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EVALUACIÓN DE ETHEREUM, SOLANA Y AVALANCHE EN 
RELACIÓN CON EL “BLOCKCHAIN TRILEMMA” 

Autor: Bayona Bulto, Alvaro.  
Director: Matanza Domingo, Javier.   
Entidad Colaboradora: ICAI – Universidad Pontificia Comillas 
 

RESUMEN DEL PROYECTO  

Este estudio implica un análisis exhaustivo de tres tecnologías líderes en blockchain: 
Ethereum, Solana y Avalanche. El enfoque se centra en cómo cada una aborda el 
"Blockchain Trilemma" al equilibrar la descentralización, la seguridad y la velocidad. 
Además, el proyecto incluye la creación de una base de datos y un panel de control para 
monitorear métricas clave en tiempo real. 
 
Palabras clave: Blockchain, Ethereum, Solana, Avalanche, Blockchain Trilemma. 

1. Introducción 

En este proyecto, nos embarcamos en una exploración exhaustiva del papel estratégico 
de GSR como un creador de mercado y colaborador en el ecosistema dentro del dinámico 
mundo de las criptomonedas. Con una gran mayoría de sus actividades centradas en la 
creación de mercado, que constituye un 80% de su alcance operativo, dirigimos nuestra 
atención hacia desentrañar las complejidades de esta función crítica. Los creadores de 
mercado desempeñan un papel fundamental al infundir liquidez en el mercado a través 
de un proceso continuo de cotización de precios de compra y venta, asegurando así 
transacciones sin problemas y evitando cuellos de botella de liquidez. 
 
El objetivo principal de nuestro estudio es proporcionar a GSR una recomendación 
imparcial y bien fundamentada para la selección del ecosistema de blockchain más 
prometedor. En el corazón de esta recomendación yace una evaluación integral del 
"Blockchain Trilemma", un desafío fundamental que involucra la interacción entre tres 
atributos esenciales: descentralización, seguridad y escalabilidad. En particular, 
investigamos cómo tres plataformas de blockchain prominentes: Ethereum, Solana y 
Avalanche, navegan por este intrincado trilema. Nuestra evaluación abarca análisis 
tanto cualitativos como cuantitativos, siendo estos últimos facilitados por la creación de 
un panel de control dinámico en tiempo real. 

 
2. Evaluación de la Posición del Trilema de Cada Tecnología  

Ethereum  

En términos de seguridad, Ethereum enfrenta posibles vulnerabilidades debido a su 
tiempo de bloque reducido, lo que puede aumentar el riesgo de ataques a largo plazo y 
exponer vulnerabilidades de contratos inteligentes. El cambio a Prueba de Participación 
(PoS, por sus siglas en inglés) introduce el desafío de "nada en riesgo", donde los 
validadores podrían validar bloques conflictivos para maximizar recompensas, 
comprometiendo potencialmente la seguridad de la red. La innovadora característica de 
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contratos inteligentes de Ethereum, si bien es revolucionaria, introduce preocupaciones 
únicas de seguridad, ya que cualquier fallo en el código puede ser explotado. Además, 
la red enfrenta problemas como el "front-running" y el reordenamiento de transacciones, 
lo que requiere una gestión vigilante. 
 
La descentralización sigue siendo un principio fundamental para Ethereum, facilitada 
por la adopción de PoS para reducir barreras de entrada y fomentar una participación 
más amplia. Sin embargo, al igual que con cualquier sistema PoS, surgen riesgos de 
centralización debido al efecto de "los ricos se vuelven más ricos", donde los validadores 
más ricos tienen una mayor probabilidad de ser seleccionados, lo que podría concentrar 
el poder en unos pocos participantes. El modelo de gobernanza de Ethereum, si bien 
promueve la toma de decisiones descentralizada, también plantea desafíos para llegar a 
un consenso sobre las actualizaciones del protocolo. 
 
La velocidad se aborda con el equilibrio entre la reducción de los tiempos de bloque y el 
mantenimiento de la descentralización. Si bien un mayor rendimiento de transacción es 
ventajoso, puede llevar a problemas de latencia de red y sincronización que necesitan 
una gestión cuidadosa para garantizar una participación equitativa y evitar la 
centralización debido a ventajas en la minería. 
 
Solana  

En términos de seguridad, Solana introduce soluciones innovadoras como la Prueba de 
Historia (PoH, por sus siglas en inglés) y tiempos de confirmación simplificados, 
mejorando la postura de seguridad de la plataforma. Esto permite una confirmación de 
transacciones mejorada y agrega una capa adicional de resistencia a manipulaciones. 
 
La descentralización se beneficia del uso de PoS en Solana, lo que reduce las barreras de 
entrada y fomenta una participación más amplia. Sin embargo, al igual que en Ethereum, 
el desafío de la centralización persiste debido a la concentración del poder de apuesta 
entre unos pocos participantes. 
 
La velocidad es una característica destacada de Solana, impulsada por su mecanismo de 
consenso combinando PoS con PoH. La capacidad de la red para procesar múltiples 
transacciones simultáneamente mejora el rendimiento de transacción y contribuye a su 
escalabilidad. 
 
Avalanche  

La seguridad en Avalanche se refuerza mediante la implementación de una estructura 
de Grafo Acíclico Dirigido, que mitiga los riesgos asociados con los ataques de doble 
gasto. El algoritmo de consenso único de la plataforma fortalece aún más su seguridad 
al dificultar los ataques a largo plazo. 
 
La descentralización se aborda a través de subredes y la Red Principal. Si bien las 
subredes ofrecen personalización, también deben protegerse contra el riesgo de 
centralización no deseada en estos segmentos especializados. 
 
La velocidad se revoluciona mediante la estructura de Grafo Acíclico Dirigido y el 
mecanismo de consenso de Avalanche. Esto permite la confirmación asíncrona y paralela 
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de transacciones, mejorando significativamente el potencial de escalabilidad de la 
plataforma. 
 

3. Herramienta Práctica 

Dentro del paisaje en constante evolución de la tecnología blockchain, el proyecto se 
convierte en un activo invaluable para GSR al ofrecer una herramienta práctica para 
monitorear métricas a lo largo del tiempo. Esta herramienta ayuda a rastrear el progreso 
de diversas blockchains con respecto al “Blockchain Trilemma”. El proyecto involucra 
dos archivos Python, creando una solución de seguimiento de datos para GSR. 
 
El primer archivo Python se enfoca en la extracción y compilación de datos. Emplea 
técnicas de web scraping, utilizando el paquete Selenium para extraer datos de diversas 
plataformas en línea. Estos datos, después de ser limpiados y refinados, se almacenan 
en un archivo de Excel. El libro de Excel contiene hojas separadas para Ethereum, Solana 
y Avalanche, que albergan datos de series temporales para variables como 'Número de 
Validadores' y 'TPS' (transacciones por segundo). Otra hoja llamada 'Aggregated' 
compila todas las métricas para comparaciones holísticas. 
 
El segundo archivo Python crea un panel de control dinámico para la visualización 
interactiva de datos. Emplea la versatilidad y las bibliotecas de Python para generar 
cuatro gráficos principales: un Gráfico de Radar que muestra el rendimiento de las 
blockchains en diferentes métricas, una Tabla Agregada que proporciona valores 
métricos no normalizados, un gráfico de series temporales para 'Número de 
Validadores', y otro para 'TPS'. El panel de control interactivo permite a los usuarios 
activar casillas de verificación para ver tecnologías específicas, mejorando la experiencia 
analítica personalizada. 
 
4. Conclusiones 

En resumen, Solana está bien posicionada para resolver potencialmente el “Blockchain 
Trilemma” a través de sus notables atributos de Escalabilidad. Por otro lado, Avalanche 
ha evitado hábilmente las limitaciones del Trilema al garantizar la fusión fluida de 
Escalabilidad, Seguridad y Descentralización dentro de su Red Principal. Además, la 
ingeniosidad de las subredes posiciona a Avalanche como una solución optimizada y 
versátil de blockchain, aumentando su potencial de liderazgo en la industria. Así, 
considerando el panorama integral, Avalanche emerge como un competidor formidable, 
con mayores perspectivas de ascender como la preeminente Tecnología Blockchain. 
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ABSTRACT  

This study involves a comprehensive analysis of three leading blockchain technologies: 
Ethereum, Solana, and Avalanche. The focus is on how each addresses the "Blockchain 
Trilemma" by balancing decentralization, security, and speed. Additionally, the project 
includes creating a database and dashboard to monitor key metrics in real-time. 
 
Keywords: Blockchain, Ethereum, Solana, Avalanche, Blockchain Trilemma 

1. Introduction 

In this project, we embark on a comprehensive exploration of GSR's strategic role as a 
prominent market maker and ecosystem collaborator within the dynamic realm of 
cryptocurrencies. With a substantial majority of their activities centered around market 
making, constituting an impressive 80% of their operational scope, we direct our focus 
towards unraveling the intricacies of this critical function. Market makers play a pivotal 
role by infusing liquidity into the market through a continuous process of quoting both 
buying and selling prices, thereby ensuring seamless transactions and averting liquidity 
bottlenecks. 
 
The primary objective of our study is to furnish GSR with an impartial and well-
informed recommendation for the selection of the most promising blockchain 
ecosystem. At the heart of this recommendation lies a comprehensive evaluation of the 
"Blockchain Trilemma," a fundamental challenge involving the interplay between three 
essential attributes: decentralization, security, and scalability. In particular, we 
investigate how three prominent blockchain platforms – Ethereum, Solana, and 
Avalanche – navigate this intricate trilemma. Our assessment encompasses both 
qualitative and quantitative analyses, the latter facilitated by the creation of a dynamic 
real-time dashboard. 

 
2. Assessing the Trilemma Position of Each Technology 

Ethereum 

In terms of security, Ethereum grapples with potential vulnerabilities due to its reduced 
block time, which can increase the risk of long-range attacks and expose smart contract 
vulnerabilities. The shift to Proof of Stake (PoS) introduces the "nothing-at-stake" 
challenge, where validators might validate conflicting blocks to maximize rewards, 
potentially compromising the network's security. Ethereum's groundbreaking smart 
contract feature, while revolutionary, introduces unique security concerns as any flaws 
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in the code can be exploited. Additionally, the network faces issues like front-running 
and transaction reordering, necessitating vigilant management. 
 
Decentralization remains a core principle for Ethereum, facilitated by the adoption of 
PoS to lower entry barriers and encourage wider participation. However, as with any 
PoS system, centralization risks emerge due to the "rich get richer" effect, where 
wealthier validators have a higher chance of being selected, potentially concentrating 
power within a few participants. Ethereum's governance model, while promoting 
decentralized decision-making, also poses challenges in reaching consensus on protocol 
upgrades. 
 
Scalability is approached with the balance between reduced block times and 
maintaining decentralization. While faster transaction throughput is advantageous, it 
can lead to network latency and synchronization issues that need careful management 
to ensure equitable participation and prevent centralization due to mining advantages. 
 
Solana 

In terms of security, Solana introduces innovative solutions like Proof of History (PoH) 
and streamlined confirmation times, enhancing the platform's security posture. This 
enables improved transaction confirmation and adds an extra layer of tamper resistance. 
 
Decentralization benefits from Solana's use of PoS, reducing barriers to entry and 
encouraging broader participation. However, as with Ethereum, the challenge of 
centralization remains due to the concentration of staking power among a few 
participants. 
 
Scalability is a standout feature of Solana, driven by its PoH and PoS consensus 
mechanism. The network's ability to process multiple transactions simultaneously 
enhances transaction throughput and contributes to its scalability. 
 
Avalanche 
 
Security in Avalanche is fortified through the implementation of a Directed Acyclic 
Graph (DAG) structure, which mitigates risks associated with double-spending attacks. 
The platform's unique consensus algorithm further bolsters its security by rendering 
long-range attacks more difficult. 
 
Decentralization is approached through subnets and the Primary Network. While 
subnets offer customization, they must also guard against the risk of unintended 
centralization within these specialized segments. 
 
Scalability is revolutionized by Avalanche's DAG structure and consensus mechanism. 
This enables the asynchronous and parallel confirmation of transactions, significantly 
enhancing the platform's scalability potential. 
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3. Practical Takeaways 

Within the ever-evolving landscape of blockchain, the project becomes an invaluable 
asset for GSR by offering a practical tool to monitor metrics over time. This tool aids in 
tracking the progress of various blockchains in addressing the Blockchain Trilemma's 
challenges. The project involves two Python files, creating a data-tracking solution for 
GSR. 
 
The first Python file focuses on data extraction and compilation. It employs web scraping 
techniques, using the Selenium package to extract data from various online platforms. 
This data, after being cleaned and refined, is stored in an Excel file. The Excel workbook 
contains separate sheets for Ethereum, Solana, and Avalanche, housing time series data 
for variables like 'Number of Validators' and 'TPS'. Another sheet named 'Aggregated' 
compiles all metrics for holistic comparisons. 
 
The second Python file creates a dynamic dashboard for interactive data visualization. 
It employs Python's versatility and libraries to generate four main graphs: a Radar Plot 
showcasing blockchain performance across metrics, an Aggregated Table providing 
unnormalized metric values, a Time Series graph for 'Number of Validators', and 
another for 'TPS'. The interactive dashboard empowers users to toggle checkboxes to 
view specific technologies, enhancing the tailored analytical experience. 

 
4. Conclusions 

In summation, the analysis yields intriguing insights: Solana is well poised to potentially 
resolve the Blockchain Trilemma through its notable Scalability attributes. On the other 
hand, Avalanche has deftly evaded the constraints of the Trilemma by ensuring the 
seamless fusion of Scalability, Security, and Decentralization within its Primary 
Network. Additionally, the ingenuity of subnets positions Avalanche as an optimized 
and versatile blockchain solution, augmenting its potential for industry leadership. 
Thus, considering the comprehensive panorama, Avalanche emerges as a formidable 
contender, boasting higher prospects to ascend as the preeminent Blockchain 
Technology. 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

 

Memory Index 

 
Chapter 1: Introduction ............................................................................................... 1 

1.1. GSR and motivation of the project ........................................................................... 1 

1.2. The Blockchain Trilemma........................................................................................... 2 

1.3. Objectives ...................................................................................................................... 5 

1.4. Work Methodology ...................................................................................................... 6 

Chapter 2: Bitcoin ......................................................................................................... 8 

2.1. Bitcoin Process  ............................................................................................................. 9 

2.1.1. Generate an address ............................................................................................. 9 

2.1.2. Create a transaction ........................................................................................... 11 

2.1.3. Transmit and validate a transaction .............................................................. 14 

2.1.4. Mine a block ........................................................................................................ 16 

2.1.5. Transmit and validate a block – Consensus Algorithm ............................... 20 

Chapter 3: Ethereum ................................................................................................... 24 

3.1. Technical Differences With Bitcoin ........................................................................ 25 

3.1.1. Smart Contracts ................................................................................................. 25 

3.1.2. Proof of Stake  .................................................................................................... 28 

3.1.3. Importance of Fees (Gas) ................................................................................... 30 

3.1.4. Block Time ........................................................................................................... 32 

3.2. Implications to the Blockchain Trilemma ............................................................. 33 

3.2.1. Security ................................................................................................................ 33 

3.2.2. Decentralization ................................................................................................. 35 

3.2.3. Scalability ........................................................................................................... 36 

Chapter 4: Solana ........................................................................................................ 38 

4.1. Technical Differences With Ethereum ................................................................... 38 

4.1.1. Proof of History .................................................................................................. 38 

4.1.2. Confirmation Times ........................................................................................... 43 

4.1.3. Turbine Block Propagation ............................................................................... 44 

4.2. Implications to the Blockchain Trilemma ............................................................. 45 

4.2.1. Security ................................................................................................................ 45 

4.2.2. Decentralization ................................................................................................. 47 



xvi 
 

4.2.3. Scalability ........................................................................................................... 48 

Chapter 5: Avalanche ................................................................................................. 50 

5.1. Technical Differences with Ethereum and Solana ............................................... 50 

5.1.1. DAG Structure .................................................................................................... 50 

5.1.2. Avalanche Consensus Algorithm ..................................................................... 53 

5.1.3. Subnets ................................................................................................................. 58 

5.1.4. Primary Network ............................................................................................... 59 

5.2. Implications to the Blockchain Trilemma ............................................................. 61 

5.2.1. Security ................................................................................................................ 61 

5.2.2. Decentralization ................................................................................................. 62 

5.2.3. Scalability ........................................................................................................... 63 

Chapter 6: Quantitative Analysis ............................................................................ 64 

4.1. Metrics .......................................................................................................................... 64 

4.1.1. Security ................................................................................................................ 65 

4.1.2. Decentralization ................................................................................................. 66 

4.1.3. Scalability ........................................................................................................... 68 

4.2. Metrics Values per Blockchain ................................................................................ 69 

4.3. Conclusions Regarding the Blockchain Trilemma .............................................. 74 

Chapter 7: Practical Takeaway ................................................................................. 76 

7.1. get_data.py ................................................................................................................... 77 

7.2. dashboard.py ............................................................................................................... 82 

References .................................................................................................................... 87 

Annex I: Code .............................................................................................................. 89 

get_data.py ........................................................................................................................... 89 

dashboard.py ....................................................................................................................... 94 

Annex II: Sustainable Development Goals ........................................................... 98 

 

 

 

 

 



xvii 
 

 

Figures Index 
 

Figure 1. The Blockchain Trilemma ............................................................................ 3 

Figure 2. Private and Public Key Example................................................................. 9 

Figure 3. Input Structure ............................................................................................ 13 

Figure 4. Output Structure ......................................................................................... 13 

Figure 5. Merkle Tree .................................................................................................. 18 

Figure 6. Proof of Work .............................................................................................. 19 

Figure 7. Fork ............................................................................................................... 22 

Figure 8. Smart Contracts ........................................................................................... 26 

Figure 9. Proof of History Timestamp Generation ................................................. 39 

Figure 10. DAG Structure ........................................................................................... 52 

Figure 11. Slush Algorithm ........................................................................................ 54 

Figure 12. Metrics Values per Blockchain ................................................................ 69 

Figure 13. Solana Data Stored .................................................................................... 81 

Figure 14. Aggregated Data Stored ........................................................................... 81 

Figure 15. Radar Plot ................................................................................................... 83 

Figure 16. Aggregated Table ...................................................................................... 84 

Figure 17. Number of Validators Time Series ......................................................... 85 

Figure 18. TPS Time Series ......................................................................................... 86 

 

 

 

 

 



xviii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

Chapter 1: Introduction 

 

1.1. GSR and motivation of the project 

 

GSR is a crypto market maker and ecosystem partner founded in 2013. 

Although they have several other services such as an OTC trading business, an active 

venture investment arm, and several asset management funds, market making is 

responsible for 80% of their business and, therefore, will be the project's main focus.  

A market maker provides liquidity 1 to a market by continuously quoting prices 

at which it will buy and sell (Bloomenthal, 2021). Without them, one owner of security 

may want to sell but find out there are no buyers, or one buyer may want to buy and 

find out there are no sellers. Therefore, they act as continuous buyers and sellers to 

always have transactions in the market.  

Specifically, GSR provides market-making services to cryptocurrency projects 

and cryptocurrency exchanges and, in exchange for choosing GSR as the market-

maker, GSR provides these clients with KPIs, performance measuring through its 

unique software, and daily market reports. Moreover, for unlisted projects, GSR can 

also provide tokenomics advice and introductions to funds and investors, among 

many other services. 

However, being a market maker has the risk of buying a security and seeing its 

price decline, obtaining a loss for holding the security. This loss is not very drastic as 

they are continuously quoting prices, which means that they adapt quickly, reducing 

the loss. Market makers use spreads between their offers to compensate for this 

 
1 Liquidity is the degree to which an asset can be quickly bought or sold without notably affecting the stability of 
its Price.  
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possible loss. For instance, they may provide a bid price (buying offer) of 100$ and an 

asking price (selling offer) of 100.05$, creating a spread and a profit of 0.05$. Due to 

the high-volume trading, this can create huge benefits for the market maker. 

All in all, market makers earn money through the spread and by the increase in 

the value of the securities. On the one hand, the spread can be increased if there is little 

competition among other market makers for that same token. That is, if GSR is the only 

market maker for a specific token, they control the offers and can charge a higher 

difference between them. On the other hand, the value of the securities depends on the 

success of the specific project or exchange in which GSR is the market maker. 

Considering all this information, it is clear that for GSR it is essential to choose 

the most successful blockchain ecosystem in which to focus their sales and investment 

resources. By doing this, they will earn significant financial benefits, through stronger 

returns, minimum losses, and charging bigger spreads, as well as reputational benefits 

which will help position GSR as top of mind for clients and job seekers.  

For all these reasons GSR has proposed a project to obtain an unbiased opinion 

through the assessment of the different blockchain ecosystems from a technological 

point of view. 

 

1.2. The Blockchain Trilemma 

 

The Blockchain Trilemma, termed by Vitalik Buterin (founder of Ethereum), 

states that there are three crucial properties that a blockchain must aim to achieve: 

decentralization, security, and scalability. However, one blockchain cannot maximize 

the three of them without having to do trade-offs in at least one of the properties. This 

leads to the creation of many different blockchains that address the trilemma in their 

unique way. An explanation of the properties will make this trilemma clearer. 
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Figure 1. The Blockchain Trilemma 

First, decentralization, states that one blockchain must not rely on a central 

point of control but, instead, distribute the control equally to all participants. This is 

the main reason why blockchains are so popular as it is the main difference from 

traditional systems such as banks. In today’s world, people trust that banks are going 

to operate integrally but, if they decide not to, they have the power to, for instance, 

freeze all the accounts. Decentralization is primarily proportional to the number of 

participants in the network, but other characteristics, such as their geographical 

distribution, are also important. 

Regarding the second property, security is the ability of a blockchain to 

maintain veridic and irrevocable transactions. The most common attack to corrupt the 

network is the 51% attack, where one entity can control 51% of the network and, 

therefore, when all the nodes vote, this entity has the majority and can introduce false 

transactions. The way to prevent this is by forcing nodes to spend resources to 

participate in the network and, therefore, if someone wants to achieve 51% of the 

network, it will have to spend a ridiculous number of resources. Although this is not 

the only attack a blockchain can suffer, the rest of the attacks are related to the fact that 

it is open-source, meaning that anyone can read the code and try to hack it. Therefore, 

these attacks are difficult to prevent and measure when assessing the security of a 

blockchain. 

Last, scalability is the number of transactions that a blockchain can handle. This 

property is essential for the widespread adoption of the blockchain as, if it is low, users 
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will have to wait a considerable amount of time for their transaction to be accepted 

and, to incentivize miners to select their transaction before the others, the user will 

have to pay a high fee to the miner. An example of why this is a problem will be, for 

instance, if you want to run an application like Spotify in a decentralized manner. 

When you decide to listen to a song it will take some time before your petition is 

processed and you can listen to it. In addition, you will have to pay a high quantity for 

listening to it, discouraging users from using the application. 

The trilemma appears when addressing how each property interplays with the 

others. The clearest example is between decentralization and scalability. Having a 

large number of participants in the network leads to higher decentralization, but it also 

leads to less scalability as every participant has to agree on the validity of a transaction, 

and, therefore, having more participants will take more time for the transaction to be 

final. Thus, the relationship between decentralization and security can be written as 

follows. 

𝑠𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝
1

𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

Moreover, regarding the relationship between scalability and security, it can be 

demonstrated that it follows the same path as its predecessor. Improving scalability 

means reducing the block interval but, to do so, the number of resources that one 

participant must spend decreases and, therefore, security decreases.  

𝑠𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝
1

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦
 

Finally, the relationship between security and decentralization is directly 

proportionate as a higher number of nodes will increase decentralization and it will 

also mean that one entity has to control much more resources to obtain 51% of the 

network. Thus, the relationship can be written as follows. 

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ∝ 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
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These relations lead to blockchain networks finding it easier to maximize 

decentralization and security at the expense of scalability, as is the case of Ethereum. 

However, as has already been discussed, the importance of scalability is notorious and 

several blockchains have been created to address this trilemma in different ways.  

 

1.3. Objectives 

 

GSR relies heavily on market making and the success of this business is 

determined by whether its resources are allocated in the correct blockchain ecosystem 

or not. Therefore, the main objective of this project is to provide GSR with an outside 

and unbiased recommendation on which blockchain should they focus their efforts on. 

The blockchain trilemma, and how each blockchain addresses it, will serve as 

the method to estimate the future success of a blockchain and the basis of the final 

recommendation. The reason behind this is that the three properties of the trilemma 

are the key to the success and widespread adoption of a blockchain, meaning that 

whoever has the most favorable trade-offs will in turn be the most successful 

blockchain and where GSR should focus its efforts. 

To achieve this objective, the following milestones are established. 

 Understanding the general aspects of how every blockchain works from 

a theoretical point of view by analyzing Bitcoin, the first blockchain. 

 Study in a theoretical way the blockchains that, as of today, are most 

likely to succeed based on GSR: Ethereum, Solana, and Avalanche. 

Moreover, analyze how they have addressed The Blockchain Trilemma 

in a qualitative way based on its technical characteristics. 

 Analyze quantitatively The Blockchain Trilemma for the three 

blockchains that GSR wants to assess. To do so, the metrics that will 
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indicate where each blockchain stands in the trilemma must be 

determined. 

 Development of a real-time dashboard with all the quantitative 

measures for the blockchains studied to provide GSR with a visual and 

updated snapshot of the blockchain ecosystem. 

The reason behind giving so much emphasis to Ethereum, Solana, and 

Avalanche is that, after talking to GSR and based on their expertise in the field, they 

suggested that those were the blockchains that were gaining more traction among the 

community, and, therefore, want to have more insights about. Moreover, the three of 

them address the trilemma in very different ways, and is interesting to see how each 

technical decision affects their success in the trilemma, serving as the pinpoint for 

future blockchain developments. 

All these objectives will serve the end purpose of providing a final 

recommendation to GSR with the addition of a tool to help them make their 

assessment at any future point in time in case the blockchain ecosystem changes. 

Moreover, this dashboard can help to identify trends that can add valuable 

information on where to allocate their resources as it can suggest where the interest of 

the market is going. 

 

1.4. Work Methodology 

 

The project will be divided into 4 main parts. 

 Technical understanding of Bitcoin to get basic knowledge of how a 

blockchain works.  

 Technical understanding of Ethereum, Solana, and Avalanche. This 

will provide the knowledge to understand why each blockchain 

stands where it stands in The Blockchain Trilemma, as well as what 
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are the constraints to maximize all the properties and if they are 

revocable in the future.  

 Identify the metrics needed to describe each property in the trilemma 

and measure them in the case of Ethereum, Solana, and Avalanche. 

 Creation of a dashboard with all the information of the metrics in 

real-time restricted to Ethereum, Solana, and Avalanche. 

The work methodology regarding the theoretical study in the first and second 

parts of the project, as well as the identification of the metrics in the third part, will be 

based on research papers, especially the white papers of each blockchain, as well as 

information that can be found on the official websites.  

Moreover, the methodology employed in the fourth phase of the project 

revolves around the utilization of web scraping techniques to acquire real-time 

information for each metric of interest, subsequently integrating this data into a 

dynamic dashboard. This process is meticulously crafted in Python, leveraging two 

pivotal libraries that cater to the specific requirements of this task: Streamlit and 

Selenium. Streamlit, an open-source Python library, serves as the backbone for crafting 

interactive and visually appealing dashboards with minimal effort. On the other hand, 

Selenium, a powerful web scraping and automation framework, empowers the 

extraction of real-time data by simulating user interactions with web pages. By 

harmoniously merging the capabilities of Streamlit and Selenium, the project ensures 

a seamless pipeline for extracting, processing, and displaying real-time metrics within 

an engaging and user-friendly dashboard interface. 
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Chapter 2: Bitcoin 

 

As previously mentioned, Bitcoin serves as the foundation for understanding 

the functioning of a blockchain. By comprehending its process, we can gain insight 

into how the alterations introduced by other blockchain technologies affect the 

trilemma's key components: decentralization, security, and scalability. Consequently, 

this chapter aims to elucidate the entire process, starting from a user's creation of a 

transaction to the ultimate confirmation of a transaction's finality. 

Before delving into the intricacies of the Bitcoin process, it is essential to shed 

light on the concept of hashes, which are mathematical functions widely employed in 

blockchains for various purposes. In simple terms, a hash is a cryptographic algorithm 

that converts any given input into a fixed-length string of characters, accomplished 

through encryption and within a remarkably short span of time (Frankenfield, What 

Is a hash? Hash Functions and Cryptocurrency Mining, 2023). This encryption process 

ensures that even with knowledge of the output hash, determining the original input 

is practically impossible, as it would require an immense amount of time and an 

arduous trial-and-error approach. Consequently, hashes function as one-way 

functions, possessing the characteristic of being relatively easy to calculate but 

extremely challenging to reverse-engineer. 

The remarkable property of hashes lies in their ability to consistently produce 

the same output hash for a given input. However, even the slightest alteration in the 

input results in an entirely different hash being generated. This property of hashes 

becomes immensely valuable in two fundamental ways. Firstly, hashes serve as a 

means to verify the integrity and unchanged nature of the input data if the output hash 

is known. By comparing the output hash of a given input with the previously obtained 

hash, one can ensure that the data has remained unaltered. 
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Secondly, hashes play a pivotal role in reducing the size of data within 

blockchains. As hashes are of fixed length, they enable the representation of large 

amounts of data in a concise and manageable manner. This characteristic proves 

highly advantageous, particularly in distributed systems like blockchains, where the 

efficient storage and transmission of data are crucial. By employing hashes, the 

blockchain can validate the integrity of information while significantly minimizing the 

amount of data that needs to be stored or transmitted. 

 

2.1. Bitcoin Process (Antonopoulos, 2014) 
 

2.1.1. Generate an address 

To actively engage in a Bitcoin process, the client must possess a valid pair of 

public and private keys, serving as the cryptographic means for secure access to their 

bitcoins. The private key is essentially a random number ranging from 1 to 2 , and 

various methods exist for generating this randomness. Conversely, the public key is 

derived from the private key using elliptic curve cryptography (which is not pertinent 

to the thesis objective) (Tech Target, 2021). Presented below is an illustration of these 

keys. 

 

Figure 2. Private and Public Key Example 

The utilization of keys revolves around a fundamental concept: while anyone 

can access the client's public key, deciphering the client's private key remains an 
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insurmountable task. This principle facilitates two primary applications: digital 

signatures and encryption. 

 Digital signatures leverage the fact that the client's public key is widely known, 

while their private key remains undisclosed. By encrypting data with the 

client's private key, anyone possessing the client's public key can decrypt the 

message. If the message is decrypted successfully using the client's public key, 

it confirms that the client's private key was used for encryption. Given that only 

the client possesses knowledge of their private key, this cryptographic 

technique verifies that the client transmitted the information, thereby ensuring 

its authenticity. 

 

 Encryption, built upon the same underlying principles, applies when another 

individual desires to transmit a message to the client. In this scenario, the sender 

employs the client's public key to encrypt the message, ensuring that only the 

client's private key can decrypt it. Consequently, the confidentiality of the 

message content is guaranteed, as only the client can access its decrypted form. 

In a decentralized structure where every participant receives all transactions, 

the importance of utilizing keys for system security becomes evident. However, 

Bitcoin's core principle revolves around transparency, wherein everyone can view the 

content of all transactions. As a result, the emphasis lies primarily on the utilization of 

digital signatures rather than encryption. 

Consequently, the pair of keys serve distinct purposes as follows: 

 Public key: The public key, accessible to everyone without revealing the private 

key, functions as the designated address to which individuals can send BTC. It 

functions akin to an email address, providing a means for others to send BTC 

securely to the intended recipient. Although the address is not precisely the 

public key, it is derived directly from it. 
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 Private key: The private key is utilized to sign transactions, ensuring that only 

the legitimate owner of the BTC can access and manage their digital assets. By 

employing the private key for transaction signing, it guarantees the authenticity 

and integrity of the sender, preventing unauthorized access to the BTC 

holdings. 

 

2.1.2. Create a transaction 

Upon acquiring the pair of keys, the client possesses the essential information 

required for sending and receiving transactions. However, before engaging in such 

transactions, the client must initiate the creation process. To illustrate the necessary 

details involved in a transaction, let us consider an example. 

Alice wants to send 0.6 BTC to Bob. To proceed with the transfer, Alice must 

first ensure that she possesses the required amount of BTC. To confirm her available 

balance, Alice needs to examine all the transactions recorded in the blockchain where 

she is listed as the recipient of BTC.  

This particular step introduces a challenge in the process. Since the system 

operates in a decentralized manner, numerous nodes, if not all of them, must validate 

the accuracy of a transaction. One of the criteria for validation involves ensuring that 

the sender possesses sufficient funds. Interestingly, each validating node needs to 

perform the same balance-checking process that Alice conducted earlier. This 

verification task can be exceptionally demanding and time-consuming. 

To alleviate this workload, Alice employs a selective approach. Instead of 

presenting the entire transaction history where she received BTC, she specifically 

chooses the relevant transactions that collectively add up to 0.6 BTC, demonstrating 

her possession of the necessary funds. This strategy proves beneficial because the 

validating node only concerns itself with verifying if Alice has precisely 0.6 BTC 

available for the specific transaction she wishes to execute. The total amount of BTC in 

her possession, beyond the required funds, becomes irrelevant in this context. 
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Returning to the example, Alice proceeds to examine the complete list of 

transactions where she is listed as the recipient of BTC. Her objective is to select the 

necessary transactions that, when combined, add up to 0.6 BTC—the amount she 

intends to transfer. After careful examination, Alice discovers two relevant 

transactions: one where she received 0.2 BTC and another where she received 0.5 BTC, 

totaling 0.7 BTC. However, there are two considerations to take into account. 

Firstly, Alice recognizes that 0.7 BTC is 0.1 BTC more than what she actually 

intends to send. Secondly, she is aware that a transaction fee must be paid to process 

the transaction. While a detailed explanation of transaction fees will be provided in 

subsequent steps, it is sufficient for now to understand that a fee is necessary. 

For the sake of illustration, let's assume Alice wants to pay a fee of 0.01 BTC. To 

address these two issues, the transaction will be structured as follows: 

 Alice will utilize the 0.7 BTC from the two aforementioned transactions. 

 Bob will receive 0.6 BTC from Alice as the intended transfer. 

 The miner facilitating the transaction will receive the fee of 0.01 BTC from Alice. 

 Alice will receive back the remaining 0.09 BTC, as change, completing the 

transaction. 

By structuring the transaction in this manner, Alice ensures that the correct 

amount is transferred to Bob, the transaction fee is paid, and any excess amount is 

returned to her as change. 

Therefore, to take all that has been mentioned into account, the structure of a 

transaction is as follows. 

 Inputs: A collection of pointers representing the transactions selected by Alice 

from which she intends to source the funds. Each pointer comprises the 

transaction hash to which it is referring and an index indicating the specific 
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output within that transaction. It's important to note that a single transaction 

can have multiple outputs, as previously demonstrated. 

 

 

Figure 3. Input Structure 

 Outputs or UTXO (Unspent Transaction Outputs): A list that specifies all the 

addresses to which the BTC should be sent and the corresponding amounts to 

be transferred. Each output represents an unspent transaction output, meaning 

that the specified amount is available to be used as input in future transactions. 

 

 

Figure 4. Output Structure 

As shown in Figure 4, the fees do not have a specific field in the outputs, but 

rather are calculated by the miner through the following equation: 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑒𝑒 = 𝑖𝑛𝑝𝑢𝑡𝑠 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

 However, there is one more important element that needs to be included in the 

transactions to ensure their integrity and security. As mentioned earlier, the inclusion 

of keys in transactions serves the purpose of validating the identity of the sender and 

ensuring that the funds are being withdrawn from the correct address. To achieve this, 

two additional components are incorporated into the transaction structure: 

 Locking Script: This script is added to the outputs and specifies the specific 

conditions that must be fulfilled to spend the output at a later time. The locking 

script essentially acts as a set of requirements that need to be met for the funds 

to be accessed. 
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 Unlocking Script: On the other hand, the unlocking script is included in the 

inputs and serves to fulfill the conditions established by the corresponding 

locking script of the output being utilized. The unlocking script is designed to 

satisfy the predetermined requirements specified in the locking script. 

To illustrate this process, let's consider the example we mentioned earlier 

involving Alice and Bob. Suppose Alice wants to send BTC to Bob. In this case, Alice 

would need to include a locking script in the transaction output, which defines the 

conditions that Bob must meet to spend the received BTC in the future. 

Consequently, when Bob wishes to utilize the BTC he received from Alice, he 

must provide an unlocking script that fulfills the conditions outlined in the locking 

script associated with the output he intends to use. The unlocking script typically 

consists of Bob's signature and his public key. 

For successful transaction validation, the locking script is responsible for 

verifying the correctness of Bob's signature and ensuring that his address matches the 

output he is referring to. If the locking script yields a satisfactory result, it signifies that 

Bob is indeed the rightful owner of the BTC and grants him the ability to spend those 

funds securely. 

 

2.1.3. Transmit and validate a transaction 

Once all the necessary information regarding a transaction has been finalized, 

it is ready to be sent and validated by each node in the network. The method of sending 

transactions is known as flooding, where each node transmits the transaction to its 

immediate neighbors, who then relay it to their respective neighbors. Before sending 

the transaction to its neighbors, each node performs a series of validations to ensure 

its integrity. This flooding approach offers security benefits when compared to a 

broadcast method, as it mitigates the risk of spamming and denial-of-service attacks. 

In this method, a malicious transaction would only propagate to a limited number of 

nodes, preventing its widespread dissemination. 
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When a node receives a transaction, it undergoes a thorough validation process, 

checking for the following criteria: 

 Syntax and Data Structure: The transaction's syntax and data structure, 

including values and conditions such as size, input formats, and limit values, 

must adhere to the correct specifications. 

 

 Script Validation: The unlocking script is examined to ensure that it only 

pushes numbers onto the stack, while the locking script must conform to 

isStandard forms. Additionally, the unlocking scripts for each input must be 

validated against the corresponding output locking scripts. 

 

 Output Existence: For each input, the transaction is rejected if the referenced 

output does exist in any other transaction within the transaction pool. 

 

 Output Availability: The node searches both the main branch and the 

transaction pool to locate the referenced output transaction for each input. If the 

output transaction is missing, the transaction is considered an orphan. 

Furthermore, if the referenced output has already been referenced, the 

transaction is rejected. 

 

 Input and Output Balance: The transaction is rejected if the sum of input values 

is less than the sum of output values, as this would indicate an imbalance or 

insufficient funds. 

 

 Transaction Fee: If the transaction fee is deemed too low to be included in an 

empty block, the transaction is rejected. 

After performing these validation checks, the node categorizes the transaction 

into one of three possible states: 
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 Acceptance: If the transaction successfully passes all the validation steps, the 

node adds it to the transaction pool and transmits it to its neighboring nodes. 

 

 Rejection: If the transaction fails to meet any of the validation criteria, the node 

rejects it and refrains from transmitting it to further nodes. 

 

 Orphan Transaction: Transactions in which a referenced output (from a 

previous transaction) has not yet arrived at the node are considered orphan 

transactions. These transactions cannot be fully validated and added to the pool 

until their referenced parent transaction is received. In such cases, the orphan 

transaction is added to the orphan transaction pool. Once the referenced parent 

transaction arrives and successfully validates, the orphan transaction can 

proceed with its validation. If the number of transactions in the orphan 

transaction pool exceeds a predefined limit, the node removes some 

transactions from the pool to manage its size. 

 

2.1.4. Mine a block 

Simple Case: One node in charge of mining 

If we were to envision a scenario where the responsibility of mining blocks falls 

upon a single node, the process would become significantly simplified and 

straightforward. Let's delve into the details of this streamlined procedure: 

 To commence, the node would undertake the critical task of selecting which 

transactions from the transaction pool it wishes to include in the block. A 

sophisticated algorithm governs this selection process, weighing various factors 

such as the duration spent by transactions in the pool and the fees they offer. 

This algorithmic approach favors transactions that yield higher rewards for the 

miner while ensuring that no transaction languishes indefinitely in the 

transaction pool. 
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 Once the node has finalized its selection of transactions, it proceeds to add an 

essential transaction known as the Generation Transaction. This particular 

transaction plays a pivotal role in transferring the fees and rewards associated 

with mining a block (as with each newly mined block, fresh BTC is generated) 

directly to the miner. 

 

 Lastly, the miner appends the block header to the completed block and 

disseminates it to the remaining nodes within the network. The block header in 

this case would be relatively succinct, necessitating the inclusion of only two 

fundamental components, alongside relevant metadata: the hash of the 

previous block header, which facilitates the creation of the blockchain's chain 

of blocks, and the Merkle Root. 

The addition of the Merkle Root to the block header holds significant 

importance due to Bitcoin's utilization of Merkle Trees. This innovative methodology 

empowers nodes to search through the blockchain rapidly, considerably expediting 

the process of validating referenced transactions (Frankenfield, Merkle Tree in 

Blockchain: What it is and How it Works, 2021). To illustrate this concept further, let 

us consider Figure 5 as an exemplary depiction of a Merkle Tree. The tree's 

construction commences by independently applying the hash function to each 

individual transaction. Subsequently, pairs of transaction hashes are amalgamated, 

and the resulting string is then hashed. This process continues iteratively until the 

Merkle Root finally emerges. 
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Figure 5. Merkle Tree 

The principal reason behind the value of Merkle Trees in searching transactions 

within the blockchain stems from their ability to ascertain whether a particular 

transaction (e.g., TA) exists within a block. By solely computing the hash of the 

transaction (HA) and knowing HB, HCD, HEFGH, and HABCDEFGH, one can determine the 

Merkle Root and compare it with the block's Merkle Root found in the header. If both 

Merkle Roots align, it confirms the presence of the transaction within that specific 

block, obviating the need to compute all the individual hashes and requiring only the 

computation of four hashes instead. 

However, it is essential to acknowledge that Bitcoin's fundamental concept 

revolves around complete decentralization, wherein no central node exclusively mines 

blocks. Instead, the process is open to anyone within the network. This decentralized 

nature poses challenges concerning the selection of the miner for each turn (explained 

in the proof of work section) and the establishment of a consensus regarding the 

uniformity of the blockchain across all participants (explained in Section 2.1.5). 
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Proof of Work 

 The method known as Proof of Work emerges as the solution to the quandary 

surrounding the selection of a mining node. To determine the chosen node, a 

competitive environment is established wherein each participating node engages in a 

puzzle-solving endeavor. The node that successfully solves the puzzle first becomes 

the designated miner responsible for mining the subsequent block. 

This intriguing puzzle entails the constant change of a random number referred 

to as the nonce. The resulting block header is then subjected to a hash function. To 

emerge victorious, the resulting hash must possess, at the beginning, a certain number 

of zeros equal to or greater than the difficulty level stipulated by the network. For 

instance, Figure 6 serves as an illustrative representation of this process, assuming a 

difficulty level of 3. 

 

Figure 6. Proof of Work 

Let us closely examine the example provided. The node in question initiates its 

puzzle-solving journey with a nonce value of 0. However, as the resulting block header 

hash fails to commence with three zeros, the node proceeds to attempt the puzzle with 

a nonce value of 1. Unfortunately, the outcome remains the same. Undeterred, the 
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node perseveres and tries once more, this time employing a nonce value of 2. 

Remarkably, this iteration yields a hash that commences with the desired three zeros, 

thus achieving the desired outcome and claiming victory. 

It is crucial to acknowledge the immense computational demand imposed by 

this method, as the nature of hash functions leaves no alternative but to resort to a trial-

and-error approach. The absence of a predetermined formula or shortcut necessitates 

arduous computational efforts to find the appropriate solution. The utilization of this 

method becomes imperative when considering alternatives like complete random 

selection, which would enable individuals to create an unlimited number of nodes at 

minimal cost, consequently elevating their chances of being chosen as the miner. Such 

a scenario would render the network vulnerable to malicious actors who could exploit 

the system by amassing an excessive number of nodes, enabling them to manipulate 

the blockchain in their favor. Therefore, the adoption of Proof of Work not only 

introduces an element of randomness through the reliance on random nonce selection 

but also serves as a safeguard against such detrimental attacks by imposing a cost to 

being selected as a miner. 

Implementing this method changes the simple case scenario shown above by 

adding two more fields to the block header: the nonce and the difficulty target.  

 

2.1.5. Transmit and validate a block – Consensus Algorithm 

Once a miner successfully solves the puzzle, achieving the proof of work, a 

moment of triumph ensues, as the miner proceeds to broadcast the newly minted block 

to the other nodes within the network. This broadcast serves as a declaration of victory, 

indicating that the miner has emerged as the chosen one. Upon receiving a new block, 

each node undertakes the crucial task of validating its contents. If the validation 

process proves successful, the node ceases its efforts to solve the block it was 

previously working on. It promptly removes the transactions included in the received 

block from its transaction pool and proceeds to share the block with its neighboring 
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nodes, employing a mechanism akin to the transmission of regular transactions. Once 

this process is complete, the node promptly redirects its attention toward the pursuit 

of solving the next block, continuing its mining endeavors. 

The validation process comprises several vital aspects that warrant careful 

consideration. Let us explore these facets in detail: 

 Syntax and Data Structure: verifies the block's adherence to the correct 

specifications regarding its data structure, size, and time limitations between 

blocks.  

 

 Proof of Work: involves verifying that the block header hash falls below the 

target difficulty level. This requirement ensures that the miner has invested 

substantial computational effort in solving the puzzle, fortifying the security of 

the blockchain. 

 

 Transactions: Each transaction included within the block must undergo 

thorough verification, following the principles elucidated in Section 2.1.3. This 

verification process serves as a safeguard against fraudulent or invalid 

transactions, further bolstering the integrity of the blockchain. 

However, it is important to acknowledge the possibility of encountering a 

scenario known as a fork, which arises when two miners successfully solve the puzzle 

nearly simultaneously. In such instances, a fork occurs when a node has already 

received and validated a block, subsequently adding it to the main chain, only to 

receive another correctly solved block with the same parent as the one just received. 

The parent-child relationship between blocks is indicated by the previous block header 

field within the block's header. This situation is visually depicted in Figure 7, 

providing a clear illustration of the concept. 
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Figure 7. Fork 

Once confronted with a fork, the node in question initiates the creation of a 

secondary chain by appending the newly received block to it. At the same time, the 

node continues mining the next block with the previous block (from the main chain) 

as its parent. From this juncture, two potential outcomes may arise: 

 The node receives yet another block, with its parent being the one from the main 

chain: In this case, the main chain becomes longer than the secondary chain. 

Consequently, the secondary chain is discarded, and the transactions contained 

within it are reintroduced to the transaction pool, ready to be included in future 

blocks. 

 

 The node receives another block, with its parent being the one from the 

secondary chain: This scenario leads to the secondary chain becoming longer 

than the main chain. As a result, the secondary chain supersedes the main chain, 

assuming the mantle of the new main chain. Consequently, the previous main 

chain is discarded, and its associated transactions are added back to the 

transaction pool. 
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To maintain the stability and predictability of the network, Bitcoin has 

established a target time of approximately 10 minutes for solving each block. This 

duration is achieved by periodically adjusting the difficulty target (i.e., the number of 

leading zeros the block header hash must possess) every 2016 blocks. This adjustment 

mechanism serves to regulate the overall mining speed, ensuring that the probability 

of encountering a fork remains exceedingly low, practically diminishing to zero when 

considering the occurrence of two simultaneous forks. 
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Chapter 3: Ethereum 

 

Upon grasping the fundamentals of Bitcoin's functioning and gaining insights 

into the basics of blockchains, we can delve into elucidating the distinctive technical 

features of Ethereum, Solana, and Avalanche in comparison to Bitcoin. This 

exploration will enable us to analyze how each divergence influences the Blockchain 

Trilemma. 

Consequently, in this chapter, our primary focus will be directed toward the 

exploration of the first technology, Ethereum, which will be presented in two 

comprehensive sections. The initial segment will delve into an in-depth explanation of 

the various technical differences that set Ethereum apart from Bitcoin. This will 

include a thorough examination of their contrasting architectures, consensus 

mechanisms, and smart contract capabilities (Kasireddy, 2017). 

Moving on to the second section, we will conduct a meticulous analysis of the 

far-reaching implications that each of these disparities has on the delicate balance of 

the Blockchain Trilemma. As we evaluate the trade-offs between decentralization, 

scalability, and security, we will gain valuable insights into how Ethereum's unique 

technological design shapes its position in the ever-evolving landscape of blockchain 

solutions. 
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3.1. Technical Differences With Bitcoin 

 

3.1.1. Smart Contracts (Frankenfield, What Are Smart Contracts on the 

Blockchain and How They Work, 2023) 

In the early days of Bitcoin, its primary and somewhat restrictive application 

was limited to the straightforward transaction of coins between accounts. Such a 

limitation posed challenges to the widespread adoption of blockchain technology. To 

overcome this constraint and unlock the true potential of decentralized systems, 

innovative minds sought to create more versatile blockchains capable of 

accommodating a variety of applications demanded by the users. 

To achieve this, these alternative blockchains adopted an approach that 

involved hardcoding each desired application into their systems. Essentially, every 

time a specific application was needed, the developers of that blockchain would have 

to manually craft the necessary code modifications to accommodate the new 

functionality. For example, if a voting mechanism was demanded, the blockchain's 

underlying code would be tailored to accommodate the voting application. However, 

this approach proved to be quite limited and inefficient in the long run. 

In contrast, Ethereum emerged as a groundbreaking solution that 

revolutionized the landscape of blockchain technology. It introduced a paradigm shift 

by treating the blockchain as an operating system where anyone could create and 

deploy applications without the need to modify the blockchain's core code or its 

inherent characteristics. 

This groundbreaking capability was made possible through the invention of 

smart contracts. Smart contracts are self-executing pieces of code that operate on the 

Ethereum blockchain. They function as automated agreements that execute 

predetermined actions when certain conditions are met. Figure 8 showcases a smart 

contract intended to serve the same function as Bitcoin - exchanging tokens. As 

depicted, the smart contract is essentially a piece of code containing functions that can 
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be called and, consequently, executed autonomously on the Ethereum network. This 

ability to execute predefined functions upon certain conditions is what sets smart 

contracts apart from conventional contracts and marks a major breakthrough in 

blockchain technology. 

 

Figure 8. Smart Contracts 

However, the true revolution lies beyond this single example. Ethereum's 

groundbreaking aspect is that it goes beyond mere token exchange and empowers 

developers to unleash their creativity and build custom programs tailored to their 

unique needs. Unlike traditional blockchains, Ethereum's openness allows developers 

to conceive and implement a diverse array of applications and decentralized services 

without necessitating any fundamental alterations to the underlying blockchain 

protocol. 

The implications of this paradigm shift are far-reaching. From decentralized 

finance (DeFi) platforms enabling borderless lending and borrowing, to non-fungible 

token (NFT) marketplaces revolutionizing digital ownership and art, the possibilities 

are virtually limitless. Ethereum's flexible and programmable smart contracts have 

fueled an explosion of innovation, giving rise to an ever-expanding ecosystem of 

decentralized applications that shape industries across the globe. 
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Implementation of Smart Contracts 

The implementation of smart contracts brought about significant changes to the 

traditional process of creating and sending transactions within the Ethereum 

blockchain.  

The first modification was the introduction of two types of accounts:  

 Externally Owned Account (EOA): Much like Bitcoin accounts, an Externally 

Owned Account is defined by a pair of cryptographic keys - a public key for 

receiving funds and a private key for controlling the account. The owner of the 

private key holds full authority over this account, enabling secure control over 

their assets. 

 

 Contract Account: Contract Accounts, on the other hand, act as repositories for 

the smart contract code. However, it is important to note that creating and 

maintaining Contract Accounts comes at a cost, as they consume valuable 

network storage resources. 

The distinction between these two types of accounts is pivotal in understanding 

the mechanics of transactions in the Ethereum ecosystem. When an Externally Owned 

Account initiates a transaction, it can send two types of messages (or transactions), 

contingent upon the type of account receiving the message: 

 Externally Owned Account to another Externally Owned Account: In this 

scenario, the transaction entails a simple transfer of Ether (ETH) from one 

Externally Owned Account to another. This type of transaction is analogous to 

conventional cryptocurrency transfers. 

 

 Externally Owned Account to a Contract Account: In this case, the message 

sent from the Externally Owned Account to the Contract Account serves to 

activate the smart contract. Furthermore, this message can contain the necessary 
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inputs and parameters, enabling the smart contract to perform its intended 

function as predetermined by its code. 

In contrast, the messages that Contract Accounts generate are a result of the 

execution of its code and, therefore, they can’t initiate any transaction unless it has 

received one from either an Externally Owned Account or another Contract Account. 

The transactions they generate are referred to as “Internal Transactions”. 

The second modification is that, to fully harness the potential of smart contracts, 

developers require the necessary tools to craft and deploy their custom code. For this 

purpose, Ethereum provides the powerful programming language Solidity. With 

Solidity, developers can create sophisticated smart contract code, enabling them to 

implement a diverse array of applications and services on the Ethereum blockchain. 

 

3.1.2. Proof of Stake (Ethereum, 2023) 

As of 2022, Ethereum underwent a significant transformation by transitioning 

from the energy-intensive Proof of Work (PoW) consensus mechanism to the more eco-

friendly Proof of Stake (PoS) protocol. This shift marked a major milestone in 

Ethereum's evolution, addressing the sustainability concerns associated with PoW. 

To better comprehend the transition, let's first revisit the mechanics of Proof of 

Work. In the PoW system, miners engage in a competitive race to solve complex 

cryptographic puzzles by continuously hashing the block header. This process 

demands an enormous amount of computational power and, consequently, results in 

significant energy consumption. While PoW has proven to be highly secure, the 

environmental impact of its energy-intensive mining activities has been a growing 

concern for the blockchain community. 

To tackle these sustainability challenges, Ethereum embraced Proof of Stake as 

an alternative consensus mechanism. Unlike PoW, where miners invest considerable 

computational resources to solve puzzles, PoS introduces a novel approach by 
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requiring participants, known as validators, to stake a certain amount of Ethereum 

(ETH) to become eligible for block creation. 

Here's how Proof of Stake operates: 

 Staking ETH: In the PoS system, each validator is required to stake a desired 

amount of ETH into the network. This amount represents their "stake" and 

serves as a measure of their commitment to the network's security and integrity. 

 

 Selection Process: The probability of a validator being chosen to propose and 

validate a new block is directly influenced by the amount of ETH they have 

staked relative to the total amount staked by all participants in the network. In 

other words, the more ETH a validator stakes, the higher their chances of being 

selected as the block proposer. 

 

 Validation: Validation in the Proof of Stake (PoS) consensus mechanism 

follows a similar process to that of Proof of Work (PoW). Each node in the 

network verifies the correctness of a proposed block. However, in the event that 

a Validator submits a block that is incorrect or invalid, their staked ETH is put 

at risk. In other words, if the proposed block is deemed invalid, the Validator 

may lose a portion or all of their staked ETH as a penalty for their erroneous 

action. This shift in the validation process introduces a powerful incentive for 

Validators to act honestly and validate transactions correctly, as they have a 

financial stake at risk.  

To illustrate this process, let's consider the scenario where Alice stakes 2 ETH, 

and the total amount of ETH staked by all validators in the network amounts to 10 

ETH. In this case, Alice's probability of being selected as the block proposer is 

calculated as 2 ETH / 10 ETH = 0.2 or 20%. 
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3.1.3. Importance of Fees (Gas) 

In the world of Bitcoin, transaction fees were implemented by sending a 

commission to the miner with every transaction. However, the diverse and expansive 

capabilities of Ethereum, which extend far beyond simple money transfers, rendered 

this commission-based system inadequate. To address this challenge, Ethereum 

introduced a more sophisticated fee system, where fees are incurred each time a code 

is executed as a result of an incoming transaction. 

The Ethereum fee system revolves around two critical variables: gas price and 

gas limit. The gas price indicates how much ETH a user is willing to pay for executing 

a certain amount of code (e.g., 1 line of code equals 1 ETH). On the other hand, the gas 

limit represents the maximum amount of ETH the user is willing to expend in the 

process. 

Here's how the fee process unfolds: 

 Determining the Maximum Fee: To initiate a transaction, the sender establishes 

the gas price and gas limit, which, when multiplied together, calculates the total 

maximum amount of ETH they are willing to pay for the transaction's 

execution. 

 

 Transaction Execution and Gas Consumption: The transaction is then sent to 

a Contract Account, and its code is executed. As the code executes, it consumes 

a specific amount of ETH, which is sent to the miner executing the code. In some 

cases, the Contract Account may send an Internal Transaction to another 

Contract Account, triggering the need for additional code execution and 

subsequent ETH consumption by the miner. 

 

 Transaction Finalization: Once the code execution is complete, one of two 

scenarios may unfold: either the sender runs out of gas, rendering the 

transaction invalid, and all the staked ETH is lost, or the transaction is 

successfully finalized, and any excess ETH staked by the sender is returned. 
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The gas price plays a vital role in incentivizing miners to prioritize certain 

transactions. Higher gas prices mean greater rewards for miners, making those 

transactions more appealing to them. As a result, miners have the freedom to select 

which transactions they want to validate or ignore. To assist senders in determining 

an appropriate gas price, miners can communicate the minimum gas price they are 

willing to accept for transaction execution. 

This fee system in Ethereum holds numerous advantages: 

 Network Sustainability: Ethereum's design ensures that every operation 

executed on the network is simultaneously processed by every full node. To 

maintain network efficiency and prevent overtaxing, imposing fees encourages 

users to utilize Ethereum smart contracts for simpler tasks, such as running 

basic business logic or verifying cryptographic objects, rather than resource-

intensive processes like file storage, email, or machine learning. 

 

 Halting Problem Mitigation: Ethereum's Turing-complete language allows for 

loops, making it susceptible to the halting problem. Without fees, a malicious 

actor could exploit this vulnerability by executing an infinite loop within a 

transaction, disrupting the network without any consequences. Fees, through 

the concept of Gas Limit, protect the network from such deliberate attacks. 

 

 Encouraging Efficiency: Ethereum's block size becomes variable, as there is no 

inherent limit to the code that a Contract Account can hold. However, as code 

size increases, so do the fees required for its execution. Consequently, fees serve 

as a motivating factor for developers to create efficient and optimized smart 

contracts, promoting better resource management and network health. 
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3.1.4. Block Time 

One of the most significant concerns that plagued Bitcoin was its slow 

scalability due to the 10-minute block time, resulting in a limited number of 

transactions that could be processed. Nevertheless, this characteristic also had its 

advantages, as it greatly reduced the possibility of forks and consecutive forks, 

contributing to the network's stability. 

Forks occur when multiple miners successfully validate different blocks at the 

same height and compete to become the valid chain. This can cause temporary 

divergence in the blockchain, leading to uncertainties about the canonical chain. The 

risk of forks not only raises security concerns but also has implications for 

centralization. 

Ethereum decided to reduce its block time to approximately 15 seconds, which 

significantly impacted the potential for forks to occur. This shift, while providing faster 

transaction finalization, introduced new challenges in terms of security and 

centralization risks, as discussed in the following section. 

Finally, with an increased likelihood of forks in Ethereum, the frequency of 

orphan blocks (blocks that are not part of the main chain) also rises. These orphan 

blocks occur when multiple valid blocks are created at the same height, but only one 

can be included in the blockchain. The rest become orphans, causing a temporary 

divergence in the network. 

Instead of discarding these orphan blocks, Ethereum implements a mechanism 

to handle them. Orphan blocks are preserved as valid blocks and can be included in 

the blockchain by a miner with a lower fee. This approach ensures that the efforts put 

into creating these blocks are not wasted and provides an opportunity for miners with 

lower fees to participate in the network's block creation process. 
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3.2. Implications to the Blockchain Trilemma 

 

3.2.1. Security 

After conducting a thorough technological analysis of Ethereum, several 

security concerns have emerged, warranting a closer examination of the network's 

resilience and vulnerabilities. In this section, we will delve into the key security aspects 

of Ethereum, exploring issues such as the impact of its reduced block time, the nothing-

at-stake problem in proof of stake, and the vulnerabilities associated with smart 

contracts.  

 Long-Range Attacks and Forks: As mentioned earlier, Ethereum's reduced 

block time, while enhancing transaction throughput, increases the likelihood of 

forks in the blockchain. This creates a higher probability of long-range attacks, 

where an attacker attempts to rewrite the entire blockchain's history from a 

specific block in the past. Since there is more time for new forks to emerge, 

attackers can potentially construct longer chains, undermining the blockchain's 

integrity. 

 

 Nothing-at-Stake Problem: The nothing-at-stake problem refers to the 

possibility that validators in a proof-of-stake (PoS) system may attempt to 

validate multiple conflicting blocks in an attempt to maximize their chances of 

being rewarded. Unlike in proof-of-work (PoW) where miners have significant 

costs associated with mining a block, PoS validators do not face any real-world 

costs. Thus, they might be incentivized to validate multiple forks 

simultaneously, increasing the chances of blockchain divergence. 

 

 Immaturity of Proof of Stake: While PoS holds great promise as a more energy-

efficient consensus mechanism compared to PoW, it is relatively less battle-

tested in real-world scenarios. As Ethereum transitions to PoS with Ethereum 

2.0, it exposes itself to potential vulnerabilities and challenges that may not have 
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been fully explored during its testing phase. This can lead to unforeseen 

security risks during the transition period. 

 

 Smart Contract Vulnerabilities: Ethereum's groundbreaking capability of 

enabling smart contracts also introduces a unique security challenge. Smart 

contracts are self-executing pieces of code that operate on the Ethereum 

blockchain. Any vulnerability or flaw in the code can be exploited by malicious 

actors, leading to potentially catastrophic consequences. High-profile incidents, 

such as the DAO hack in 2016 (Cryptopedia, 2022), have demonstrated the 

importance of rigorous code auditing and security best practices for smart 

contract development. 

 

 Front-Running and Transaction Reordering: Front-running occurs when a 

malicious actor anticipates a pending transaction and quickly executes a 

transaction with higher gas fees to profit from the original transaction's actions. 

Additionally, transaction reordering can lead to a change in the order of 

transactions in a block, which can impact the outcome of certain applications, 

like decentralized exchanges (DEXs). Both of these issues require careful 

consideration and mitigation strategies to ensure fairness and prevent 

exploitation. 

 

 Governance and Protocol Upgrades: Decentralized governance plays a 

significant role in Ethereum's security. It involves making important decisions 

about the protocol and upgrades through community consensus. While this 

promotes decentralization, it can also lead to contentious debates and potential 

hard forks if disagreements arise.  

Despite these challenges, Ethereum has demonstrated resilience and 

adaptability throughout its development. The community continuously addresses 

security concerns, enhances the protocol, and promotes responsible development 

practices. Regular audits, bug bounties, and responsible disclosure policies contribute 

to making Ethereum more robust and secure over time. 
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3.2.2. Decentralization 

Decentralization lies at the heart of Ethereum's vision, aiming to empower a 

trustless and inclusive ecosystem. However, the decentralization of Ethereum is a 

nuanced subject, influenced by various factors, including its consensus mechanism, 

block time, and barriers to entry. In this analysis, we will explore the decentralization 

aspects of Ethereum, considering the impact of its proof-of-stake (PoS) consensus, its 

lower barriers to entry, and the effect of reduced block time on network participation.  

 Proof of Stake and Centralization Issues: Ethereum's transition to a PoS 

consensus mechanism is intended to reduce energy consumption and enhance 

scalability. However, PoS has raised concerns about centralization due to the 

"rich get richer" effect. In PoS, validators are chosen based on the amount of 

cryptocurrency they stake as collateral. The more cryptocurrency a validator 

holds, the higher the chance of being selected. This creates an advantage for 

wealthier participants, leading to a concentration of power among a few 

prominent stakeholders. As a result, the decentralization ideals of Ethereum 

face challenges in achieving a more distributed validator network. 

 

 Lower Barriers to Entry and Increased Decentralization: One advantage of PoS 

over traditional PoW is its lower barriers to entry. PoW mining demands 

expensive hardware and electricity costs, limiting participation to those with 

significant financial resources. In contrast, PoS requires validators to hold and 

stake a certain amount of cryptocurrency, making it more accessible to a 

broader range of participants. This reduced barrier fosters greater 

decentralization, as more individuals can actively engage in the network's 

validation process, furthering the ethos of inclusivity. 

 

 Impact of Reduced Block Time: Ethereum's reduced block time, while 

enhancing transaction throughput, raises concerns about centralization. A 

shorter block time means more frequent block creation, intensifying 

competition among miners to validate and propagate their blocks quickly. 
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Larger mining operations with better resources and network connectivity may 

have an advantage in this competitive landscape, potentially leading to the 

centralization of mining power. The challenge lies in striking a balance between 

transaction speed and maintaining a decentralized network. 

 

 Governance and Protocol Upgrades: Decentralized governance is vital to the 

long-term decentralization of Ethereum. The decision-making process for 

protocol upgrades and network improvements requires community consensus. 

While decentralized governance promotes inclusivity, it also presents 

challenges in reaching agreements that may lead to hard forks.  

 

3.2.3. Scalability 

Scalability is a critical consideration for any blockchain network seeking 

widespread adoption and utility. As Ethereum continues to solidify its position as a 

leading decentralized platform, addressing scalability challenges becomes paramount. 

Among the key factors impacting Ethereum's scalability, the reduction of block time 

to 15 seconds per block stands out as a significant technological change. 

 Reduced Block Time: One of the notable efforts to enhance Ethereum's 

scalability was the reduction of block time from approximately 10 minutes in 

Bitcoin to around 15 seconds per block in Ethereum. This reduction significantly 

improves the transaction throughput of the network, allowing more 

transactions to be processed within a shorter time frame. Faster block times lead 

to quicker transaction finalization, improving the user experience and 

facilitating real-time applications on the blockchain.  

 

 Block Size and Gas Limit: With the decrease in block time, there is a need to 

strike a balance between the block size and the gas limit, which determines the 

maximum computational capacity of each block. Larger block sizes can 

accommodate more transactions, improving scalability, but they also increase 
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the time and resources required for block validation and propagation. Setting 

an appropriate gas limit is essential to prevent bloated blocks and potential 

centralization of mining power.  

 

 Network Latency and Synchronization: Reduced block time can lead to higher 

network latency, especially in situations of increased network congestion. As 

blocks propagate through the network, nodes need to synchronize quickly to 

maintain a consistent blockchain state. Delays in synchronization may cause 

temporary forks or conflicts in the network, impacting scalability and user 

experience. 
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Chapter 4: Solana 

 

Moving on to our exploration of the second technology under scrutiny, Solana, 

we will adopt a parallel structure to our examination of Ethereum. Our approach will 

involve a thorough examination of Solana's technological underpinnings and 

operational mechanisms (Solana, 2023). Subsequently, in the following section, we will 

consolidate our insights as we explore the ramifications of Solana's implementation 

within the context of the Blockchain Trilemma. 

 

4.1. Technical Differences With Ethereum 

 

4.1.1. Proof of History 

In traditional blockchain systems, such as Bitcoin and Ethereum, transactions 

are grouped into blocks for synchronization. This means that a transaction must wait 

until a predefined period known as the "block time" has elapsed before it can be 

processed. In the Proof of Work (PoW) consensus protocol, longer block times (around 

10 minutes) are set to reduce the likelihood of multiple validators creating valid blocks 

simultaneously. This precaution is necessary due to the competitive nature of PoW 

mining and the energy-intensive computations involved. 

Proof of Stake (PoS) consensus, on the other hand, doesn't have the same rigid 

block time requirements as PoW. PoS relies on validators who hold a stake in the 

network, and thus the need for lengthy block times is mitigated. This theoretically 

allows for faster transaction confirmations. 
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However, PoS introduces a unique challenge. Without accurate timestamps, 

validators struggle to establish the correct order in which blocks are generated. This 

temporal uncertainty can disrupt the smooth progression of the blockchain, as the 

correct sequence of events is essential for its integrity. 

This challenge is where Proof of History (PoH) steps in. Solana's innovative 

approach combines PoS with PoH to address this problem. PoH introduces reliable 

timestamps, providing a solution to the issue of ordering blocks. By doing so, it 

enhances the overall performance and efficiency of the blockchain network as the time 

required for validation reduces considerably. 

 

Timestamp Creation 

The creation of accurate timestamps within distributed networks is a complex 

challenge. Conventional clocks aren't suitable due to the inherent variations in 

timekeeping among different computers. Solana, however, takes a distinctive 

approach by prioritizing the establishment of an event sequence rather than achieving 

clock synchronization across all nodes. 

Solana's innovative solution involves utilizing hashes as a measure of time, 

mirroring how regular clocks use seconds. This concept is visually illustrated in Figure 

9, providing a tangible representation of this novel approach. 

 

Figure 9. Proof of History Timestamp Generation 
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Central to this concept is the creation of a sequential chain of hashes. This begins 

with the initial hash, derived from a random string (e.g., "Hello World"). The resulting 

output becomes the input for the subsequent hash computation. Consequently, the 

second hash is determined by hashing the previous Hash1, and this pattern continues, 

forging an unbroken chain of interconnected hashes. 

The adoption of hashes as temporal units carries significant importance. These 

cryptographic hashes establish a logical flow of events by ensuring that one event can 

be proven to have occurred before another. This sequential relationship is akin to the 

way traditional clocks convey time progression in seconds. 

However, the significance of employing hashes doesn't end here. Their 

cryptographic nature imbues the chain with properties that enhance security and 

verifiability. Each new hash not only incorporates the data of the previous hash but 

also inherently ties the new block to the entire history that came before it. This property 

forms a critical component of Solana's Proof of History mechanism, solidifying the 

integrity and immutability of the chronological sequence. 

The last phase in establishing accurate timestamps involves seamlessly 

connecting these timestamps with their respective events. This crucial step is 

illustrated in Figure 9, specifically highlighted in the row labeled with index 3. This 

visualization demonstrates how events and timestamps are linked. 

When a new transaction arrives, it becomes part of the data inputs used in 

generating timestamps. This incoming transaction is combined with the hash output 

created in the previous steps. This hash acts like a unique data identifier, encapsulating 

both the earlier data and the current transaction. 

The resulting hash, termed Hash3, acts as the link between the specific 

transaction (let's say, Transaction A) and the corresponding timestamp (for instance, 

timestamp 3). This ensures that Transaction A is securely tied to its correct timestamp, 

preserving an accurate record in the blockchain's history. 
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Leader Selection and Rotation 

As previously highlighted, it's crucial to clarify that Proof of History doesn't 

function as a distinct consensus mechanism but rather serves to reinforce the Proof of 

Stake framework. In parallel with the Proof of Stake approach, the mechanics of Solana 

permit only one validator to produce ledger entries. (It's worth noting that Solana 

differs from conventional block-based systems, as it operates at the transaction/entry 

level.) 

The singular leadership in producing ledger entries yields a significant benefit: 

it ensures that all validators can recreate identical replicas of the ledger. However, this 

approach also carries a drawback: the potential for a malicious leader to wield 

censorship power over votes and transactions. Detecting this censorship becomes 

complex since it's indistinguishable from network packet losses. Consequently, the 

straightforward solution of indefinitely assigning a single node as the leader is 

infeasible. 

Solana addresses this challenge by adopting a strategy that mitigates the 

influence of a malicious leader. This strategy revolves around the concept of leadership 

rotation, where the role of the leader shifts periodically. This rotation mechanism 

effectively curtails the impact that a malicious leader could exert over the network. 

The operational framework for this rotation entails the selection of a leader for 

a predefined timeframe known as an epoch. Remarkably, the duration of an epoch is 

quantified using the unit of hashes as a temporal measure. Once designated, the leader 

commences the process of receiving transactions and building the ledger, a procedure 

analogous to the depiction in Figure 9. As the epoch concludes, often after a specific 

number of hashes (for instance, 100), the mantle of leadership transitions to the next 

designated leader. 

This selection of leaders is orchestrated in advance, with the leader for the next 

epoch being identified while the current epoch is underway. This foresighted 

scheduling ensures a seamless transition between leadership roles. It's essential to 
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underscore that this selection process adheres to the same Proof of Stake principles 

employed in Ethereum, adhering to established and tested mechanisms. 

 

Validation through Parallel Computing 

As previously mentioned, in the context of earlier blockchain systems, 

transactions necessitated being grouped within blocks for transmission. This 

methodology, however, imposed a constraint wherein a transaction could only be 

processed once a specific time interval, known as the "block time," had elapsed. 

Solana, in contrast, operates on a different premise. The unequivocal order of 

events, fortified by the Proof of History mechanism, renders the notion of waiting for 

transactions to aggregate within blocks obsolete. This distinctive attribute obviates the 

need for a waiting period before transmitting and validating transactions. Instead, 

transactions can be promptly transmitted once they are appended to the ledger. 

Consequently, when a designated leader receives a transaction and 

incorporates it into the ledger, the leader promptly disseminates the most current 

version of the ledger to the network's validators. This ledger transmission enables the 

validators to engage in the validation process, scrutinizing the ledger's updates and 

verifying the accuracy of the included transactions. 

This streamlined approach yields a tangible advantage: By the time validators 

engage in voting and adhere to the consensus algorithm, the validation process has 

already been completed. Consequently, the validators' efforts are streamlined, and no 

additional time is expended. This efficiency is a direct result of Solana's innovative 

approach, allowing validators to seamlessly transition from transaction validation to 

the consensus algorithm, maximizing the utilization of available resources. 

Furthermore, aside from the mentioned benefits, validators have the option to 

leverage parallel computing techniques in order to expedite the validation process for 

transactions. This is achieved by breaking down the validation tasks into smaller 
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segments, also known as chunks. These chunks are essentially distinct portions of the 

ledger. By utilizing parallel computing, individual CPUs within a validator's setup can 

be allocated to validate specific chunks simultaneously. This division of labor 

capitalizes on the fact that, for validation purposes, validators only require access to 

the previous output. As a result, the combination of segmenting the ledger and 

employing parallel computing leads to a reduction in the time needed for the entire 

validation process. 

 

4.1.2. Confirmation Times 

In comparison to Ethereum's block time, which stands at approximately 15 

seconds, the actual confirmation time for transactions often extends far beyond this 

due to considerable congestion. This congestion tends to drive up gas fees and 

introduces substantial variability in confirmation times. 

However, Solana takes a notably different approach by combining Proof of 

History (PoH) with Proof of Stake (PoS) to shape its blockchain dynamics. In Solana's 

context, instead of the conventional notion of "blocks," the interval between votes 

serves as an analogous concept. Remarkably, this interval is remarkably brief, clocking 

in at around 800 milliseconds. 

This strategic incorporation of Proof of History and Proof of Stake has 

significant implications for the network's efficiency. Solana's adoption of such a short 

interval between votes mitigates congestion to a great extent. The outcome is a 

network marked by consistently low and stable confirmation times, accompanied by 

fees that remain predictable. 
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4.1.3. Turbine Block Propagation 

The Turbine block propagation method is an innovative approach to efficiently 

distribute new blocks across its blockchain network. It's designed to minimize 

duplicate messages, optimize bandwidth usage, and enhance the speed and reliability 

of block propagation. The process is as follows. 

 Neighborhood Formation: Solana's network is divided into neighborhoods, 

each containing a group of validators. Validators with higher stakes are placed 

in higher layers of neighborhoods, creating a hierarchy based on their influence 

in the network. 

 

 Focal Nodes: Within each neighborhood, a validator is designated as a "focal 

node." The focal node acts as a central hub for receiving and distributing chunks 

of transactions. 

 

 Chunk Creation: When a new block is to be propagated, it's divided into 

smaller segments called "chunks." Each chunk contains a subset of transactions. 

These chunks can be processed and validated independently. Data is divided 

into chunks for a specific reason: the utilization of Erasure Codes. These codes 

enable validators to reconstruct the complete original dataset using just half of 

the available chunks. This incorporation enhances the method's resilience 

against malicious actors. 

 

 Local Validation: The focal node of a neighborhood receives a chunk first. It 

validates the transactions within the chunk to ensure their authenticity and 

correctness. 

 

 Selective Forwarding: Instead of broadcasting the entire chunk to all 

validators, the focal node selectively forwards the chunk to neighboring 

validators within the same neighborhood. This minimizes the duplication of 

messages and optimizes bandwidth usage. 
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 Aggregated Messages: Validators within a neighborhood aggregate the 

validated chunks into larger messages. These aggregated messages contain 

multiple chunks and are more efficient to transmit compared to individual 

chunks. 

 

 Communication Through Spokes: Selected validators, known as "spokes," are 

responsible for maintaining communication between different neighborhoods. 

Spokes help relay aggregated messages from one neighborhood to another, 

ensuring cross-neighborhood connectivity. 

 

4.2. Implications to the Blockchain Trilemma 

 

4.2.1. Security 

Although focusing on scalability, the technology features implemented in 

Solana do have an impact on security, trying to reduce several issues in Ethereum. 

Proof of History (PoH) forms a core element of Solana's security framework, 

providing an immutable timestamp that guarantees the chronological order of 

transactions. This timestamp-based ledger eradicates concerns about fork-related 

issues, enhancing the security and resilience of the blockchain against tampering. 

Confirmation times, streamlined by the turbine block propagation method, play 

a crucial role in reducing network congestion (Solana Floor Content, 2023). In addition, 

the integration of parallel processing further accelerates confirmation times, which 

reduces the susceptibility to double-spending attacks. Moreover, Turbine's approach 

using Erasure Codes further bolsters the network's defense against potential malicious 

actors as it ensures data reconstruction even in scenarios of missing or corrupted data, 

strengthening the security posture. 
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However, the Solana blockchain exhibits three significant vulnerabilities within 

its security framework. These vulnerabilities warrant careful consideration due to their 

potential implications for the network's robustness and overall reliability. 

The first vulnerability pertains to the integrity of the Proof of History 

mechanism, a key element of Solana's architecture. This mechanism heavily relies on 

the accuracy of the initial timestamp. In the unfortunate event that this initial 

timestamp is tampered with, the entire integrity of the Proof of History could be 

compromised. This potential vulnerability emphasizes the criticality of ensuring the 

tamper-proof nature of this timestamp and highlights the need for rigorous security 

measures to safeguard against malicious tampering attempts. 

A second notable vulnerability stems from the relative newness of Solana in the 

blockchain landscape. While the platform boasts innovative features and high 

scalability potential, its limited track record in real-world scenarios raises concerns 

about battle-tested security. Given the rapid pace of evolution in emerging threats and 

attack vectors, the absence of substantial real-world testing could potentially leave the 

network susceptible to vulnerabilities that have yet to be identified or addressed. This 

underscores the importance of continuous security auditing, stress testing, and 

community collaboration to identify and rectify vulnerabilities proactively. 

Furthermore, a third vulnerability involves the network's decentralization and 

scalability dynamics. Inherent challenges within the current technological landscape 

make it complex to become a validator on the Solana network. This limited 

accessibility to validation roles could result in performance disparities that deviate 

from the theoretical ideals of decentralization and scalability. These disparities not 

only impact the network's overall security posture but also render it susceptible to 

Denial of Service (DoS) attacks, particularly in light of the network's ability to maintain 

impressively low transaction fees.  
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4.2.2. Decentralization 

Regarding decentralization, Solana features don’t produce much impact 

compared to Ethereum. As it also relies on Proof of Stake (PoS) the decentralization 

characteristics introduce both familiar benefits and risks. 

As with Ethereum, Solana's PoS obtains a reduction in the barriers to entry. PoS 

allows participants to engage in consensus by staking tokens, requiring less energy-

intensive computations than traditional Proof of Work. This lowers the entry 

threshold, fostering broader participation and contributing to a more decentralized 

validator landscape. 

However, PoS also brings to the forefront the "rich get richer" phenomenon. 

Validators with larger stakes have proportionately greater influence in block 

validation and consensus decisions. This dynamic can lead to the concentration of 

power and resources in the hands of a few, potentially undermining the foundational 

principle of decentralization. 

However, there is a negative impact of Solana's technology on decentralization 

due to its confirmation time optimization. While rapid confirmation times enhance 

user experience and reduce congestion, they could inadvertently amplify the risk of 

centralization. Validators with superior computational capabilities might have a 

higher likelihood of being selected as leaders more frequently due to their faster 

responses. This could tilt the playing field in favor of those with better resources, 

potentially diminishing the diverse and decentralized nature of the validator set. 

Moreover, a key factor impacting decentralization is the hardware requirement 

for becoming a validator on Solana. The need for a robust setup — including a 

minimum of a 12-core/24-thread CPU, 128 GB RAM, and 500 GB disk space — creates 

a barrier to entry, limiting potential validators. This reduction in participants hampers 

decentralization and, consequently, has a direct and adverse effect on scalability. 

By excluding many due to the demanding hardware prerequisites, Solana 

inadvertently shrinks its validator pool. This lack of diversity in validators contradicts 
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the essence of decentralization, which relies on broad participation. The network's 

scalability ambitions are undermined as the limited validator count inhibits efficient 

transaction processing for a growing user base. 

 

4.2.3. Scalability 

In contrast with security and decentralization, Solana's technology features 

have a profound impact on its scalability. By leveraging innovative solutions and 

optimizing data processing, Solana has crafted a framework that enhances its 

scalability in significant ways. 

The usage of Proof of History (PoH) significantly impacts Solana's scalability by 

contributing to the platform's ability to handle a high volume of transactions 

efficiently. By providing an immutable and verifiable timestamp for events on the 

blockchain, PoH establishes a reliable chronological order. This chronological ordering 

aids in the parallel processing of transactions, enabling multiple transactions to be 

executed concurrently rather than sequentially. As a result, PoH's accurate 

timestamps, combined with parallel processing, alleviate bottlenecks that often limit 

the scalability of other blockchain networks.  

In addition, the Turbine block propagation serves as the cornerstone of the 

scalability framework by aggregating validated chunks of data and minimizing 

redundant messages allowing Solana to optimize the data transmission process. This 

not only conserves bandwidth but also streamlines the propagation of transactions and 

blocks across the network, ensuring that scalability remains unhindered even as 

transaction volumes increase. 

All this allows for rapid confirmation times ensuring a quick transaction finality 

which reduces the backlog of unprocessed transactions and prevents network 

congestion.  
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However, as previously discussed, a significant challenge facing the Solana 

network revolves around the scarcity of validators due to the demanding 

requirements for assuming this crucial role. This challenge presents a complex 

situation with two primary consequences that could impact the network's transaction 

handling ability and make it vulnerable to potential Denial of Service (DoS) attacks. 

This concern becomes even more relevant considering the network's practice of 

offering consistent and low transaction fees. 

The connection between the limited number of validators and the network's 

transaction capacity is a crucial aspect to consider. With the pool of validators 

constrained due to the high hardware demands, the network's ability to process and 

confirm transactions could be hampered. This limitation could hinder the network's 

goal of efficiently handling a large volume of transactions, which is a fundamental 

requirement for a scalable and practical blockchain platform. 
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Chapter 5: Avalanche 

 

The next technological advancement meriting examination is Avalanche. Just 

as in the cases of Ethereum and Solana, our exploration framework shall entail a 

meticulous dissection of the key distinctions inherent to Avalanche when juxtaposed 

with the aforementioned technologies. This will be succeeded by an exhaustive 

evaluation of how these divergences wield an influence on each facet encapsulated 

within the paradigm of the Blockchain Trilemma. 

Ethereum and Solana have garnered significant attention due to their unique 

features and functionalities. Avalanche, in a similar vein, has carved its niche within 

the blockchain landscape with its distinctive consensus mechanism and scalable 

architecture. A rigorous comparative analysis of these platforms serves as the bedrock 

of our examination. 

 

5.1. Technical Differences with Ethereum and Solana 

 

5.1.1. DAG Structure 

In the preceding blockchain technologies we have examined, information was 

encoded within a block structure. This structural arrangement was imperative in 

arranging data systematically, ensuring a universally acknowledged sequence of 

blocks, and facilitating the uniform distribution of the blockchain ledger among all 

participants, thereby upholding its integrity. This simplifies the validation process for 

each new block and, therefore, consensus can be reached more efficiently. 
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Moreover, this block structure introduced a pivotal advantage in the form of a 

linear, chronological sequence, aptly named the blockchain. This linear concatenation 

serves as a potent deterrent against long-range attacks, a security concern wherein a 

malicious actor attempts to rewrite past transactions in an effort to alter the history of 

the blockchain. The inherent immutability of the chain makes such endeavors 

laborious and resource-intensive, thus bolstering the overall security and reliability of 

the blockchain network. 

However, employing a block structure presents several inherent drawbacks. 

The primary inconvenience stems from its propensity to result in diminished 

throughput. In cases where the volume of transactions surpasses the capacity of a 

single block, certain transactions inevitably confront a delay until the subsequent block 

is formed. This latency in transaction confirmation can undermine the efficiency and 

responsiveness of the blockchain network. 

A secondary concern arises in the form of potential forks. The necessity to 

ensure the chronological sequence of blocks necessitates a minimal time interval 

between block creations to account for network latency. This time constraint, while 

ensuring order, introduces the possibility of forks, wherein competing versions of the 

blockchain emerge due to slight variations in block arrival times. This divergence 

undermines the network's cohesion and introduces complexities for participants. 

These challenges were notably conspicuous within the Bitcoin and Ethereum 

ecosystems. A paradigm shift transpired with Solana, which adeptly mitigated these 

predicaments through the incorporation of the Proof of History (PoH) mechanism 

alongside the Proof of Stake (PoS) consensus protocol. This strategic fusion enabled 

Solana to operate at the transaction level, obviating the constraints of the block-based 

approach. In a contrasting vein, Avalanche undertakes a complete reimagining of the 

quandary. It forgoes the conventional Blockchain data structure and embraces a 

Directed Acyclic Graph (DAG) architecture. 

A Directed Acyclic Graph (DAG) is a specific type of data structure that 

represents a set of elements (usually called nodes) connected by directed edges, where 
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the connections between nodes have a defined direction and do not form any cycles. 

The term "acyclic" signifies that there are no loops or closed paths in the structure. Each 

edge points from one node to another, indicating a specific relationship between them. 

In the context of blockchain technology, a DAG is an alternative to the linear 

block structure commonly associated with traditional blockchains like Bitcoin. In a 

DAG-based system, transactions or data units are represented as nodes in the graph, 

and the edges represent relationships or dependencies between these transactions. 

Unlike the linear, sequential blocks in traditional blockchains, where each block 

references the previous block, transactions in a DAG can reference multiple previous 

transactions, creating a more complex network of connections. Figure 10 represents 

this structure. 

 

Figure 10. DAG Structure 

Figure 10 provides a visual depiction that underscores the primary 

differentiators between the DAG architecture and the structure characteristic of the 

previously examined blockchains. Notably, two pivotal distinctions are readily 

discerned. Firstly, the DAG framework operates at the transaction level, a departure 

from the block-centric approach observed in conventional blockchains. Secondly, this 

configuration engenders the existence of multiple forks, as evidenced in the instances 
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of TX2 and TX3. In such cases, the precise chronological order of these transactions 

becomes indeterminable. 

The adoption of this structure holds the potential to yield notable advantages 

compared to the classical Blockchain. The avoidance of temporal delays associated 

with block arrivals and the elimination of constraints tied to block sizes emerge as 

immediate benefits. Furthermore, the pivotal capability to parallelize the validation 

process (for instance TX2 and TX3 could be validated in parallel) manifests as a catalyst 

for heightened throughput and expedited transaction confirmation times.  

Certainly, the infeasibility of achieving these objectives served as the impetus 

for various other blockchain platforms to embrace the conventional Blockchain 

structure. This transition became a necessity due to the challenges posed by operating 

at the transaction level, as it heightened the propensity for forks, a complexity that was 

arduous to effectively manage. 

However, a paradigm shift is evident through Avalanche's innovative approach 

to its consensus algorithm. This pioneering alteration has paved the way for the 

actualization of the DAG structure, diverging from the well-trodden path of classical 

Blockchain architecture. This strategic evolution has empowered Avalanche to 

seamlessly adopt and capitalize on the inherent potential of the DAG framework. The 

culmination of these advancements is a remarkable surge in throughput, a testament 

to the efficacy of the DAG structure in addressing the longstanding issues that 

constrained previous attempts. 

 

5.1.2. Avalanche Consensus Algorithm 

As previously noted, the adoption of the DAG structure owes its realization to 

the pioneering Avalanche consensus algorithm. Nevertheless, achieving this milestone 

was far from effortless and required a series of progressive updates, with each iteration 

building upon the advancements of its forerunners. The initial iteration, termed 
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"Slush," laid the groundwork, followed by subsequent versions—namely "Snowflake," 

"Snowball," and culminated in the pinnacle iteration, "Avalanche" (Buttolph, 2022). 

 

Slush 

The initial action taken by each node involves casting a vote to determine the 

validity of the received transaction. After this step, each node initiates the process of 

querying a randomly selected group of nodes to ascertain their voting stance. This 

procedural sequence is elucidated in Figure 11. 

 

Figure 11. Slush Algorithm 

In the depicted instance within Figure 11, Node N1 undertakes inquiries 

directed towards Nodes N10, N8, N5, and N2. Subsequently, Node N1 accumulates 

responses indicating that the majority among these nodes have voted in favor of 

validity. Consequently, Node N1 adjusts its initial vote from "invalid" to "valid," in 

alignment with the prevailing majority. 

This iterative process persists across all nodes, advancing through diverse 

rounds of queries, until a unanimous consensus is achieved across the entire network. 

This consensus necessitates a comprehensive agreement, rather than a mere majority 

consensus (e.g., a scenario where 90% of the network votes "valid" is insufficient; 100% 

alignment is obligatory). However, a potential vulnerability emerges when a malicious 
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node deliberately skews its voting response to align with the minority instead of the 

majority. For instance, if Node N1 was malevolent, it could persistently uphold its 

original "invalid" vote, thwarting convergence to a definitive consensus. This 

disruptive behavior triggers an indefinite loop as the network remains devoid of a 

harmonized consensus resolution. 

 

Snowflake 

To address the issue of continuous looping within the Slush algorithm, 

Avalanche introduced an upgraded solution named Snowflake. This enhanced 

approach incorporates a "counter" mechanism to effectively manage the looping 

concern. 

Here's how Snowflake works straightforwardly: In the Snowflake algorithm, 

each participating node is assigned a counter. This counter keeps track of how 

consistently a node sticks to its initial voting choice across several rounds. If a node 

maintains its initial vote through consecutive rounds, the counter increases by one. 

Conversely, if a node changes its vote, the counter resets to its starting value. 

When a node's counter reaches a specified threshold, the node enters a "locked" 

state. In simpler terms, this means the node's voting decision becomes fixed and 

remains unchanged in subsequent rounds. This locking mechanism is a crucial way to 

prevent never-ending loops. If a node doesn't achieve the locked state even after 

multiple rounds, it might raise concerns about that node's intentions. 

However, while Snowflake effectively addresses looping concerns, there's a 

trade-off to consider in terms of efficiency. The counter's periodic resetting before 

reaching the locked state can slow down the process. This elongates the time needed 

to reach a consensus among the participating nodes. 
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Snowball 

In response to the challenge of diminished efficiency stemming from recurrent 

counter resets, Avalanche devised the Snowball algorithm. This innovative iteration 

of the consensus mechanism addresses the efficiency concern by altering the counter 

behavior. Unlike its predecessor, Snowflake, where the counter could reset, the 

Snowball algorithm maintains an unbroken record of query outcomes. 

In essence, Snowball functions as follows: When a node participates in the 

consensus process, it initiates a series of rounds of queries. In each round, the node 

gathers information from its peers regarding their voting choices. The novelty lies in 

the fact that the counter's integrity is maintained across all these rounds, eliminating 

any possibility of resetting. 

For instance, let's consider a scenario where a node commences the consensus 

process with an initial round of queries. If, after this first round, the accumulated vote 

tally reflects a majority in favor of "valid," the "valid" counter will increase accordingly. 

As these rounds of queries progress and culminate, the counter will embody a 

comprehensive summary of the overall outcomes. For example, the counter could 

display a total of 7 rounds endorsing "valid" and 2 rounds supporting "invalid." Based 

on the outcome, where a greater number of rounds resulted in "valid" votes, the node 

will subsequently cast its vote as "valid." 

This mechanism introduces a level of aggregation and deliberation that 

leverages the collective wisdom of the network to reach a consensus. By maintaining 

a holistic view of all the queries and their results, the Snowball algorithm empowers 

nodes to base their ultimate votes on a comprehensive perspective, derived from 

multiple rounds of input. 
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Avalanche 

Avalanche distinguishes itself from its predecessors through the culmination of 

its consensus mechanism, which enables the implementation of the previously 

discussed DAG (Directed Acyclic Graph) structure.  

Central to Avalanche's distinctiveness is its ability to generalize the Snowball 

algorithm, thereby addressing the intricate challenge associated with implementing 

the DAG structure. Inherent to DAGs are the continuous occurrences of forks, 

complicating the consensus process and presenting the potential for disagreements 

regarding the validity of transactions. This phenomenon paves the way for the double 

spend problem, a significant concern in the blockchain domain. 

The double spend problem, in essence, refers to a scenario where a malicious 

actor attempts to spend the same cryptocurrency funds more than once. This can occur 

due to the lack of a central authority in decentralized systems to ensure that 

transactions aren't duplicated. This issue jeopardizes the integrity and security of a 

blockchain network, undermining the trust that it seeks to establish among 

participants. 

To surmount this challenge, Avalanche creatively applies the foundational 

principles of the Snowball algorithm. However, there's a crucial departure: instead of 

nodes voting solely on a single transaction, they extend their scrutiny to encompass a 

range of transactions, specifically including several levels of predecessors. 

For instance, envision the illustrative Figure 10. In Avalanche's context, the 

process of validating a transaction like TX8 extends beyond merely assessing its 

individual validity. Instead, the validating node evaluates not only TX8 but also its 

preceding transactions. In a hypothetical scenario where three levels of predecessors 

are considered, the validation process would encompass TX5, TX2, TX3, TX1, and TX8. 

This multifaceted approach shifts the consensus landscape from one of binary 

voting outcomes—valid or invalid—to one of nuanced confidence levels. Rather than 

definitively labeling a transaction as correct or incorrect, nodes express their 
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confidence levels based on the collective assessment of multiple transactions. For 

instance, a node might assert that out of five transactions analyzed, one is erroneous, 

resulting in a confidence level of 80% that the chain analyzed is correct. 

After this complex voting process, nodes proceed to engage in a sequence of 

querying, analogous to the Snowball algorithm. Over time, consensus coalesces 

around transactions that demonstrate correctness. Importantly, while the order of 

these transactions might remain ambiguous, the potential security vulnerabilities 

associated with forks are mitigated. 

In sum, Avalanche's ultimate innovation lies in its ability to navigate the 

intricate landscape of the DAG structure. By synthesizing the principles of Snowball, 

extending transaction assessment to predecessors, and embracing confidence-based 

voting, Avalanche achieves a robust consensus mechanism that not only 

accommodates the challenges of forks but also fortifies the security of the blockchain 

ecosystem.  

 

5.1.3. Subnets 

Ethereum gained immense popularity for its unparalleled flexibility in 

developing specialized applications atop its blockchain, negating the need to create 

separate blockchains for each application. However, this shared blockchain ecosystem 

posed a challenge: while each application was distinctive, they were obliged to adhere 

to common features such as the consensus algorithm and protocols. 

Avalanche, in its pursuit of even greater flexibility, introduces a 

groundbreaking concept called "subnets." Subnets constitute discrete, isolated 

networks operating within the broader Avalanche framework, meticulously tailored 

to cater to specific usage scenarios, security prerequisites, or organizational 

imperatives. 
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Fundamentally, subnets function as tailored environments housing 

transactions, validators, and participants uniquely configured for specific purposes. 

This partitioning of the overarching network empowers Avalanche to accommodate a 

diverse array of applications and requirements without compromising network 

cohesion or operational efficiency. 

Subnets grant users the authority to configure their blockchain networks in 

alignment with their precise intentions. Consider, for example, an entity aiming for 

heightened privacy; such an entity could establish a subnet fortified with stringent 

privacy measures. Conversely, a decentralized finance (DeFi) initiative might fashion 

a subnet optimized for high-speed transactions and seamless interaction with assorted 

financial instruments. 

The segmentation of the network into subnets presents Avalanche with an 

extraordinary level of adaptability. Each subnet operates with a degree of autonomy, 

enabling it to define its distinct rules, parameters, and consensus mechanisms. This 

decentralized approach facilitates the diversification of applications, accommodating 

a wide spectrum of requirements within a unified network architecture. 

A critical aspect of the subnetting concept is its contribution to Avalanche's 

horizontal scalability prowess. This dynamic capacity to scale horizontally entails the 

establishment of new subnets as transaction demand escalates or novel specialized use 

cases arise. The introduction of fresh subnets serves to avert congestion while 

preserving the efficacy of network operations. 

 

5.1.4. Primary Network 

The intricate and versatile infrastructure of subnets within the Avalanche 

ecosystem is meticulously organized under the guidance of the Primary Network 

(Sekniqi, Laine, Buttolph, & Gün Sirer, 2020). This foundational layer constitutes the 

cornerstone upon which the entire Avalanche architecture is built. Comprising three 

essential blockchains—the X-Chain, the C-Chain, and the P-Chain—the Primary 
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Network orchestrates the multifaceted functionalities that underpin Avalanche's 

diverse applications and subnets. 

 X-Chain (Exchange Chain): The X-Chain assumes a pivotal role in the 

Avalanche landscape by overseeing the management of token transactions and 

the creation of tokens themselves. It acts as the conduit for seamless transfers of 

tokens, providing the backbone for economic activities within the ecosystem. 

Its responsibilities encompass facilitating rapid peer-to-peer transactions and 

token issuance, contributing to the fluidity and efficiency of Avalanche's 

economic transactions. 

 

 C-Chain (Contract Chain): Central to Avalanche's versatility is the C-Chain, 

entrusted with managing smart contracts and overseeing the dynamic 

landscape of applications constructed within the ecosystem. It serves as the hub 

for the execution of code-based applications, enabling developers to craft 

decentralized solutions with ease. Of significance is its interoperability with 

Ethereum's Virtual Machine, positioning Avalanche as an attractive destination 

for Ethereum developers seeking to harness the benefits of the Avalanche 

platform without the complexities of migration. 

 

 P-Chain (Platform Chain): Steering the orchestration of subnets and the 

intricate dance of validators is the P-Chain. Tasked with maintaining the 

integrity of the entire ecosystem, the P-Chain assumes the vital role of 

coordinating validators within subnets and orchestrating the consensus 

mechanism that guarantees network security. This control mechanism acts as 

the linchpin ensuring the collaborative harmony of Avalanche's distributed 

infrastructure. 
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5.2. Implications to the Blockchain Trilemma 

 

Similar to the examination conducted on the other technologies explored, the 

analysis culminates with an assessment of the implications that this particular 

technology holds for the Blockchain Trilemma. 

 

5.2.1. Security 

The implementation of a Directed Acyclic Graph (DAG) structure heralds a 

fundamental transformation in transaction confirmation and security paradigms. This 

structural innovation serves as a robust defense mechanism against the risk of "double 

spending" attacks, a threat ubiquitous in conventional blockchains. Unlike the linear 

progression of transactions within traditional blocks, the DAG structure ushers in a 

realm of parallel and asynchronous transaction confirmations. This pivotal feature 

dramatically truncates the temporal window within which malicious actors could 

exploit transactions for double spending, thus augmenting security against this 

specific form of attack. 

Moreover, Avalanche's distinctive consensus algorithm further fortifies its 

security architecture by thwarting the ominous specter of the "long-range attack." This 

vector of attack involves manipulating transactions from bygone epochs in the 

blockchain's history. The probabilistic nature of Avalanche consensus, buttressed by 

its repeated voting cycles, erects an imposing barrier to long-range attacks. The swift 

and iterative convergence of consensus renders the endeavor of revising historical 

transactions resource-intensive and implausible, thus engendering an enhanced 

security layer against this particular breed of threat. 

Finally, the integrative utilization of Subnets and the Primary Network affords 

the Avalanche ecosystem an intricate tapestry of security enhancements. Tailored to 

specific use cases, Subnets serve as bulwarks against the relentless tide of "transaction 
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spam attacks." By configuring subnets to optimally accommodate distinct 

functionalities, Avalanche curtails the effectiveness of attacks that seek to inundate the 

network with low-value transactions. Moreover, the vigilant oversight of the Primary 

Network acts as a guardian against the amplification of spam attacks across subnets, 

orchestrating the identification and mitigation of such threats. 

However, the adoption of novel technologies and approaches, like the DAG 

structure and the Avalanche consensus algorithm, introduces a concomitant risk 

profile. The introduction of novel elements can potentially unveil uncharted attack 

vectors or interaction intricacies, demanding a learning curve for developers and 

security experts to discern and rectify potential vulnerabilities. 

Furthermore, akin to other blockchain frameworks, Avalanche is not immune 

to vulnerabilities stemming from smart contracts and the potential for centralization. 

However, unlike conventional 51% control mechanisms, Avalanche's consensus 

requires an 80% network control threshold, rendering such control less attainable. 

 

5.2.2. Decentralization 

Regarding decentralization, only the integration of subnets and the primary 

network brings forth a nuanced impact on decentralization. On one hand, subnets 

offer the advantage of customization for specific use cases, fostering diverse and 

specialized applications within the ecosystem. The primary network's oversight 

ensures that while customization is encouraged, certain network standards are 

maintained, providing a balanced environment for tailored operations.  

However, a potential downside is the risk of centralization within subnets. If a 

subset of validators within a subnet gains disproportionate control, the decentralized 

nature of the network within that subnet could be compromised. This highlights the 

need for ongoing vigilance to prevent unintended centralization within specialized 

segments of the ecosystem. 
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5.2.3. Scalability 

The introduction of the DAG structure in the Avalanche Blockchain has a 

profound impact on scalability. The asynchronous and parallel transaction 

confirmation enabled by the DAG structure holds the potential to dramatically 

enhance scalability. Unlike traditional linear blockchains, where sequential transaction 

confirmation can lead to congestion, the DAG structure allows for multiple 

transactions to be confirmed simultaneously. This not only expedites the validation 

process but also reduces the risk of bottlenecks during peak usage.  

Moreover, the consensus algorithm employed by Avalanche significantly 

impacts the scalability of the technology by allowing transactions to be confirmed 

rapidly. This rapid confirmation process enhances the overall throughput of the 

network, catering to high transaction volumes. However, the algorithm's assumption 

of honest participation might introduce limitations to scalability. In scenarios where a 

substantial portion of participants collude or behave maliciously, the decentralized 

validation process could be hindered as more rounds would be needed to achieve 

consensus. This might potentially slow down transaction throughput and impact 

overall scalability. 

The incorporation of subnets and the primary network further influences 

scalability within the Avalanche ecosystem. Subnets, tailored to specific use cases, 

offer the potential to improve scalability by enabling specialized transaction 

environments. This ensures that transactions with distinct functionalities can be 

processed independently, preventing congestion on the primary network. The 

primary network's oversight also maintains consistency across subnets. 
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Chapter 6: Quantitative Analysis 

 

After thoroughly examining the technical distinctions among Ethereum, 

Solana, and Avalanche, it becomes imperative to delve beyond theoretical disparities 

and grasp their tangible repercussions in practical contexts. To achieve this, the 

execution of a quantitative analysis becomes paramount. This analytical approach not 

only grants us profound insights into the practical implications but also furnishes us 

with a systematic framework for juxtaposing these technologies. 

Hence, the focal point of this chapter shifts towards an initial process of 

handpicking and elucidating the metrics that will serve as our compass in this 

comparative exploration. Additionally, the acquisition of metric-specific data for each 

technology takes precedence. This data-driven endeavor is fundamental in enabling 

us to conduct an insightful comparative analysis that encapsulates diverse facets of 

these technologies. 

 

4.1. Metrics 

 

As mentioned earlier, this section involves the selection and explanation of 

various metrics used to assess the real-world effectiveness of each technology. 

Additionally, it encompasses outlining a method for comparing the studied 

technologies. 

Moreover, we will categorize the choice of metrics according to the Blockchain 

Trilemma. This categorization will grant us insight into how each blockchain 

addresses the Trilemma and evaluates the effectiveness of their respective approaches. 
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4.1.1. Security 

Nakamoto Coefficient 

The Nakamoto Coefficient draws inspiration from the GINI Index, a tool 

utilized to assess wealth distribution within a nation. In its blockchain context, the 

Nakamoto Coefficient is constructed as the minimum count of entities necessary to 

collectively command authority over the network (Bybit, 2022). This metric serves as 

a direct gauge to comprehend the feasibility of executing a 51% attack on the associated 

blockchain. 

The metric is obtained through the following formula. 

𝐾 = min 𝑛 ∈ 𝑁: 𝑥 > 𝑝 𝑥  

On the left-hand side of the equation, we observe the accumulation of the 

control percentages attributed to 'n' validators. Conversely, the right-hand side 

encapsulates the summation of control percentages attributed to the entire 'N' 

validators present in the network. This value is then multiplied by the predetermined 

requisite percentage 'p' needed to acquire control over the network—where 'p' 

corresponds to the necessary proportion, such as 0.51 if a 51% threshold is essential for 

network control. 

 

Downtime 

As the digital realm becomes increasingly intertwined with our daily lives, the 

uninterrupted and secure operation of blockchain networks becomes essential. 

Downtime, often associated with technical glitches, network failures, or malicious 

attacks, can significantly impact the reliability and integrity of a blockchain. This has 

prompted the exploration of downtime as a security metric, shedding light on its 

potential significance in the realm of blockchain analysis. 
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Downtime in the context of blockchain refers to periods during which the 

network is unavailable, incapable of processing transactions, or executing smart 

contracts. While downtime might appear to be a conventional operational concern, it 

possesses far-reaching implications in terms of security. The downtime metric 

underscores the vulnerability of a blockchain to various threats, including distributed 

denial-of-service (DDoS) attacks, consensus mechanism vulnerabilities, software bugs, 

and even internal misconfigurations. 

The concept of employing downtime as a security metric aligns with the 

principle of availability, one of the key pillars of information security. Availability 

ensures that a blockchain network remains operational, accessible, and resilient 

against disruptions. When downtime occurs, it not only hampers the network's 

performance but also exposes it to potential exploitation by malicious actors seeking 

to take advantage of lapses in security protocols. 

Measuring downtime involves tracking the duration and frequency of periods 

when the blockchain is inactive or inaccessible. This metric can be quantified in terms 

of hours, minutes, or even seconds, depending on the granularity required for analysis. 

A blockchain with prolonged or recurrent downtime might indicate underlying issues 

that compromise its security posture. Consequently, this metric serves as an indirect 

indicator of the blockchain's resilience against both accidental disruptions and 

intentional attacks. 

 

4.1.2. Decentralization 

Token Distribution Entropy 

Token distribution entropy captures the diversity and evenness of the allocation 

of tokens across network participants. In essence, it quantifies the randomness and 

unpredictability of the distribution pattern. By scrutinizing the entropy of token 

distribution, blockchain stakeholders can gain a deeper understanding of the equitable 

distribution of influence and control within the network. 
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To apply token distribution entropy as a decentralization metric, one must 

analyze the spread of tokens among users, accounts, or addresses within the 

blockchain ecosystem. A higher entropy value signifies a more evenly dispersed token 

ownership landscape, suggesting that control and economic power are not 

concentrated in the hands of a select few entities. This resonates with the core principle 

of decentralization – a network where no single entity commands undue influence. 

The formula to calculate the token distribution entropy is the following. 

𝑆 =  − ∑ 𝑝 × 𝑙𝑜𝑔 (𝑝 ) 𝑤ℎ𝑒𝑟𝑒 𝑝 =
∑

 

Based on the aforementioned formula, an S value of 0 signifies minimal 

decentralization (or heightened centralization), whereas an S value of log(N) signifies 

maximal decentralization (or minimal centralization). 

 

Number of Validators 

The number of validators refers to the count of independent entities responsible 

for validating transactions and maintaining the consensus mechanism within a 

blockchain network. This metric captures the diversity of participants contributing to 

the network's operation, reflecting the distribution of control and influence among 

stakeholders. Analyzing the number of validators offers valuable insights into the 

robustness of the network's decentralization architecture. 

Applying the number of validators as a decentralization metric entails assessing 

the participation and representation of various entities within the network. A higher 

number of validators generally indicates a more decentralized ecosystem, as control is 

distributed among a larger pool of participants. This diversity of validators minimizes 

the risk of concentration of influence, promoting a healthier and more resilient 

network. 

 



68 
 

4.1.3. Scalability 

Transactions Per Second 

TPS quantifies the number of transactions a blockchain network can process 

within a single second. This metric is a direct reflection of the network's capacity to 

handle a larger volume of transactions in a timely manner. Evaluating TPS as a 

scalability metric provides invaluable information about the network's readiness to 

support real-world applications that demand rapid transaction confirmation. 

Applying TPS as a scalability metric entails assessing the blockchain's 

responsiveness and performance under varying transaction loads. A higher TPS value 

suggests that the network possesses the infrastructure and protocols to swiftly process 

a substantial number of transactions without compromising its efficiency. This is 

particularly crucial for blockchain platforms seeking to accommodate applications 

ranging from financial transactions to supply chain management. 

 

Time to Finality 

Time to Finality refers to the duration it takes for a transaction to be fully 

confirmed and considered irreversible on the blockchain. This metric offers a clear 

measurement of how quickly a transaction achieves consensus and becomes an 

immutable part of the blockchain's history. Evaluating Time to Finality as a scalability 

metric is vital for assessing the network's responsiveness in processing transactions 

and maintaining an efficient user experience. 

Applying Time to Finality as a scalability metric involves assessing the time it 

takes for a transaction to go through the consensus process and receive sufficient 

confirmations to be considered finalized. A shorter Time to Finality implies that 

transactions can be confirmed more rapidly, enabling the blockchain to handle a 

higher throughput of transactions. This becomes particularly significant for blockchain 
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applications that require real-time confirmation, such as payment systems or supply 

chain tracking. 

 

4.2. Metrics Values per Blockchain 

 

Now that we have a clear understanding of the variables involved, we can move 

forward with a detailed analysis of each technology. It's important to note that a solid 

grasp of these variables is essential for drawing accurate insights. With a good 

understanding of these variables in mind, we are ready to thoroughly assess 

quantitatively each of the technologies in question. 

As of the current date, August 23rd, 2023, the specific values for each variable are 

provided in Figure 12, obtained through the corresponding official webpages and 

other resources (Ethereum, s.f.) (Solana Beach, s.f.) (Avalanche, s.f.) (Circle, 2023). This 

visual representation serves as a useful reference point, ensuring our analysis is 

grounded in the most recent and pertinent data. By using these current variable values 

as a foundation, we can confidently begin our assessment, which will be both well-

informed and rigorous. Within this context, we will now proceed to carefully examine 

the distinct merits and attributes associated with each technology on our agenda. 

 

Figure 12. Metrics Values per Blockchain 
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Upon a thorough examination of the provided dataset, a conspicuous 

observation emerges: Avalanche notably lacks both the Nakamoto Coefficient and 

Token Distribution Entropy. This intriguing absence can be attributed to the 

distinctive nature of Avalanche's consensus algorithm, wherein its voting mechanism 

remains detached from token dependencies. Consequently, the utilization of these 

particular metrics within the framework of Avalanche's analysis becomes impractical. 

Furthermore, it is noteworthy that the metric of Downtime finds no 

representation within Figure 12. This omission is grounded in the understanding that 

Downtime is a multifaceted concept, necessitating an intricate analysis beyond a mere 

numerical depiction. Downtime, as a measure, extends its roots into a plethora of 

causative factors, encompassing a spectrum that goes beyond potential attacks. 

Therefore, its absence from the visual representation is a result of its inherent 

complexity, demanding a dedicated analysis in order to capture its diverse 

manifestations comprehensively. 

 

Nakamoto Coefficient 

Starting with the Nakamoto Coefficient, it is evident that Ethereum requires a 

notably higher number of validators to reach the critical 51% control threshold. This 

observation is in line with the analysis that highlighted the resource-intensive nature 

of being a Solana validator. The demanding resource requirements of the Solana 

ecosystem inherently contribute to the practicalities of achieving validation within its 

network. 

Moreover, an important aspect to consider is the temporal dimension that sets 

Ethereum apart from Solana. Ethereum's longer presence in the blockchain arena has 

allowed it to cultivate a more extensive and diversified community. The extended 

timeframe has provided Ethereum with the opportunity to nurture a broad user base, 

a factor that naturally contributes to a more distributed decision-making process, 

ultimately reflecting in its higher Nakamoto Coefficient. 
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Furthermore, Ethereum's historical resilience against challenges, forks, and 

adversities has solidified its position as a reliable and secure platform. This stability 

fosters ongoing participation and engagement from a diverse range of stakeholders, 

which, in turn, contributes to a robust Nakamoto Coefficient. 

Adding another layer to the analysis, Ethereum's global recognition and early 

adoption have played a pivotal role in shaping its high Nakamoto Coefficient. Being a 

trailblazer in the decentralized technology landscape has afforded Ethereum an 

extensive legacy. Its influence on the blockchain domain has led to widespread 

acknowledgment, drawing enthusiasts and experts alike to contribute to its ecosystem. 

Lastly, it's worth noting that Solana's threshold for network control stands at 

33%, in contrast to the conventional 51%, which inherently contributes to a 

comparatively lower Nakamoto Coefficient. 

 

Token Distribution Entropy 

Revisiting the analytical landscape, an interesting facet emerges as we delve 

into the metrics at hand. It's crucial to acknowledge that Avalanche's non-participation 

in this particular metric adds a layer of distinctiveness to the analysis. In alignment 

with the established trend highlighted by the Nakamoto Coefficient, Ethereum once 

again takes the lead, surpassing Solana. Notably, Ethereum's distribution profile 

stands out prominently, nearing the threshold of maximum distribution. 

Conversely, Solana positions itself as a contender with a notable distribution 

value, albeit distinct from Ethereum. This value is calculated to be close to the peak of 

decentralization, registering at 10.93. This numeric representation, derived from the 

logarithm base 2 of the validator count, provides an insightful assessment of 

decentralization levels. 

On the Solana front, the proximity of its distribution value to the theoretical 

maximum suggests an interesting narrative. While the raw count of validators might 
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not be extensive, the network's architecture and consensus mechanisms promote a 

relatively higher level of decentralization per validator. This architectural choice 

encourages a distributed decision-making process, contributing to the observed 

distribution value. 

 

Number of Validators 

When we transition our focus to Solana and Ethereum, a striking parallel 

unfolds, echoing the analytical patterns witnessed in the Nakamoto Coefficient 

assessment. Nevertheless, the advent of this analysis ushers in the prominent inclusion 

of Avalanche, rendering the discourse multifaceted. Avalanche, in its distinctiveness, 

steps forward as a participant, albeit with a notable distinction: it holds the record for 

the lowest number of validators in comparison to Solana and, notably, Ethereum. This 

disparity becomes a noteworthy point of discussion, which prompts a deeper 

exploration into the intricacies that underlie this unique facet. 

Avalanche's validator count, situated at the nadir of this comparison, raises 

pertinent questions about the reasons behind this occurrence. To unravel this 

narrative, it's crucial to delve into the core attributes that define Avalanche's validator 

ecosystem. One pivotal aspect lies in the exclusivity of Avalanche's validator Primary 

Network from which the data is extracted. With a limited number of positions 

available, the selection process is designed to ensure optimal network performance 

and security. While this selectivity underscores the network's robustness, it could 

potentially contribute to the observed disparity in validator count. 

A noteworthy nuance emerges in the form of the variability in validator 

numbers across different subnets within Avalanche. This inherent fluctuation is 

attributed to the unique characteristics and demands of each subnet. As a result, a 

comprehensive analysis of the validator count necessitates a holistic consideration of 

the broader context, encompassing the distinct subnets' contributions to the 

overarching Avalanche ecosystem. 
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TPS 

This juncture marks a pivotal shift in our analysis, especially when contrasting 

Solana and Ethereum. Here, the discrepancy between the two platforms becomes as 

pronounced as the variance in their respective validator counts. However, it is worth 

noting a particularly intriguing metric: that which pertains to Avalanche. Despite its 

consensus mechanism addressing scalability concerns, Avalanche remains in the 

shadow of Solana, revealing an area where it has considerable room for improvement. 

 

Time to Finality 

Parallel to the TPS analysis, the outcomes presented here closely mirror those 

observed in the TPS assessment. These results accentuate the evident scalability 

limitations in Ethereum, stemming from its block-based consensus mechanism, which 

stands in contrast to the transaction-based approach adopted by Solana and 

Avalanche. Moreover, within the context of Avalanche, the incorporation of multiple 

rounds of voting inadvertently results in the squandering of valuable time, 

contributing to its suboptimal performance. 

 

Downtime 

While lacking a concrete quantification for this metric, its significance in 

portraying network security necessitates an examination of each blockchain in this 

context. As of the present day, Ethereum has remained uninterrupted, showcasing its 

robust security posture. In contrast, Solana has encountered instances of downtime on 

10 separate occasions, a noteworthy concern given its relatively brief existence, 

signaling vulnerabilities in this domain (Mitchelhill, 2023). On the other hand, 

Avalanche stands out for never having experienced a network downtime, 

underscoring its strength, particularly when considering its comparatively younger 

lifespan. 
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4.3. Conclusions Regarding the Blockchain Trilemma 

 

Drawing from an in-depth analysis of the technological facets, along with the 

subsequent practical implications elucidated by the aforementioned metrics, we can 

arrive at insightful conclusions concerning how each blockchain addresses the 

complexities of the Blockchain Trilemma. 

 Ethereum: While it distinctly outshines Solana and Avalanche in terms of 

Security and Decentralization, its shortcomings in Scalability and procedural 

adaptability impede the seamless integration of modern Decentralized 

Applications. The challenges it faces in achieving high transaction throughput 

while maintaining network efficiency can potentially hinder its efficacy in 

accommodating the demands of contemporary blockchain applications. 

 

 Solana: Standing as a clear frontrunner in Scalability, Solana's commendable 

performance is juxtaposed with marked concerns related to Decentralization 

and Security. The susceptibility to Downtime, as evidenced by the metric 

discussed, casts a shadow over its security profile. Without addressing these 

vulnerabilities, only through rigorous testing and the passage of time can 

Solana's standing remain unimpaired. In the realm of Decentralization, despite 

the apparent low validator count, a promising horizon emerges. The dynamic 

nature of blockchain ecosystems can lead to an increase in validators as 

participation becomes more accessible, bolstering Solana's distribution, as 

indicated by Token Distribution Entropy. 

 

 Avalanche: Distinguished by its departure from the traditional Blockchain 

Trilemma paradigm, Avalanche showcases an innovative path that prioritizes 

flexibility. Operating outside the bounds of conventional categories, Avalanche 

strikes a balance between Scalability, Security, and Decentralization, aligning 

its Primary Network with optimal performance in these domains. This network 

serves as the bedrock, demonstrating robust Scalability, Security, and 
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Decentralization. What further sets Avalanche apart is its visionary approach 

to subnets. By offering the capacity for users to establish their own blockchains 

within these subnets, Avalanche manifests unparalleled flexibility. This 

adaptability empowers the platform to allocate resources in alignment with 

specific blockchain requirements, marking it as a pioneer in customization and 

optimization. 

In summation, the analysis yields intriguing insights: Solana is well poised to 

potentially resolve the Blockchain Trilemma through its notable Scalability attributes. 

On the other hand, Avalanche has deftly evaded the constraints of the Trilemma by 

ensuring the seamless fusion of Scalability, Security, and Decentralization within its 

Primary Network. Additionally, the ingenuity of subnets positions Avalanche as an 

optimized and versatile blockchain solution, augmenting its potential for industry 

leadership. Thus, considering the comprehensive panorama, Avalanche emerges as a 

formidable contender, boasting higher prospects to ascend as the preeminent 

Blockchain Technology. 
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Chapter 7: Practical Takeaway 

 

Beyond the theoretical explorations meticulously presented in the preceding 

chapters, this project extends its impact to the practical realm, rendering it an 

invaluable asset for GSR. Within the dynamic landscape of the blockchain ecosystem, 

characterized by continuous evolution, this endeavor offers a tangible takeaway that 

holds profound significance. Specifically, the project introduces a tool designed to 

monitor and track the metrics delineated in Chapter 6 over time, thus furnishing a 

continuous feedback mechanism regarding the progression of each blockchain in 

tackling the intricate challenges posed by the Blockchain Trilemma. 

To achieve this ambitious goal, a two-fold approach has been undertaken, 

involving the development of two distinct Python files. These files encapsulate the 

essence of a comprehensive data-tracking solution, affording GSR the means to gather 

insights and assess the ever-evolving state of various blockchains. 

The first Python file is tailored to the extraction and compilation of data from 

diverse resources. This intricate process is meticulously orchestrated to ensure the 

accurate collection of relevant metrics. The collated data is then judiciously saved, 

laying the foundation for a meticulously curated database that evolves over time. This 

database becomes a repository of valuable insights, affording GSR the ability to gauge 

the trajectory of each blockchain's performance in addressing the Blockchain 

Trilemma. 

Complementing the data extraction and compilation endeavor, the second 

Python file takes the form of a dashboard. This sophisticated dashboard is ingeniously 

designed to provide an easily accessible and analyzable interface for the amassed data. 

The dashboard serves as a visual conduit, rendering complex information 

comprehensible at a glance. Its user-friendly design empowers GSR to delve into the 
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nuances of the tracked metrics, fostering informed decision-making and insights 

generation. 

In the subsequent chapter, our exploration will delve deep into the intricacies 

of both these Python files, unraveling the technical underpinnings that bring this 

visionary project to life. Through this pragmatic lens, the project evolves from 

theoretical discourse to practical utility, forging a potent synergy between theoretical 

insight and real-world application. Both codes will be displayed in the Annex. 

 

7.1. get_data.py 

 

As previously highlighted, the first Python file operates in a two-fold manner: 

it procures data from a myriad of diverse resources and subsequently organizes and 

stores this information within an Excel file. Consequently, this process involves a series 

of sequential steps, each of paramount importance. 

 

Web Scraping 

To initiate the data procurement endeavor, the pivotal technique of web 

scraping takes center stage. This procedure hinges on the utilization of specialized 

tools designed to extract data from various online platforms. In the context of 

blockchain data acquisition, each blockchain possesses its official platforms replete 

with an array of statistics. While real-time data collection is indeed attainable, 

obtaining historical data is often a formidable challenge. It is here that the significance 

of crafting a comprehensive dataset, exclusive to GSR, becomes evident. 

To fulfill this ambitious data compilation, a potent ally in the form of the 

Selenium package is employed. This Python package constitutes a powerful 

automation tool, granting the capability to programmatically interact with web pages. 
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In essence, Selenium empowers the script to navigate, access, and retrieve information 

from websites as if an actual user were performing these actions. 

The Selenium package's salient feature lies in its capacity to simulate human-

like interaction with web pages. This includes actions such as clicking buttons, 

entering text, navigating through menus, and more. By accurately mimicking these 

user interactions, Selenium effectively bypasses potential obstacles posed by website 

structures designed to prevent automated data collection. 

The emulation of human behavior through the utilization of the Selenium 

package bears particular significance, especially in scenarios where the objective is to 

extract intricate data nuances that replicate the token distribution across various 

validators. A common scenario entails the token distribution data being presented in 

tabular form, often with a limited number of entries viewable initially. To access 

additional entries, a requisite action, such as clicking a button, is needed to unveil 

further information. 

To shed light on the technical intricacies, the process unfolds as follows: 

 Initializing the Selenium Driver: This pivotal initial step involves launching 

the Selenium driver, which acts as a virtual browser to navigate and interact 

with web content. This initiation creates a seamless connection between the 

script and the target webpage, paving the way for subsequent interactions. 

 

 Webpage Exploration and Element Retrieval: Within the virtual browsing 

environment, the script systematically scans through the webpage's structure. 

Guided by the objective of retrieving specific elements, it seeks out the relevant 

tokens of data, often employing techniques such as locating the element using 

its Full X-Path. The emulation of human-like browsing is pivotal here, enabling 

the script to seamlessly interact with the webpage elements. 

 

 Execution of Interaction: Once the target element is identified, the Selenium 

script effectively simulates the human action necessary to retrieve the desired 
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data. This could involve clicking buttons, selecting dropdowns, or performing 

any action that triggers the display of additional data entries. 

 

 Closing the Driver: Concluding the interaction, the Selenium driver is 

gracefully closed, effectively terminating the virtual browsing session. This 

phase is integral in maintaining system resources and ensuring a controlled 

conclusion to the data extraction process. 

 

Data Storage 

With the successful extraction of data accomplished, the subsequent phase 

seamlessly transitions into data storage, underpinned by a preliminary but crucial 

preparatory step: data cleaning. This preparatory process becomes pivotal as the data 

harvested through Web Scraping techniques typically manifests in text form, often 

accompanied by contextual elements that include more than just the numerical values 

sought after. A common occurrence involves instances such as '28,389 ETH', where the 

relevant numerical value is coupled with extraneous textual descriptors. 

In light of this, the process of data storage necessitates the integration of 

effective data-cleaning methodologies. The ultimate objective is to refine the extracted 

data, stripping away non-desirable elements and rendering it amenable for seamless 

conversion into the intended data types. 

 An example would be instances such as '28,389 ETH', where data cleaning 

routines target the removal of extraneous characters, including commas and currency 

symbols (such as 'ETH'). This action streamlines the data, leaving behind only the 

numeric component which can then be converted into the corresponding data type, 

being in this case, an integer. 

Transitioning into the storage phase, the initial pivotal consideration revolves 

around the determination of the optimal storage destination. At this juncture, a 
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strategic choice must be made regarding the repository that will house the 

meticulously acquired and refined data. 

The underpinning rationale for this data storage decision is tied to the intended 

execution frequency of the code. It is meticulously designed to be executed daily. 

Operating within such a narrow temporal interval, changes within the metrics may 

not exhibit significant variations, rendering a shorter interval redundant. 

Consequently, this daily execution rhythm culminates in the accumulation of a mere 

365 new data rows each year. Given this relatively modest dataset size, leveraging 

tools such as Excel is a viable and judicious approach. 

In essence, the decision hinges on practicality and efficiency. The Excel 

platform, known for its user-friendly interface and adeptness at managing smaller 

datasets, aligns harmoniously with the limited data volume anticipated within the 

context of this project. This strategic alignment streamlines both data storage and 

subsequent analysis, rendering the decision to harness Excel as the storage medium 

not only practical but also astute in optimizing resource allocation. 

As a result, the Excel workbook has been thoughtfully compartmentalized into 

four distinct Sheets, each serving a specific purpose: 

 Sheets 'Ethereum', 'Solana', and 'Avalanche': These sheets are individually 

designated to house the time series data for each respective technology. Each 

sheet meticulously captures variables that exhibit temporal variations. 

Specifically, these variables include the dynamic 'Number of Validators' and 

'TPS'. Each sheet boasts a streamlined structure comprising three columns, 

where the first two columns correspond to the mentioned variables, and the 

third column is dedicated to recording the precise date of data extraction. This 

organizational architecture is visually exemplified in Figure 13. Notably, in the 

case of Solana, the metrics are expanded to incorporate two additional 

variables: the Nakamoto Coefficient and the Token Distribution Entropy, both 

of which exhibit temporal variations. 
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Figure 13. Solana Data Stored 

 Sheet ‘Aggregated’: This sheet, illustrated in Figure 14, emerges as a pivotal 

component, designed to encapsulate a comprehensive aggregation of all 

studied metrics across the various blockchains. The strategic rationale 

underlying this sheet lies in the convenience of facilitating holistic comparisons. 

Here, an all-encompassing table is created, incorporating all metrics studied, 

providing a readily accessible means of comparing these metrics across the 

diverse blockchain platforms. The structure of this sheet is a masterstroke, with 

the majority of metrics remaining static, barring those subject to temporal 

variation. For the dynamically evolving metrics, such as 'Number of Validators' 

and 'TPS', the Excel automatically populates the most recent available data, 

ensuring the table remains consistently updated with the latest insights. In 

essence, this table harmonizes the dual characteristics of being both static and 

dynamic, enhancing its utility as a reference tool. 

 

Figure 14. Aggregated Data Stored 
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7.2. dashboard.py 

 

Given the perpetual influx of updated data, the imperative of a dynamic 

dashboard emerges, one that possesses the agility to extract this evolving data and 

seamlessly update its graphical representations. Beyond mere data presentation, the 

dashboard assumes the pivotal role of enabling effective comparisons between 

different metrics and blockchain technologies. To empower users with the ability to 

control the displayed information, granting them the discretion to toggle between 

displayed and hidden metrics, an interactive element is a prerequisite. 

In light of these multifaceted requirements, Python rises once again as the 

platform of choice. Python's inherent versatility, coupled with its rich ecosystem of 

libraries and tools, uniquely positions it to fulfill the dynamic and interactive needs of 

the envisioned dashboard. Python's capability to harness real-time data, process it, and 

then translate it into dynamic visualizations aligns harmoniously with the project's 

overarching goals. 

Drawing from the available dataset, a constellation of four pivotal graphs 

harmoniously coalesce to offer a comprehensive panorama of how diverse blockchains 

fare when confronted with the intricacies of the Blockchain Trilemma. 

 Radar Plot: Illustrated in Figure 15, the inaugural graph materializes as a Radar 

Plot, adeptly capturing the performance of each blockchain across the array of 

metrics under consideration. This visual representation leverages the 

aggregated data stored in the 'Aggregated' table of the Excel file. The Radar Plot 

ingeniously condenses complex data into an intuitive visual format, enhancing 

comprehension and comparison. 

Notably, this Radar Plot employs scaling mechanisms to standardize the data's 

range to [0, 1]. Within this normalized range, the technology attaining the least 

favorable metric outcome receives a value of 0, while the technology excelling 

in the same metric attains a value of 1. Technologies achieving intermediate 

results are assigned values that interpolate between the extremities, predicated 
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upon their proximity to the maximal and minimal values. This scaling 

harmonizes diverse metrics and technologies, facilitating an equitable and 

cohesive evaluation. 

To empower user engagement and tailor insights, the dashboard facilitates 

interaction. Users are empowered to toggle checkboxes, selecting specific 

technologies for display. This intuitive feature amplifies the user's agency, 

allowing them to customize their view of the Radar Plot based on their 

analytical inclinations. Within Figure 15, Ethereum and Solana are both elected 

for display, underscoring the versatility of the interactive dashboard in catering 

to user preferences. 

 

Figure 15. Radar Plot 

 Aggregated Table: Evident in Figure 16, the Aggregated Table assumes a 

prominent position within the visual repertoire. Conceived as an unabridged 

replication of the 'Aggregated Table', its purpose harmonizes with that of the 

Radar Plot, but with a distinct intent. This table mirrors the 'Aggregated Table' 
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in its entirety, meticulously capturing the unadulterated and up-to-date metric 

values without resorting to scaling. 

The rationale for incorporating the Aggregated Table lies in its capacity to 

complement the insights gleaned from the Radar Plot. Unlike the scaled values 

of the Radar Plot, the Aggregated Table showcases the precise, real-world 

metric values, preserving their veracity without any normalization. This facet 

augments the dashboard's capacity to cater to a spectrum of analytical 

preferences, ensuring that users can choose to engage with unscaled, absolute 

data when required. 

 

Figure 16. Aggregated Table 

 Number of Validators Time Series: Presented in Figure 17, the ensuing 

visualization is dedicated to spotlighting the temporal flux in the number of 

validators across distinct blockchains. This chart is thoughtfully designed to 

encapsulate the dynamic changes that unfurl over time, specifically procuring 

data from the 'Ethereum', 'Solana', and 'Avalanche' sheets within the Excel file. 

Parallel to the Radar Plot, this visualization invites user interaction through 

checkboxes. Users are empowered to select and display the blockchain of their 

choosing, fostering a tailor-made analytical journey. By toggling checkboxes, 

users can summon a focused representation of the number of validators for 

their preferred blockchain(s). 
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Figure 17. Number of Validators Time Series 

 TPS Time Series: Unveiled within Figure 18, the culminating visualization 

mirrors the structure of the Number of Validators Time Series. However, in this 

iteration, the spotlight pivots toward tracking the Time-Per-Second (TPS) 

metrics. This dynamic chart illuminates the temporal shifts in TPS across 

blockchain platforms. Similar to its counterpart, this visualization orchestrates 

an intricate dance with user engagement, allowing for the selection of preferred 

blockchains through intuitive checkboxes. 
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Figure 18. TPS Time Series 
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Annex I: Code 

 
get_data.py 

 

from selenium import webdriver 
from selenium.webdriver.common.by import By 
from selenium.webdriver.support.ui import WebDriverWait 
from selenium.webdriver.support import expected_conditions as EC 
import numpy as np 
import pandas as pd 
from selenium.webdriver.common.action_chains import ActionChains 
from selenium.webdriver.common.keys import Keys 
import math 
import time 
import re 
from datetime import datetime 
 
 
# Get Date 
today = datetime.now() 
formatted_date = today.strftime("%d/%m/%Y") 
 
################################### ETHEREUM 
 
##### Number of Validators 
# Initialize the Selenium WebDriver 
driver = webdriver.Chrome() 
 
# URL of the website to scrape 
url = "https://beaconscan.com/validators#active" 
driver.get(url) 
driver.implicitly_wait(30) 
 
xpath = "/html/body/main/section[1]/div/ul/li[2]/a" 
element = driver.find_element(By.XPATH, xpath) 
match = re.search(r'\((\d+)\)', element.text) 
number_validators = int(match.group(1)) 
print(number_validators)  
 
# Close the Driver 
driver.quit() 
 
 
##### Transactions Per Second 
# Initialize the Selenium WebDriver 
driver = webdriver.Chrome() 
 
url = 
"https://ethtps.info/#:~:text=Ethereum%20is%20doing%2029.33%20TPS&text=Drag%20the%2
0slider%20above%20to,compare%20the%20historical%20TPS%20distribution." 
driver.get(url) 
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driver.implicitly_wait(10) 
 
xpath = "/html/body/div/div[1]/center[2]/h4" 
element = driver.find_element(By.XPATH, xpath) 
match = re.search(r'([\d.]+)', element.text) 
tps = float(match.group(1)) 
print(tps)  
 
# Close the Driver 
driver.quit() 
 
 
# Read existing data from Excel file (specific sheet) 
excel_file = "Data.xlsx" 
sheet_number = 0 
df = pd.read_excel(excel_file, sheet_name=sheet_number) 
 
# Create a new row as a dictionary 
new_row = { 
    'Date': formatted_date, 
    'Number of Validators': int(number_validators), 
    'TPS': float(tps) 
} 
 
# Add the new row to the DataFrame 
df = df.append(new_row, ignore_index=True) 
 
# Write the updated data to the same sheet in Excel file 
with pd.ExcelWriter(excel_file, engine='openpyxl', mode='a', 
if_sheet_exists='replace') as writer: 
    df.to_excel(writer, sheet_name='Ethereum', index=False, header=True) 
 
################################### SOLANA 
 
##### Transactions Per Second 
 
# Initialize the Selenium WebDriver 
driver = webdriver.Chrome() 
 
# URL of the website to scrape 
url = "https://solanabeach.io" 
driver.get(url) 
 
# Obtain Element 
xpath = 
"/html/body/div[1]/div[3]/div/div/div/div[6]/div/div[1]/div/div[1]/div/div/p/span"  
timeout = 10 
element = WebDriverWait(driver, timeout).until( 
    EC.visibility_of_element_located((By.XPATH, xpath)) 
) 
tps = element.text 
tps = tps.replace(',', '') 
print(tps) 
 
# Close the Driver 
driver.quit() 
 
 
##### Number of Validators 
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# Initialize the Selenium WebDriver 
driver = webdriver.Chrome() 
 
# URL of the website to scrape 
url = "https://solanabeach.io/validators" 
driver.get(url) 
driver.implicitly_wait(10) 
 
# Obtain Element 
selector_path = "#app > div.sc-dfVpRl.dEiGAe > div > div > div > div.sc-
kPVwWT.kRENfF.card.undefined > div > div > div:nth-child(1) > div > div > div > div 
> p > span" 
element = driver.find_element(By.CSS_SELECTOR, selector_path) 
number_validators = element.text 
print(number_validators) 
 
 
##### Nakamoto Coefficient and Entropy 
 
# Scroll down all the page 
actions = ActionChains(driver) 
scroll_increment = 3000  # Adjust as needed 
scroll_count = 0 
 
while scroll_count < 350:  # Perform scrolling a few times for demonstration 
    actions.send_keys(Keys.PAGE_DOWN).perform() 
    scroll_count += 1 
 
# Obtain Element 
stake = np.array([]) 
number_validators = number_validators.replace(",", "") 
for i in range(int(number_validators)+1): 
    if i != 30: 
        xpath = 
"/html/body/div[1]/div[3]/div/div/div/div[4]/div/table/tbody/tr[{}]/td[2]/span[1]".
format(i+1)  
        element = driver.find_element(By.XPATH, xpath) 
        stake = np.append(stake, element.text) 
 
         
stake = np.array([int(s.replace(',', '')) for s in stake]) 
total_amount = np.sum(stake) 
 
# Entropy 
entropy = 0 
for i in range(len(stake)): 
    individual_stake = stake[i]/total_amount 
    entropy = entropy + individual_stake*math.log2(individual_stake) 
entropy = -entropy 
print(entropy) 
 
# Nakamoto Coefficient 
cumulative_stake = 0 
i = 0 
while i<len(stake): 
    individual_stake = stake[i]/total_amount 
    cumulative_stake = cumulative_stake + individual_stake 
    i = i+1 
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    if cumulative_stake>1/3: 
        break 
         
nakamoto = i 
print(nakamoto) 
 
# Close the Driver 
driver.quit() 
 
 
# Read existing data from Excel file (specific sheet) 
excel_file = "Data.xlsx" 
sheet_number = 1 
df = pd.read_excel(excel_file, sheet_name=sheet_number) 
 
# Create a new row as a dictionary 
new_row = { 
    'Date': formatted_date, 
    'Number of Validators': int(number_validators), 
    'TPS': float(tps), 
    'Nakamoto Coefficient': int(nakamoto), 
    'Entropy': float(entropy) 
} 
 
# Add the new row to the DataFrame 
df = df.append(new_row, ignore_index=True) 
 
# Write the updated data to the same sheet in Excel file 
with pd.ExcelWriter(excel_file, engine='openpyxl', mode='a', 
if_sheet_exists='replace') as writer: 
    df.to_excel(writer, sheet_name='Solana', index=False, header=True) 
 
 
 
 
################################### AVALANCHE 
 
##### Number of Validators 
 
# Initialize the Selenium WebDriver 
driver = webdriver.Chrome() 
 
# URL of the website to scrape 
url = "https://stats.avax.network/dashboard/network-status/" 
driver.get(url) 
driver.implicitly_wait(30) 
 
# Avalanche page is an iFrame 
iframe_xpath = "/html/body/div/main/div/iframe" 
iframe_element = driver.find_element(By.XPATH, iframe_xpath) 
 
# Switch to the iframe context 
driver.switch_to.frame(iframe_element) 
 
# Search inside the iFrame 
number_validators = 
driver.find_element(By.XPATH,"/html/body/div[1]/div/div/main/div/div/div/div[2]/div
/div/div/div/div[2]/span/h1").text 
number_validators = number_validators.replace(',', '') 



93 
 

print(number_validators) 
 
 
##### TPS 
 
# URL of the website to scrape 
url = "https://stats.avax.network/dashboard/overview/" 
driver.get(url) 
driver.implicitly_wait(10) 
 
# Avalanche page is an iFrame 
iframe_xpath = "/html/body/div/main/div/iframe" 
iframe_element = driver.find_element(By.XPATH, iframe_xpath) 
 
# Switch to the iframe context 
driver.switch_to.frame(iframe_element) 
 
# Search inside the iFrame 
tps = 
driver.find_element(By.XPATH,"/html/body/div[1]/div/div/main/div/div/div/div[2]/div
/div/div/div/div[2]/span/h1").text 
print(tps) 
 
# Close the Driver 
driver.quit() 
 
 
# Read existing data from Excel file (specific sheet) 
excel_file = "Data.xlsx" 
sheet_number = 2 
df = pd.read_excel(excel_file, sheet_name=sheet_number) 
 
# Create a new row as a dictionary 
new_row = { 
    'Date': formatted_date, 
    'Number of Validators': int(number_validators), 
    'TPS': float(tps), 
} 
 
# Add the new row to the DataFrame 
df = df.append(new_row, ignore_index=True) 
 
# Write the updated data to the same sheet in Excel file 
with pd.ExcelWriter(excel_file, engine='openpyxl', mode='a', 
if_sheet_exists='replace') as writer: 
    df.to_excel(writer, sheet_name='Avalanche', index=False, header=True) 
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dashboard.py 

 

# streamlit run dashboard.py 
 
import streamlit as st 
import pandas as pd 
import plotly.express as px 
import openpyxl # To read excel 
import xlwings as xw # To retrieve calculated values 
from sklearn.preprocessing import MinMaxScaler 
import plotly.graph_objects as go 
import math 
 
 
################ Loading Data 
 
# Load the Excel 
excel_file = "Data.xlsx" 
sheet_name = "Aggregated" 
wb = xw.Book(excel_file) # Read the excel getting only the calculated values 
ws = wb.sheets[sheet_name] # Filter to get only sheet 3 
 
ws0 = wb.sheets["Ethereum"] 
ws1 = wb.sheets["Solana"] 
ws2 = wb.sheets["Avalanche"] 
 
# Get the used range of the sheet 
used_range = ws.used_range 
used_range0 = ws0.used_range 
used_range1 = ws1.used_range 
used_range2 = ws2.used_range 
 
# Convert the used range to a DataFrame 
df = pd.DataFrame(used_range.value[1:], columns=used_range.value[0]) 
df = df.dropna(how="all") 
df = df.iloc[:, :-1] 
 
df0 = pd.DataFrame(used_range0.value[1:], columns=used_range0.value[0]) 
df0 = df0.dropna(how="all") 
 
df1 = pd.DataFrame(used_range1.value[1:], columns=used_range1.value[0]) 
df1 = df1.dropna(how="all") 
 
df2 = pd.DataFrame(used_range2.value[1:], columns=used_range2.value[0]) 
df2 = df2.dropna(how="all") 
 
# Close the workbook 
wb.close() 
 
################ Creating Dashboard 
st.set_page_config(layout="wide") 
 
st.markdown('<h1 style="text-align: center;">Comparative Analysis of Blockchain 
Metrics</h1><br><br><br>', unsafe_allow_html=True) 
 
## Left section (1/2 width) 
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col1, col2, col3 = st.columns([5, 1, 5]) 
 
 
# Column 1  
with col1: 
 
    # Scale the dataset 
    scaler = MinMaxScaler() 
    df_scaled = df.copy() 
    first = df_scaled.pop('Metric') 
    for i in range(len(df_scaled)): 
        if i == 1: 
            number_validators = [df0['Number of Validators'].iloc[-1], df1['Number 
of Validators'].iloc[-1], df2['Number of Validators'].iloc[-1]] 
            scaled_values = [df_scaled.iloc[i,0]/math.log2(number_validators[0]), 
df_scaled.iloc[i,1]/math.log2(number_validators[1]), 
df_scaled.iloc[i,2]/math.log2(number_validators[2])] 
            scaled_series = pd.Series(scaled_values, index=['Ethereum', 'Solana', 
'Avalanche']) 
        else: 
            reshaped_series = df_scaled.iloc[i].values.reshape(-1, 1) 
            scaled_values = scaler.fit_transform(reshaped_series) 
            scaled_series = pd.Series(scaled_values.flatten(), index=['Ethereum', 
'Solana', 'Avalanche']) 
        if i == len(df_scaled)-1: 
            scaled_values = 1 - scaled_values 
            scaled_series = pd.Series(scaled_values.flatten(), index=['Ethereum', 
'Solana', 'Avalanche']) 
        df_scaled.loc[i] = scaled_series 
 
    df_scaled.insert(0, 'Metric', first) 
 
    # Create the radar plot 
    # Create checkboxes for selecting columns 
    checks = st.columns(3) 
    with checks[0]: 
        show_ethereum = st.checkbox('Ethereum', value=True) 
    with checks[1]: 
        show_solana = st.checkbox('Solana') 
    with checks[2]: 
        show_avalanche = st.checkbox('Avalanche') 
 
    # Create a custom radar plot using Plotly 
    fig = go.Figure() 
    fig.update_layout( 
        polar=dict( 
            radialaxis=dict( 
                visible=True, 
                range=[0, 1]  # Adjust the range to match your data 
            ) 
        ), 
        showlegend=True, 
        title='Metrics Static Comparison at {}'.format(df0['Date'].iloc[-1]) 
    ) 
 
    if show_ethereum: 
        fig.add_trace(go.Scatterpolar( 
            r=df_scaled['Ethereum'], 
            theta=df_scaled['Metric'], 
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            fill='toself', 
            name='Ethereum' 
        )) 
 
    if show_solana: 
        fig.add_trace(go.Scatterpolar( 
            r=df_scaled['Solana'], 
            theta=df_scaled['Metric'], 
            fill='toself', 
            name='Solana' 
        )) 
 
    if show_avalanche: 
        fig.add_trace(go.Scatterpolar( 
            r=df_scaled['Avalanche'], 
            theta=df_scaled['Metric'], 
            fill='toself', 
            name='Avalanche' 
        )) 
 
 
    col1.plotly_chart(fig, use_container_width=True) 
     
    col1.table(df.style.hide_index()) 
     
     
# Column 3 
with col3: 
 
    # Create checkboxes for selecting datasets 
    checks = st.columns(3) 
    with checks[0]: 
        show_ethereum = st.checkbox('Ethereum ', value=True) 
    with checks[1]: 
        show_solana = st.checkbox('Solana ') 
    with checks[2]: 
        show_avalanche = st.checkbox('Avalanche ') 
 
    # Create a line chart using Plotly with independent traces for each selected 
dataset 
    data = [] 
 
    if show_ethereum: 
        trace_ethereum = go.Scatter(x=df0['Date'], y=df0['Number of Validators'], 
mode='lines', name='Ethereum') 
        data.append(trace_ethereum) 
 
    if show_solana: 
        trace_solana = go.Scatter(x=df1['Date'], y=df1['Number of Validators'], 
mode='lines', name='Solana') 
        data.append(trace_solana) 
 
    if show_avalanche: 
        trace_avalanche = go.Scatter(x=df2['Date'], y=df2['Number of Validators'], 
mode='lines', name='Avalanche') 
        data.append(trace_avalanche) 
 
    layout = go.Layout(title='Number of Validators Over Time', xaxis_title='Date', 
yaxis_title='Number of Validators') 
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    fig = go.Figure(data=data, layout=layout) 
 
    col3.plotly_chart(fig, use_container_width=True) 
 
    # Create checkboxes for selecting datasets 
    checks = st.columns(3) 
    with checks[0]: 
        show_ethereum = st.checkbox('Ethereum  ', value=True) 
    with checks[1]: 
        show_solana = st.checkbox('Solana  ') 
    with checks[2]: 
        show_avalanche = st.checkbox('Avalanche  ') 
 
    # Create a line chart using Plotly with independent traces for each selected 
dataset 
    data = [] 
 
    if show_ethereum: 
        trace_ethereum = go.Scatter(x=df0['Date'], y=df0['TPS'], mode='lines', 
name='Ethereum') 
        data.append(trace_ethereum) 
 
    if show_solana: 
        trace_solana = go.Scatter(x=df1['Date'], y=df1['TPS'], mode='lines', 
name='Solana') 
        data.append(trace_solana) 
 
    if show_avalanche: 
        trace_avalanche = go.Scatter(x=df2['Date'], y=df2['TPS'], mode='lines', 
name='Avalanche') 
        data.append(trace_avalanche) 
 
    layout = go.Layout(title='TPS Over Time', xaxis_title='Date', 
yaxis_title='TPS') 
    fig = go.Figure(data=data, layout=layout) 
 
    col3.plotly_chart(fig, use_container_width=True) 
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Annex II: Sustainable Development 

Goals 

 

In the fast-evolving landscape of blockchain technology, the project assumes a 

pivotal role by conducting an in-depth evaluation of three prominent blockchain 

platforms—Ethereum, Solana, and Avalanche. This comprehensive analysis is not 

only a strategic endeavor but also aligns profoundly with the United Nations' 

Sustainable Development Goals (SDGs). Specifically, the project resonates with SDG 

8: Decent Work and Economic Growth, and SDG 9: Industry, Innovation, and 

Infrastructure.  

 

Project Alignment with SDG 8: Decent Work and Economic Growth 

The project's central focus on evaluating three prominent blockchain 

technologies, namely Ethereum, Solana, and Avalanche, demonstrates a profound 

alignment with Sustainable Development Goal 8: Decent Work and Economic Growth. 

Through an extensive and meticulous analysis, the project endeavors to provide 

essential insights to a key partner, a crypto currency market maker. By equipping the 

market maker with these valuable insights, the project empowers them to make 

strategic resource allocation decisions and thereby engender well-informed choices 

within the market. 

In effect, the project directly contributes to the optimization of market-making 

strategies, potentially yielding an enhanced level of efficiency in market operations. 

This heightened operational efficiency, spurred by the analytical insights delivered by 

the project, is a catalyst for economic growth within the spheres of blockchain 
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technology and financial technology at large. The underlying objective of stimulating 

economic activities and consequently generating novel job prospects is a testament to 

the project's synergy with the principles outlined in SDG 8.  

 

Project Alignment with SDG 9: Industry, Innovation, and Infrastructure 

The project's profound engagement with the intricate world of blockchain 

technologies inherently aligns with the core tenets of Sustainable Development Goal 

9: Industry, Innovation, and Infrastructure. By meticulously scrutinizing the nuances 

of Ethereum, Solana, and Avalanche, the project propels innovation within the realm 

of blockchain technology through a comprehensive and balanced analysis. 

The evaluation of these blockchains, both from theoretical and practical 

standpoints, provides a foundation for meaningful innovation by identifying their 

respective strengths and limitations. As the project endeavors to construct a real-time 

database and a visual dashboard that succinctly captures these findings, it cultivates a 

resource that stands to benefit stakeholders seeking a deeper understanding of these 

intricate systems. The project's commitment to enhancing comprehension of 

blockchain technologies is inherently aligned with SDG 9's pursuit of fostering 

resilient and robust industry practices. 

 


