dataset, we will obtain the following data points.  

− The Price to Earnings ratio, hereinafter P/E, metric commonly used to assess the 

company’s valuation and discuss whether is overvalued or undervalued on the 

market 

− Revenue to determine the relative size of each company  

− EBITDA, to construct the EBITDA margin, calculated as EBITDA/Revenue. This 

measure helps understanding whether the company is profitable relative to its 

revenue 

We will use these three financial variables, assuming that, as previously discussed in the 

literature review section, acquisition targets are typically smaller companies that achieve 

high margins and are undervalued in the market, making them more attractive to potential 

buyers. The attractiveness of these companies is further heightened by their growth 

potential, which, despite their small size, positions them as prime candidates for 

acquisition. 

Once these financial variables have been downloaded, the data collection process is 

completed, and we will start preprocessing the data prior to developing our models. 
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3.1.2. Data pre-processing 
 

Data preprocessing involves the process of cleaning and preparing the data that will be 

used in the model (Siino et al., 2024). This includes distinguishing between the 

preprocessing of numerical variables and the preprocessing of textual data that will be 

processed by the Transformer.  The former typically involves operations such as 

normalization, standardization, and handling missing values, while the latter primarily 

entails tokenization.  

In the data preprocessing stage, we convert the “MD&A” column to a text data type to 

ensure uniform treatment in subsequent analyses. We also eliminate columns such as 

“EBITDA” and “Market Cap at Announcement date”, which were only needed to derive 

financial metrics that we will use. This reduces dimensionality and noise, thereby 

improving model performance (Guyon & Elisseeff, 2003). Subsequently, we standardize 

the “Revenue” variable, as it is the only non-ratio numeric variable, using the 

StandardScaler from the sklearn library. By adjusting its mean to 0 and standard deviation 

to 1, we align the variable on the same scale, mitigating the effects of range differences 

and enhancing the convergence of machine learning algorithms. This approach ensures 

that the data is adequately prepared for use in predictive models, optimizing the efficiency 

and accuracy of subsequent analysis. 

Regarding the text variables, Transformer-based models do not require extensive data 

preprocessing. These models are designed to handle raw text inputs directly, as the 

Transformer architecture effectively encodes long-range dependencies in input sequences 

through self-attention mechanisms (Rahali & Akhloufi, 2023). Utilizing self-attention 

mechanisms, they are highly effective at processing raw text data, thus reducing the need 

for traditional preprocessing steps such as stop word removal, lemmatization, or 

stemming. Therefore, it is not necessary for our models to perform these preprocessing 

tasks. 

3.2. Methodology  

 

To test our initial hypothesis, that textual variables have predictive power in determining 

whether a company can or cannot be an M&A target, we will train three different models 

and test them on a test subset to evaluate their performance. ´ 
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All of the models we used for our analysis; ALBERT, FinBERT and Longformer, are 

based on the Transformers architecture, but each of them specializes in one type of tasks, 

on which we will elaborate further. And, for each of the models, which are different in 

nature, we will calculate a series of statistics that will allow us to evaluate the predictive 

capacity of each model and make them comparable to each other for later discussion. 

3.3. Model  
 

In this section, we will provide a concise description of the three pre-trained Transformer 

models, highlighting their unique characteristics  

3.3.1. ALBERT 

 

A Lite BERT ("ALBERT") is a model inspired by BERT that utilizes factorized 

embedding parameterization and cross-layer parameter sharing to reduce the number of 

parameters, thus enhancing speed and lowering memory usage and consumption. 

Nevertheless, it achieves performance comparable to other models (Casola et al., 2020). 

The technique of "factorized embedding parameterization" splits the embedding matrix, 

shared across all model layers, into two smaller matrices. This separation allows the 

dimension of the input word representation to be distinct from the final hidden layer 

representation dimension. This approach not only reduces the number of parameters but 

also decreases the correlation between word embeddings and the hidden layer, thereby 

aiding in the model's generalization capability (Lan et al., 2020). 

One of the primary reasons for our decision to employ this model for the task at hand is 

that ALBERT has proven particularly effective for small datasets due to its architectural 

innovations that reduce model size without compromising performance. It has been 

shown to be highly suitable for scenarios where data is scarce, as is the case with our 

project. Due to limitations in obtaining data from the SEC, our dataset is quite limited, 

making ALBERT an excellent choice. 

For training this model, we will rely on the libraries PyTorch and Hugging Face 

Transformers. As previously mentioned, since it is not necessary to preprocess the text 

before modeling, we utilize the ALBERT tokenizer to tokenize both training and test data, 

specifically the textual variable MD&A. 
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Once we have completed these preparations, we proceed to load the ALBERT model, 

which is tailored to perform classification tasks. In our case, it is configured to classify 

the 'Target' variable. The next step involves defining the model parameters within the 

training arguments. Here, we specify various settings, including the number of epochs, 

the value of the regularization term to prevent overfitting, and the batch size used in both 

the training and evaluation of the model. 

After the parameters are set, we create the trainer, conduct the model training, and then 

generate predictions along with results. These outcomes will be discussed in detail in 

Chapter 4. This structured approach ensures that the model is fine-tuned to our specific 

requirements, maximizing its efficacy in achieving accurate and robust classification 

results. 

3.3.2. FinBERT 

 

FinBERT is a pre-trained language model designed specifically for financial sentiment 

analysis, built by further training the BERT language model on financial corpora. Since 

the BERT model is initially pre-trained with general texts, it might not perform optimally 

on financial texts, which are often tailored for professional investors.  

By pre-training FinBERT with financial-specific texts, it achieves more accurate results 

within the financial realm. This model focuses on polarity analysis, classifying texts as 

positive, negative, or neutral. More specifically, FinBERT is applied to text classification 

where sentiment classification is conducted by adding a dense layer after the last hidden 

state of the token (Araci, 2019). This approach enhances the model's ability to interpret 

the nuanced language of financial discourse effectively. 

For this model, we will initially deploy a tailored FinBERT model to analyze the 

sentiment of the textual variable “MD&A”. Subsequently, we will train a Random Forest, 

incorporating numerical variables into the analysis. Once we obtain outputs from this 

model, which will categorize sentiments as Neutral (0), Negative (1), and Positive (2), we 

will store these results in a new variable called "Average Sentiment." This variable will 

then be used as an independent variable in training the Random Forest, which will rely 

on the sklearn.ensemble library. Random Forest is a supervised ensemble learning method 

extensively utilized for classification tasks. It constructs multiple decision trees during 

training and delivers classification based on the mode of the classes predicted by the 
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individual trees, correcting for decision trees' habit of overfitting to their training set" 

(Louppe, 2014). 

This approach leverages the strengths of both FinBERT and Random Forest by combining 

the nuanced understanding of financial language provided by FinBERT with the robust 

classification capabilities of Random Forest. 

3.3.3. Longformer 
 

This model was introduced as a solution to the shortcomings of traditional transformer-

based models in processing long text sequences. Designed to efficiently manage extended 

sequences, this model incorporates a mechanism of attention specifically tailored for 

lengthy texts. In our particular use case, Item 7 of the SEC's 10-K filings, which can 

contain up to 3,040 tokens, the employment of a capable model is crucial. Therefore, we 

will utilize the model from Allen Institute’s AI2, capable of processing sequences of up 

to 4092 tokens. 

The efficiency of this model in handling long sequences is achieved through a 

combination of local windowed attention and task-specific global attention. Unlike 

traditional full self-attention, the proposed attention pattern scales linearly with the input 

sequence, making it exceptionally suitable for applications involving longer documents 

(Beltagy et al., 2020). For this application, minimal preprocessing is conducted on the 

independent variable to properly structure and delineate the input data. This ensures that 

the model maximizes its ability to process relevant information within the confines of the 

attention window, thereby optimizing performance for extensive textual analyses. 

3.4. Results 

 

To compare the results obtained from each of the models, we will focus on analyzing the 

confusion matrices produced as a result of the classification tasks conducted by each 

model. A confusion matrix is essentially a summary of the prediction results on a 

classification problem to check the performance of a classification, where each element 

of the matrix represents the count of predictions made by the model for each actual class 

compared to the predicted class (IBM, 2024). 

This table allows us to visualize the performance of the classification model by showing 

the true positives, false positives, true negatives, and false negatives. From it, other 
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metrics for measuring model performance are derived, such as accuracy and precision. 

However, it must be noted that in cases where the dataset is imbalanced, as it is in our 

case, accuracy can be misleading. This is because a model that predicts the majority class 

for all instances will have high accuracy but will fail to correctly identify instances of the 

minority class. These limitations will be addressed in Chapter 4. 

For ALBERT, the confusion matrix resulting is presented in Figure 4 

 

Figure 4. ALBERT Model Confusion Matrix. Source: Own elaboration 

For FinBERT, the confusion matrix resulting is presented in Figure 5 

 

Figure 5. FinBERT Model Confusion Matrix. Source: Own elaboration 

For Longformer, the confusion matrix resulting is presented in Figure 6 
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Figure 6. Longformer Model Confusion Matrix. Source: Own elaboration 

Moreover, to effectively discuss our results, it is imperative to extract a series of statistical 

measures from these confusion matrices. These statistics will enable us, in the subsequent 

section, to thoroughly analyze and compare the outcomes derived from our models and 

we will mainly rely on accuracy and precision 

As shown in Figure 7, on the one hand we have accuracy that measures the proportion of 

correct predictions out of the total number of predictions made, and therefore will be 

useful when evaluating our models. On the other hand, we calculated precision, that aims 

to measure how reliable a model's prediction is in determining whether a particular point 

belongs to the predicted class 

 

 

Figure 7. Summary of key statistics by model. Source: Own elaboration 

 

 

 

 

 

 

 

 

Model   ALBERT FinBERT Lonformer

Accuracy 0.821 0.815 0.809

Precision 0.675 0.5 n.a.
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Chapter 4 

Discussion 

 

4. Discussion of the results 
 

In this section, we aim to discuss and compare the results of our analysis, focusing on the 

strengths and limitations of each pre-trained Transformer model employed in our study. 

Moreover, we will address the general limitations of our research methodology and 

potential implications of our findings.  

Regarding the results obtained, despite the relatively high accuracy of our models, as 

shown in Figure 7, where the accuracy is above 80% in all cases, the sample size is not 

large enough to conclude the generalizability of the model. As illustrated in the confusion 

matrices (refer to Figures 4, 5, and 6), each model included in the test set at least one 

datapoint that belongs to the Target class. However, only one model, specifically 

FinBERT, was able to correctly predict that a datapoint would be a Target. The other 

models achieved approximately 80% accuracy but only correctly predicted the non-Target 

instances, which is not the primary focus of our study. This issue is primarily due to the 

fact that our dataset is not balanced, meaning that the distribution of classes within the 

dataset is uneven and one class or a few classes have significantly more instances than 

others. To address the mentioned issue, aside from increasing the dataset size, particularly 

focusing on obtaining more samples of the minority class, we could also apply techniques 

such as oversampling and undersampling or adjusting class weights. Oversampling and 

undersampling consist of replicating minority class samples or reducing majority class 

samples, relying on techniques like Synthetic Minority Over-Sampling Technique 

(“SMOTE”). Additionally, adjusting class weights in the loss function can penalize errors 

on the minority class more heavily, thereby ensuring a more balanced model performance. 

Regarding the comparison of the results of the models used, it is important to highlight 

several points. Firstly, the ALBERT model offers the advantages of lower memory 

consumption and increased training speed for BERT, resulting in improved efficiency. 

This is reflected in its performance metrics, achieving an accuracy of 0.821 and a 

precision of 0.675 as shown in the confusion matrix in Figure 4. However, its accuracy in 

analyzing financial data is somewhat limited due to its further training on the English 
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Wikipedia and Book CORPUS datasets, which are not specifically tailored to the financial 

domain. 

Secondly, the FinBERT model excels in capturing language knowledge and semantic 

information within the financial domain due to its training with financial corpora. This is 

evidenced by its strong performance metrics, with an accuracy of 0.815. This model not 

only performs well in identifying discussions related to Environment, Social, and 

Governance (ESG) issues, which significantly impact company valuations (Ernst & 

Young, 2021), but also allows for the combination of text and numerical variables, 

facilitating a more comprehensive analysis of available data. Despite its strengths, 

FinBERT faces the challenge of processing input texts longer than 512 tokens. To address 

this, we fine-tuned model is used to return logit values for each chunk, and the average 

sentiment is computed across all chunks. This process necessitates dividing the text in the 

"MD&A" variable into fragments of up to 512 tokens. 

Lastly, the Longformer model extends the maximum input sequence length from 512 to 

4,096 tokens, thereby enhancing its ability to model long-term dependencies in lengthy 

texts. This capability is crucial for analyzing extensive financial documents, as 

demonstrated in Figure 7, maintaining a competitive accuracy of 0.809. However, the 

increased complexity of the Longformer model makes it more demanding in terms of 

computational resources to train and execute.  

Taking all these factors into account, we conclude that FinBERT provides the best results 

for our classification task. The superior performance of this model can be partly attributed 

to the incorporation of financial variables alongside the sentiment from MD&A. 

Furthermore, it demonstrates that the sentiment presented in the Management Discussion 

and Analysis provides valuable information when running a classification using the 

Random Forest model. 

In any case, it is imperative to discuss the main limitations of our models and 

methodology. Firstly, many algorithms tend to learn better from situations that have more 

weight in the dataset, which means that the model sometimes fails to correctly predict the 

minority class. In our case, we have an imbalanced dataset where the proportion of one 

class is considerably smaller. This presents a significant issue, as our primary interest lies 

in the model's ability to accurately predict the infrequent events in our dataset and should 

be addressed by either increasing minority class samples, applying oversampling and 
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undersampling techniques to increase the data points of the underrepresented category, or 

adjusting class weights to penalize errors on the minority class more heavily. 

Another major limitation of the model lies in the sample size chosen. The main constraint 

in expanding the dataset is the acquisition of data from the SEC website via an API, as 

the number of data points in the dataset is tied to a limited number of requests. To achieve 

better results and develop a more robust model with greater generalization capability, it 

would be necessary to work with a larger dataset. Additionally, due to existing regulation, 

that only requires public companies to disclose their financial statements, our dataset is 

composed solely of public companies as there is no disclosure obligation for private 

companies. This implies that the sample is not fully representative of the entire market 

landscape. The absence of data from private companies could lead to biased model 

predictions, as it excludes a significant portion of the corporate sector that may behave 

differently from public companies. This limitation underscores the need for regulatory 

changes or alternative data acquisition strategies to obtain a more comprehensive dataset 

that includes private entities, thereby enhancing the model’s accuracy and reliability. 
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Chapter 5 

Conclusions 

 

5. Conclusion 
 

Although the dataset was not sufficiently large to assert the robustness of the model’s 

predictive power, the evaluation of the model highlights the importance of NLP-based 

techniques, as they can enhance the model's predictive power. Therefore, it can be 

concluded that the analysis of the MD&A sections within the 10-K filings improves the 

accuracy of our model, and Transformer-based models prove to be useful for this type of 

task. 

The main finding of our analysis is that, after evaluating the results obtained from the 

three models used, we conclude that despite the significance of textual variables for the 

model and the predictive power of Transformers, the best performing model is the one 

that combines both financial and textual regressors. 

Among the limitations of the model, we highlight three main points: our analysis is 

theoretical in nature and lacks generalizability due to the small size of our sample. 

Constructing a larger dataset, composed of both public and private entities, would help 

mitigate these limitations and improve the results obtained from our analysis. 

Additionally, our model has greater predictive power in forecasting if a firm will not be 

involved in an M&A transaction, rather than the focus of our research, which was to 

predict if a firm will be involved in a transaction as a target. To address this limitation, a 

larger and more balanced sample would likely contribute positively to the model’s 

performance for the intended task. 

Lastly, regarding the main implications of our findings, we highlight the repercussions of 

the analysis for financial investors, companies, and regulators. The integration of NLP-

based techniques, particularly Transformer models like FinBERT, provides a more 

accurate tool for predicting a company's involvement in mergers and acquisitions 

transactions. This facilitates better decision-making and more effective risk management 

by anticipating significant market movements. 
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Furthermore, using this same approach, improved models can be constructed to perform 

more detailed assessments of companies' financial health and prospects, relying not only 

on numerical data but also on text analysis of key documents such as the MD&A sections 

of 10-K reports. For investors, such analysis will translate into higher returns; for 

companies, it will enhance their internal analysis and forecasting capabilities; and for 

regulators, it will offer greater transparency and insight for decision-making. 

5.1. Future lines of research  

As a continuation of our analysis, it would be interesting to conduct a similar study using 

data from the same sector and period but including additional variables to determine 

which regressors better predict the possibility of being a target or not. 

On one hand, we could conduct an analysis with other sections of the 10-K filings or other 

documents, such as company press releases and 8-K filings, and on the other hand, rely 

on other financial metrics that may have greater predictive power, such as the 

EV/EBITDA ratio, revenue growth, or any metric that assesses the company's leverage. 

Additionally, future research could also aim to explore the integration of sentiment 

analysis on earnings call transcripts to gauge the management's outlook and confidence, 

which may serve as an additional predictor for M&A activities. This approach would 

combine textual sentiment data with traditional financial metrics to enhance the predictive 

accuracy of the model. 

 

 

 

 

 

 

 



35 
 

Declaración de Uso de Herramientas de Inteligencia Artificial Generativa en Trabajos 

Fin de Grado 

ADVERTENCIA: Desde la Universidad consideramos que ChatGPT u otras herramientas 
similares son herramientas muy útiles en la vida académica, aunque su uso queda 

siempre bajo la responsabilidad del alumno, puesto que las respuestas que proporciona 
pueden no ser veraces. En este sentido, NO está permitido su uso en la elaboración del 
Trabajo fin de Grado para generar código porque estas herramientas no son fiables en 
esa tarea. Aunque el código funcione, no hay garantías de que metodológicamente sea 
correcto, y es altamente probable que no lo sea.  
 

Por la presente, yo, Lucía Elegido Ojanguren, estudiante de Administración y Dirección 

de Empresas y Análisis de Negocio de la Universidad Pontificia Comillas al presentar mi 

Trabajo Fin de Grado titulado " Predicting M&A targets in the U.S. tech industry using 

ALBERT, FinBERT and Longformer models", declaro que he utilizado la herramienta de 

Inteligencia Artificial Generativa ChatGPT u otras similares de IAG de código sólo en el 

contexto de las actividades descritas a continuación. 

1. Brainstorming de ideas de investigación: Utilizado para idear y esbozar posibles 

áreas de investigación. 

2. Referencias: Usado conjuntamente con otras herramientas, como Science, para 

identificar referencias preliminares que luego he contrastado y validado. 

3. Metodólogo: Para descubrir métodos aplicables a problemas específicos de 

investigación. 

4. Interpretador de código: Para realizar análisis de datos preliminares. 

5. Estudios multidisciplinares: Para comprender perspectivas de otras 

comunidades sobre temas de naturaleza multidisciplinar. 

6. Corrector de estilo literario y de lenguaje: Para mejorar la calidad lingüística y 

estilística del texto. 

7. Sintetizador y divulgador de libros complicados: Para resumir y comprender 

literatura compleja. 

8. Revisor: Para recibir sugerencias sobre cómo mejorar y perfeccionar el trabajo 

con diferentes niveles de exigencia. 

9. Traductor: Para traducir textos de un lenguaje a otro.  

 

Afirmo que toda la información y contenido presentados en este trabajo son producto 

de mi investigación y esfuerzo individual, excepto donde se ha indicado lo contrario y se 

han dado los créditos correspondientes (he incluido las referencias adecuadas en el TFG 

y he explicitado para que se ha usado ChatGPT u otras herramientas similares). Soy 

consciente de las implicaciones académicas y éticas de presentar un trabajo no original 

y acepto las consecuencias de cualquier violación a esta declaración. 

Fecha: 20 June 2024 

Firma: Lucía Elegido Ojanguren  
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Appendix 

Predicting M&A targets in the U.S. tech industry using 
ALBERT, FinBERT and Longformer models  

In [ ]: 

!pip install edgar 

!pip install openpyxl 

!pip install sec-api 

!pip install beautifulsoup4 

!pip install nltk 

!pip install refinitiv.dataplatform 

!pip install xgboost 

!pip install plotly 

!pip install eikon 

!pip install pandas scikit-learn torch transformers accelerate 

!pip install transformers torch datasets 

In [ ]: 

import pandas as pd 

import edgar 

import requests 

from bs4 import BeautifulSoup 

import time 

import json 

import configparser 

import datetime 

import numpy as np 

from numpy import mean 

from numpy import std 

import os 

import plotly.express as px 

import plotly.graph_objects as go 

from plotly.subplots import make_subplots 

 from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LogisticRegression 

from sklearn import tree 

from sklearn.ensemble import RandomForestClassifier 

import xgboost as xgb 

from xgboost import XGBClassifier 

from sklearn.decomposition import PCA 

from transformers import BertTokenizer, BertForSequenceClassification 

import torch 

from sklearn import metrics 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import classification_report 

from sklearn.metrics import roc_auc_score 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import cross_validate 

from sklearn.model_selection import RepeatedStratifiedKFold 

from scipy.stats import norm 

import warnings 

import refinitiv.dataplatform as rdp 

from sec_api import QueryApi 

from sec_api import ExtractorApi 
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from transformers import AlbertTokenizer, AlbertForSequenceClassification, Trainer, 

TrainingArguments 

from sklearn.model_selection import train_test_split 

import torch 

from transformers import BertTokenizer, BertForSequenceClassification, pipeline 

import matplotlib.pyplot as plt 

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report 

 

Step 1 - Data collection 
Target datasets 

In [ ]: 

#Upload BBG excel 

dataset= pd.read_excel (r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\Datos_v01.xlsx') 

 

#Commands to filter our dataset 

data= dataset.dropna(subset=['Target Ticker', 'Announced Total Value (mil.)']) 

data = data[data['Announced Total Value (mil.)'] >= 100] 

data = data[data['Deal Status'] == "Completed"] 

data = data[data['Deal Type'] == "M&A"] 

 

#Target dataset exploration 

dataset.shape 

print(dataset.shape) 

data.shape 

print(data.shape) 

 

#We have 353 transactions - we randomly select 30 operations 

data= data.sample (n=30, random_state=42) 

Non-targets dataset 
In [ ]: 

#Connect to Refinitiv 

 

import refinitiv.dataplatform as rdp 

app_key = "fb14d6e106e84f068981ebb1c8fd03b814366e30"  

try: 

    session = rdp.open_desktop_session(app_key) 

    print("¿Está la sesión abierta?", session.is_open()) 

except Exception as e: 

    print("Error al abrir la sesión:", e) 

Manually using Refinitiv Workspace we add a new column to our Target data including the RIC - 

Identifier in BBG 

In [ ]: 

target_rics = ['BIRT.OQ^A15', 'MCFE.OQ^C22', 'COUP.OQ^C23', 'CY.OQ^D20', 'AMCC.OQ^A17',  

               'MANT.OQ^I22', 'EPAY.OQ^E22', 'IMS.N^J16', 'DTLK.OQ^A17', 'SYKE.OQ^H21',  

               'IXYS.OQ^A18', 'AVID.OQ^K23', 'ESMT.N^A24', 'CSOD.OQ^J21', 'CAVM.OQ^G18',  

               'MENT.OQ^C17', 'RVBD.OQ^D15', 'USER.N^A23', 'COTV.N^H18', 'BRCD.OQ^K17',  

               'RAX^K16', 'TUBE.O^L16', 'PS.OQ^D21']   

 

target_dates = ['2013-12-05', '2021-11-05', '2022-12-12', '2019-06-03', '2016-11-21',  

                '2022-05-16', '2021-12-17', '2016-05-03', '2016-11-07', '2021-06-18',  

                '2017-08-28', '2023-08-09', '2023-10-23', '2021-08-05', '2017-11-20',  

                '2016-11-14', '2014-12-15', '2022-10-27', '2018-06-19', '2016-11-02',  
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                '2016-08-26', '2016-11-10', '2020-12-13'] 

In [ ]: 

def peers(RIC, date): 

    ''' 

    Get peer group for an individual RIC along with required variables for the models 

     

    Dependencies 

    ------------ 

    Python library 'refinitiv.dataplatform' version 1.0.0a8.post1 

    Python library 'pandas' version 1.3.3 

     

    Parameters 

    ----------- 

        Input: 

            RIC (str): Refinitiv Identification Number (RIC) of a stock 

            date (str): Date as of which peer group and variables are requested - in yyyy-mm-dd 

        Output: 

            peer_group (DataFrame): Dataframe of 50 peer companies along with requested variables 

     

    ''' 

    fields = ["TR.F.TotCap","TR.ExchangeCountryISO"] 

    instruments = 'SCREEN(U(IN(Peers("{}"))))'.format(RIC) 

    peer_group, error = rdp.legacy.get_data(instruments = instruments, fields = fields, parameters = 

{'SDate': date}) 

     

    return peer_group 

In [ ]: 

no_peers = [] 

no_dates = [] 

peer_data = pd.DataFrame() 

  

for i in range(len(target_rics)): 

    try: 

        #request Peer function for each target company in the lits 

        vals = peers(target_rics[i], target_dates[i]) 

        #drop peers with missing values 

        vals.dropna(inplace = True) 

        #add a column for 30 days prior to the M&A announcement 

        vals.insert(loc = 1, column = 'AD-30', value = target_dates[i]) 

        #append target company's peer data to the main dataframe of all peers 

        peer_data = pd.concat([peer_data, vals], ignore_index = True, axis = 0) 

         

    #if error is returned, store ric and request date in a separate list     

    except: 

        no_peers.append(target_rics[i]) 

        no_dates.append(target_dates[i]) 

        continue 

In [ ]: 

peer_data.head(10) 

peer_data.to_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Datos_NT.xlsx') 

In excelwe ammend both datasets so they have the same variables and names in order to properly 

concatenate 

In [ ]: 
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targets= pd.read_excel (r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\targets.xlsx', 

sheet_name='Sheet1') 

nontargets= pd.read_excel (r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\non_targets.xlsx', sheet_name='Sheet1') 

merged_dataset = pd.concat([targets, nontargets], ignore_index=True) 

print(merged_dataset.head()) 

 

Download MD&A for each company 

 

#Hay que ir target por target descargando la información que necesitamos y añadiendolo a nuestro 

dataset para ir almacenando la información relevante 

In [ ]: 

#Example of query for a given ticker and date 

 

from sec_api import QueryApi 

queryApi = 

QueryApi(api_key="7c812487edf3aa8d88b0cd9bf2df50b4679f56b549076ad133291254cdf95838") 

formType:("10-K", "10-KT", "10KSB", "10KT405", "10KSB40", "10-K405") 

     

query = { 

  "query": { "query_string": {  

      "query": "formType:\"10-K\" AND ticker:BIRT AND filedAt: [2014-01-01 TO 2014-12-31]" , 

  }}, 

  "from": "0",  

  "size": "1"  

} 

 

response = queryApi.get_filings(query) 

from sec_api import ExtractorApi 

ExtractorApi = 

ExtractorApi(api_key="7c812487edf3aa8d88b0cd9bf2df50b4679f56b549076ad133291254cdf95838") 

filing_url = str(response['filings'][0]['linkToTxt']) 

section_html = ExtractorApi.get_section(filing_url,"7") 

print(section_html) #Copy this section to our dataset 

 

Extract financial variables 

In [ ]: 

dataset['Revenue'] = None 

dataset['EBITDA'] = None 

dataset['Enterprise Value'] = None 

In [ ]: 

import refinitiv.dataplatform as rdp 

app_key = "fb14d6e106e84f068981ebb1c8fd03b814366e30"   

try: 

    session = rdp.open_desktop_session(app_key) 

    print("¿Está la sesión abierta?", session.is_open()) 

except Exception as e: 

    print("Error al abrir la sesión:", e) 

     

base_url = 'https://api.refinitiv.com/data' 

As get_data_from_refinitiv is not working - we obtain the variables from Refinitiv's excel add-in 

Error - obtain directly from Python the financial variables 
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def get_data_from_refinitiv(ric, year): headers = { 'Content-Type': 'application/json', 'Authorization': 

f'Bearer {app_key}' } 

# Endpoints para cada métrica 

endpoints = { 

    'Revenue': f'{base_url}/content/data/company/{ric}/fundamentals/income-

statement?periodType=FY&fiscalYear={year}', 

    'EBITDA': f'{base_url}/content/data/company/{ric}/fundamentals/income-

statement?periodType=FY&fiscalYear={year}&fields=EBITDA', 

    'EnterpriseValue': 

f'{base_url}/content/data/company/{ric}/valuation?periodType=FY&fiscalYear={year}&fiel

ds=EnterpriseValue' 

} 

data = {} 

for metric, url in endpoints.items(): 

    response = requests.get(url, headers=headers) 

    if response.status_code == 200: 

        result = response.json() 

        # Extraer el valor de la métrica de la respuesta JSON 

        data[metric] = result.get('data', [{}])[0].get(metric, None) 

    else: 

        data[metric] = None 

return data 

for index, row in dataset.iterrows(): ric = row['RIC'] year = row['Year'] data = 

get_data_from_refinitiv(ric, year) 

# Actualizar el dataframe con los nuevos datos 

dataset.at[index, 'Revenue'] = data.get('Revenue') 

dataset.at[index, 'EBITDA'] = data.get('EBITDA') 
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dataset.at[index, 'Enterprise Value'] = data.get('EnterpriseValue') 

dataset.to_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Datos_vF.xlsx', 

index=False) 

print("Datos extraídos y guardados correctamente en refinitiv_data.xlsx") 

Data pre-processing 
In [ ]: 

data= pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Datos_vF0.xlsx') 

print(data.head()) 

In [ ]: 

#Data exploration 

data['Target'].value_counts()  

data.isnull().sum()  

data['MD&A'] = data['MD&A'].astype(str) 

In [ ]: 

#Data cleaning 

columns_drop=['EBITDA','Price closing announcement date','Net income','Market Cap at Announcement 

date','Shares outstanding','Market cap v2'] 

data.drop(columns=columns_drop, inplace=True) 

#Standarization 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

data['Revenue']= scaler.fit_transform(data[['Revenue']]) 

 

print(data.head()) 

Step 2 - ALBERT Model 
In [ ]: 

#Split dataset  

class_1 = data[data['Target'] == 1] 

class_0 = data[data['Target'] == 0] 

class_1_train, class_1_test = train_test_split(class_1, test_size=0.2, random_state=42) 

class_0_train, class_0_test = train_test_split(class_0, test_size=0.2, random_state=42) 

train_data = pd.concat([class_1_train, class_0_train]) 

test_data = pd.concat([class_1_test, class_0_test]) 

X_train = train_data['MD&A'] 

y_train = train_data['Target'] 

X_test = test_data['MD&A'] 

y_test = test_data['Target'] 

print(f"Tamaño del conjunto de entrenamiento: {X_train.shape[0]}") 

print(f"Tamaño del conjunto de prueba: {X_test.shape[0]}") 

In [ ]: 

tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') 

# Función para tokenizar los textos 

def tokenize_data(texts): 

    return tokenizer(texts.tolist(), padding=True, truncation=True, return_tensors='pt') 

 

train_encodings = tokenize_data(X_train) 

test_encodings = tokenize_data(X_test) 

 

class Dataset(torch.utils.data.Dataset): 

    def __init__(self, encodings, labels): 
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        self.encodings = encodings 

        self.labels = labels 

 

    def __getitem__(self, idx): 

        item = {key: val[idx] for key, val in self.encodings.items()} 

        item['labels'] = torch.tensor(self.labels[idx]) 

        return item 

 

    def __len__(self): 

        return len(self.labels) 

 

train_dataset = Dataset(train_encodings, y_train.tolist()) 

test_dataset = Dataset(test_encodings, y_test.tolist()) 

 

model = AlbertForSequenceClassification.from_pretrained('albert-base-v2', num_labels=2) 

 

training_args = TrainingArguments( 

    output_dir='./results',          # Directorio de salida 

    num_train_epochs=3,              # Número de épocas de entrenamiento 

    per_device_train_batch_size=8,   # Tamaño del lote para entrenamiento 

    per_device_eval_batch_size=8,    # Tamaño del lote para evaluación 

    warmup_steps=500,                # Pasos de calentamiento 

    weight_decay=0.01,               # Decaimiento de peso 

    logging_dir='./logs',            # Directorio de logs 

    logging_steps=10,                # Pasos de logging 

    evaluation_strategy="epoch",     # Estrategia de evaluación: cada época 

    save_strategy="epoch",           # Estrategia de guardado: cada época 

) 

 

def compute_metrics(pred): 

    labels = pred.label_ids 

    preds = pred.predictions.argmax(-1) 

    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted') 

    acc = accuracy_score(labels, preds) 

    return { 

        'accuracy': acc, 

        'precision': precision, 

        'recall': recall, 

        'f1': f1, 

    } 

 

trainer = Trainer( 

    model=model,                          

    args=training_args,                   

    train_dataset=train_dataset,          

    eval_dataset=test_dataset, 

    compute_metrics=compute_metrics 

) 

 

# Train 

trainer.train() 

 

# Evaluate 

results = trainer.evaluate() 

print(results) 

 

# Obtain predictions 
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predictions = trainer.predict(test_dataset) 

preds = predictions.predictions.argmax(-1) 

labels = predictions.label_ids 

 

print(f"Tamaño de las predicciones: {len(preds)}") 

print(f"Tamaño de las etiquetas reales: {len(labels)}") 

 

# Confussion matrix 

cm = confusion_matrix(labels, preds) 

 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot(cmap=plt.cm.Blues) 

plt.title('Confusion Matrix') 

plt.show() 

 

# Include predictions to existing dataset 

test_results = X_test.reset_index(drop=True) 

test_results = pd.DataFrame(test_results) 

test_results['Actual'] = y_test.reset_index(drop=True) 

test_results['Predicted'] = preds 

 

test_results.to_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\Datos_Predicted.xlsx', index=False) 

 

Step 3 - Finbert Model 
In [ ]: 

# Dividir el dataset en conjunto de entrenamiento y prueba 

X = data[['Sentiment']] 

y = data['Target'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y) 

 

# Entrenar un modelo de clasificación 

clf = RandomForestClassifier(random_state=42) 

clf.fit(X_train, y_train) 

 

# Hacer predicciones en el conjunto de prueba 

y_pred = clf.predict(X_test) 

 

# Evaluar el modelo 

accuracy = accuracy_score(y_test, y_pred) 

report = classification_report(y_test, y_pred) 

 

print(f"Accuracy: {accuracy}") 

print(f"Classification Report:\n{report}") 

 

# Guardar los resultados en un nuevo archivo Excel 

output_file_path = '/mnt/data/data_with_sentiment_and_predictions.xlsx' 

data['Predicted'] = clf.predict(data[['Sentiment']]) 

data.to_excel(output_file_path, index=False) 

 

print(f"Predictions saved to {output_file_path}") 

In [ ]: 

# Divide MD&A in fragments up to 512 tokens each 

def chunk_text(text, chunk_size=512): 

    tokens = tokenizer.tokenize(text) 
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    chunks = [' '.join(tokens[i:i + chunk_size]) for i in range(0, len(tokens), chunk_size)] 

    return chunks 

 

chunks = data['MD&A'].apply(chunk_text) 

 

max_chunks = max(chunks.apply(len))  

 

for i in range(max_chunks): 

    data[f'MD&A_chunk_{i+1}'] = chunks.apply(lambda x: x[i] if i < len(x) else '') 

 

# Guardar los resultados en un nuevo archivo Excel 

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\Datos_Divided.xlsx' 

data.to_excel(output_file_path, index=False) 

 

print(f"Data with chunks saved to {output_file_path}") 

In [ ]: 

# Cargar el archivo Excel proporcionado con los fragmentos 

data= pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\Datos_Divided.xlsx') 

 

# Cargar el modelo y el tokenizador de FinBERT 

finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone', num_labels=3) 

tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone') 

 

# Verificar si hay una GPU disponible y mover el modelo a la GPU si es posible 

#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

#finbert.to(device) 

 

# Crear el pipeline de análisis de sentimiento 

nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer, device=0 if 

torch.cuda.is_available() else -1) 

 

# Función para obtener el sentimiento de un texto 

def get_sentiment(texts): 

    results = nlp(texts, truncation=True, padding=True, max_length=512) 

    sentiments = [] 

    for result in results: 

        sentiment = result['label'] 

        if sentiment == 'positive': 

            sentiments.append(2) 

        elif sentiment == 'negative': 

            sentiments.append(0) 

        else: 

            sentiments.append(1) 

    return sentiments 

 

# Aplicar FinBERT a cada fragmento y calcular el promedio de sentimiento 

sentiment_columns = [f'MD&A_chunk_{i}' for i in range(1, 21)]  # Nombres de las columnas de 

fragmentos 

sentiment_scores = [] 

 

batch_size = 16  # Tamaño del lote para el procesamiento por lotes 

 

for index, row in data.iterrows(): 

    fragments = [row[col] for col in sentiment_columns if pd.notna(row[col]) and row[col].strip() != ''] 
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    if fragments: 

        # Procesar en lotes para mejorar la eficiencia 

        batch_sentiments = [] 

        for i in range(0, len(fragments), batch_size): 

            batch = fragments[i:i + batch_size] 

            batch_sentiments.extend(get_sentiment(batch)) 

         

        if batch_sentiments: 

            average_sentiment = sum(batch_sentiments) / len(batch_sentiments) 

        else: 

            average_sentiment = 1  # Neutral si no hay fragmentos 

    else: 

        average_sentiment = 1  # Neutral si no hay fragmentos 

     

    sentiment_scores.append(average_sentiment) 

 

# Añadir la nueva columna con el promedio de sentimiento 

data['Average_Sentiment'] = sentiment_scores 

 

# Verificar los resultados 

print(data[['Average_Sentiment']].head()) 

 

# Guardar los resultados en un nuevo archivo Excel 

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\Result_Finbert.xlsx' 

data.to_excel(output_file_path, index=False) 

 

print(f"Data with average sentiment saved to {output_file_path}") 

In [ ]: 

#Only interested in the sentiment not the actual MD&A 

columns_to_keep = ['Target', 'Revenue', 'P/E', 'EBITDA Margin', 'Average_Sentiment']  

data_v2 = data[columns_to_keep] 

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Data_Modelo.xlsx' 

data_v2.to_excel(output_file_path, index=False) 

In [ ]: 

data_v2 = pd.get_dummies(data_v2, drop_first=True) 

data_v2 = data_v2.apply(pd.to_numeric, errors='coerce') 

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\Data_Modelo2.xlsx' 

data_v2.to_excel(output_file_path, index=False) 

data= pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG 

Analytics\Código\Datos_Modelo2.xlsx')  

In [ ]: 

print(data_v2.head()) 

columns_to_keep = ['Target', 'Revenue', 'P/E', 'EBITDA Margin', 'Average_Sentiment'] 

data_v2 = data_v2[columns_to_keep] 

data_v2 = data_v2.fillna(0) 

In [ ]: 

print(data_v2.head()) 

In [ ]: 

# Random Forest 

X = data_v2.drop('Target', axis=1) 
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y = data_v2['Target'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y) 

In [ ]: 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

 

# Inicializar el modelo Random Forest 

clf = RandomForestClassifier(random_state=42) 

 

# Entrenar el modelo 

clf.fit(X_train, y_train) 

In [ ]: 

#Evaluate and predict 

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix 

 

y_pred = clf.predict(X_test) 

 

accuracy = accuracy_score(y_test, y_pred) 

report = classification_report(y_test, y_pred) 

conf_matrix = confusion_matrix(y_test, y_pred) 

 

print(f"Accuracy: {accuracy}") 

print(f"Classification Report:\n{report}") 

print(f"Confusion Matrix:\n{conf_matrix}") 

In [ ]: 

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay 

import matplotlib.pyplot as plt 

 

disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix) 

disp.plot(cmap=plt.cm.Blues) 

plt.title('Confusion Matrix') 

plt.show() 

 

Step 4 - Longformer model 
Los modelos como Longformer y BigBird están específicamente diseñados para manejar secuencias 

de texto más largas que los modelos tradicionales como BERT, ALBERT, y FinBERT 

In [ ]: 

data2=pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\merged.xlsx')  

 

def preprocess_text(text): 

    return text.replace('&#146;', "'").replace('&#8217;', "'") 

 

data2['MD&A'] = data2['MD&A'].apply(preprocess_text) 

In [ ]: 

train_data, temp_data = train_test_split(data2, test_size=0.3, stratify=data2['Target'], random_state=42) 

test_data_0 = temp_data[temp_data['Target'] == 0] 

test_data_1 = temp_data[temp_data['Target'] == 1] 

 

if len(test_data_1) == 0: 

    train_data, temp_data = train_test_split(data2, test_size=0.3, stratify=data2['Target'], random_state=43) 

    test_data_0 = temp_data[temp_data['Target'] == 0] 

    test_data_1 = temp_data[temp_data['Target'] == 1] 
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test_data = pd.concat([test_data_0, test_data_1]) 

 

train_dataset = Dataset.from_pandas(train_data) 

test_dataset = Dataset.from_pandas(test_data) 

In [ ]: 

tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096') 

 

def tokenize_function(examples): 

    return tokenizer(examples['MD&A'], padding='max_length', truncation=True, max_length=4096) 

 

train_dataset = train_dataset.map(tokenize_function, batched=True) 

test_dataset = test_dataset.map(tokenize_function, batched=True) 

 

# Renombrar la columna 'Target' a 'labels' para que el Trainer la reconozca 

train_dataset = train_dataset.rename_column('Target', 'labels') 

test_dataset = test_dataset.rename_column('Target', 'labels') 

In [ ]: 

model = LongformerForSequenceClassification.from_pretrained('allenai/longformer-base-4096', 

num_labels=2) 

 

metric = load_metric('accuracy') 

 

def compute_metrics(p): 

    return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) 

 

training_args = TrainingArguments( 

    output_dir='./results', 

    evaluation_strategy='epoch', 

    learning_rate=2e-5, 

    per_device_train_batch_size=2, 

    per_device_eval_batch_size=2, 

    num_train_epochs=3, 

    weight_decay=0.01, 

) 

 

trainer = Trainer( 

    model=model, 

    args=training_args, 

    train_dataset=train_dataset, 

    eval_dataset=test_dataset, 

    compute_metrics=compute_metrics, 

) 

 

trainer.train() 

 

trainer.evaluate() 

In [ ]: 

predictions = trainer.predict(test_dataset) 

pred_labels = np.argmax(predictions.predictions, axis=1) 

true_labels = predictions.label_ids 

 

# Matriz de confusión 

cm = confusion_matrix(true_labels, pred_labels, labels=[0, 1]) 

cmd = ConfusionMatrixDisplay(cm, display_labels=[0, 1]) 
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cmd.plot() 

 

plt.title('Confusion Matrix') 

plt.show() 

In [ ]: 

report = classification_report(true_labels, pred_labels, target_names=['Class 0', 'Class 1']) 

print("Classification Report:\n", report) 

 

# Curva ROC y AUC 

from sklearn.metrics import roc_curve, auc 

 

fpr, tpr, _ = roc_curve(true_labels, predictions.predictions[:, 1]) 

roc_auc = auc(fpr, tpr) 

 

plt.figure() 

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Receiver Operating Characteristic') 

plt.legend(loc="lower right") 

plt.show() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


