
1

Facultad de Ciencias Económicas y Empresariales,

Universidad Pontificia Comillas (ICADE)

Predicting M&A targets in the U.S. tech

industry using ALBERT, FinBERT and

Longformer models

Author: Lucía Elegido Ojanguren

Director: María Coronado Vaca

MADRID | June 2024

2

Abstract

In recent years, the volume of Mergers and Acquisitions (“M&A”) has increased

significantly, driving heightened interest in predicting these transactions due to their

potential profitability for investors, attributed to the premium paid by the acquirer. This

study investigates the use of Natural Language Processing (“NLP”) Transformers to

predict potential M&A targets within the U.S. technology sector by analyzing textual data

from companies' 10-K filings, specifically the Management Discussion and Analysis

(“MD&A”) sections.

Traditional prediction models often rely on financial metrics. However, this research

explores the potential of integrating textual information to improve prediction accuracy.

Utilizing deep learning models such as ALBERT, FinBERT, and Longformer, the study

finds that combining textual and financial data enhances model performance. Among

these models, FinBERT, which is trained in financial texts, demonstrates the highest

accuracy. Despite these promising results, the study's small and imbalanced dataset limits

the generalizability of the findings.

Therefore, future research should focus on expanding the dataset and incorporating

additional financial and textual variables to improve the performance of the analysis

Keywords: Natural Language Processing, Mergers & Acquisitions, Transformers and

Text analysis

3

Resumen

En los últimos años, el volumen de Fusiones y Adquisiciones ha aumentado

significativamente, generando un interés creciente en predecir estas transacciones debido

a su potencial rentabilidad para los inversores, atribuida a la prima pagada por el

adquirente. Este estudio investiga el uso de Transformadores de Procesamiento de

Lenguaje Natural para predecir posibles objetivos de F&A en el sector tecnológico de

EE.UU. mediante el análisis de datos textuales de los informes 10-K de las empresas,

específicamente en las secciones de Discusión y Análisis de la Gestión.

Los modelos de predicción tradicionales suelen basarse en métricas financieras; sin

embargo, esta investigación explora el potencial de integrar información textual para

mejorar la precisión de las predicciones. Utilizando modelos de aprendizaje profundo

como ALBERT, FinBERT y Longformer, el estudio encuentra que la combinación de

datos textuales y financieros mejora el rendimiento del modelo. Entre estos modelos,

FinBERT, entrenado en textos financieros, demuestra la mayor precisión. A pesar de

estos resultados prometedores, el pequeño y desequilibrado conjunto de datos del estudio

limita la generalización de los hallazgos.

Por lo tanto, la investigación futura debería centrarse en expandir el conjunto de datos e

incorporar variables financieras y textuales adicionales para refinar el análisis

Keywords: Procesamiento de Lenguaje Natural, Fusiones y Adquisiciones,

Transformadores, Análisis de Texto

4

Table of Contents

1. Introduction .. 7

1.1. Objectives .. 7

1.1.1. Specific objectives .. 7

1.2. Topic motivation... 8

1.3. Methodology .. 9

1.4. Structure .. 9

2. Literature review ...11

2.1. Definition and existing literature on prediction of Mergers and Acquisitions11

2.1.1. Artificial Intelligence applied to M&A prediction. ...12

2.2. Technology industry in the United States; consolidation & growth prospects13

2.2.1. Drivers of consolidation ..14

2.3. Natural Language Processing (NLP)...15

2.3.1. Introduction to NLP ..15

2.3.2. Deep learning transformers ..16

2.3.3. Attention mechanisms and Transformer architecture16

2.3.4. Overview of pre-trained language models. ..19

3. Empirical study..20

3.1. Data..20

3.1.1. Data collection..20

3.1.2. Data pre-processing ..24

3.2. Methodology ...24

3.3. Model ...25

3.3.1. ALBERT..25

3.3.2. FinBERT ...26

3.3.3. Longformer ...27

3.4. Results ..27

4. Discussion of the results ...30

5. Conclusion.. 33

Bibliography……………………………………………………………………………….35

Appendix…………………………………………………………………………………...40

5

Figures Table of Contents

Figure 1. US technology M&A activity evolution (2018-2023) ………………………..13

Figure 2. Transformer model architecture……………………………………………...18

Figure 3. Overview of model variables.………………………………………………..21

Figure 4. ALBERT Model Confusion Matrix…………………………………………..28

Figure 5. FinBERT Model Confusion Matrix. ………………………………………....28

Figure 6. Longformer Model Confusion Matrix………………………………………..29

Figure 7. Summary of key statistics by model………………………………………….29

6

Acronyms

ALBERT A Lite Bert

BERT Bidirectional Encoder Representations from Transformers

EDGAR Electronic Data Gathering, Analysis and Retrieval system

GRU Gated Recurrent Unit

GPT-3 Generative Pre-Trained Transformer

LTSM Long-Short Term Memory

MD&A Management Discussion and Analysis

M&A Mergers and Acquisitions

NLP Natural Language Processing

PTM Pre-trained Models

RIC Regulated Investment Company

SMOTE Synthetic Minority Over-Sampling Technique

R&D Research and Development

SEC Securities and Exchange Commission

T5 Text-to-Text Transfer Transformer

ULMFiT Universal Language Model Fine-Tuning for Text Classification

7

Chapter 1

Introduction

1. Introduction

1.1. Objectives

The objective of the paper is to analyze companies’ reports using Natural Language

Processing (“NLP”) Transformers to predict possible targets for a Merger and Acquisition

(“M&A”) buyside. The primary aim of the paper is to test whether the use of textual

information rather than financial indicators is statistically meaningful in predicting a

merger target/bidder. To delimit the data for the study, the focus of the study will be on

the technological sector in United States.

The choice of industry and geography is based on the volume of transactions and the

characteristics of the industry. There has been a lot of consolidation over the 25 years in

the technology sector as many companies are looking to buy competitors to acquire core

competencies, emerging technologies, and specialized talent in order to remain

competitive (Institute of Mergers, Acquisitions & Alliances, 2024). In addition, the

development of new technologies over the last 25 years has favored this consolidation. In

terms of geography, the study will focus on the United States, as this is where the vast

majority of technology companies have their headquarters, and it is one of the places with

the greatest technological innovation. The concentration of startups, large investments in

Research and Development (“R&D”) with their respective research centers, frequency of

operations and competitiveness make the US a key geography for the study.

1.1.1. Specific objectives

• Description of M&A and main motives behind the transactions and contextualize

their relevance and impact in defining the industry landscape and fostering

business and economic growth.

• Develop a detailed literature review to identify and understand the quantitative

techniques, particularly in the realm of Natural Language Processing, to

understand and model human language patterns and structures.

• Analysis of qualitative reports using Transformer Neural Networks

8

• Assessment and evaluation of the accuracy of the model and its viability

• Explain the main limitations of the approach, conceptually and of the model itself.

1.2. Topic motivation

Since the late 1900s, the volume of Mergers and Acquisitions in terms of the number and

value of transactions has increased exponentially, with a peak in 2021 with 58,308

transactions and a total value of c.5,235 billion dollars (Institute of Mergers, Acquisitions

& Alliances, 2024). Along with the increase in the number of deals goes the growing

interest in predicting M&A operations and the companies that will be involved, because

it has a lot of value for investors and other key stakeholders. Identifying targets before

transactions take place is a strategy that can be highly profitable for investors due to the

premium paid by the acquirer on the intrinsic value of the target share (Katsafados et al.,

2021). This implies that foreknowledge of future transactions enables the investor to

preempt the market by purchasing said securities, which will subsequently be acquired

by a bidder, thereby profiting from the premium to be paid for those securities in the

future. Moreover, other research papers have demonstrated that investors could also

benefit from prediction because the share prices of firms involved in M&A operations

tend to increase right after the announcement (Parungao et al., 2022).

As will be concluded from the literature review presented in section 2 of this paper,

although there are studies on the prediction of M&A targets and bidders, the vast majority

focus on the analysis of financial variables and key ratios such as: leverage, capital

expenditure, or liquidity, which potentially limits the analysis as much of the information

reported by the company is non-financial and contained in the management report, annual

accounts, letters to shareholders or, increasingly, in sustainability reports. At its core, the

alignment between a company's approach to acquiring capability targets and its

overarching strategy is paramount, with the strategy of a corporation typically elucidated

through textual exposition in most instances. This gap in literature allows us to seek a

solution to the same problem from a much more qualitative approach.

Drawing from my experience in the realm of investment banking, I perceive an even

greater significance in predicting the parties involved in an M&A transaction, as it offers

substantial value to the stakeholders of the companies, investors, regulators, and external

advisors — primarily law firms and investment banks.

9

Moreover, with respect to the technology sector, characterized by its dynamic nature

where innovations from small start-ups have the potential to disrupt the market,

companies are compelled to remain vigilant and act swiftly and efficiently to avoid

lagging behind. Moreover, from an investor's perspective, conducting such analyses for

the tech sector is highly prudent, given the substantial premiums associated with

acquiring technological assets, reaching multiples of up to 25 times Enterprise

Value/EBITDA (Bain & Company, 2022), which can translate into significant gains for

those able to identify opportunities.

1.3. Methodology

To conduct this quantitative analysis, we will rely on Python, leveraging its extensive

libraries and frameworks known for their robustness and flexibility in data analysis and

machine learning tasks. Regarding our data, we will construct our dataset using a

comprehensive array of tools, notably Bloomberg and LSEG Refinitiv. In regard to the

techniques used, we based our analysis on Natural Language Processing Deep learning

models, more precisely on transformers, as this type of models have the ability to learn

long-range dependencies and structures between words allowing the model to understand

the context. More specifically, we will use ALBERT, FinBERT and Lonformer models to

predict whether a company is likely to be a target of an M&A operation or not, based on

the Management Discussion and Analysis (“MD&A”) of the 10-K filing

However, it is imperative to underscore that this model does not seek to discredit the

relevance of models that only incorporate financial variables. The model presents a series

of constraints, as non-financial information alone does not gather the entirety of motives

driving transactions. Moreover, numerous other variables remain unaccounted for in the

study, such as exogenous market variables, macroeconomic indicators like interest rates,

technological variables, as well as myriad other factors relating to corporate structures

and governance, which ultimately dictate the occurrence or absence of M&A transactions.

1.4. Structure

The development of this research is made up of a second section in which we go over

existing literature to further develop on the key elements of the paper. The third section

describes the methodology employed, detailing the processes from data collection to the

presentation of our model results. The subsequent section is dedicated to discussing and

10

debating our findings, as well as outlining the limitations of our analysis. Finally, the

concluding section summarizes the key findings of our research and suggests potential

avenues for future investigation.

11

Chapter 2

Literature Review

2. Literature review

2.1. Definition and existing literature on prediction of Mergers and Acquisitions

Companies to grow, expand or reinforce their market positioning can either rely on

organic growth, i.e. with their own operations, or grow inorganically by acquiring

transformative capabilities to scale up, using M&A. Mergers and Acquisitions are

operations conducted by corporates that involve restructuring the shareholder structure of

a company and imply a change of control within companies. These corporate strategies

are conducted with the intention of improving firm performance through the obtention of

synergies, access to new markets, or acquisition of a range of capabilities that could not

be acquired organically and ultimately lead to considerable movements in stock prices.

Predicting this type of transaction allows investors to benefit from timely information.

According to existing literature (Bhabra & Hossain, 2017), an investor can achieve

substantial returns by purchasing shares of the acquiring company two days before the

announcement and selling them two days afterward. This strategy capitalizes on the

typical market reaction where stock prices tend to rise following the announcement of a

transaction. Having insider information or the ability to accurately predict these

transactions is highly valuable as it allows investors to strategically position themselves

to benefit from these market movements.

Over the years, many authors have studied the main indicators for predicting this type of

transaction, approaching the subject from different perspectives including econometric

models, financial ratios (Flannery et at., 2020), qualitative approaches (Delis, et al., 2022)

or using artificial intelligence and machine learning for the analysis (Katsafados et al.,

2021). From all of them is derived this list of key indicators for assessing whether a

company might be the target of an acquisition. Including, being small in size yet growing

companies that have not yet reached maturity, being undervalued in the market, having

poor management or agency problems, and exhibiting a significant mismatch between

resources and growth potential. This statement has important implications for our study,

12

as while company size and market valuation are purely financial variables, factors such

as management quality, growth expectations, strategic planning, and how a company

intends to finance its expansion plans cannot be adequately represented through ratios

alone, thus needing the analysis of textual information.

Therefore, it can be concluded that with M&A predictors classified into two broad

categories: financial variables and non-financial variables, the sentiment communicated

by managers through corporate strategy, market dynamics, and management may not

correspond to current financial results and a common topic when explaining merger

failure is the tendency of focusing on financial variables overlooking the human and

organizational elements (Calipha et al., 2010). This discrepancy further underscores the

importance of considering both types of variables when developing a predictive model.

2.1.1. Artificial Intelligence applied to M&A prediction.

With our focus on non-financial predictors, existing literature shows that the sentiment

shown in annual reports has direct effect on the probability of a company becoming a

target and, companies with a higher proportion of negative sentiment shown in their non-

financial reported information are much more likely to become M&A targets (Katsafados

et al., 2021).

Furthermore, there are additional studies that utilize state-of-the-art transformer-based

sentiment analysis to enhance the predictive capabilities of traditional statistical models.

These studies explore the potential of analyzing the sentiment in company-specific news

texts to predict M&A targets (Hajek & Henriques, 2024). They aim to leverage advanced

sentiment analysis techniques to provide deeper insights and improve the accuracy of

predictions in identifying potential M&A activities.

Additionally, numerous studies have focused on various industries and attempted to

utilize machine learning to automate the analysis process when predicting whether a

company is a suitable candidate to merge based on text documents from the Securities

Exchange Commission, such as the full 10-K filing (Jiang, 2021) or specific sections like

the Management Discussion (Routledge et al., 2013). Hence, our study broadens the

literature on employing text analytics on market news or annual reports for M&A target

predictions in an industry where research is still lacking.

13

However, all these models have certain limitations, primarily in the realm of data

availability. The vast majority of data and reports for private companies are often not

public, which limits the generalizability of the models. In addition to this, there is also the

challenge of language ambiguity, which can be difficult for models to capture, and the

issue of model interpretability.

2.2. Technology industry in the United States; consolidation and growth prospects

In recent years, the US Tech sector has undergone significant consolidation, with the need

to acquire new technical and technological skills as the main driving force. More

specifically, the high technology industry has been, by far, the industry with the largest

number of deals, representing 19.9% of all deals announced between 2000 and 2018, and

ranking third in terms of overall value (Institute of Mergers, Acquisitions & Alliances,

2024), with some companies engaging in as many as 30 deals per year (Bain & Company,

2022).

Figure 1. US technology M&A activity evolution. Deals valued at +US$100m

Source: Ernst & Young, 2023

As shown in figure 1, in the aftermath of COVID-19 crisis, most global M&A deals

focused on technological innovation, a cross-sectional and transformative element of the

contemporary economy, proving to be one of the most resilient sectors to the crisis.

However, as shown in figure 1, in recent years the industry has experienced a significant

reduction in both the volume and size in terms of value of deals. This trend can be

attributed to the conservative approach that companies have adopted regarding M&A

strategies, emerging in response to the interest rate hike in March 2022 due to Covid-19

crisis and exacerbated by the Ukraine conflict. Furthermore, the decrease in deal value

can also be explained by market dynamics. It is not solely high-value transactions that

14

companies are focusing on, but also thousands of low-profile/lower-value transactions

aimed at adding capabilities that enhance performance rather than transformative

transactions that seek to disrupt the core business.

Despite these trends, the surge in artificial intelligence is expected to drive a new cycle

of growth for the industry, with cloud computing and cybersecurity also identified as key

growth drivers (Deloitte, 2023). Consequently, companies may need to acquire these new

capabilities into their product portfolio, reactivating the M&A market in the upcoming

years. Due to past volumes and expected future consolidation, we argue it would add great

value to existing literature to study this industry in depth and to develop models to

understand how consolidation functions within it.

2.2.1. Drivers of consolidation

Innovation is the source of competitive advantage for enterprises and a key growth driver.

Additionally, buying external capabilities allows for quicker time-to-market rather than

relying on internal R&D to improve technology, that is normally associated with high

risk, large capital investment and long research and development cycle. Therefore,

technology M&A is one of the most effective strategies for enterprises to quickly acquire

innovative resources and enhance their technological innovation capabilities to cope with

changes in their business models (Suo et al., 2023)

In regards of motivation sources for mergers and acquisitions in this industry, research

has demonstrated that the primary motivation for technology mergers and acquisitions is

to acquire high-quality and scarce technological resources from the target enterprise,

thereby enhancing innovation capabilities. Existing studies indicate that the largest

technological companies—Apple, Alphabet, Amazon, Facebook, and Microsoft—all

based in the United States, continuously compete in terms of products and services, and

rely on these acquisitions to constantly update their ecosystems, restricting competition

and consolidating the platform’s position in the market (Gautier & Lamesch, 2020).

Existing literature also concludes that the specificity of the business model and the

inherent uncertainty associated with companies whose values depend on future outcomes

are among the primary drivers of this consolidation (Rossi et al., 2013). In this context,

the acquisition of a small and promising startup can represent a significant competitive

15

advantage in the future, consequently, the introduction of new technologies and

developments will be associated with a high volume of M&A transactions in this industry.

2.3. Natural Language Processing (NLP)

2.3.1. Introduction to NLP

With the arrival of GPT-3 by OpenAI and similar technologies designed to process and

represent language as humans do, Natural Language Processing has gained significant

attention. This discipline of artificial intelligence used for understanding and processing

human language and with applications in various fields such as customer service,

healthcare, and education, traces its origins back to the 1950s. It emerged as a confluence

of artificial intelligence and linguistics, seeking to create systems that could understand

and interact using human language. Nadkarni et al. (2011) highlight that the earliest

efforts during the Cold War included simplistic approaches such as automatic translation

programs, developed with the objective of translating Russian sentences into English.

These initial steps marked the beginning of a journey towards increasingly sophisticated

computational understanding of human language.

Prior to the 1980s, the vast majority of natural language processing systems were based

on linguistics and were predominantly symbolic, relying on handcrafted sets of rules

(Cambria & White, 2014). Due to these types of models not being economically feasible

for everyday applications, owing to the cost and intensive requirements of computer

resources (Liberman, 1991), a reorientation occurred during the 1980s. This shift led to

the emergence of statistical NLP and the introduction of Hidden Markov Models for

speech recognition (Rabiner & Juang, 1989). The following decades were marked by

approaches based on supervised machine learning algorithms, based on training labelled

texts for automatic classification (Manning & Schutze, 1999), until approximately the

year 2010, when deep learning models and transformers were introduced. These models

are based on the application of deep neural network algorithms—or Deep Learning—and

emerged as a response to the contextual limitations of previous models and to manage the

inherent complexity of natural language. Thus, the neural network does not base its output

solely on the input, but also on previous and even subsequent inputs, allowing the

algorithm to understand the context.

16

2.3.2. Deep learning transformers

Prior to the emergence of the Transformer architecture by Google creators in 2017, the

most pioneering deep learning techniques for handling sequential data relied on

convolutional and recurrent neural networks. Despite the capability of the recurrent

network Long-Short Term Memory (“LSTM”) architecture or Gated Recurrent Unit

(“GRU”) to use feedback connections to store representations of input events and

maintain a type of memory (Hochreiter & Schmidhuber, 1997), these models still

presented significant limitations when processing and storing large volumes of text.

Therefore, the arrival of the Transformer architecture radically changed NLP technologies

and machine translation by allowing models to manage long-range dependencies in the

text simultaneously and non-sequentially, with greater computational efficiency.

Transformers are a type of neural network based on attention mechanisms with significant

contextual memory (Vaswani et al., 2017), introduced in 2017 as an evolution of

previously mentioned sequential models. These models have the capability to relate

different inputs over time, producing an output, accordingly, thereby providing a

semblance of memory and solving issues with contextualization. Moreover, it is no longer

necessary to present tokens in their natural order; instead, all words can be processed in

parallel. Currently, most state-of-the-art NLP systems are based on deep Transformer

models, generally comprised of several stacked transformer layers (Xiao & Zhu, 2023)

As we will go through in Section 2.3.3., the transformer architecture is based on an

encoder that reads an input string and a decoder that prints an output string. The

connection between encoder and decoder is made by an attention mechanism, allowing

modeling of dependencies without regard to their distance in the input or output sequences

(Vaswani et al., 2017).

Among the principal applications of Transformers, we find automatic translation,

generation of outputs in chatbots and automatic responses, text and sentiment

classification, and, in general terms, text comprehension and the extraction of patterns

and structures (Devlin et al., 2018).

2.3.3. Attention mechanisms and Transformer architecture

Prior to the publication of the paper "Attention is All You Need" (Vaswani et al., 2017),

other researchers had begun to explore how attention mechanisms applied to encoder-

17

decoder models could enhance performance in automatic translation tasks (Bahdanau et

al., 2014). These models implemented an attention mechanism in the decoder, easing the

task of the encoder because it no longer had to compress all the information from the

source sentence into a fixed-length vector and could decide which parts of the input

sentence to pay attention to, laying the groundwork for future studies. It was in 2017 when

the Transformer network architecture was introduced, the first transduction model relying

entirely on self-attention. To understand how this model properly functions, it is important

to distinguish between two types of attention mechanisms: self-attention and encoder-

decoder attention.

Multi-head self-attention is named for its use of more than one attention matrix and serves

as an attention mechanism that relates different positions of a single sequence to compute

a representation of the sequence and to know which other words in the sequence are

related to the one being processed. The input matrix, with dimension nx512, is

decomposed into submatrices of self-attention that display the relationship between each

of the tokens, and for each word, it calculates how much attention should be paid to the

rest of the words in the sentence.

On the other hand, encoder-decoder attention is similar to that described in the previous

article but will only appear in the sub-layers of the decoder. The decoder layer indicates

which output vectors from the encoder, and with assigned weights, should be used to

formulate each of the output vectors of the decoder.

Once the mechanisms of self-attention and encoder-decoder attention have been defined,

we can examine the basic architecture of a transformer and how the attention mechanisms

are integrated with the other elements.

Both the encoder and the decoder consist of six identical layers, and each token input

undergoes a process of embedding, which is a vector representation of each token in the

first layer of the neural network where the dimensions represent semantic or syntactic

aspects of the words (Mikolov et al., 2013), and a process of positional encoding, which

describes the location of any token in a sequence so that each position is assigned a unique

representation. The result of both transformations is a matrix of Nx512, where N refers

to the total number of tokens. The attention units follow this position and embedding tags,

calculating a sort of algebraic map of the way each vector relates to the others. The entire

operation of the transformers revolves around the algebraic processing of this vector,

18

which is multiplied and added repeatedly as the information progresses from input to

output.

Figure 2. Transformer model architecture. Source: Vaswani et al., 2017, p.3

As shown in Figure 2, each layer of the encoder (left hand-side of the figure) consists of

two sublayers: a multi-head self-attention mechanism and a feed-forward network, each

of which is applied separately and identically to each position. Both elements are followed

by a layer normalization operation, ensuring that the resulting vectors maintain a unit

dimension. These representations are then fed into the decoder (right hand-side of the

figure). The first sublayer of the decoder receives the output and includes a self-attention

unit. Subsequently, the second sublayer is an encoder-decoder attention unit that receives

queries from the previous decoder sublayer and keys and values from the encoder's

output. This configuration allows the decoder to attend to all the words in the input

sequence. Finally, similar to the encoder, it includes a feed-forward network to introduce

non-linearity and allow the model to learn more complex patterns.

19

Lastly, the model uses linear transformations and SoftMax function to transform the

output of the decoder into predicted next token probabilities.

2.3.4. Overview of pre-trained language models.

The emergence of Transformers has led to the development of numerous language

models, all of which are based on the Transformer architecture and offer increased

accuracy and versatility for Natural Language Processing tasks. Among the most popular

languages, we find; Generative Pre-Trained Transformer (GPT-3), Universal Language

Model Fine-Tuning for Text Classification (ULMFiT), Bidirectional Encoder

Representations from Transformers (BERT) o Text-to-Text Transfer Transformer (T5),

each one focused on a specific NLP task. For instance, GPT-3, specifically designed for

natural language generation, is focused on producing coherent text and automatic

responses, while BERT is specialized in tasks related to reading comprehension.

Pre-trained transformer models, consisting of dozens of layers and millions of parameters,

have achieved in the last years state-of-the-art performance on NLP tasks and have been

adopted as key tools for tasks such as question answering, natural language inference or

sentiment analysis (Sajjad et al., 2023). The idea behind pre-training relates to transfer

learning and applying existing knowledge to new tasks such as token prediction and

existing languages are based on two approaches for model-training; fine-tuning and

feature-based (Devlin et al., 2018). The fine-tuning strategy involves adjusting the entire

pre-trained model to a new task using data specific to that task, in contrast to the feature-

based approach, where task-specific architectures of the model are used, and specific

features are employed as input for the model dedicated to each task.

Therefore, despite its limitations concerning interpretability, reasoning capability, and

robustness, the emergence of Pre-trained Models (PTMs) has facilitated a significant

breakthrough in the field of Natural Language Processing. It has been demonstrated that

pre-trained models clearly outperform those without pre-training (Wang et al., 2023) and

further findings in this realm are anticipated in the coming years.

20

Chapter 3

Empirical study

3. Empirical study

In this chapter, we will go through the methodology employed to carry out this analysis,

which will rely on the Python computer programming language because of its extensive

available libraries and commands specifically designed to perform Natural Language

Processing tasks, more specifically, Deep Learning Transformers.

Fundamentally, our analysis aims to address a text-based classification task, categorizing

companies as either “0”, meaning that are unlikely to be acquired, or "1", more likely to

be acquired. This classification will be based on various textual and financial attributes

derived from the dataset, enabling us to predict acquisition probabilities with higher

accuracy.

3.1. Data

In this first section, the aim is to describe the data acquisition process and the sources, as

well as to detail the data preprocessing tasks conducted prior to the implementation of the

models.

3.1.1. Data collection

The first step in conducting our analysis involves obtaining the dataset. As previously

mentioned, this analysis will focus on predicting M&A targets within the technology

sector in the United States. To achieve this, we must first obtain historical data on

transactions conducted in this sector over the last ten years. As perDealogic data, since

2014, there have been over 39,126 acquisitions in the U.S. tech sector, with a total volume

exceeding $4,460 billion. Therefore, this period is particularly relevant for our study, as

it provides a comprehensive overview of recent trends and patterns in tech M&A

activities, ensuring our analysis is based on a substantial and pertinent dataset.

Our final dataset will consist of the merger of two subsets: Targets and Non-Targets. In

this section, we will describe the process of obtaining each subset.

21

To gather the Targets data, we will make use of the Bloomberg Terminal, which allows

us to download data with specific filters. We exclusively selected transactions categorized

purely as "M&A", announced after "01-01-2014", and whose targets are public

companies, ensuring access to their annual financial statements. After applying these

filters via the Bloomberg Terminal, we exported the data containing the categories shown

in Figure 3:

Figure 3. Overview of model variables. Source: Own elaboration

Once the dataset, hereinafter referred to as Targets, is loaded, we apply additional filters

using Python. These filters include the following steps: removing all transactions that

contain 'N.A.', retaining only those transactions with an 'Announced Total Value (mil.)'

greater than 100, and ensuring the 'Deal Status' is marked as Completed. By implementing

these filters, we ensure that the dataset is refined to include only relevant and complete

data, which is crucial for the accuracy and reliability of our subsequent analysis.

To construct the non-targets dataset, we will use the LSEG Refinitiv Data platform API,

specifically employing the RDP peer-screening function. Choosing a set of comparable

companies involves looking for firms that are similar to the company we are trying to

assess, and therefore using peers, contributes positively towards determining whether a

company is fit for your comparable universe, ensuring that the analysis and valuation are

accurate and reflective of industry standards.

We define the peers’ function from the LSEG Refinitiv Data platform in such a way that,

for each input entry, which will be the Regulated Investment Company (“RIC”), a similar

identifier to the Ticker, and the announcement date of each Target, we will obtain 50

peers for the respective company and year. This ensures that the information remains

comparable over time. Upon applying the function, we obtain a dataset with 870 rows, to

which we will apply a series of filters.

22

Since we will focus our analysis on the United States, we will only use RICs ending in “.

OQ”. Once filtered, we will use a random command to retain only 125 non-targets,

maintaining a ratio of one-to-five targets to non-targets. The rationale for this ratio is

based on existing literature. Approximately 13.1% of public firms engage in tech activity,

acquiring smaller firms that are younger and more efficient (Jin et al., 2023) and public

companies in the top or bottom deciles for growth, have on average a 21% probability to

become acquisition targets in any given year (Moeller & Vitkova, 2016). Therefore, it is

reasonable to assume a one-to-five ratio.

After merging both datasets, Targets and Non-Targets, we will proceed to obtain the

financial and textual variables necessary to construct our final dataset.

Extract textual variables

This textual variable will be the most relevant for the study. To carry out our analysis, we

will use section 7 of the 10-K filings of our companies. The 10-K is a document that

publicly traded companies in the United States are required to submit annually to the

Securities and Exchange Commission (“SEC”). This document reports both their

financial results and provides a highly detailed view of the company regarding ESG

matters, key risks, and business outlook. One of the main advantages of this document is

its standardized format, which allows us to access specific sections using the Electronic

Data Gathering, Analysis, and Retrieval system (“EDGAR”) API. EDGAR is an online

database introduced in 1984 to enhance transparency and facilitate the dissemination of

information. Over the years, an API has been developed that enables users to query this

database and extract data in various formats, such as JSON, XML, and CSV and by

leveraging Python libraries such as requests or edgar, you can programmatically send

queries to the API and handle the responses.

For our purposes, we will use the Ticker and the Announcement Date year to perform

these queries. From these queries, we will obtain the URL of 10-K filing and store the

content in our dataset, under the variable named “MD&A”. More specifically, our

analysis will focus on obtaining the text contained in Section 7 of the 10-K, known as the

Management Discussion and Analysis. In the MD&A, management provides an overview

of the company’s past performance, current financial condition, and future projections

and outlook. This section is extremely useful for analysis, as any indication of potential

23

acquisitions or other negative sentiments that could signal high growth, scarce resources,

or funding needs would be interpreted by our model as a sign of a possible target.

After iterating through the data requests from the SEC and storing them in our dataset,

we will proceed to the final step of data acquisition, which involves extracting the

financial variables.

Extract financial variables

Lastly, to obtain the financial variables, we will again rely on the LSEG Refinitiv

platform. Specifically, we will use the Excel Add-In, as making requests from Python

entails higher computational consumption and fails when tried. We can directly download

the data from Excel using a series of functions that will always be based on the RIC. For

each record on our dataset, we will obtain the following data points.

− The Price to Earnings ratio, hereinafter P/E, metric commonly used to assess the

company’s valuation and discuss whether is overvalued or undervalued on the

market

− Revenue to determine the relative size of each company

− EBITDA, to construct the EBITDA margin, calculated as EBITDA/Revenue. This

measure helps understanding whether the company is profitable relative to its

revenue

We will use these three financial variables, assuming that, as previously discussed in the

literature review section, acquisition targets are typically smaller companies that achieve

high margins and are undervalued in the market, making them more attractive to potential

buyers. The attractiveness of these companies is further heightened by their growth

potential, which, despite their small size, positions them as prime candidates for

acquisition.

Once these financial variables have been downloaded, the data collection process is

completed, and we will start preprocessing the data prior to developing our models.

24

3.1.2. Data pre-processing

Data preprocessing involves the process of cleaning and preparing the data that will be

used in the model (Siino et al., 2024). This includes distinguishing between the

preprocessing of numerical variables and the preprocessing of textual data that will be

processed by the Transformer. The former typically involves operations such as

normalization, standardization, and handling missing values, while the latter primarily

entails tokenization.

In the data preprocessing stage, we convert the “MD&A” column to a text data type to

ensure uniform treatment in subsequent analyses. We also eliminate columns such as

“EBITDA” and “Market Cap at Announcement date”, which were only needed to derive

financial metrics that we will use. This reduces dimensionality and noise, thereby

improving model performance (Guyon & Elisseeff, 2003). Subsequently, we standardize

the “Revenue” variable, as it is the only non-ratio numeric variable, using the

StandardScaler from the sklearn library. By adjusting its mean to 0 and standard deviation

to 1, we align the variable on the same scale, mitigating the effects of range differences

and enhancing the convergence of machine learning algorithms. This approach ensures

that the data is adequately prepared for use in predictive models, optimizing the efficiency

and accuracy of subsequent analysis.

Regarding the text variables, Transformer-based models do not require extensive data

preprocessing. These models are designed to handle raw text inputs directly, as the

Transformer architecture effectively encodes long-range dependencies in input sequences

through self-attention mechanisms (Rahali & Akhloufi, 2023). Utilizing self-attention

mechanisms, they are highly effective at processing raw text data, thus reducing the need

for traditional preprocessing steps such as stop word removal, lemmatization, or

stemming. Therefore, it is not necessary for our models to perform these preprocessing

tasks.

3.2. Methodology

To test our initial hypothesis, that textual variables have predictive power in determining

whether a company can or cannot be an M&A target, we will train three different models

and test them on a test subset to evaluate their performance. ´

25

All of the models we used for our analysis; ALBERT, FinBERT and Longformer, are

based on the Transformers architecture, but each of them specializes in one type of tasks,

on which we will elaborate further. And, for each of the models, which are different in

nature, we will calculate a series of statistics that will allow us to evaluate the predictive

capacity of each model and make them comparable to each other for later discussion.

3.3. Model

In this section, we will provide a concise description of the three pre-trained Transformer

models, highlighting their unique characteristics

3.3.1. ALBERT

A Lite BERT ("ALBERT") is a model inspired by BERT that utilizes factorized

embedding parameterization and cross-layer parameter sharing to reduce the number of

parameters, thus enhancing speed and lowering memory usage and consumption.

Nevertheless, it achieves performance comparable to other models (Casola et al., 2020).

The technique of "factorized embedding parameterization" splits the embedding matrix,

shared across all model layers, into two smaller matrices. This separation allows the

dimension of the input word representation to be distinct from the final hidden layer

representation dimension. This approach not only reduces the number of parameters but

also decreases the correlation between word embeddings and the hidden layer, thereby

aiding in the model's generalization capability (Lan et al., 2020).

One of the primary reasons for our decision to employ this model for the task at hand is

that ALBERT has proven particularly effective for small datasets due to its architectural

innovations that reduce model size without compromising performance. It has been

shown to be highly suitable for scenarios where data is scarce, as is the case with our

project. Due to limitations in obtaining data from the SEC, our dataset is quite limited,

making ALBERT an excellent choice.

For training this model, we will rely on the libraries PyTorch and Hugging Face

Transformers. As previously mentioned, since it is not necessary to preprocess the text

before modeling, we utilize the ALBERT tokenizer to tokenize both training and test data,

specifically the textual variable MD&A.

26

Once we have completed these preparations, we proceed to load the ALBERT model,

which is tailored to perform classification tasks. In our case, it is configured to classify

the 'Target' variable. The next step involves defining the model parameters within the

training arguments. Here, we specify various settings, including the number of epochs,

the value of the regularization term to prevent overfitting, and the batch size used in both

the training and evaluation of the model.

After the parameters are set, we create the trainer, conduct the model training, and then

generate predictions along with results. These outcomes will be discussed in detail in

Chapter 4. This structured approach ensures that the model is fine-tuned to our specific

requirements, maximizing its efficacy in achieving accurate and robust classification

results.

3.3.2. FinBERT

FinBERT is a pre-trained language model designed specifically for financial sentiment

analysis, built by further training the BERT language model on financial corpora. Since

the BERT model is initially pre-trained with general texts, it might not perform optimally

on financial texts, which are often tailored for professional investors.

By pre-training FinBERT with financial-specific texts, it achieves more accurate results

within the financial realm. This model focuses on polarity analysis, classifying texts as

positive, negative, or neutral. More specifically, FinBERT is applied to text classification

where sentiment classification is conducted by adding a dense layer after the last hidden

state of the token (Araci, 2019). This approach enhances the model's ability to interpret

the nuanced language of financial discourse effectively.

For this model, we will initially deploy a tailored FinBERT model to analyze the

sentiment of the textual variable “MD&A”. Subsequently, we will train a Random Forest,

incorporating numerical variables into the analysis. Once we obtain outputs from this

model, which will categorize sentiments as Neutral (0), Negative (1), and Positive (2), we

will store these results in a new variable called "Average Sentiment." This variable will

then be used as an independent variable in training the Random Forest, which will rely

on the sklearn.ensemble library. Random Forest is a supervised ensemble learning method

extensively utilized for classification tasks. It constructs multiple decision trees during

training and delivers classification based on the mode of the classes predicted by the

27

individual trees, correcting for decision trees' habit of overfitting to their training set"

(Louppe, 2014).

This approach leverages the strengths of both FinBERT and Random Forest by combining

the nuanced understanding of financial language provided by FinBERT with the robust

classification capabilities of Random Forest.

3.3.3. Longformer

This model was introduced as a solution to the shortcomings of traditional transformer-

based models in processing long text sequences. Designed to efficiently manage extended

sequences, this model incorporates a mechanism of attention specifically tailored for

lengthy texts. In our particular use case, Item 7 of the SEC's 10-K filings, which can

contain up to 3,040 tokens, the employment of a capable model is crucial. Therefore, we

will utilize the model from Allen Institute’s AI2, capable of processing sequences of up

to 4092 tokens.

The efficiency of this model in handling long sequences is achieved through a

combination of local windowed attention and task-specific global attention. Unlike

traditional full self-attention, the proposed attention pattern scales linearly with the input

sequence, making it exceptionally suitable for applications involving longer documents

(Beltagy et al., 2020). For this application, minimal preprocessing is conducted on the

independent variable to properly structure and delineate the input data. This ensures that

the model maximizes its ability to process relevant information within the confines of the

attention window, thereby optimizing performance for extensive textual analyses.

3.4. Results

To compare the results obtained from each of the models, we will focus on analyzing the

confusion matrices produced as a result of the classification tasks conducted by each

model. A confusion matrix is essentially a summary of the prediction results on a

classification problem to check the performance of a classification, where each element

of the matrix represents the count of predictions made by the model for each actual class

compared to the predicted class (IBM, 2024).

This table allows us to visualize the performance of the classification model by showing

the true positives, false positives, true negatives, and false negatives. From it, other

28

metrics for measuring model performance are derived, such as accuracy and precision.

However, it must be noted that in cases where the dataset is imbalanced, as it is in our

case, accuracy can be misleading. This is because a model that predicts the majority class

for all instances will have high accuracy but will fail to correctly identify instances of the

minority class. These limitations will be addressed in Chapter 4.

For ALBERT, the confusion matrix resulting is presented in Figure 4

Figure 4. ALBERT Model Confusion Matrix. Source: Own elaboration

For FinBERT, the confusion matrix resulting is presented in Figure 5

Figure 5. FinBERT Model Confusion Matrix. Source: Own elaboration

For Longformer, the confusion matrix resulting is presented in Figure 6

29

Figure 6. Longformer Model Confusion Matrix. Source: Own elaboration

Moreover, to effectively discuss our results, it is imperative to extract a series of statistical

measures from these confusion matrices. These statistics will enable us, in the subsequent

section, to thoroughly analyze and compare the outcomes derived from our models and

we will mainly rely on accuracy and precision

As shown in Figure 7, on the one hand we have accuracy that measures the proportion of

correct predictions out of the total number of predictions made, and therefore will be

useful when evaluating our models. On the other hand, we calculated precision, that aims

to measure how reliable a model's prediction is in determining whether a particular point

belongs to the predicted class

Figure 7. Summary of key statistics by model. Source: Own elaboration

Model ALBERT FinBERT Lonformer

Accuracy 0.821 0.815 0.809

Precision 0.675 0.5 n.a.

30

Chapter 4

Discussion

4. Discussion of the results

In this section, we aim to discuss and compare the results of our analysis, focusing on the

strengths and limitations of each pre-trained Transformer model employed in our study.

Moreover, we will address the general limitations of our research methodology and

potential implications of our findings.

Regarding the results obtained, despite the relatively high accuracy of our models, as

shown in Figure 7, where the accuracy is above 80% in all cases, the sample size is not

large enough to conclude the generalizability of the model. As illustrated in the confusion

matrices (refer to Figures 4, 5, and 6), each model included in the test set at least one

datapoint that belongs to the Target class. However, only one model, specifically

FinBERT, was able to correctly predict that a datapoint would be a Target. The other

models achieved approximately 80% accuracy but only correctly predicted the non-Target

instances, which is not the primary focus of our study. This issue is primarily due to the

fact that our dataset is not balanced, meaning that the distribution of classes within the

dataset is uneven and one class or a few classes have significantly more instances than

others. To address the mentioned issue, aside from increasing the dataset size, particularly

focusing on obtaining more samples of the minority class, we could also apply techniques

such as oversampling and undersampling or adjusting class weights. Oversampling and

undersampling consist of replicating minority class samples or reducing majority class

samples, relying on techniques like Synthetic Minority Over-Sampling Technique

(“SMOTE”). Additionally, adjusting class weights in the loss function can penalize errors

on the minority class more heavily, thereby ensuring a more balanced model performance.

Regarding the comparison of the results of the models used, it is important to highlight

several points. Firstly, the ALBERT model offers the advantages of lower memory

consumption and increased training speed for BERT, resulting in improved efficiency.

This is reflected in its performance metrics, achieving an accuracy of 0.821 and a

precision of 0.675 as shown in the confusion matrix in Figure 4. However, its accuracy in

analyzing financial data is somewhat limited due to its further training on the English

31

Wikipedia and Book CORPUS datasets, which are not specifically tailored to the financial

domain.

Secondly, the FinBERT model excels in capturing language knowledge and semantic

information within the financial domain due to its training with financial corpora. This is

evidenced by its strong performance metrics, with an accuracy of 0.815. This model not

only performs well in identifying discussions related to Environment, Social, and

Governance (ESG) issues, which significantly impact company valuations (Ernst &

Young, 2021), but also allows for the combination of text and numerical variables,

facilitating a more comprehensive analysis of available data. Despite its strengths,

FinBERT faces the challenge of processing input texts longer than 512 tokens. To address

this, we fine-tuned model is used to return logit values for each chunk, and the average

sentiment is computed across all chunks. This process necessitates dividing the text in the

"MD&A" variable into fragments of up to 512 tokens.

Lastly, the Longformer model extends the maximum input sequence length from 512 to

4,096 tokens, thereby enhancing its ability to model long-term dependencies in lengthy

texts. This capability is crucial for analyzing extensive financial documents, as

demonstrated in Figure 7, maintaining a competitive accuracy of 0.809. However, the

increased complexity of the Longformer model makes it more demanding in terms of

computational resources to train and execute.

Taking all these factors into account, we conclude that FinBERT provides the best results

for our classification task. The superior performance of this model can be partly attributed

to the incorporation of financial variables alongside the sentiment from MD&A.

Furthermore, it demonstrates that the sentiment presented in the Management Discussion

and Analysis provides valuable information when running a classification using the

Random Forest model.

In any case, it is imperative to discuss the main limitations of our models and

methodology. Firstly, many algorithms tend to learn better from situations that have more

weight in the dataset, which means that the model sometimes fails to correctly predict the

minority class. In our case, we have an imbalanced dataset where the proportion of one

class is considerably smaller. This presents a significant issue, as our primary interest lies

in the model's ability to accurately predict the infrequent events in our dataset and should

be addressed by either increasing minority class samples, applying oversampling and

32

undersampling techniques to increase the data points of the underrepresented category, or

adjusting class weights to penalize errors on the minority class more heavily.

Another major limitation of the model lies in the sample size chosen. The main constraint

in expanding the dataset is the acquisition of data from the SEC website via an API, as

the number of data points in the dataset is tied to a limited number of requests. To achieve

better results and develop a more robust model with greater generalization capability, it

would be necessary to work with a larger dataset. Additionally, due to existing regulation,

that only requires public companies to disclose their financial statements, our dataset is

composed solely of public companies as there is no disclosure obligation for private

companies. This implies that the sample is not fully representative of the entire market

landscape. The absence of data from private companies could lead to biased model

predictions, as it excludes a significant portion of the corporate sector that may behave

differently from public companies. This limitation underscores the need for regulatory

changes or alternative data acquisition strategies to obtain a more comprehensive dataset

that includes private entities, thereby enhancing the model’s accuracy and reliability.

33

Chapter 5

Conclusions

5. Conclusion

Although the dataset was not sufficiently large to assert the robustness of the model’s

predictive power, the evaluation of the model highlights the importance of NLP-based

techniques, as they can enhance the model's predictive power. Therefore, it can be

concluded that the analysis of the MD&A sections within the 10-K filings improves the

accuracy of our model, and Transformer-based models prove to be useful for this type of

task.

The main finding of our analysis is that, after evaluating the results obtained from the

three models used, we conclude that despite the significance of textual variables for the

model and the predictive power of Transformers, the best performing model is the one

that combines both financial and textual regressors.

Among the limitations of the model, we highlight three main points: our analysis is

theoretical in nature and lacks generalizability due to the small size of our sample.

Constructing a larger dataset, composed of both public and private entities, would help

mitigate these limitations and improve the results obtained from our analysis.

Additionally, our model has greater predictive power in forecasting if a firm will not be

involved in an M&A transaction, rather than the focus of our research, which was to

predict if a firm will be involved in a transaction as a target. To address this limitation, a

larger and more balanced sample would likely contribute positively to the model’s

performance for the intended task.

Lastly, regarding the main implications of our findings, we highlight the repercussions of

the analysis for financial investors, companies, and regulators. The integration of NLP-

based techniques, particularly Transformer models like FinBERT, provides a more

accurate tool for predicting a company's involvement in mergers and acquisitions

transactions. This facilitates better decision-making and more effective risk management

by anticipating significant market movements.

34

Furthermore, using this same approach, improved models can be constructed to perform

more detailed assessments of companies' financial health and prospects, relying not only

on numerical data but also on text analysis of key documents such as the MD&A sections

of 10-K reports. For investors, such analysis will translate into higher returns; for

companies, it will enhance their internal analysis and forecasting capabilities; and for

regulators, it will offer greater transparency and insight for decision-making.

5.1. Future lines of research

As a continuation of our analysis, it would be interesting to conduct a similar study using

data from the same sector and period but including additional variables to determine

which regressors better predict the possibility of being a target or not.

On one hand, we could conduct an analysis with other sections of the 10-K filings or other

documents, such as company press releases and 8-K filings, and on the other hand, rely

on other financial metrics that may have greater predictive power, such as the

EV/EBITDA ratio, revenue growth, or any metric that assesses the company's leverage.

Additionally, future research could also aim to explore the integration of sentiment

analysis on earnings call transcripts to gauge the management's outlook and confidence,

which may serve as an additional predictor for M&A activities. This approach would

combine textual sentiment data with traditional financial metrics to enhance the predictive

accuracy of the model.

35

Declaración de Uso de Herramientas de Inteligencia Artificial Generativa en Trabajos

Fin de Grado

ADVERTENCIA: Desde la Universidad consideramos que ChatGPT u otras herramientas
similares son herramientas muy útiles en la vida académica, aunque su uso queda

siempre bajo la responsabilidad del alumno, puesto que las respuestas que proporciona
pueden no ser veraces. En este sentido, NO está permitido su uso en la elaboración del
Trabajo fin de Grado para generar código porque estas herramientas no son fiables en
esa tarea. Aunque el código funcione, no hay garantías de que metodológicamente sea
correcto, y es altamente probable que no lo sea.

Por la presente, yo, Lucía Elegido Ojanguren, estudiante de Administración y Dirección

de Empresas y Análisis de Negocio de la Universidad Pontificia Comillas al presentar mi

Trabajo Fin de Grado titulado " Predicting M&A targets in the U.S. tech industry using

ALBERT, FinBERT and Longformer models", declaro que he utilizado la herramienta de

Inteligencia Artificial Generativa ChatGPT u otras similares de IAG de código sólo en el

contexto de las actividades descritas a continuación.

1. Brainstorming de ideas de investigación: Utilizado para idear y esbozar posibles

áreas de investigación.

2. Referencias: Usado conjuntamente con otras herramientas, como Science, para

identificar referencias preliminares que luego he contrastado y validado.

3. Metodólogo: Para descubrir métodos aplicables a problemas específicos de

investigación.

4. Interpretador de código: Para realizar análisis de datos preliminares.

5. Estudios multidisciplinares: Para comprender perspectivas de otras

comunidades sobre temas de naturaleza multidisciplinar.

6. Corrector de estilo literario y de lenguaje: Para mejorar la calidad lingüística y

estilística del texto.

7. Sintetizador y divulgador de libros complicados: Para resumir y comprender

literatura compleja.

8. Revisor: Para recibir sugerencias sobre cómo mejorar y perfeccionar el trabajo

con diferentes niveles de exigencia.

9. Traductor: Para traducir textos de un lenguaje a otro.

Afirmo que toda la información y contenido presentados en este trabajo son producto

de mi investigación y esfuerzo individual, excepto donde se ha indicado lo contrario y se

han dado los créditos correspondientes (he incluido las referencias adecuadas en el TFG

y he explicitado para que se ha usado ChatGPT u otras herramientas similares). Soy

consciente de las implicaciones académicas y éticas de presentar un trabajo no original

y acepto las consecuencias de cualquier violación a esta declaración.

Fecha: 20 June 2024

Firma: Lucía Elegido Ojanguren

36

Bibliography

Araci, D. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language

Models. arXiv. https://arxiv.org/abs/1908.10063

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXiv. https://arxiv.org/abs/1409.0473

Bain & Company. (2022). M&A is back: 2021 saw the highest M&A deal value in

history, exceeding expectations at nearly $6 trillion.

https://www.bain.com/about/media-center/press-releases/2022/global-ma-report-

2022/

Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document

Transformer. arXiv. https://arxiv.org/abs/2004.05150

Bhabra, H. S., & Hossain, A. T. (2017). Impact of SOX on the returns to targets and

acquirers in corporate tender offers. The North American Journal of Economics and

Finance, 42, 1-19. https://doi.org/10.1016/j.najef.2017.06.001

Calipha, R., Tarba, S., & Brock, D. (2010). Mergers and acquisitions: A review of phases,

motives, and success factors. Advances in Mergers & Acquisitions, 9, 1-24.

https://doi.org/10.1108/S1479-361X(2010)0000009004

Cambria, E., & White, B. (2014). Jumping NLP curves: A review of Natural Language

Processing Research. IEEE Computational Intelligence Magazine, 9(2), 48-57.

https://doi.org/10.1109/MCI.2014.2307227

Casola, S., Lauriola, I., & Lavelli, A. (2022). Pre-trained transformers: An empirical

comparison. Machine Learning With Applications, 9, 100334.

https://doi.org/10.1016/j.mlwa.2022.100334

Dealogic. (2024). Dealogic Database. Dealogic. https://dealogic.com/

Delis, M. D., Machin, S., McGowan, M., & Mihaylov, E. (2022). Management practices

and M&A Success. Journal of Banking & Finance, 134, 106355.

https://doi.org/10.1016/j.jbankfin.2021.106355

https://doi.org/10.1016/j.jbankfin.2021.106355

37

Deloitte. (2023). 2023 Technology, Media, and Telecommunications Predictions.

https://www2.deloitte.com/global/en/insights/industry/technology/technology-

media-and-telecom-predictions.html

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep

bidirectional transformers for language understanding. arXiv.

https://arxiv.org/abs/1810.04805

Ernst & Young. (2023). M&A sector of the year: Tech leads M&A activity in 2023.

https://www.ey.com/en_us/insights/mergers-acquisitions/m-and-a-activity-report

Ernst & Young. (2021). Why ESG performance is growing in importance for investors.

https://www.ey.com/en_us/insights/assurance/why-esg-performance-is-growing-

in-importance-for-investors

Flannery, M. J., Chen, L., Christopherson, J., & Radecki, L. (2020). M&A activity and

the capital structure of target firms. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.3688545

Gautier, A., & Lamesch, J. (2020). Mergers in the Digital Economy. SSRN Electronic

Journal. https://doi.org/10.2139/ssrn.3529012.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of Machine Learning Research, 3, 1157-1182.

https://dl.acm.org/doi/10.5555/944919.944968

Hajek, P., & Henriques, R. (2024). Predicting M&A targets using news sentiment and

topic detection. Technological Forecasting and Social Change, 201, 123270.

https://doi.org/10.1016/j.techfore.2024.123270

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

IBM. (2023). Confusion Matrix. IBM. https://www.ibm.com/topics/confusion-matrix

Institute of Mergers, Acquisitions and Alliances (IMAA) (2024). Homepage.

https://imaa-institute.org/

https://doi.org/10.2139/ssrn.3529012

38

Jiang, T. (2021). Using machine learning to analyze merger activity. Frontiers in Applied

Mathematics and Statistics, 7. https://doi.org/10.3389/fams.2021.649501

Jin, G. Z., Leccese, M., & Wagman, L. (2023). M&A and Technological Expansion.

Journal of Economics & Management Strategy, 33(2), 338-359.

https://doi.org/10.1111/jems.12551

Katsafados, A. G., Fetscherin, M., & Steiner, H. (2021). Using textual analysis to identify

merger participants: Evidence from the U.S. Banking Industry. SSRN Electronic

Journal. https://doi.org/10.2139/ssrn.3474583

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). ALBERT:

A lite BERT for self-supervised learning of language representations. arXiv.

https://arxiv.org/abs/1909.11942

Liberman, M. Y. (1991). The trend towards statistical models in Natural Language

Processing. In Natural Language and Speech (pp. 1-7). Springer.

https://doi.org/10.1007/978-3-642-77189-7_1

Louppe, G. (2014). Understanding random forests: From theory to practice (Doctoral

dissertation, University of Liège). arXiv. https://arxiv.org/abs/1407.7502

Manning, C. D., & Schutze, H. (1999). Foundations of statistical natural language

processing. MIT Press. https://doi.org/10.7551/mitpress/2077.001.0001

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv. https://arxiv.org/abs/1301.3781

Moeller, S., & Vitkova, V. (2016). What makes a company an attractive M&A target?

Bayes Business School.

https://www.bayes.city.ac.uk/study/courses/postgraduate/mergers-and-

acquisitions

Parungao, M., Hildebrandt, T., & Recker, J. (2022). Exploring qualitative data as

predictors for M&A: Empirical analysis of target firms’ letters to shareholders.

Cogent Business & Management, 9(1).

https://doi.org/10.1080/23311975.2022.2084970

https://arxiv.org/abs/1301.3781

39

Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models. IEEE ASSP

Magazine, 3(1), 4-16. https://doi.org/10.1109/massp.1986.1165342

Rahali, A., & Akhloufi, M. A. (2023). End-to-End Transformer-Based Models in Textual-

Based NLP. AI, 4(1), 54-110. https://doi.org/10.3390/ai4010004

Rossi, M., Tarba, S., & Raviv, A. (2013). Mergers and acquisitions in the high-tech

industry: a literature review. International Journal of Organizational Analysis,

21(1), 66-82. https://doi.org/10.1108/19348831311322542

Routledge, B. R., Sacchetto, S., & Smith(2013). Predicting merger targets and acquirers

from text. Semantic Scholar. https://api.semanticscholar.org/CorpusID:4931312

Sajjad, H., Dahlmeier, D., Ng, H. T., & Schultz, T. (2023). On the effect of dropping

layers of pre-trained transformer models. Computer Speech & Language, 77,

101429. https://doi.org/10.1016/j.csl.2022.101429

Siino, M., Tinnirello, I., & La Cascia, M. (2024). Is text preprocessing still worth the

time? A comparative survey on the influence of popular preprocessing methods on

Transformers and traditional classifiers. Information Systems, 121, 102342.

https://doi.org/10.1016/j.is.2023.102342

Suo, L., Yang, K., & Ji, H. (2023). The impact of technological mergers and acquisitions

on Enterprise Innovation: A Review. Sustainability, 15(17), 12883.

https://doi.org/10.3390/su151712883

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language

processing: An introduction. Journal of the American Medical Informatics

Association, 18(5), 544–551. https://doi.org/10.1136/amiajnl-2011-000464

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,

& Polosukhin, I. (2017). Attention is all you need. arXiv.

https://arxiv.org/abs/1706.03762

Wang, H., Lin, Y., Sun, X., Zhao, X., & Zhou, J. (2023). Pre-Trained Language Models

and their applications. Engineering, 25, 51–65.

https://doi.org/10.1016/j.eng.2022.04.024

https://doi.org/10.1109/massp.1986.1165342
https://doi.org/10.3390/ai4010004
https://doi.org/10.3390/su151712883
https://arxiv.org/abs/1706.03762
https://doi.org/10.1016/j.eng.2022.04.024

40

Xiao, T., & Zhu, J. (2023). Introduction to Transformers: an NLP Perspective. arXiv.

https://arxiv.org/abs/2311.17633

https://arxiv.org/abs/2311.17633

41

Appendix

Predicting M&A targets in the U.S. tech industry using
ALBERT, FinBERT and Longformer models

In []:

!pip install edgar

!pip install openpyxl

!pip install sec-api

!pip install beautifulsoup4

!pip install nltk

!pip install refinitiv.dataplatform

!pip install xgboost

!pip install plotly

!pip install eikon

!pip install pandas scikit-learn torch transformers accelerate

!pip install transformers torch datasets

In []:

import pandas as pd

import edgar

import requests

from bs4 import BeautifulSoup

import time

import json

import configparser

import datetime

import numpy as np

from numpy import mean

from numpy import std

import os

import plotly.express as px

import plotly.graph_objects as go

from plotly.subplots import make_subplots

 from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn import tree

from sklearn.ensemble import RandomForestClassifier

import xgboost as xgb

from xgboost import XGBClassifier

from sklearn.decomposition import PCA

from transformers import BertTokenizer, BertForSequenceClassification

import torch

from sklearn import metrics

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

from sklearn.metrics import roc_auc_score

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import cross_validate

from sklearn.model_selection import RepeatedStratifiedKFold

from scipy.stats import norm

import warnings

import refinitiv.dataplatform as rdp

from sec_api import QueryApi

from sec_api import ExtractorApi

42

from transformers import AlbertTokenizer, AlbertForSequenceClassification, Trainer,

TrainingArguments

from sklearn.model_selection import train_test_split

import torch

from transformers import BertTokenizer, BertForSequenceClassification, pipeline

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report

Step 1 - Data collection
Target datasets

In []:

#Upload BBG excel

dataset= pd.read_excel (r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\Datos_v01.xlsx')

#Commands to filter our dataset

data= dataset.dropna(subset=['Target Ticker', 'Announced Total Value (mil.)'])

data = data[data['Announced Total Value (mil.)'] >= 100]

data = data[data['Deal Status'] == "Completed"]

data = data[data['Deal Type'] == "M&A"]

#Target dataset exploration

dataset.shape

print(dataset.shape)

data.shape

print(data.shape)

#We have 353 transactions - we randomly select 30 operations

data= data.sample (n=30, random_state=42)

Non-targets dataset
In []:

#Connect to Refinitiv

import refinitiv.dataplatform as rdp

app_key = "fb14d6e106e84f068981ebb1c8fd03b814366e30"

try:

 session = rdp.open_desktop_session(app_key)

 print("¿Está la sesión abierta?", session.is_open())

except Exception as e:

 print("Error al abrir la sesión:", e)

Manually using Refinitiv Workspace we add a new column to our Target data including the RIC -

Identifier in BBG

In []:

target_rics = ['BIRT.OQ^A15', 'MCFE.OQ^C22', 'COUP.OQ^C23', 'CY.OQ^D20', 'AMCC.OQ^A17',

 'MANT.OQ^I22', 'EPAY.OQ^E22', 'IMS.N^J16', 'DTLK.OQ^A17', 'SYKE.OQ^H21',

 'IXYS.OQ^A18', 'AVID.OQ^K23', 'ESMT.N^A24', 'CSOD.OQ^J21', 'CAVM.OQ^G18',

 'MENT.OQ^C17', 'RVBD.OQ^D15', 'USER.N^A23', 'COTV.N^H18', 'BRCD.OQ^K17',

 'RAX^K16', 'TUBE.O^L16', 'PS.OQ^D21']

target_dates = ['2013-12-05', '2021-11-05', '2022-12-12', '2019-06-03', '2016-11-21',

 '2022-05-16', '2021-12-17', '2016-05-03', '2016-11-07', '2021-06-18',

 '2017-08-28', '2023-08-09', '2023-10-23', '2021-08-05', '2017-11-20',

 '2016-11-14', '2014-12-15', '2022-10-27', '2018-06-19', '2016-11-02',

43

 '2016-08-26', '2016-11-10', '2020-12-13']

In []:

def peers(RIC, date):

 '''

 Get peer group for an individual RIC along with required variables for the models

 Dependencies

 Python library 'refinitiv.dataplatform' version 1.0.0a8.post1

 Python library 'pandas' version 1.3.3

 Parameters

 Input:

 RIC (str): Refinitiv Identification Number (RIC) of a stock

 date (str): Date as of which peer group and variables are requested - in yyyy-mm-dd

 Output:

 peer_group (DataFrame): Dataframe of 50 peer companies along with requested variables

 '''

 fields = ["TR.F.TotCap","TR.ExchangeCountryISO"]

 instruments = 'SCREEN(U(IN(Peers("{}"))))'.format(RIC)

 peer_group, error = rdp.legacy.get_data(instruments = instruments, fields = fields, parameters =

{'SDate': date})

 return peer_group

In []:

no_peers = []

no_dates = []

peer_data = pd.DataFrame()

for i in range(len(target_rics)):

 try:

 #request Peer function for each target company in the lits

 vals = peers(target_rics[i], target_dates[i])

 #drop peers with missing values

 vals.dropna(inplace = True)

 #add a column for 30 days prior to the M&A announcement

 vals.insert(loc = 1, column = 'AD-30', value = target_dates[i])

 #append target company's peer data to the main dataframe of all peers

 peer_data = pd.concat([peer_data, vals], ignore_index = True, axis = 0)

 #if error is returned, store ric and request date in a separate list

 except:

 no_peers.append(target_rics[i])

 no_dates.append(target_dates[i])

 continue

In []:

peer_data.head(10)

peer_data.to_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Datos_NT.xlsx')

In excelwe ammend both datasets so they have the same variables and names in order to properly

concatenate

In []:

44

targets= pd.read_excel (r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\targets.xlsx',

sheet_name='Sheet1')

nontargets= pd.read_excel (r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\non_targets.xlsx', sheet_name='Sheet1')

merged_dataset = pd.concat([targets, nontargets], ignore_index=True)

print(merged_dataset.head())

Download MD&A for each company

#Hay que ir target por target descargando la información que necesitamos y añadiendolo a nuestro

dataset para ir almacenando la información relevante

In []:

#Example of query for a given ticker and date

from sec_api import QueryApi

queryApi =

QueryApi(api_key="7c812487edf3aa8d88b0cd9bf2df50b4679f56b549076ad133291254cdf95838")

formType:("10-K", "10-KT", "10KSB", "10KT405", "10KSB40", "10-K405")

query = {

 "query": { "query_string": {

 "query": "formType:\"10-K\" AND ticker:BIRT AND filedAt: [2014-01-01 TO 2014-12-31]" ,

 }},

 "from": "0",

 "size": "1"

}

response = queryApi.get_filings(query)

from sec_api import ExtractorApi

ExtractorApi =

ExtractorApi(api_key="7c812487edf3aa8d88b0cd9bf2df50b4679f56b549076ad133291254cdf95838")

filing_url = str(response['filings'][0]['linkToTxt'])

section_html = ExtractorApi.get_section(filing_url,"7")

print(section_html) #Copy this section to our dataset

Extract financial variables

In []:

dataset['Revenue'] = None

dataset['EBITDA'] = None

dataset['Enterprise Value'] = None

In []:

import refinitiv.dataplatform as rdp

app_key = "fb14d6e106e84f068981ebb1c8fd03b814366e30"

try:

 session = rdp.open_desktop_session(app_key)

 print("¿Está la sesión abierta?", session.is_open())

except Exception as e:

 print("Error al abrir la sesión:", e)

base_url = 'https://api.refinitiv.com/data'

As get_data_from_refinitiv is not working - we obtain the variables from Refinitiv's excel add-in

Error - obtain directly from Python the financial variables

45

def get_data_from_refinitiv(ric, year): headers = { 'Content-Type': 'application/json', 'Authorization':

f'Bearer {app_key}' }

Endpoints para cada métrica

endpoints = {

 'Revenue': f'{base_url}/content/data/company/{ric}/fundamentals/income-

statement?periodType=FY&fiscalYear={year}',

 'EBITDA': f'{base_url}/content/data/company/{ric}/fundamentals/income-

statement?periodType=FY&fiscalYear={year}&fields=EBITDA',

 'EnterpriseValue':

f'{base_url}/content/data/company/{ric}/valuation?periodType=FY&fiscalYear={year}&fiel

ds=EnterpriseValue'

}

data = {}

for metric, url in endpoints.items():

 response = requests.get(url, headers=headers)

 if response.status_code == 200:

 result = response.json()

 # Extraer el valor de la métrica de la respuesta JSON

 data[metric] = result.get('data', [{}])[0].get(metric, None)

 else:

 data[metric] = None

return data

for index, row in dataset.iterrows(): ric = row['RIC'] year = row['Year'] data =

get_data_from_refinitiv(ric, year)

Actualizar el dataframe con los nuevos datos

dataset.at[index, 'Revenue'] = data.get('Revenue')

dataset.at[index, 'EBITDA'] = data.get('EBITDA')

46

dataset.at[index, 'Enterprise Value'] = data.get('EnterpriseValue')

dataset.to_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Datos_vF.xlsx',

index=False)

print("Datos extraídos y guardados correctamente en refinitiv_data.xlsx")

Data pre-processing
In []:

data= pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Datos_vF0.xlsx')

print(data.head())

In []:

#Data exploration

data['Target'].value_counts()

data.isnull().sum()

data['MD&A'] = data['MD&A'].astype(str)

In []:

#Data cleaning

columns_drop=['EBITDA','Price closing announcement date','Net income','Market Cap at Announcement

date','Shares outstanding','Market cap v2']

data.drop(columns=columns_drop, inplace=True)

#Standarization

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

data['Revenue']= scaler.fit_transform(data[['Revenue']])

print(data.head())

Step 2 - ALBERT Model
In []:

#Split dataset

class_1 = data[data['Target'] == 1]

class_0 = data[data['Target'] == 0]

class_1_train, class_1_test = train_test_split(class_1, test_size=0.2, random_state=42)

class_0_train, class_0_test = train_test_split(class_0, test_size=0.2, random_state=42)

train_data = pd.concat([class_1_train, class_0_train])

test_data = pd.concat([class_1_test, class_0_test])

X_train = train_data['MD&A']

y_train = train_data['Target']

X_test = test_data['MD&A']

y_test = test_data['Target']

print(f"Tamaño del conjunto de entrenamiento: {X_train.shape[0]}")

print(f"Tamaño del conjunto de prueba: {X_test.shape[0]}")

In []:

tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')

Función para tokenizar los textos

def tokenize_data(texts):

 return tokenizer(texts.tolist(), padding=True, truncation=True, return_tensors='pt')

train_encodings = tokenize_data(X_train)

test_encodings = tokenize_data(X_test)

class Dataset(torch.utils.data.Dataset):

 def __init__(self, encodings, labels):

47

 self.encodings = encodings

 self.labels = labels

 def __getitem__(self, idx):

 item = {key: val[idx] for key, val in self.encodings.items()}

 item['labels'] = torch.tensor(self.labels[idx])

 return item

 def __len__(self):

 return len(self.labels)

train_dataset = Dataset(train_encodings, y_train.tolist())

test_dataset = Dataset(test_encodings, y_test.tolist())

model = AlbertForSequenceClassification.from_pretrained('albert-base-v2', num_labels=2)

training_args = TrainingArguments(

 output_dir='./results', # Directorio de salida

 num_train_epochs=3, # Número de épocas de entrenamiento

 per_device_train_batch_size=8, # Tamaño del lote para entrenamiento

 per_device_eval_batch_size=8, # Tamaño del lote para evaluación

 warmup_steps=500, # Pasos de calentamiento

 weight_decay=0.01, # Decaimiento de peso

 logging_dir='./logs', # Directorio de logs

 logging_steps=10, # Pasos de logging

 evaluation_strategy="epoch", # Estrategia de evaluación: cada época

 save_strategy="epoch", # Estrategia de guardado: cada época

)

def compute_metrics(pred):

 labels = pred.label_ids

 preds = pred.predictions.argmax(-1)

 precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')

 acc = accuracy_score(labels, preds)

 return {

 'accuracy': acc,

 'precision': precision,

 'recall': recall,

 'f1': f1,

 }

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=train_dataset,

 eval_dataset=test_dataset,

 compute_metrics=compute_metrics

)

Train

trainer.train()

Evaluate

results = trainer.evaluate()

print(results)

Obtain predictions

48

predictions = trainer.predict(test_dataset)

preds = predictions.predictions.argmax(-1)

labels = predictions.label_ids

print(f"Tamaño de las predicciones: {len(preds)}")

print(f"Tamaño de las etiquetas reales: {len(labels)}")

Confussion matrix

cm = confusion_matrix(labels, preds)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)

disp.plot(cmap=plt.cm.Blues)

plt.title('Confusion Matrix')

plt.show()

Include predictions to existing dataset

test_results = X_test.reset_index(drop=True)

test_results = pd.DataFrame(test_results)

test_results['Actual'] = y_test.reset_index(drop=True)

test_results['Predicted'] = preds

test_results.to_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\Datos_Predicted.xlsx', index=False)

Step 3 - Finbert Model
In []:

Dividir el dataset en conjunto de entrenamiento y prueba

X = data[['Sentiment']]

y = data['Target']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

Entrenar un modelo de clasificación

clf = RandomForestClassifier(random_state=42)

clf.fit(X_train, y_train)

Hacer predicciones en el conjunto de prueba

y_pred = clf.predict(X_test)

Evaluar el modelo

accuracy = accuracy_score(y_test, y_pred)

report = classification_report(y_test, y_pred)

print(f"Accuracy: {accuracy}")

print(f"Classification Report:\n{report}")

Guardar los resultados en un nuevo archivo Excel

output_file_path = '/mnt/data/data_with_sentiment_and_predictions.xlsx'

data['Predicted'] = clf.predict(data[['Sentiment']])

data.to_excel(output_file_path, index=False)

print(f"Predictions saved to {output_file_path}")

In []:

Divide MD&A in fragments up to 512 tokens each

def chunk_text(text, chunk_size=512):

 tokens = tokenizer.tokenize(text)

49

 chunks = [' '.join(tokens[i:i + chunk_size]) for i in range(0, len(tokens), chunk_size)]

 return chunks

chunks = data['MD&A'].apply(chunk_text)

max_chunks = max(chunks.apply(len))

for i in range(max_chunks):

 data[f'MD&A_chunk_{i+1}'] = chunks.apply(lambda x: x[i] if i < len(x) else '')

Guardar los resultados en un nuevo archivo Excel

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\Datos_Divided.xlsx'

data.to_excel(output_file_path, index=False)

print(f"Data with chunks saved to {output_file_path}")

In []:

Cargar el archivo Excel proporcionado con los fragmentos

data= pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\Datos_Divided.xlsx')

Cargar el modelo y el tokenizador de FinBERT

finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-tone', num_labels=3)

tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-tone')

Verificar si hay una GPU disponible y mover el modelo a la GPU si es posible

#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

#finbert.to(device)

Crear el pipeline de análisis de sentimiento

nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer, device=0 if

torch.cuda.is_available() else -1)

Función para obtener el sentimiento de un texto

def get_sentiment(texts):

 results = nlp(texts, truncation=True, padding=True, max_length=512)

 sentiments = []

 for result in results:

 sentiment = result['label']

 if sentiment == 'positive':

 sentiments.append(2)

 elif sentiment == 'negative':

 sentiments.append(0)

 else:

 sentiments.append(1)

 return sentiments

Aplicar FinBERT a cada fragmento y calcular el promedio de sentimiento

sentiment_columns = [f'MD&A_chunk_{i}' for i in range(1, 21)] # Nombres de las columnas de

fragmentos

sentiment_scores = []

batch_size = 16 # Tamaño del lote para el procesamiento por lotes

for index, row in data.iterrows():

 fragments = [row[col] for col in sentiment_columns if pd.notna(row[col]) and row[col].strip() != '']

50

 if fragments:

 # Procesar en lotes para mejorar la eficiencia

 batch_sentiments = []

 for i in range(0, len(fragments), batch_size):

 batch = fragments[i:i + batch_size]

 batch_sentiments.extend(get_sentiment(batch))

 if batch_sentiments:

 average_sentiment = sum(batch_sentiments) / len(batch_sentiments)

 else:

 average_sentiment = 1 # Neutral si no hay fragmentos

 else:

 average_sentiment = 1 # Neutral si no hay fragmentos

 sentiment_scores.append(average_sentiment)

Añadir la nueva columna con el promedio de sentimiento

data['Average_Sentiment'] = sentiment_scores

Verificar los resultados

print(data[['Average_Sentiment']].head())

Guardar los resultados en un nuevo archivo Excel

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\Result_Finbert.xlsx'

data.to_excel(output_file_path, index=False)

print(f"Data with average sentiment saved to {output_file_path}")

In []:

#Only interested in the sentiment not the actual MD&A

columns_to_keep = ['Target', 'Revenue', 'P/E', 'EBITDA Margin', 'Average_Sentiment']

data_v2 = data[columns_to_keep]

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\Data_Modelo.xlsx'

data_v2.to_excel(output_file_path, index=False)

In []:

data_v2 = pd.get_dummies(data_v2, drop_first=True)

data_v2 = data_v2.apply(pd.to_numeric, errors='coerce')

output_file_path = r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\Data_Modelo2.xlsx'

data_v2.to_excel(output_file_path, index=False)

data= pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG

Analytics\Código\Datos_Modelo2.xlsx')

In []:

print(data_v2.head())

columns_to_keep = ['Target', 'Revenue', 'P/E', 'EBITDA Margin', 'Average_Sentiment']

data_v2 = data_v2[columns_to_keep]

data_v2 = data_v2.fillna(0)

In []:

print(data_v2.head())

In []:

Random Forest

X = data_v2.drop('Target', axis=1)

51

y = data_v2['Target']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

In []:

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

Inicializar el modelo Random Forest

clf = RandomForestClassifier(random_state=42)

Entrenar el modelo

clf.fit(X_train, y_train)

In []:

#Evaluate and predict

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

report = classification_report(y_test, y_pred)

conf_matrix = confusion_matrix(y_test, y_pred)

print(f"Accuracy: {accuracy}")

print(f"Classification Report:\n{report}")

print(f"Confusion Matrix:\n{conf_matrix}")

In []:

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

import matplotlib.pyplot as plt

disp = ConfusionMatrixDisplay(confusion_matrix=conf_matrix)

disp.plot(cmap=plt.cm.Blues)

plt.title('Confusion Matrix')

plt.show()

Step 4 - Longformer model
Los modelos como Longformer y BigBird están específicamente diseñados para manejar secuencias

de texto más largas que los modelos tradicionales como BERT, ALBERT, y FinBERT

In []:

data2=pd.read_excel(r'C:\Users\Lucia Elegido\Desktop\5º\TFGs\TFG Analytics\Código\merged.xlsx')

def preprocess_text(text):

 return text.replace('’', "'").replace('’', "'")

data2['MD&A'] = data2['MD&A'].apply(preprocess_text)

In []:

train_data, temp_data = train_test_split(data2, test_size=0.3, stratify=data2['Target'], random_state=42)

test_data_0 = temp_data[temp_data['Target'] == 0]

test_data_1 = temp_data[temp_data['Target'] == 1]

if len(test_data_1) == 0:

 train_data, temp_data = train_test_split(data2, test_size=0.3, stratify=data2['Target'], random_state=43)

 test_data_0 = temp_data[temp_data['Target'] == 0]

 test_data_1 = temp_data[temp_data['Target'] == 1]

52

test_data = pd.concat([test_data_0, test_data_1])

train_dataset = Dataset.from_pandas(train_data)

test_dataset = Dataset.from_pandas(test_data)

In []:

tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096')

def tokenize_function(examples):

 return tokenizer(examples['MD&A'], padding='max_length', truncation=True, max_length=4096)

train_dataset = train_dataset.map(tokenize_function, batched=True)

test_dataset = test_dataset.map(tokenize_function, batched=True)

Renombrar la columna 'Target' a 'labels' para que el Trainer la reconozca

train_dataset = train_dataset.rename_column('Target', 'labels')

test_dataset = test_dataset.rename_column('Target', 'labels')

In []:

model = LongformerForSequenceClassification.from_pretrained('allenai/longformer-base-4096',

num_labels=2)

metric = load_metric('accuracy')

def compute_metrics(p):

 return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids)

training_args = TrainingArguments(

 output_dir='./results',

 evaluation_strategy='epoch',

 learning_rate=2e-5,

 per_device_train_batch_size=2,

 per_device_eval_batch_size=2,

 num_train_epochs=3,

 weight_decay=0.01,

)

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=train_dataset,

 eval_dataset=test_dataset,

 compute_metrics=compute_metrics,

)

trainer.train()

trainer.evaluate()

In []:

predictions = trainer.predict(test_dataset)

pred_labels = np.argmax(predictions.predictions, axis=1)

true_labels = predictions.label_ids

Matriz de confusión

cm = confusion_matrix(true_labels, pred_labels, labels=[0, 1])

cmd = ConfusionMatrixDisplay(cm, display_labels=[0, 1])

53

cmd.plot()

plt.title('Confusion Matrix')

plt.show()

In []:

report = classification_report(true_labels, pred_labels, target_names=['Class 0', 'Class 1'])

print("Classification Report:\n", report)

Curva ROC y AUC

from sklearn.metrics import roc_curve, auc

fpr, tpr, _ = roc_curve(true_labels, predictions.predictions[:, 1])

roc_auc = auc(fpr, tpr)

plt.figure()

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic')

plt.legend(loc="lower right")

plt.show()

