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time series
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Abstract. An interval time series is a sequence of intervals observed se-
quentially in time. It allows to describe the behavior of phenomena where
variability must be taken into account. In this paper, exponential smooth-
ing methods are adapted to this kind of series with the help of interval
arithmetic. A comparison of the forecast performance of the interval ex-
ponential smoothing and other methods is carried out. These methods
include interval multilayer perceptron and modelling, in a separate way,
the series of the interval attributes (minimum and maximum, or center
and radius) using classical forecasting methods.

1 Introduction

An interval time series (ITS) is a sequence of intervals observed sequentially in
time. ITS has been previously proposed in [1] and [2] with the aim to extend
symbolic data analysis [3] to the field of time series. In symbolic data analysis,
items are described by symbolic variables: lists of values, intervals, frequency
distributions, etc. These variables allow the characterization of complex real-life
situations and the summarization of large data sets into symbolic ones retaining
the key information but offering a more manageable size. In an ITS, the variable
observed through time is an interval variable.

ITS represent phenomena that classical time series (i.e. series where observa-
tions are single values) cannot accurately describe, such as when variability must
be taken into account. For example, an ITS is suitable to describe the lower and
upper monthly water levels of a river at a given location; or the range of daily
values of a stock index; or the intervals enclosing the levels of an air-pollutant
recorded in several meteorological stations distributed along a city.

ITS can be obtained in sampling or summarization contexts. In a sampling
context, an ITS arises recording the lower and upper values in each time interval.
In a summarization context, an ITS is obtained summing up a set of values by
means of an interval for each considered instant. In these contexts, intervals
can arise from the minimum and maximum observed values, but also from the
interquartile range or from the middle 90% of the scores (in order to avoid
outliers); it depends on the aims of the analysis.

∗This work is funded by the Dirección General de Universidades e Investigación of Madrid,
by the Universidad Complutense (Research Group 910494), and by Universidad Pontificia
Comillas (PRESIM project).



This paper tackle ITS forecasting from different approaches. Section 2 de-
fines interval variable and ITS. Section 3 summarizes the main ideas of interval
arithmetic, which will be used as the basis in some ITS forecasting methods.
Section 4 briefly shows how to measure errors in ITS. In section 5, exponential
smoothing methods for ITS are proposed and some ideas to deal with trend and
seasonality are introduced. Section 6 shows other approaches to forecast ITS and
special attention is given to the Interval Multilayer Perceptron. In section 7 the
forecasting performance of the proposed approaches is analyzed by an example.
Finally, section 8 concludes.

2 Definitions

An interval variable, [X], is a variable defined for all the elements i of a set E,
where [X]i = {[Xi,L,Xi,U ],−∞ < Xi,L ≤ Xi,U < ∞},∀i ∈ E. The value of
[X] for the ith element can be denoted by the interval lower and upper bounds
[X]i = [Xi,L,Xi,U ] or, equivalently, by the center and radius [X]i = 〈Xi,C ,Xi,R〉,
where Xi,C = (Xi,L + Xi,U )/2 and Xi,R = (Xi,U − Xi,L)/2, respectively.

An ITS can be denoted by {[X]t} and the value of the variable in t can be
expressed as [X]t = [Xt,L,Xt,U ] = 〈Xt,C ,Xt,R〉. In order to denote a forecasted

value, a hat will be placed above the variable, [X̂]t.

3 Interval arithmetic

Apart from symbolic data analysis, other field related with intervals is interval
analysis [4]. This field assumes that, in the real world, observations and estima-
tions are usually incomplete or uncertain. Thus, it considers that, if precision is
needed, data must be represented as intervals enclosing the real quantities. The
theory of interval analysis is build around this idea.

Interval computations are based in interval arithmetic [4], which can be sum-
marized as follows: Let A and B be two intervals and � be an arithmetic oper-
ator, then A�B is the smallest interval which contains a�b ∀a ∈ A and ∀b ∈ B.
According to this definition, interval addition, subtraction, multiplication and
quotient are respectively, defined by:

[A] + [B] = [AL + BL, AU + BU ]

[A] − [B] = [AL − BU , AU − BL]

[A] · [B] = [min{AL · BL, AL · BU , AU · BL, AU · BU},

max{AL · BL, AL · BU , AU · BL, AU · BU}]

[A]/[B] = [A] · (1/[B]),with 1/[B] = [1/BU , 1/BL]

It is worth noting that interval arithmetic subsumes the classical one, in the
sense that, if the operands of interval arithmetic are intervals with width zero



(i.e. [a, a], a ∈ ℜ), the result of interval operations will be equal to the result
obtained by the classical operations.

In interval arithmetic, addition and multiplication are associative and com-
mutative. The distributive law does now always hold, but the subdistributive
property is satisfied; it is defined as:

[A]([B] + [C]) ⊆ [A][B] + [A][C]

4 Error Measures for Interval Time Series

According to [2], error measures for ITS cannot be based in the difference be-
tween the observed and the actual interval, because interval subtraction does
not faithfully represent the concept of deviation, as [A]− [A] = [0, 0] if and only
if [A] = [a, a] with a ∈ ℜ. Thus, they propose error measures based on distances
for interval data, such as the Hausdorff and the Ichino-Yaguchi distance.

Let {[X]t} be the observed ITS, and {[X̂]t} be the forecast of this ITS with
t = 1, ..., n, the Mean Distance Error based on Hausdorff distance is defined as

MDEH =
1

n

n∑

t=1

[|Xt,C − X̂t,C | + |Xt,R − X̂t,R|],

and the Mean Distance Error based on the Ichino-Yaguchi distance is defined as

MDEIY =
1

n

n∑

t=1

0.5[|Xt,L − X̂t,L| + |Xt,U − X̂t,U |].

5 Exponential Smoothing methods for ITS

Exponential smoothing methods in classical time series obtain forecasts as the
weighted moving average of all past observations where the assigned weights
decrease exponentially (see [5] for an up-to-date review). In this section, expo-
nential smoothing methods are adapted to ITS1. In order to adapt the methods
to ITS, a procedure to average intervals is required. We propose to average
intervals using interval arithmetic.

5.1 Average Interval

The interval that averages a set E of n intervals [X]i, i = 1, ..., n is defined as

[X̄] =
[X]1 + [X]2 + ... + [X]n

n
,

where the arithmetic operations are interval arithmetic operations.
The average interval holds the following properties:

X̄L =
XL,1 + XL,2 + ... + XL,n

n
, X̄U =

XU,1 + XU,2 + ... + XU,n

n
,

1The notation of the proposed methods will be similar to that in [5]



X̄C =
XC,1 + XC,2 + ... + XC,n

n
, X̄R =

XR,1 + XR,2 + ... + XR,n

n
.

These properties allow us to consider that the average interval is the barycen-
ter of a system of particles (the set of intervals E) where each particle is defined
by two coordinates: the lower and the upper bounds, or, equivalently, the center
and the radius. Obviously, as the average interval is equivalent to the interval
barycenter, it can also be seen as the interval that minimizes the addition of the
euclidean distances between itself and each interval of the set E.

The definition of moving averages based in the interval average is straight-
forward, and will not be tackled in this article.

5.2 Simple Exponential Smoothing

The formula of simple exponential smoothing (SES) in classical time series is

X̂t+1 = X̂t + α(Xt − X̂t),

where α ∈ [0, 1]. This equation is written in an error-correction form, while its
equivalent recurrence form is given by:

X̂t+1 = αXt + (1 − α)X̂t.

If both equations are adapted to ITS using interval arithmetic, they are not
equivalent and

α[Xt] + (1 − α)[X̂]t ⊆ [X̂]t + α([Xt] − [X̂t])

due to the subdistributive property. Thus, the SES method for ITS will adapt
equation in recurrence form as it produces tighter intervals. It is defined as:

[X̂]t+1 = α[Xt] + (1 − α)[X̂]t,

where α ∈ [0, 1]. The initializing phase requires the value of [X̂]1 which can be
the first observed value, [X]1, or the average interval of the first three or four ob-
served values. It is clear, that the SES forecast of an ITS is the weighted moving
average of all past observations, where the weights decrease exponentially.

5.3 Exponential Smoothing with Trend

The Holt exponential smoothing method allows forecasting classical time series
with trend. This method smoothes both the level and the trend of the series.
The adaptation of the Holt method for ITS requires to smooth both components.

In our approach, the level of the HTS in t will be represented by an interval,
[S]t; and the trend of the HTS in t will be represented by a single value, Tt, that
represents the location of the interval by its center. Both, level and trend, are
separately smoothed and later added in order to obtain the forecast.

The exponential smoothing method with additive trend (EST) is defined as:

[S]t = α[X]t + (1 − α)([S]t−1 + Tt−1),



Tt = γ(SC,t − SC,t−1) + (1 − γ)Tt−1,

[X̂]t+m = [S]t + mTt,

where α, γ ∈ [0, 1], SC,t is the center of the interval [S]t, and m is a factor
that multiplies the trend in order to produce forecasts for m periods ahead.
The initialization values can be T1 = XC,2 − XC,1 and [S]1 = [X]1, but more
sophisticated initialization values can be given.

5.4 Exponential Smoothing with Seasonality

In an ITS, it can be considered that there are two different types of seasonality:
first, considering that the seasonal variation only concerns to the location of the
intervals; and second, considering that the seasonality affects the whole interval.
We will propose two different methods in order to deal with both alternatives.

In the first approach, the seasonal component in t is represented as a single
value, It, representing the changes in the interval location due to the seasonal
effect and where interval location is represented as the interval center. The level
in t, [S]t, is a deseasonalized interval, i.e. an interval without the seasonal effect.
Forecasts are the addition of the level interval and the seasonal component. The
interval exponential smoothing method with additive crisp seasonality (IEScS)
is given next:

[St] = α([X]t − It−s) + (1 − α)[S]t−1,

It = δ(Xc,t − Sc,t) + (1 − δ)It−s,

[X̂]t+1 = [S]t + It−s+1,

where α, δ ∈ [0, 1] and s is the length of the seasonality. The initialization
of the model requires a whole season (i.e. the first s periods) and it can be

done as follows: [S]s = [X]1+...+[X]s
s

and I1 = XC,1 − SC,s, I2 = XC,2 − SC,s,...,
Is = XC,s − SC,s.

In the second approach, the level, [S]t, and the seasonality, [I]t, are repre-
sented as intervals. In this case, the level is no deseasonalized and both com-
ponents are independently smoothed in separate equations. The forecast is ob-
tained as the weighted addition of the level and the seasonality interval, where
the weight controls the importance of each component. The interval exponential
smoothing method with additive interval seasonality (IESiS) is shown next:

[S]t = α[X]t + (1 − α)[S]t−1,

[I]t = δ[I]t + (1 − δ)[I]t−s,

[X̂]t+1 = ξ[S]t + (1 − ξ)[I]t−s+1,



where α, δ, ξ ∈ [0, 1], and s is the length of the seasonality. As in the previous
approach, the first s periods of the HTS are needed to initialize the model. The
initialization of the seasonal component can be done as follows [I]1 = [X]1,
[I]2 = [X]2, ..., [I]s = [X]s; while the initial value of the level component can
be obtained as [S]1 = [X]1 for t = 1 and applying the smoothing equation to
obtain the level for t = 2, .., s.

6 Other approaches to forecast ITS

The simplest way to forecast an ITS is the naive model, although its forecasting
ability is limited. Letting aside this model, the most straightforward approach
consists of transforming the ITS in a pair of classical time series (center and ra-
dius, or minimum and maximum) and modelling each of them with an univariate
forecasting model or both of them with a multivariate model. This approach has
the objection that it can produce wrong intervals (e.g. intervals where XL > XU

or where XC < 0) as it does not deal with intervals as a whole. On the other
hand, interval attributes allow to focus in the features that characterizes the
intervals. We consider that the center-radius approach is especially interesting
as the center shows the interval location and the radius shows the interval span.

Classical multilayer perceptrons are commonly applied in time series forecast-
ing prediction [6]. In a similar way, the Interval Multilayer Perceptron (iMLP)
[7] can be applied to forecast ITS. The iMLP adapts the classical Multilayer
Perceptron structure [8] in order to operate on interval-valued input and output
data. Thus, it allows to deal with variability (in interval form) in the data set.

Other perceptrons dealing, in some manner, with intervals have been pro-
posed, for example, in [9] and [10]. The one proposed by Beheshti et al. [10]
is the more similar to the iMLP, as it has inputs and outputs in interval form.
However, in the Behesti perceptron the weights and biases are intervals, whereas,
in the iMLP, they are crisp values. Consequently, the estimation of the optimal
weights and biases in the Behesti perceptron is done by means of interval com-
putational algorithms and is substantially more complex than the calibration
of the iMLP. Thus, the iMLP will be considered to forecast ITS and will be
described below.

6.1 The Interval Multilayer Perceptron

An iMLP with n inputs and m outputs is comprised of an input layer with
n input buffer units, one or more hidden layers with a non-fixed number of
nonlinear hidden units and one output layer with m linear or nonlinear output
units. Henceforth, we will consider just one hidden layer with h hidden units
and one output (m = 1). The operations in the iMLP follow the rules of interval
arithmetic (see section 3).

Considering n interval-valued inputs [X]i = 〈Xi,C ,Xi,R〉 = [Xi,C−Xi,R,Xi,C+
Xi,R], with i = 1, .., n, the output of the j-th hidden unit is the weighted lin-
ear combination of the n interval inputs and the bias. It is worth noting that



the weights of the proposed structure are crisp and not intervals. The linear
combination results in a new interval given by:

[S]j = wj0 +
n∑

i=1

wji[X]i = 〈wj0 +
n∑

i=1

wjiXi,C ,
n∑

i=1

|wji|Xi,R〉.

The activation of the j-th hidden unit is obtained by transforming the in-
terval [S]j using a nonlinear activation function, more precisely, the tanh func-
tion. This function is monotonic, then the interval output is given by f([A]) =
[f(AL), f(AU )]. Thus, the resulting interval can be calculated as:

[A]j = tanh([S]j) = [tanh(Sj,C − Sj,R), tanh(Sj,C + Sj,R)] =

= 〈
tanh(Sj,C − Sj,R) + tanh(Sj,C + Sj,R)

2
,

tanh(Sj,C + Sj,R) − tanh(Sj,C − Sj,R)

2
〉.

The output of the network, [Ẑ], is obtained by transforming the activations
of the hidden units using a second layer of processing units. In the case of a
single output and a linear activation function, the estimated output interval is
a linear combination of the activations of the hidden layer and the bias:

[Ẑ] =
h∑

j=1

αj [A]j + α0 = 〈
h∑

j=1

αjAj,C + α0,
h∑

j=1

|αj |Aj,R〉.

The iMLP can be used to approximate an interval-valued function. The
iMLP crisp weights can be adjusted with a supervised learning procedure by
minimizing an error function of the form:

E =
1

p

p∑

t=1

d([Z]t, [Ẑ]t) + λΦ(f̂),

where d([Z]t, [Ẑ]t) is a measure of the discrepancy between the actual and the
estimated output intervals for the t-th training sample with t = 1, ..., p; and
λΦ(f̂) is a regularization term [11] of the estimated function f̂([X]i) : [X]i → [Z]
with i = 1, ..., n. A weighted Euclidean distance function for a pair of intervals
[A] and [B] can be used as discrepancy measure:

d([A], [B]) = β(AC − BC)2 + (1 − β)(AR − BR)2.

The parameter β ∈ [0, 1] allows to assign more weight to the error in the centers
or in the radii. This discrepancy function can be minimized applying a low-
memory Quasi Newton method [12] with random initial weights. Second order
methods require the calculation of the gradient of the cost function with respect
to the adaptive weights (w′s and α′s). These derivatives can be calculated in an



effective way by applying a backpropagation procedure, similar to this proposed
in [8] for the standard MLP. More details are given in [7].

Due to the capability of input-output mapping of the iMLP, it can be used
for causal forecasting of ITS or for extrapolative ITS forecasting. In the second
case, the functional relationship to be estimated by an iMLP can be written as
[X]t+1 = f([X]t, [X̂]t−1, [X]t−l), where [X]t is the interval observed at time t.

7 Analysis of the forecasting performance

The original data set consists of records of the monthly mean temperature in
60 weather stations in China from January 1952 to December 1988 (i.e. 444
months). These stations make up a network with a relatively uniform spa-
tial distribution and each one is representative of a particular climate region of
China. Data can be obtained in the archive of the Computational and Informa-
tion Systems Laboratory (http://dss.ucar.edu/datasets/ds578.5/data/). The 60
temperature time series has been aggregated leading to an ITS of 444 monthly
periods, where each period represents the interval of the monthly mean temper-
ature throughout China. Figure 1 shows that the ITS has a seasonal pattern
with s = 12 that concerns not only the interval centers, but also the ranges; it
is clear that summer months have less range than winter months.

Fig. 1: ITS of the monthly temperature in China (1952-1957).

The training set consists of the first 296 periods, while the test set contains
the last 148 periods. The ITS has been forecasted using different approaches:

1. naive model with seasonality: [X̂]t+1 = [X]t−s+1

2. IES with crisp seasonality: α = 1, δ = 0.93



3. IES with interval seasonality: α = 0.17, δ = 0.19 and ξ = 0.03

4. iMLP with 3 layers (n = 6, h = 6,m = 1) and using as inputs [X]t−l+1,
where l = {1, 2, 12, 13, 24, 25},

5. modelling separately the minimum and maximum series:

(a) exponential smoothing models with additive level and seasonality

• minimum: α = 0.101, δ = 0.1075

• maximum: α = 0.028, δ = 0.16

(b) ARIMA models

• minimum: ARIMA (1, 0, 1)(2, 1, 1)12 without constant

• maximum: ARIMA (1, 0, 0)(0, 1, 1)12 with constant

6. modelling separately the centers and radii series with:

(a) exponential smoothing models with additive level and seasonality

• centers: α = 0.0865, δ = 0.1274

• radii: α = 0.0602, δ = 0.1254

(b) ARIMA models

• centers: ARIMA (1, 0, 1)(2, 1, 1)12 without constant

• radii: ARIMA (1, 0, 0)(0, 1, 1)12 with constant

Table 1 summarizes the forecasting performance of the considered approaches.
The IEScS obtains a forecasting performance worst than the seasonal naive; this
is due to the fact that the ITS seasonality affects both, interval range and inter-
val center, and not only centers as the IEScS assumes. The iMLP outperforms
the seasonal naive model and the IEScS, but it is less accurate than the rest of
the methods. Modelling the univariate series with ARIMA models is the best
method in this case. The IESiS obtains a good result, especially, if we consider
that it only requires 3 parameters instead of the 8 needed by the ARIMA based
approaches. The performance of the IESiS is quite similar to the performance
of the models that forecast the univariate series with exponential smoothing
methods, but our method is slightly simpler and deals with intervals as a whole.

8 Conclusions

ITS provide a way of modelling the range variation of an observed phenom-
enon through time. The proposal of methods to forecast and to analyze ITS is
an interesting challenge. In this paper, an extension of exponential smoothing
methods to ITS has been proposed and the iMLP has been applied to ITS fore-
casting. The forecasting performance of these methods is promising but it must
be improved in the future. We believe that forecasting methods for ITS must
deal with intervals as a whole. Therefore, more sophisticated ITS forecasting
methods should be proposed. Teles and Brito [1] adapted ARMA models to
ITS, a comparison of the accuracy of exponential smoothing and ARMA models
in ITS must be done in the future.



model training test
1- seasonal naive 2.348 2.432
2- IEScS 3.675 3.45
3- IESiS 1.88 1.729
4- iMLP 2.08 2.07
5a- min-max (exp. smooth.) 1.856 1.703
5b- min-max (ARIMA) 1.508 1.554
6a- cen-rad (exp. smooth.) 1.841 1.669
6b- cen-rad (ARIMA) 1.553 1.539

Table 1: Forecasting performance in terms of the MDEH .
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