

MASTER OF ENGINEERING IN
TELECOMMUNICATIONS

A Comprehensive Evaluation of Ethereum, Solana,
and Avalanche in Addressing the Blockchain

Trilemma

Author: Álvaro Bayona Bultó

Supervisor: Javier Matanza Domingo

Madrid

2023

ii

iii

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

A Comprehensive Evaluation of Ethereum, Solana, and Avalanche in

Addressing the Blockchain Trilemma

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2022/23 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que

ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Alvaro Bayona Bulto Fecha: 28/08/2023

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Javier Matanza Domingo Fecha: 28/08/2023

iv

v

AUTORIZACIÓN PARA LA DIGITALIZACIÓN, DEPÓSITO Y DIVULGACIÓN EN RED DE
PROYECTOS FIN DE GRADO, FIN DE MÁSTER, TESINAS O MEMORIAS DE
BACHILLERATO

1º. Declaración de la autoría y acreditación de la misma.
El autor D. Alvaro Bayona Bulto DECLARA ser el titular de los derechos de propiedad intelectual
de la obra: A Comprehensive Evaluation of Ethereum, Solana, and Avalanche in Addressing the
Blockchain Trilemma, que ésta es una obra original, y que ostenta la condición de autor en el sentido
que otorga la Ley de Propiedad Intelectual.

2º. Objeto y fines de la cesión.
Con el fin de dar la máxima difusión a la obra citada a través del Repositorio institucional de la
Universidad, el autor CEDE a la Universidad Pontificia Comillas, de forma gratuita y no exclusiva,
por el máximo plazo legal y con ámbito universal, los derechos de digitalización, de archivo, de
reproducción, de distribución y de comunicación pública, incluido el derecho de puesta a disposición
electrónica, tal y como se describen en la Ley de Propiedad Intelectual. El derecho de transformación
se cede a los únicos efectos de lo dispuesto en la letra a) del apartado siguiente.

3º. Condiciones de la cesión y acceso
Sin perjuicio de la titularidad de la obra, que sigue correspondiendo a su autor, la cesión de
derechos contemplada en esta licencia habilita para:

a) Transformarla con el fin de adaptarla a cualquier tecnología que permita incorporarla a
internet y hacerla accesible; incorporar metadatos para realizar el registro de la obra e
incorporar “marcas de agua” o cualquier otro sistema de seguridad o de protección.

b) Reproducirla en un soporte digital para su incorporación a una base de datos electrónica,
incluyendo el derecho de reproducir y almacenar la obra en servidores, a los efectos de
garantizar su seguridad, conservación y preservar el formato.

c) Comunicarla, por defecto, a través de un archivo institucional abierto, accesible de modo
libre y gratuito a través de internet.

d) Cualquier otra forma de acceso (restringido, embargado, cerrado) deberá solicitarse
expresamente y obedecer a causas justificadas.

e) Asignar por defecto a estos trabajos una licencia Creative Commons.
f) Asignar por defecto a estos trabajos un HANDLE (URL persistente).

4º. Derechos del autor.
El autor, en tanto que titular de una obra tiene derecho a:

a) Que la Universidad identifique claramente su nombre como autor de la misma
b) Comunicar y dar publicidad a la obra en la versión que ceda y en otras posteriores a través

de cualquier medio.
c) Solicitar la retirada de la obra del repositorio por causa justificada.
d) Recibir notificación fehaciente de cualquier reclamación que puedan formular terceras

personas en relación con la obra y, en particular, de reclamaciones relativas a los derechos
de propiedad intelectual sobre ella.

5º. Deberes del autor.
El autor se compromete a:

a) Garantizar que el compromiso que adquiere mediante el presente escrito no infringe ningún
derecho de terceros, ya sean de propiedad industrial, intelectual o cualquier otro.

b) Garantizar que el contenido de las obras no atenta contra los derechos al honor, a la
intimidad y a la imagen de terceros.

c) Asumir toda reclamación o responsabilidad, incluyendo las indemnizaciones por daños, que
pudieran ejercitarse contra la Universidad por terceros que vieran infringidos sus derechos e

vi

intereses a causa de la cesión.
d) Asumir la responsabilidad en el caso de que las instituciones fueran condenadas por infracción

de derechos derivada de las obras objeto de la cesión.

6º. Fines y funcionamiento del Repositorio Institucional.
La obra se pondrá a disposición de los usuarios para que hagan de ella un uso justo y respetuoso
con los derechos del autor, según lo permitido por la legislación aplicable, y con fines de estudio,
investigación, o cualquier otro fin lícito. Con dicha finalidad, la Universidad asume los siguientes
deberes y se reserva las siguientes facultades:

 La Universidad informará a los usuarios del archivo sobre los usos permitidos, y no

garantiza ni asume responsabilidad alguna por otras formas en que los usuarios hagan un
uso posterior de las obras no conforme con la legislación vigente. El uso posterior, más allá
de la copia privada, requerirá que se cite la fuente y se reconozca la autoría, que no se
obtenga beneficio comercial, y que no se realicen obras derivadas.

 La Universidad no revisará el contenido de las obras, que en todo caso permanecerá bajo
la responsabilidad exclusive del autor y no estará obligada a ejercitar acciones legales en
nombre del autor en el supuesto de infracciones a derechos de propiedad intelectual derivados
del depósito y archivo de las obras. El autor renuncia a cualquier reclamación frente a la
Universidad por las formas no ajustadas a la legislación vigente en que los usuarios hagan uso
de las obras.

 La Universidad adoptará las medidas necesarias para la preservación de la obra en un futuro.
 La Universidad se reserva la facultad de retirar la obra, previa notificación al autor, en

supuestos suficientemente justificados, o en caso de reclamaciones de terceros.

Madrid, a 28 de agosto de 2023

ACEPTA

Fdo Alvaro Bayona Bulto

vii

MASTER OF ENGINEERING IN
TELECOMMUNICATIONS

A Comprehensive Evaluation of Ethereum, Solana,
and Avalanche in Addressing the Blockchain

Trilemma

Author: Álvaro Bayona Bultó

Supervisor: Javier Matanza Domingo

Madrid

2023

viii

ix

EVALUACIÓN DE ETHEREUM, SOLANA Y AVALANCHE EN
RELACIÓN CON EL “BLOCKCHAIN TRILEMMA”

Autor: Bayona Bulto, Alvaro.
Director: Matanza Domingo, Javier.
Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

RESUMEN DEL PROYECTO

Este estudio implica un análisis exhaustivo de tres tecnologías líderes en blockchain:
Ethereum, Solana y Avalanche. El enfoque se centra en cómo cada una aborda el
"Blockchain Trilemma" al equilibrar la descentralización, la seguridad y la velocidad.
Además, el proyecto incluye la creación de una base de datos y un panel de control para
monitorear métricas clave en tiempo real.

Palabras clave: Blockchain, Ethereum, Solana, Avalanche, Blockchain Trilemma.

1. Introducción

En este proyecto, nos embarcamos en una exploración exhaustiva del papel estratégico
de GSR como un creador de mercado y colaborador en el ecosistema dentro del dinámico
mundo de las criptomonedas. Con una gran mayoría de sus actividades centradas en la
creación de mercado, que constituye un 80% de su alcance operativo, dirigimos nuestra
atención hacia desentrañar las complejidades de esta función crítica. Los creadores de
mercado desempeñan un papel fundamental al infundir liquidez en el mercado a través
de un proceso continuo de cotización de precios de compra y venta, asegurando así
transacciones sin problemas y evitando cuellos de botella de liquidez.

El objetivo principal de nuestro estudio es proporcionar a GSR una recomendación
imparcial y bien fundamentada para la selección del ecosistema de blockchain más
prometedor. En el corazón de esta recomendación yace una evaluación integral del
"Blockchain Trilemma", un desafío fundamental que involucra la interacción entre tres
atributos esenciales: descentralización, seguridad y escalabilidad. En particular,
investigamos cómo tres plataformas de blockchain prominentes: Ethereum, Solana y
Avalanche, navegan por este intrincado trilema. Nuestra evaluación abarca análisis
tanto cualitativos como cuantitativos, siendo estos últimos facilitados por la creación de
un panel de control dinámico en tiempo real.

2. Evaluación de la Posición del Trilema de Cada Tecnología

Ethereum

En términos de seguridad, Ethereum enfrenta posibles vulnerabilidades debido a su
tiempo de bloque reducido, lo que puede aumentar el riesgo de ataques a largo plazo y
exponer vulnerabilidades de contratos inteligentes. El cambio a Prueba de Participación
(PoS, por sus siglas en inglés) introduce el desafío de "nada en riesgo", donde los
validadores podrían validar bloques conflictivos para maximizar recompensas,
comprometiendo potencialmente la seguridad de la red. La innovadora característica de

x

contratos inteligentes de Ethereum, si bien es revolucionaria, introduce preocupaciones
únicas de seguridad, ya que cualquier fallo en el código puede ser explotado. Además,
la red enfrenta problemas como el "front-running" y el reordenamiento de transacciones,
lo que requiere una gestión vigilante.

La descentralización sigue siendo un principio fundamental para Ethereum, facilitada
por la adopción de PoS para reducir barreras de entrada y fomentar una participación
más amplia. Sin embargo, al igual que con cualquier sistema PoS, surgen riesgos de
centralización debido al efecto de "los ricos se vuelven más ricos", donde los validadores
más ricos tienen una mayor probabilidad de ser seleccionados, lo que podría concentrar
el poder en unos pocos participantes. El modelo de gobernanza de Ethereum, si bien
promueve la toma de decisiones descentralizada, también plantea desafíos para llegar a
un consenso sobre las actualizaciones del protocolo.

La velocidad se aborda con el equilibrio entre la reducción de los tiempos de bloque y el
mantenimiento de la descentralización. Si bien un mayor rendimiento de transacción es
ventajoso, puede llevar a problemas de latencia de red y sincronización que necesitan
una gestión cuidadosa para garantizar una participación equitativa y evitar la
centralización debido a ventajas en la minería.

Solana

En términos de seguridad, Solana introduce soluciones innovadoras como la Prueba de
Historia (PoH, por sus siglas en inglés) y tiempos de confirmación simplificados,
mejorando la postura de seguridad de la plataforma. Esto permite una confirmación de
transacciones mejorada y agrega una capa adicional de resistencia a manipulaciones.

La descentralización se beneficia del uso de PoS en Solana, lo que reduce las barreras de
entrada y fomenta una participación más amplia. Sin embargo, al igual que en Ethereum,
el desafío de la centralización persiste debido a la concentración del poder de apuesta
entre unos pocos participantes.

La velocidad es una característica destacada de Solana, impulsada por su mecanismo de
consenso combinando PoS con PoH. La capacidad de la red para procesar múltiples
transacciones simultáneamente mejora el rendimiento de transacción y contribuye a su
escalabilidad.

Avalanche

La seguridad en Avalanche se refuerza mediante la implementación de una estructura
de Grafo Acíclico Dirigido, que mitiga los riesgos asociados con los ataques de doble
gasto. El algoritmo de consenso único de la plataforma fortalece aún más su seguridad
al dificultar los ataques a largo plazo.

La descentralización se aborda a través de subredes y la Red Principal. Si bien las
subredes ofrecen personalización, también deben protegerse contra el riesgo de
centralización no deseada en estos segmentos especializados.

La velocidad se revoluciona mediante la estructura de Grafo Acíclico Dirigido y el
mecanismo de consenso de Avalanche. Esto permite la confirmación asíncrona y paralela

xi

de transacciones, mejorando significativamente el potencial de escalabilidad de la
plataforma.

3. Herramienta Práctica

Dentro del paisaje en constante evolución de la tecnología blockchain, el proyecto se
convierte en un activo invaluable para GSR al ofrecer una herramienta práctica para
monitorear métricas a lo largo del tiempo. Esta herramienta ayuda a rastrear el progreso
de diversas blockchains con respecto al “Blockchain Trilemma”. El proyecto involucra
dos archivos Python, creando una solución de seguimiento de datos para GSR.

El primer archivo Python se enfoca en la extracción y compilación de datos. Emplea
técnicas de web scraping, utilizando el paquete Selenium para extraer datos de diversas
plataformas en línea. Estos datos, después de ser limpiados y refinados, se almacenan
en un archivo de Excel. El libro de Excel contiene hojas separadas para Ethereum, Solana
y Avalanche, que albergan datos de series temporales para variables como 'Número de
Validadores' y 'TPS' (transacciones por segundo). Otra hoja llamada 'Aggregated'
compila todas las métricas para comparaciones holísticas.

El segundo archivo Python crea un panel de control dinámico para la visualización
interactiva de datos. Emplea la versatilidad y las bibliotecas de Python para generar
cuatro gráficos principales: un Gráfico de Radar que muestra el rendimiento de las
blockchains en diferentes métricas, una Tabla Agregada que proporciona valores
métricos no normalizados, un gráfico de series temporales para 'Número de
Validadores', y otro para 'TPS'. El panel de control interactivo permite a los usuarios
activar casillas de verificación para ver tecnologías específicas, mejorando la experiencia
analítica personalizada.

4. Conclusiones

En resumen, Solana está bien posicionada para resolver potencialmente el “Blockchain
Trilemma” a través de sus notables atributos de Escalabilidad. Por otro lado, Avalanche
ha evitado hábilmente las limitaciones del Trilema al garantizar la fusión fluida de
Escalabilidad, Seguridad y Descentralización dentro de su Red Principal. Además, la
ingeniosidad de las subredes posiciona a Avalanche como una solución optimizada y
versátil de blockchain, aumentando su potencial de liderazgo en la industria. Así,
considerando el panorama integral, Avalanche emerge como un competidor formidable,
con mayores perspectivas de ascender como la preeminente Tecnología Blockchain.

xii

A Comprehensive Evaluation of Ethereum, Solana, and Avalanche
in Addressing the Blockchain Trilemma

Author: Bayona Bulto, Alvaro.
Supervisor: Matanza Domingo, Javier.
Collaborating Entity: ICAI – Universidad Pontificia Comillas

ABSTRACT

This study involves a comprehensive analysis of three leading blockchain technologies:
Ethereum, Solana, and Avalanche. The focus is on how each addresses the "Blockchain
Trilemma" by balancing decentralization, security, and speed. Additionally, the project
includes creating a database and dashboard to monitor key metrics in real-time.

Keywords: Blockchain, Ethereum, Solana, Avalanche, Blockchain Trilemma

1. Introduction

In this project, we embark on a comprehensive exploration of GSR's strategic role as a
prominent market maker and ecosystem collaborator within the dynamic realm of
cryptocurrencies. With a substantial majority of their activities centered around market
making, constituting an impressive 80% of their operational scope, we direct our focus
towards unraveling the intricacies of this critical function. Market makers play a pivotal
role by infusing liquidity into the market through a continuous process of quoting both
buying and selling prices, thereby ensuring seamless transactions and averting liquidity
bottlenecks.

The primary objective of our study is to furnish GSR with an impartial and well-
informed recommendation for the selection of the most promising blockchain
ecosystem. At the heart of this recommendation lies a comprehensive evaluation of the
"Blockchain Trilemma," a fundamental challenge involving the interplay between three
essential attributes: decentralization, security, and scalability. In particular, we
investigate how three prominent blockchain platforms – Ethereum, Solana, and
Avalanche – navigate this intricate trilemma. Our assessment encompasses both
qualitative and quantitative analyses, the latter facilitated by the creation of a dynamic
real-time dashboard.

2. Assessing the Trilemma Position of Each Technology

Ethereum

In terms of security, Ethereum grapples with potential vulnerabilities due to its reduced
block time, which can increase the risk of long-range attacks and expose smart contract
vulnerabilities. The shift to Proof of Stake (PoS) introduces the "nothing-at-stake"
challenge, where validators might validate conflicting blocks to maximize rewards,
potentially compromising the network's security. Ethereum's groundbreaking smart
contract feature, while revolutionary, introduces unique security concerns as any flaws

xiii

in the code can be exploited. Additionally, the network faces issues like front-running
and transaction reordering, necessitating vigilant management.

Decentralization remains a core principle for Ethereum, facilitated by the adoption of
PoS to lower entry barriers and encourage wider participation. However, as with any
PoS system, centralization risks emerge due to the "rich get richer" effect, where
wealthier validators have a higher chance of being selected, potentially concentrating
power within a few participants. Ethereum's governance model, while promoting
decentralized decision-making, also poses challenges in reaching consensus on protocol
upgrades.

Scalability is approached with the balance between reduced block times and
maintaining decentralization. While faster transaction throughput is advantageous, it
can lead to network latency and synchronization issues that need careful management
to ensure equitable participation and prevent centralization due to mining advantages.

Solana

In terms of security, Solana introduces innovative solutions like Proof of History (PoH)
and streamlined confirmation times, enhancing the platform's security posture. This
enables improved transaction confirmation and adds an extra layer of tamper resistance.

Decentralization benefits from Solana's use of PoS, reducing barriers to entry and
encouraging broader participation. However, as with Ethereum, the challenge of
centralization remains due to the concentration of staking power among a few
participants.

Scalability is a standout feature of Solana, driven by its PoH and PoS consensus
mechanism. The network's ability to process multiple transactions simultaneously
enhances transaction throughput and contributes to its scalability.

Avalanche

Security in Avalanche is fortified through the implementation of a Directed Acyclic
Graph (DAG) structure, which mitigates risks associated with double-spending attacks.
The platform's unique consensus algorithm further bolsters its security by rendering
long-range attacks more difficult.

Decentralization is approached through subnets and the Primary Network. While
subnets offer customization, they must also guard against the risk of unintended
centralization within these specialized segments.

Scalability is revolutionized by Avalanche's DAG structure and consensus mechanism.
This enables the asynchronous and parallel confirmation of transactions, significantly
enhancing the platform's scalability potential.

xiv

3. Practical Takeaways

Within the ever-evolving landscape of blockchain, the project becomes an invaluable
asset for GSR by offering a practical tool to monitor metrics over time. This tool aids in
tracking the progress of various blockchains in addressing the Blockchain Trilemma's
challenges. The project involves two Python files, creating a data-tracking solution for
GSR.

The first Python file focuses on data extraction and compilation. It employs web scraping
techniques, using the Selenium package to extract data from various online platforms.
This data, after being cleaned and refined, is stored in an Excel file. The Excel workbook
contains separate sheets for Ethereum, Solana, and Avalanche, housing time series data
for variables like 'Number of Validators' and 'TPS'. Another sheet named 'Aggregated'
compiles all metrics for holistic comparisons.

The second Python file creates a dynamic dashboard for interactive data visualization.
It employs Python's versatility and libraries to generate four main graphs: a Radar Plot
showcasing blockchain performance across metrics, an Aggregated Table providing
unnormalized metric values, a Time Series graph for 'Number of Validators', and
another for 'TPS'. The interactive dashboard empowers users to toggle checkboxes to
view specific technologies, enhancing the tailored analytical experience.

4. Conclusions

In summation, the analysis yields intriguing insights: Solana is well poised to potentially
resolve the Blockchain Trilemma through its notable Scalability attributes. On the other
hand, Avalanche has deftly evaded the constraints of the Trilemma by ensuring the
seamless fusion of Scalability, Security, and Decentralization within its Primary
Network. Additionally, the ingenuity of subnets positions Avalanche as an optimized
and versatile blockchain solution, augmenting its potential for industry leadership.
Thus, considering the comprehensive panorama, Avalanche emerges as a formidable
contender, boasting higher prospects to ascend as the preeminent Blockchain
Technology.

xv

Memory Index

Chapter 1: Introduction ... 1

1.1. GSR and motivation of the project ... 1

1.2. The Blockchain Trilemma... 2

1.3. Objectives .. 5

1.4. Work Methodology .. 6

Chapter 2: Bitcoin ... 8

2.1. Bitcoin Process ... 9

2.1.1. Generate an address ... 9

2.1.2. Create a transaction ... 11

2.1.3. Transmit and validate a transaction .. 14

2.1.4. Mine a block .. 16

2.1.5. Transmit and validate a block – Consensus Algorithm 20

Chapter 3: Ethereum ... 24

3.1. Technical Differences With Bitcoin .. 25

3.1.1. Smart Contracts ... 25

3.1.2. Proof of Stake .. 28

3.1.3. Importance of Fees (Gas) ... 30

3.1.4. Block Time ... 32

3.2. Implications to the Blockchain Trilemma ... 33

3.2.1. Security .. 33

3.2.2. Decentralization ... 35

3.2.3. Scalability ... 36

Chapter 4: Solana .. 38

4.1. Technical Differences With Ethereum ... 38

4.1.1. Proof of History .. 38

4.1.2. Confirmation Times ... 43

4.1.3. Turbine Block Propagation ... 44

4.2. Implications to the Blockchain Trilemma ... 45

4.2.1. Security .. 45

4.2.2. Decentralization ... 47

xvi

4.2.3. Scalability ... 48

Chapter 5: Avalanche ... 50

5.1. Technical Differences with Ethereum and Solana ... 50

5.1.1. DAG Structure .. 50

5.1.2. Avalanche Consensus Algorithm ... 53

5.1.3. Subnets ... 58

5.1.4. Primary Network ... 59

5.2. Implications to the Blockchain Trilemma ... 61

5.2.1. Security .. 61

5.2.2. Decentralization ... 62

5.2.3. Scalability ... 63

Chapter 6: Quantitative Analysis .. 64

4.1. Metrics .. 64

4.1.1. Security .. 65

4.1.2. Decentralization ... 66

4.1.3. Scalability ... 68

4.2. Metrics Values per Blockchain .. 69

4.3. Conclusions Regarding the Blockchain Trilemma .. 74

Chapter 7: Practical Takeaway ... 76

7.1. get_data.py ... 77

7.2. dashboard.py ... 82

References .. 87

Annex I: Code .. 89

get_data.py ... 89

dashboard.py ... 94

Annex II: Sustainable Development Goals ... 98

xvii

Figures Index

Figure 1. The Blockchain Trilemma .. 3

Figure 2. Private and Public Key Example... 9

Figure 3. Input Structure .. 13

Figure 4. Output Structure ... 13

Figure 5. Merkle Tree .. 18

Figure 6. Proof of Work .. 19

Figure 7. Fork ... 22

Figure 8. Smart Contracts ... 26

Figure 9. Proof of History Timestamp Generation ... 39

Figure 10. DAG Structure ... 52

Figure 11. Slush Algorithm .. 54

Figure 12. Metrics Values per Blockchain .. 69

Figure 13. Solana Data Stored .. 81

Figure 14. Aggregated Data Stored ... 81

Figure 15. Radar Plot ... 83

Figure 16. Aggregated Table .. 84

Figure 17. Number of Validators Time Series ... 85

Figure 18. TPS Time Series ... 86

xviii

1

Chapter 1: Introduction

1.1. GSR and motivation of the project

GSR is a crypto market maker and ecosystem partner founded in 2013.

Although they have several other services such as an OTC trading business, an active

venture investment arm, and several asset management funds, market making is

responsible for 80% of their business and, therefore, will be the project's main focus.

A market maker provides liquidity 1 to a market by continuously quoting prices

at which it will buy and sell (Bloomenthal, 2021). Without them, one owner of security

may want to sell but find out there are no buyers, or one buyer may want to buy and

find out there are no sellers. Therefore, they act as continuous buyers and sellers to

always have transactions in the market.

Specifically, GSR provides market-making services to cryptocurrency projects

and cryptocurrency exchanges and, in exchange for choosing GSR as the market-

maker, GSR provides these clients with KPIs, performance measuring through its

unique software, and daily market reports. Moreover, for unlisted projects, GSR can

also provide tokenomics advice and introductions to funds and investors, among

many other services.

However, being a market maker has the risk of buying a security and seeing its

price decline, obtaining a loss for holding the security. This loss is not very drastic as

they are continuously quoting prices, which means that they adapt quickly, reducing

the loss. Market makers use spreads between their offers to compensate for this

1 Liquidity is the degree to which an asset can be quickly bought or sold without notably affecting the stability of
its Price.

2

possible loss. For instance, they may provide a bid price (buying offer) of 100$ and an

asking price (selling offer) of 100.05$, creating a spread and a profit of 0.05$. Due to

the high-volume trading, this can create huge benefits for the market maker.

All in all, market makers earn money through the spread and by the increase in

the value of the securities. On the one hand, the spread can be increased if there is little

competition among other market makers for that same token. That is, if GSR is the only

market maker for a specific token, they control the offers and can charge a higher

difference between them. On the other hand, the value of the securities depends on the

success of the specific project or exchange in which GSR is the market maker.

Considering all this information, it is clear that for GSR it is essential to choose

the most successful blockchain ecosystem in which to focus their sales and investment

resources. By doing this, they will earn significant financial benefits, through stronger

returns, minimum losses, and charging bigger spreads, as well as reputational benefits

which will help position GSR as top of mind for clients and job seekers.

For all these reasons GSR has proposed a project to obtain an unbiased opinion

through the assessment of the different blockchain ecosystems from a technological

point of view.

1.2. The Blockchain Trilemma

The Blockchain Trilemma, termed by Vitalik Buterin (founder of Ethereum),

states that there are three crucial properties that a blockchain must aim to achieve:

decentralization, security, and scalability. However, one blockchain cannot maximize

the three of them without having to do trade-offs in at least one of the properties. This

leads to the creation of many different blockchains that address the trilemma in their

unique way. An explanation of the properties will make this trilemma clearer.

3

Figure 1. The Blockchain Trilemma

First, decentralization, states that one blockchain must not rely on a central

point of control but, instead, distribute the control equally to all participants. This is

the main reason why blockchains are so popular as it is the main difference from

traditional systems such as banks. In today’s world, people trust that banks are going

to operate integrally but, if they decide not to, they have the power to, for instance,

freeze all the accounts. Decentralization is primarily proportional to the number of

participants in the network, but other characteristics, such as their geographical

distribution, are also important.

Regarding the second property, security is the ability of a blockchain to

maintain veridic and irrevocable transactions. The most common attack to corrupt the

network is the 51% attack, where one entity can control 51% of the network and,

therefore, when all the nodes vote, this entity has the majority and can introduce false

transactions. The way to prevent this is by forcing nodes to spend resources to

participate in the network and, therefore, if someone wants to achieve 51% of the

network, it will have to spend a ridiculous number of resources. Although this is not

the only attack a blockchain can suffer, the rest of the attacks are related to the fact that

it is open-source, meaning that anyone can read the code and try to hack it. Therefore,

these attacks are difficult to prevent and measure when assessing the security of a

blockchain.

Last, scalability is the number of transactions that a blockchain can handle. This

property is essential for the widespread adoption of the blockchain as, if it is low, users

4

will have to wait a considerable amount of time for their transaction to be accepted

and, to incentivize miners to select their transaction before the others, the user will

have to pay a high fee to the miner. An example of why this is a problem will be, for

instance, if you want to run an application like Spotify in a decentralized manner.

When you decide to listen to a song it will take some time before your petition is

processed and you can listen to it. In addition, you will have to pay a high quantity for

listening to it, discouraging users from using the application.

The trilemma appears when addressing how each property interplays with the

others. The clearest example is between decentralization and scalability. Having a

large number of participants in the network leads to higher decentralization, but it also

leads to less scalability as every participant has to agree on the validity of a transaction,

and, therefore, having more participants will take more time for the transaction to be

final. Thus, the relationship between decentralization and security can be written as

follows.

𝑠𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝
1

𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Moreover, regarding the relationship between scalability and security, it can be

demonstrated that it follows the same path as its predecessor. Improving scalability

means reducing the block interval but, to do so, the number of resources that one

participant must spend decreases and, therefore, security decreases.

𝑠𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝
1

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦

Finally, the relationship between security and decentralization is directly

proportionate as a higher number of nodes will increase decentralization and it will

also mean that one entity has to control much more resources to obtain 51% of the

network. Thus, the relationship can be written as follows.

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ∝ 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

5

These relations lead to blockchain networks finding it easier to maximize

decentralization and security at the expense of scalability, as is the case of Ethereum.

However, as has already been discussed, the importance of scalability is notorious and

several blockchains have been created to address this trilemma in different ways.

1.3. Objectives

GSR relies heavily on market making and the success of this business is

determined by whether its resources are allocated in the correct blockchain ecosystem

or not. Therefore, the main objective of this project is to provide GSR with an outside

and unbiased recommendation on which blockchain should they focus their efforts on.

The blockchain trilemma, and how each blockchain addresses it, will serve as

the method to estimate the future success of a blockchain and the basis of the final

recommendation. The reason behind this is that the three properties of the trilemma

are the key to the success and widespread adoption of a blockchain, meaning that

whoever has the most favorable trade-offs will in turn be the most successful

blockchain and where GSR should focus its efforts.

To achieve this objective, the following milestones are established.

 Understanding the general aspects of how every blockchain works from

a theoretical point of view by analyzing Bitcoin, the first blockchain.

 Study in a theoretical way the blockchains that, as of today, are most

likely to succeed based on GSR: Ethereum, Solana, and Avalanche.

Moreover, analyze how they have addressed The Blockchain Trilemma

in a qualitative way based on its technical characteristics.

 Analyze quantitatively The Blockchain Trilemma for the three

blockchains that GSR wants to assess. To do so, the metrics that will

6

indicate where each blockchain stands in the trilemma must be

determined.

 Development of a real-time dashboard with all the quantitative

measures for the blockchains studied to provide GSR with a visual and

updated snapshot of the blockchain ecosystem.

The reason behind giving so much emphasis to Ethereum, Solana, and

Avalanche is that, after talking to GSR and based on their expertise in the field, they

suggested that those were the blockchains that were gaining more traction among the

community, and, therefore, want to have more insights about. Moreover, the three of

them address the trilemma in very different ways, and is interesting to see how each

technical decision affects their success in the trilemma, serving as the pinpoint for

future blockchain developments.

All these objectives will serve the end purpose of providing a final

recommendation to GSR with the addition of a tool to help them make their

assessment at any future point in time in case the blockchain ecosystem changes.

Moreover, this dashboard can help to identify trends that can add valuable

information on where to allocate their resources as it can suggest where the interest of

the market is going.

1.4. Work Methodology

The project will be divided into 4 main parts.

 Technical understanding of Bitcoin to get basic knowledge of how a

blockchain works.

 Technical understanding of Ethereum, Solana, and Avalanche. This

will provide the knowledge to understand why each blockchain

stands where it stands in The Blockchain Trilemma, as well as what

7

are the constraints to maximize all the properties and if they are

revocable in the future.

 Identify the metrics needed to describe each property in the trilemma

and measure them in the case of Ethereum, Solana, and Avalanche.

 Creation of a dashboard with all the information of the metrics in

real-time restricted to Ethereum, Solana, and Avalanche.

The work methodology regarding the theoretical study in the first and second

parts of the project, as well as the identification of the metrics in the third part, will be

based on research papers, especially the white papers of each blockchain, as well as

information that can be found on the official websites.

Moreover, the methodology employed in the fourth phase of the project

revolves around the utilization of web scraping techniques to acquire real-time

information for each metric of interest, subsequently integrating this data into a

dynamic dashboard. This process is meticulously crafted in Python, leveraging two

pivotal libraries that cater to the specific requirements of this task: Streamlit and

Selenium. Streamlit, an open-source Python library, serves as the backbone for crafting

interactive and visually appealing dashboards with minimal effort. On the other hand,

Selenium, a powerful web scraping and automation framework, empowers the

extraction of real-time data by simulating user interactions with web pages. By

harmoniously merging the capabilities of Streamlit and Selenium, the project ensures

a seamless pipeline for extracting, processing, and displaying real-time metrics within

an engaging and user-friendly dashboard interface.

8

Chapter 2: Bitcoin

As previously mentioned, Bitcoin serves as the foundation for understanding

the functioning of a blockchain. By comprehending its process, we can gain insight

into how the alterations introduced by other blockchain technologies affect the

trilemma's key components: decentralization, security, and scalability. Consequently,

this chapter aims to elucidate the entire process, starting from a user's creation of a

transaction to the ultimate confirmation of a transaction's finality.

Before delving into the intricacies of the Bitcoin process, it is essential to shed

light on the concept of hashes, which are mathematical functions widely employed in

blockchains for various purposes. In simple terms, a hash is a cryptographic algorithm

that converts any given input into a fixed-length string of characters, accomplished

through encryption and within a remarkably short span of time (Frankenfield, What

Is a hash? Hash Functions and Cryptocurrency Mining, 2023). This encryption process

ensures that even with knowledge of the output hash, determining the original input

is practically impossible, as it would require an immense amount of time and an

arduous trial-and-error approach. Consequently, hashes function as one-way

functions, possessing the characteristic of being relatively easy to calculate but

extremely challenging to reverse-engineer.

The remarkable property of hashes lies in their ability to consistently produce

the same output hash for a given input. However, even the slightest alteration in the

input results in an entirely different hash being generated. This property of hashes

becomes immensely valuable in two fundamental ways. Firstly, hashes serve as a

means to verify the integrity and unchanged nature of the input data if the output hash

is known. By comparing the output hash of a given input with the previously obtained

hash, one can ensure that the data has remained unaltered.

9

Secondly, hashes play a pivotal role in reducing the size of data within

blockchains. As hashes are of fixed length, they enable the representation of large

amounts of data in a concise and manageable manner. This characteristic proves

highly advantageous, particularly in distributed systems like blockchains, where the

efficient storage and transmission of data are crucial. By employing hashes, the

blockchain can validate the integrity of information while significantly minimizing the

amount of data that needs to be stored or transmitted.

2.1. Bitcoin Process (Antonopoulos, 2014)

2.1.1. Generate an address

To actively engage in a Bitcoin process, the client must possess a valid pair of

public and private keys, serving as the cryptographic means for secure access to their

bitcoins. The private key is essentially a random number ranging from 1 to 2 , and

various methods exist for generating this randomness. Conversely, the public key is

derived from the private key using elliptic curve cryptography (which is not pertinent

to the thesis objective) (Tech Target, 2021). Presented below is an illustration of these

keys.

Figure 2. Private and Public Key Example

The utilization of keys revolves around a fundamental concept: while anyone

can access the client's public key, deciphering the client's private key remains an

10

insurmountable task. This principle facilitates two primary applications: digital

signatures and encryption.

 Digital signatures leverage the fact that the client's public key is widely known,

while their private key remains undisclosed. By encrypting data with the

client's private key, anyone possessing the client's public key can decrypt the

message. If the message is decrypted successfully using the client's public key,

it confirms that the client's private key was used for encryption. Given that only

the client possesses knowledge of their private key, this cryptographic

technique verifies that the client transmitted the information, thereby ensuring

its authenticity.

 Encryption, built upon the same underlying principles, applies when another

individual desires to transmit a message to the client. In this scenario, the sender

employs the client's public key to encrypt the message, ensuring that only the

client's private key can decrypt it. Consequently, the confidentiality of the

message content is guaranteed, as only the client can access its decrypted form.

In a decentralized structure where every participant receives all transactions,

the importance of utilizing keys for system security becomes evident. However,

Bitcoin's core principle revolves around transparency, wherein everyone can view the

content of all transactions. As a result, the emphasis lies primarily on the utilization of

digital signatures rather than encryption.

Consequently, the pair of keys serve distinct purposes as follows:

 Public key: The public key, accessible to everyone without revealing the private

key, functions as the designated address to which individuals can send BTC. It

functions akin to an email address, providing a means for others to send BTC

securely to the intended recipient. Although the address is not precisely the

public key, it is derived directly from it.

11

 Private key: The private key is utilized to sign transactions, ensuring that only

the legitimate owner of the BTC can access and manage their digital assets. By

employing the private key for transaction signing, it guarantees the authenticity

and integrity of the sender, preventing unauthorized access to the BTC

holdings.

2.1.2. Create a transaction

Upon acquiring the pair of keys, the client possesses the essential information

required for sending and receiving transactions. However, before engaging in such

transactions, the client must initiate the creation process. To illustrate the necessary

details involved in a transaction, let us consider an example.

Alice wants to send 0.6 BTC to Bob. To proceed with the transfer, Alice must

first ensure that she possesses the required amount of BTC. To confirm her available

balance, Alice needs to examine all the transactions recorded in the blockchain where

she is listed as the recipient of BTC.

This particular step introduces a challenge in the process. Since the system

operates in a decentralized manner, numerous nodes, if not all of them, must validate

the accuracy of a transaction. One of the criteria for validation involves ensuring that

the sender possesses sufficient funds. Interestingly, each validating node needs to

perform the same balance-checking process that Alice conducted earlier. This

verification task can be exceptionally demanding and time-consuming.

To alleviate this workload, Alice employs a selective approach. Instead of

presenting the entire transaction history where she received BTC, she specifically

chooses the relevant transactions that collectively add up to 0.6 BTC, demonstrating

her possession of the necessary funds. This strategy proves beneficial because the

validating node only concerns itself with verifying if Alice has precisely 0.6 BTC

available for the specific transaction she wishes to execute. The total amount of BTC in

her possession, beyond the required funds, becomes irrelevant in this context.

12

Returning to the example, Alice proceeds to examine the complete list of

transactions where she is listed as the recipient of BTC. Her objective is to select the

necessary transactions that, when combined, add up to 0.6 BTC—the amount she

intends to transfer. After careful examination, Alice discovers two relevant

transactions: one where she received 0.2 BTC and another where she received 0.5 BTC,

totaling 0.7 BTC. However, there are two considerations to take into account.

Firstly, Alice recognizes that 0.7 BTC is 0.1 BTC more than what she actually

intends to send. Secondly, she is aware that a transaction fee must be paid to process

the transaction. While a detailed explanation of transaction fees will be provided in

subsequent steps, it is sufficient for now to understand that a fee is necessary.

For the sake of illustration, let's assume Alice wants to pay a fee of 0.01 BTC. To

address these two issues, the transaction will be structured as follows:

 Alice will utilize the 0.7 BTC from the two aforementioned transactions.

 Bob will receive 0.6 BTC from Alice as the intended transfer.

 The miner facilitating the transaction will receive the fee of 0.01 BTC from Alice.

 Alice will receive back the remaining 0.09 BTC, as change, completing the

transaction.

By structuring the transaction in this manner, Alice ensures that the correct

amount is transferred to Bob, the transaction fee is paid, and any excess amount is

returned to her as change.

Therefore, to take all that has been mentioned into account, the structure of a

transaction is as follows.

 Inputs: A collection of pointers representing the transactions selected by Alice

from which she intends to source the funds. Each pointer comprises the

transaction hash to which it is referring and an index indicating the specific

13

output within that transaction. It's important to note that a single transaction

can have multiple outputs, as previously demonstrated.

Figure 3. Input Structure

 Outputs or UTXO (Unspent Transaction Outputs): A list that specifies all the

addresses to which the BTC should be sent and the corresponding amounts to

be transferred. Each output represents an unspent transaction output, meaning

that the specified amount is available to be used as input in future transactions.

Figure 4. Output Structure

As shown in Figure 4, the fees do not have a specific field in the outputs, but

rather are calculated by the miner through the following equation:

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑒𝑒 = 𝑖𝑛𝑝𝑢𝑡𝑠 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

 However, there is one more important element that needs to be included in the

transactions to ensure their integrity and security. As mentioned earlier, the inclusion

of keys in transactions serves the purpose of validating the identity of the sender and

ensuring that the funds are being withdrawn from the correct address. To achieve this,

two additional components are incorporated into the transaction structure:

 Locking Script: This script is added to the outputs and specifies the specific

conditions that must be fulfilled to spend the output at a later time. The locking

script essentially acts as a set of requirements that need to be met for the funds

to be accessed.

14

 Unlocking Script: On the other hand, the unlocking script is included in the

inputs and serves to fulfill the conditions established by the corresponding

locking script of the output being utilized. The unlocking script is designed to

satisfy the predetermined requirements specified in the locking script.

To illustrate this process, let's consider the example we mentioned earlier

involving Alice and Bob. Suppose Alice wants to send BTC to Bob. In this case, Alice

would need to include a locking script in the transaction output, which defines the

conditions that Bob must meet to spend the received BTC in the future.

Consequently, when Bob wishes to utilize the BTC he received from Alice, he

must provide an unlocking script that fulfills the conditions outlined in the locking

script associated with the output he intends to use. The unlocking script typically

consists of Bob's signature and his public key.

For successful transaction validation, the locking script is responsible for

verifying the correctness of Bob's signature and ensuring that his address matches the

output he is referring to. If the locking script yields a satisfactory result, it signifies that

Bob is indeed the rightful owner of the BTC and grants him the ability to spend those

funds securely.

2.1.3. Transmit and validate a transaction

Once all the necessary information regarding a transaction has been finalized,

it is ready to be sent and validated by each node in the network. The method of sending

transactions is known as flooding, where each node transmits the transaction to its

immediate neighbors, who then relay it to their respective neighbors. Before sending

the transaction to its neighbors, each node performs a series of validations to ensure

its integrity. This flooding approach offers security benefits when compared to a

broadcast method, as it mitigates the risk of spamming and denial-of-service attacks.

In this method, a malicious transaction would only propagate to a limited number of

nodes, preventing its widespread dissemination.

15

When a node receives a transaction, it undergoes a thorough validation process,

checking for the following criteria:

 Syntax and Data Structure: The transaction's syntax and data structure,

including values and conditions such as size, input formats, and limit values,

must adhere to the correct specifications.

 Script Validation: The unlocking script is examined to ensure that it only

pushes numbers onto the stack, while the locking script must conform to

isStandard forms. Additionally, the unlocking scripts for each input must be

validated against the corresponding output locking scripts.

 Output Existence: For each input, the transaction is rejected if the referenced

output does exist in any other transaction within the transaction pool.

 Output Availability: The node searches both the main branch and the

transaction pool to locate the referenced output transaction for each input. If the

output transaction is missing, the transaction is considered an orphan.

Furthermore, if the referenced output has already been referenced, the

transaction is rejected.

 Input and Output Balance: The transaction is rejected if the sum of input values

is less than the sum of output values, as this would indicate an imbalance or

insufficient funds.

 Transaction Fee: If the transaction fee is deemed too low to be included in an

empty block, the transaction is rejected.

After performing these validation checks, the node categorizes the transaction

into one of three possible states:

16

 Acceptance: If the transaction successfully passes all the validation steps, the

node adds it to the transaction pool and transmits it to its neighboring nodes.

 Rejection: If the transaction fails to meet any of the validation criteria, the node

rejects it and refrains from transmitting it to further nodes.

 Orphan Transaction: Transactions in which a referenced output (from a

previous transaction) has not yet arrived at the node are considered orphan

transactions. These transactions cannot be fully validated and added to the pool

until their referenced parent transaction is received. In such cases, the orphan

transaction is added to the orphan transaction pool. Once the referenced parent

transaction arrives and successfully validates, the orphan transaction can

proceed with its validation. If the number of transactions in the orphan

transaction pool exceeds a predefined limit, the node removes some

transactions from the pool to manage its size.

2.1.4. Mine a block

Simple Case: One node in charge of mining

If we were to envision a scenario where the responsibility of mining blocks falls

upon a single node, the process would become significantly simplified and

straightforward. Let's delve into the details of this streamlined procedure:

 To commence, the node would undertake the critical task of selecting which

transactions from the transaction pool it wishes to include in the block. A

sophisticated algorithm governs this selection process, weighing various factors

such as the duration spent by transactions in the pool and the fees they offer.

This algorithmic approach favors transactions that yield higher rewards for the

miner while ensuring that no transaction languishes indefinitely in the

transaction pool.

17

 Once the node has finalized its selection of transactions, it proceeds to add an

essential transaction known as the Generation Transaction. This particular

transaction plays a pivotal role in transferring the fees and rewards associated

with mining a block (as with each newly mined block, fresh BTC is generated)

directly to the miner.

 Lastly, the miner appends the block header to the completed block and

disseminates it to the remaining nodes within the network. The block header in

this case would be relatively succinct, necessitating the inclusion of only two

fundamental components, alongside relevant metadata: the hash of the

previous block header, which facilitates the creation of the blockchain's chain

of blocks, and the Merkle Root.

The addition of the Merkle Root to the block header holds significant

importance due to Bitcoin's utilization of Merkle Trees. This innovative methodology

empowers nodes to search through the blockchain rapidly, considerably expediting

the process of validating referenced transactions (Frankenfield, Merkle Tree in

Blockchain: What it is and How it Works, 2021). To illustrate this concept further, let

us consider Figure 5 as an exemplary depiction of a Merkle Tree. The tree's

construction commences by independently applying the hash function to each

individual transaction. Subsequently, pairs of transaction hashes are amalgamated,

and the resulting string is then hashed. This process continues iteratively until the

Merkle Root finally emerges.

18

Figure 5. Merkle Tree

The principal reason behind the value of Merkle Trees in searching transactions

within the blockchain stems from their ability to ascertain whether a particular

transaction (e.g., TA) exists within a block. By solely computing the hash of the

transaction (HA) and knowing HB, HCD, HEFGH, and HABCDEFGH, one can determine the

Merkle Root and compare it with the block's Merkle Root found in the header. If both

Merkle Roots align, it confirms the presence of the transaction within that specific

block, obviating the need to compute all the individual hashes and requiring only the

computation of four hashes instead.

However, it is essential to acknowledge that Bitcoin's fundamental concept

revolves around complete decentralization, wherein no central node exclusively mines

blocks. Instead, the process is open to anyone within the network. This decentralized

nature poses challenges concerning the selection of the miner for each turn (explained

in the proof of work section) and the establishment of a consensus regarding the

uniformity of the blockchain across all participants (explained in Section 2.1.5).

19

Proof of Work

 The method known as Proof of Work emerges as the solution to the quandary

surrounding the selection of a mining node. To determine the chosen node, a

competitive environment is established wherein each participating node engages in a

puzzle-solving endeavor. The node that successfully solves the puzzle first becomes

the designated miner responsible for mining the subsequent block.

This intriguing puzzle entails the constant change of a random number referred

to as the nonce. The resulting block header is then subjected to a hash function. To

emerge victorious, the resulting hash must possess, at the beginning, a certain number

of zeros equal to or greater than the difficulty level stipulated by the network. For

instance, Figure 6 serves as an illustrative representation of this process, assuming a

difficulty level of 3.

Figure 6. Proof of Work

Let us closely examine the example provided. The node in question initiates its

puzzle-solving journey with a nonce value of 0. However, as the resulting block header

hash fails to commence with three zeros, the node proceeds to attempt the puzzle with

a nonce value of 1. Unfortunately, the outcome remains the same. Undeterred, the

20

node perseveres and tries once more, this time employing a nonce value of 2.

Remarkably, this iteration yields a hash that commences with the desired three zeros,

thus achieving the desired outcome and claiming victory.

It is crucial to acknowledge the immense computational demand imposed by

this method, as the nature of hash functions leaves no alternative but to resort to a trial-

and-error approach. The absence of a predetermined formula or shortcut necessitates

arduous computational efforts to find the appropriate solution. The utilization of this

method becomes imperative when considering alternatives like complete random

selection, which would enable individuals to create an unlimited number of nodes at

minimal cost, consequently elevating their chances of being chosen as the miner. Such

a scenario would render the network vulnerable to malicious actors who could exploit

the system by amassing an excessive number of nodes, enabling them to manipulate

the blockchain in their favor. Therefore, the adoption of Proof of Work not only

introduces an element of randomness through the reliance on random nonce selection

but also serves as a safeguard against such detrimental attacks by imposing a cost to

being selected as a miner.

Implementing this method changes the simple case scenario shown above by

adding two more fields to the block header: the nonce and the difficulty target.

2.1.5. Transmit and validate a block – Consensus Algorithm

Once a miner successfully solves the puzzle, achieving the proof of work, a

moment of triumph ensues, as the miner proceeds to broadcast the newly minted block

to the other nodes within the network. This broadcast serves as a declaration of victory,

indicating that the miner has emerged as the chosen one. Upon receiving a new block,

each node undertakes the crucial task of validating its contents. If the validation

process proves successful, the node ceases its efforts to solve the block it was

previously working on. It promptly removes the transactions included in the received

block from its transaction pool and proceeds to share the block with its neighboring

21

nodes, employing a mechanism akin to the transmission of regular transactions. Once

this process is complete, the node promptly redirects its attention toward the pursuit

of solving the next block, continuing its mining endeavors.

The validation process comprises several vital aspects that warrant careful

consideration. Let us explore these facets in detail:

 Syntax and Data Structure: verifies the block's adherence to the correct

specifications regarding its data structure, size, and time limitations between

blocks.

 Proof of Work: involves verifying that the block header hash falls below the

target difficulty level. This requirement ensures that the miner has invested

substantial computational effort in solving the puzzle, fortifying the security of

the blockchain.

 Transactions: Each transaction included within the block must undergo

thorough verification, following the principles elucidated in Section 2.1.3. This

verification process serves as a safeguard against fraudulent or invalid

transactions, further bolstering the integrity of the blockchain.

However, it is important to acknowledge the possibility of encountering a

scenario known as a fork, which arises when two miners successfully solve the puzzle

nearly simultaneously. In such instances, a fork occurs when a node has already

received and validated a block, subsequently adding it to the main chain, only to

receive another correctly solved block with the same parent as the one just received.

The parent-child relationship between blocks is indicated by the previous block header

field within the block's header. This situation is visually depicted in Figure 7,

providing a clear illustration of the concept.

22

Figure 7. Fork

Once confronted with a fork, the node in question initiates the creation of a

secondary chain by appending the newly received block to it. At the same time, the

node continues mining the next block with the previous block (from the main chain)

as its parent. From this juncture, two potential outcomes may arise:

 The node receives yet another block, with its parent being the one from the main

chain: In this case, the main chain becomes longer than the secondary chain.

Consequently, the secondary chain is discarded, and the transactions contained

within it are reintroduced to the transaction pool, ready to be included in future

blocks.

 The node receives another block, with its parent being the one from the

secondary chain: This scenario leads to the secondary chain becoming longer

than the main chain. As a result, the secondary chain supersedes the main chain,

assuming the mantle of the new main chain. Consequently, the previous main

chain is discarded, and its associated transactions are added back to the

transaction pool.

23

To maintain the stability and predictability of the network, Bitcoin has

established a target time of approximately 10 minutes for solving each block. This

duration is achieved by periodically adjusting the difficulty target (i.e., the number of

leading zeros the block header hash must possess) every 2016 blocks. This adjustment

mechanism serves to regulate the overall mining speed, ensuring that the probability

of encountering a fork remains exceedingly low, practically diminishing to zero when

considering the occurrence of two simultaneous forks.

24

Chapter 3: Ethereum

Upon grasping the fundamentals of Bitcoin's functioning and gaining insights

into the basics of blockchains, we can delve into elucidating the distinctive technical

features of Ethereum, Solana, and Avalanche in comparison to Bitcoin. This

exploration will enable us to analyze how each divergence influences the Blockchain

Trilemma.

Consequently, in this chapter, our primary focus will be directed toward the

exploration of the first technology, Ethereum, which will be presented in two

comprehensive sections. The initial segment will delve into an in-depth explanation of

the various technical differences that set Ethereum apart from Bitcoin. This will

include a thorough examination of their contrasting architectures, consensus

mechanisms, and smart contract capabilities (Kasireddy, 2017).

Moving on to the second section, we will conduct a meticulous analysis of the

far-reaching implications that each of these disparities has on the delicate balance of

the Blockchain Trilemma. As we evaluate the trade-offs between decentralization,

scalability, and security, we will gain valuable insights into how Ethereum's unique

technological design shapes its position in the ever-evolving landscape of blockchain

solutions.

25

3.1. Technical Differences With Bitcoin

3.1.1. Smart Contracts (Frankenfield, What Are Smart Contracts on the

Blockchain and How They Work, 2023)

In the early days of Bitcoin, its primary and somewhat restrictive application

was limited to the straightforward transaction of coins between accounts. Such a

limitation posed challenges to the widespread adoption of blockchain technology. To

overcome this constraint and unlock the true potential of decentralized systems,

innovative minds sought to create more versatile blockchains capable of

accommodating a variety of applications demanded by the users.

To achieve this, these alternative blockchains adopted an approach that

involved hardcoding each desired application into their systems. Essentially, every

time a specific application was needed, the developers of that blockchain would have

to manually craft the necessary code modifications to accommodate the new

functionality. For example, if a voting mechanism was demanded, the blockchain's

underlying code would be tailored to accommodate the voting application. However,

this approach proved to be quite limited and inefficient in the long run.

In contrast, Ethereum emerged as a groundbreaking solution that

revolutionized the landscape of blockchain technology. It introduced a paradigm shift

by treating the blockchain as an operating system where anyone could create and

deploy applications without the need to modify the blockchain's core code or its

inherent characteristics.

This groundbreaking capability was made possible through the invention of

smart contracts. Smart contracts are self-executing pieces of code that operate on the

Ethereum blockchain. They function as automated agreements that execute

predetermined actions when certain conditions are met. Figure 8 showcases a smart

contract intended to serve the same function as Bitcoin - exchanging tokens. As

depicted, the smart contract is essentially a piece of code containing functions that can

26

be called and, consequently, executed autonomously on the Ethereum network. This

ability to execute predefined functions upon certain conditions is what sets smart

contracts apart from conventional contracts and marks a major breakthrough in

blockchain technology.

Figure 8. Smart Contracts

However, the true revolution lies beyond this single example. Ethereum's

groundbreaking aspect is that it goes beyond mere token exchange and empowers

developers to unleash their creativity and build custom programs tailored to their

unique needs. Unlike traditional blockchains, Ethereum's openness allows developers

to conceive and implement a diverse array of applications and decentralized services

without necessitating any fundamental alterations to the underlying blockchain

protocol.

The implications of this paradigm shift are far-reaching. From decentralized

finance (DeFi) platforms enabling borderless lending and borrowing, to non-fungible

token (NFT) marketplaces revolutionizing digital ownership and art, the possibilities

are virtually limitless. Ethereum's flexible and programmable smart contracts have

fueled an explosion of innovation, giving rise to an ever-expanding ecosystem of

decentralized applications that shape industries across the globe.

27

Implementation of Smart Contracts

The implementation of smart contracts brought about significant changes to the

traditional process of creating and sending transactions within the Ethereum

blockchain.

The first modification was the introduction of two types of accounts:

 Externally Owned Account (EOA): Much like Bitcoin accounts, an Externally

Owned Account is defined by a pair of cryptographic keys - a public key for

receiving funds and a private key for controlling the account. The owner of the

private key holds full authority over this account, enabling secure control over

their assets.

 Contract Account: Contract Accounts, on the other hand, act as repositories for

the smart contract code. However, it is important to note that creating and

maintaining Contract Accounts comes at a cost, as they consume valuable

network storage resources.

The distinction between these two types of accounts is pivotal in understanding

the mechanics of transactions in the Ethereum ecosystem. When an Externally Owned

Account initiates a transaction, it can send two types of messages (or transactions),

contingent upon the type of account receiving the message:

 Externally Owned Account to another Externally Owned Account: In this

scenario, the transaction entails a simple transfer of Ether (ETH) from one

Externally Owned Account to another. This type of transaction is analogous to

conventional cryptocurrency transfers.

 Externally Owned Account to a Contract Account: In this case, the message

sent from the Externally Owned Account to the Contract Account serves to

activate the smart contract. Furthermore, this message can contain the necessary

28

inputs and parameters, enabling the smart contract to perform its intended

function as predetermined by its code.

In contrast, the messages that Contract Accounts generate are a result of the

execution of its code and, therefore, they can’t initiate any transaction unless it has

received one from either an Externally Owned Account or another Contract Account.

The transactions they generate are referred to as “Internal Transactions”.

The second modification is that, to fully harness the potential of smart contracts,

developers require the necessary tools to craft and deploy their custom code. For this

purpose, Ethereum provides the powerful programming language Solidity. With

Solidity, developers can create sophisticated smart contract code, enabling them to

implement a diverse array of applications and services on the Ethereum blockchain.

3.1.2. Proof of Stake (Ethereum, 2023)

As of 2022, Ethereum underwent a significant transformation by transitioning

from the energy-intensive Proof of Work (PoW) consensus mechanism to the more eco-

friendly Proof of Stake (PoS) protocol. This shift marked a major milestone in

Ethereum's evolution, addressing the sustainability concerns associated with PoW.

To better comprehend the transition, let's first revisit the mechanics of Proof of

Work. In the PoW system, miners engage in a competitive race to solve complex

cryptographic puzzles by continuously hashing the block header. This process

demands an enormous amount of computational power and, consequently, results in

significant energy consumption. While PoW has proven to be highly secure, the

environmental impact of its energy-intensive mining activities has been a growing

concern for the blockchain community.

To tackle these sustainability challenges, Ethereum embraced Proof of Stake as

an alternative consensus mechanism. Unlike PoW, where miners invest considerable

computational resources to solve puzzles, PoS introduces a novel approach by

29

requiring participants, known as validators, to stake a certain amount of Ethereum

(ETH) to become eligible for block creation.

Here's how Proof of Stake operates:

 Staking ETH: In the PoS system, each validator is required to stake a desired

amount of ETH into the network. This amount represents their "stake" and

serves as a measure of their commitment to the network's security and integrity.

 Selection Process: The probability of a validator being chosen to propose and

validate a new block is directly influenced by the amount of ETH they have

staked relative to the total amount staked by all participants in the network. In

other words, the more ETH a validator stakes, the higher their chances of being

selected as the block proposer.

 Validation: Validation in the Proof of Stake (PoS) consensus mechanism

follows a similar process to that of Proof of Work (PoW). Each node in the

network verifies the correctness of a proposed block. However, in the event that

a Validator submits a block that is incorrect or invalid, their staked ETH is put

at risk. In other words, if the proposed block is deemed invalid, the Validator

may lose a portion or all of their staked ETH as a penalty for their erroneous

action. This shift in the validation process introduces a powerful incentive for

Validators to act honestly and validate transactions correctly, as they have a

financial stake at risk.

To illustrate this process, let's consider the scenario where Alice stakes 2 ETH,

and the total amount of ETH staked by all validators in the network amounts to 10

ETH. In this case, Alice's probability of being selected as the block proposer is

calculated as 2 ETH / 10 ETH = 0.2 or 20%.

30

3.1.3. Importance of Fees (Gas)

In the world of Bitcoin, transaction fees were implemented by sending a

commission to the miner with every transaction. However, the diverse and expansive

capabilities of Ethereum, which extend far beyond simple money transfers, rendered

this commission-based system inadequate. To address this challenge, Ethereum

introduced a more sophisticated fee system, where fees are incurred each time a code

is executed as a result of an incoming transaction.

The Ethereum fee system revolves around two critical variables: gas price and

gas limit. The gas price indicates how much ETH a user is willing to pay for executing

a certain amount of code (e.g., 1 line of code equals 1 ETH). On the other hand, the gas

limit represents the maximum amount of ETH the user is willing to expend in the

process.

Here's how the fee process unfolds:

 Determining the Maximum Fee: To initiate a transaction, the sender establishes

the gas price and gas limit, which, when multiplied together, calculates the total

maximum amount of ETH they are willing to pay for the transaction's

execution.

 Transaction Execution and Gas Consumption: The transaction is then sent to

a Contract Account, and its code is executed. As the code executes, it consumes

a specific amount of ETH, which is sent to the miner executing the code. In some

cases, the Contract Account may send an Internal Transaction to another

Contract Account, triggering the need for additional code execution and

subsequent ETH consumption by the miner.

 Transaction Finalization: Once the code execution is complete, one of two

scenarios may unfold: either the sender runs out of gas, rendering the

transaction invalid, and all the staked ETH is lost, or the transaction is

successfully finalized, and any excess ETH staked by the sender is returned.

31

The gas price plays a vital role in incentivizing miners to prioritize certain

transactions. Higher gas prices mean greater rewards for miners, making those

transactions more appealing to them. As a result, miners have the freedom to select

which transactions they want to validate or ignore. To assist senders in determining

an appropriate gas price, miners can communicate the minimum gas price they are

willing to accept for transaction execution.

This fee system in Ethereum holds numerous advantages:

 Network Sustainability: Ethereum's design ensures that every operation

executed on the network is simultaneously processed by every full node. To

maintain network efficiency and prevent overtaxing, imposing fees encourages

users to utilize Ethereum smart contracts for simpler tasks, such as running

basic business logic or verifying cryptographic objects, rather than resource-

intensive processes like file storage, email, or machine learning.

 Halting Problem Mitigation: Ethereum's Turing-complete language allows for

loops, making it susceptible to the halting problem. Without fees, a malicious

actor could exploit this vulnerability by executing an infinite loop within a

transaction, disrupting the network without any consequences. Fees, through

the concept of Gas Limit, protect the network from such deliberate attacks.

 Encouraging Efficiency: Ethereum's block size becomes variable, as there is no

inherent limit to the code that a Contract Account can hold. However, as code

size increases, so do the fees required for its execution. Consequently, fees serve

as a motivating factor for developers to create efficient and optimized smart

contracts, promoting better resource management and network health.

32

3.1.4. Block Time

One of the most significant concerns that plagued Bitcoin was its slow

scalability due to the 10-minute block time, resulting in a limited number of

transactions that could be processed. Nevertheless, this characteristic also had its

advantages, as it greatly reduced the possibility of forks and consecutive forks,

contributing to the network's stability.

Forks occur when multiple miners successfully validate different blocks at the

same height and compete to become the valid chain. This can cause temporary

divergence in the blockchain, leading to uncertainties about the canonical chain. The

risk of forks not only raises security concerns but also has implications for

centralization.

Ethereum decided to reduce its block time to approximately 15 seconds, which

significantly impacted the potential for forks to occur. This shift, while providing faster

transaction finalization, introduced new challenges in terms of security and

centralization risks, as discussed in the following section.

Finally, with an increased likelihood of forks in Ethereum, the frequency of

orphan blocks (blocks that are not part of the main chain) also rises. These orphan

blocks occur when multiple valid blocks are created at the same height, but only one

can be included in the blockchain. The rest become orphans, causing a temporary

divergence in the network.

Instead of discarding these orphan blocks, Ethereum implements a mechanism

to handle them. Orphan blocks are preserved as valid blocks and can be included in

the blockchain by a miner with a lower fee. This approach ensures that the efforts put

into creating these blocks are not wasted and provides an opportunity for miners with

lower fees to participate in the network's block creation process.

33

3.2. Implications to the Blockchain Trilemma

3.2.1. Security

After conducting a thorough technological analysis of Ethereum, several

security concerns have emerged, warranting a closer examination of the network's

resilience and vulnerabilities. In this section, we will delve into the key security aspects

of Ethereum, exploring issues such as the impact of its reduced block time, the nothing-

at-stake problem in proof of stake, and the vulnerabilities associated with smart

contracts.

 Long-Range Attacks and Forks: As mentioned earlier, Ethereum's reduced

block time, while enhancing transaction throughput, increases the likelihood of

forks in the blockchain. This creates a higher probability of long-range attacks,

where an attacker attempts to rewrite the entire blockchain's history from a

specific block in the past. Since there is more time for new forks to emerge,

attackers can potentially construct longer chains, undermining the blockchain's

integrity.

 Nothing-at-Stake Problem: The nothing-at-stake problem refers to the

possibility that validators in a proof-of-stake (PoS) system may attempt to

validate multiple conflicting blocks in an attempt to maximize their chances of

being rewarded. Unlike in proof-of-work (PoW) where miners have significant

costs associated with mining a block, PoS validators do not face any real-world

costs. Thus, they might be incentivized to validate multiple forks

simultaneously, increasing the chances of blockchain divergence.

 Immaturity of Proof of Stake: While PoS holds great promise as a more energy-

efficient consensus mechanism compared to PoW, it is relatively less battle-

tested in real-world scenarios. As Ethereum transitions to PoS with Ethereum

2.0, it exposes itself to potential vulnerabilities and challenges that may not have

34

been fully explored during its testing phase. This can lead to unforeseen

security risks during the transition period.

 Smart Contract Vulnerabilities: Ethereum's groundbreaking capability of

enabling smart contracts also introduces a unique security challenge. Smart

contracts are self-executing pieces of code that operate on the Ethereum

blockchain. Any vulnerability or flaw in the code can be exploited by malicious

actors, leading to potentially catastrophic consequences. High-profile incidents,

such as the DAO hack in 2016 (Cryptopedia, 2022), have demonstrated the

importance of rigorous code auditing and security best practices for smart

contract development.

 Front-Running and Transaction Reordering: Front-running occurs when a

malicious actor anticipates a pending transaction and quickly executes a

transaction with higher gas fees to profit from the original transaction's actions.

Additionally, transaction reordering can lead to a change in the order of

transactions in a block, which can impact the outcome of certain applications,

like decentralized exchanges (DEXs). Both of these issues require careful

consideration and mitigation strategies to ensure fairness and prevent

exploitation.

 Governance and Protocol Upgrades: Decentralized governance plays a

significant role in Ethereum's security. It involves making important decisions

about the protocol and upgrades through community consensus. While this

promotes decentralization, it can also lead to contentious debates and potential

hard forks if disagreements arise.

Despite these challenges, Ethereum has demonstrated resilience and

adaptability throughout its development. The community continuously addresses

security concerns, enhances the protocol, and promotes responsible development

practices. Regular audits, bug bounties, and responsible disclosure policies contribute

to making Ethereum more robust and secure over time.

35

3.2.2. Decentralization

Decentralization lies at the heart of Ethereum's vision, aiming to empower a

trustless and inclusive ecosystem. However, the decentralization of Ethereum is a

nuanced subject, influenced by various factors, including its consensus mechanism,

block time, and barriers to entry. In this analysis, we will explore the decentralization

aspects of Ethereum, considering the impact of its proof-of-stake (PoS) consensus, its

lower barriers to entry, and the effect of reduced block time on network participation.

 Proof of Stake and Centralization Issues: Ethereum's transition to a PoS

consensus mechanism is intended to reduce energy consumption and enhance

scalability. However, PoS has raised concerns about centralization due to the

"rich get richer" effect. In PoS, validators are chosen based on the amount of

cryptocurrency they stake as collateral. The more cryptocurrency a validator

holds, the higher the chance of being selected. This creates an advantage for

wealthier participants, leading to a concentration of power among a few

prominent stakeholders. As a result, the decentralization ideals of Ethereum

face challenges in achieving a more distributed validator network.

 Lower Barriers to Entry and Increased Decentralization: One advantage of PoS

over traditional PoW is its lower barriers to entry. PoW mining demands

expensive hardware and electricity costs, limiting participation to those with

significant financial resources. In contrast, PoS requires validators to hold and

stake a certain amount of cryptocurrency, making it more accessible to a

broader range of participants. This reduced barrier fosters greater

decentralization, as more individuals can actively engage in the network's

validation process, furthering the ethos of inclusivity.

 Impact of Reduced Block Time: Ethereum's reduced block time, while

enhancing transaction throughput, raises concerns about centralization. A

shorter block time means more frequent block creation, intensifying

competition among miners to validate and propagate their blocks quickly.

36

Larger mining operations with better resources and network connectivity may

have an advantage in this competitive landscape, potentially leading to the

centralization of mining power. The challenge lies in striking a balance between

transaction speed and maintaining a decentralized network.

 Governance and Protocol Upgrades: Decentralized governance is vital to the

long-term decentralization of Ethereum. The decision-making process for

protocol upgrades and network improvements requires community consensus.

While decentralized governance promotes inclusivity, it also presents

challenges in reaching agreements that may lead to hard forks.

3.2.3. Scalability

Scalability is a critical consideration for any blockchain network seeking

widespread adoption and utility. As Ethereum continues to solidify its position as a

leading decentralized platform, addressing scalability challenges becomes paramount.

Among the key factors impacting Ethereum's scalability, the reduction of block time

to 15 seconds per block stands out as a significant technological change.

 Reduced Block Time: One of the notable efforts to enhance Ethereum's

scalability was the reduction of block time from approximately 10 minutes in

Bitcoin to around 15 seconds per block in Ethereum. This reduction significantly

improves the transaction throughput of the network, allowing more

transactions to be processed within a shorter time frame. Faster block times lead

to quicker transaction finalization, improving the user experience and

facilitating real-time applications on the blockchain.

 Block Size and Gas Limit: With the decrease in block time, there is a need to

strike a balance between the block size and the gas limit, which determines the

maximum computational capacity of each block. Larger block sizes can

accommodate more transactions, improving scalability, but they also increase

37

the time and resources required for block validation and propagation. Setting

an appropriate gas limit is essential to prevent bloated blocks and potential

centralization of mining power.

 Network Latency and Synchronization: Reduced block time can lead to higher

network latency, especially in situations of increased network congestion. As

blocks propagate through the network, nodes need to synchronize quickly to

maintain a consistent blockchain state. Delays in synchronization may cause

temporary forks or conflicts in the network, impacting scalability and user

experience.

38

Chapter 4: Solana

Moving on to our exploration of the second technology under scrutiny, Solana,

we will adopt a parallel structure to our examination of Ethereum. Our approach will

involve a thorough examination of Solana's technological underpinnings and

operational mechanisms (Solana, 2023). Subsequently, in the following section, we will

consolidate our insights as we explore the ramifications of Solana's implementation

within the context of the Blockchain Trilemma.

4.1. Technical Differences With Ethereum

4.1.1. Proof of History

In traditional blockchain systems, such as Bitcoin and Ethereum, transactions

are grouped into blocks for synchronization. This means that a transaction must wait

until a predefined period known as the "block time" has elapsed before it can be

processed. In the Proof of Work (PoW) consensus protocol, longer block times (around

10 minutes) are set to reduce the likelihood of multiple validators creating valid blocks

simultaneously. This precaution is necessary due to the competitive nature of PoW

mining and the energy-intensive computations involved.

Proof of Stake (PoS) consensus, on the other hand, doesn't have the same rigid

block time requirements as PoW. PoS relies on validators who hold a stake in the

network, and thus the need for lengthy block times is mitigated. This theoretically

allows for faster transaction confirmations.

39

However, PoS introduces a unique challenge. Without accurate timestamps,

validators struggle to establish the correct order in which blocks are generated. This

temporal uncertainty can disrupt the smooth progression of the blockchain, as the

correct sequence of events is essential for its integrity.

This challenge is where Proof of History (PoH) steps in. Solana's innovative

approach combines PoS with PoH to address this problem. PoH introduces reliable

timestamps, providing a solution to the issue of ordering blocks. By doing so, it

enhances the overall performance and efficiency of the blockchain network as the time

required for validation reduces considerably.

Timestamp Creation

The creation of accurate timestamps within distributed networks is a complex

challenge. Conventional clocks aren't suitable due to the inherent variations in

timekeeping among different computers. Solana, however, takes a distinctive

approach by prioritizing the establishment of an event sequence rather than achieving

clock synchronization across all nodes.

Solana's innovative solution involves utilizing hashes as a measure of time,

mirroring how regular clocks use seconds. This concept is visually illustrated in Figure

9, providing a tangible representation of this novel approach.

Figure 9. Proof of History Timestamp Generation

40

Central to this concept is the creation of a sequential chain of hashes. This begins

with the initial hash, derived from a random string (e.g., "Hello World"). The resulting

output becomes the input for the subsequent hash computation. Consequently, the

second hash is determined by hashing the previous Hash1, and this pattern continues,

forging an unbroken chain of interconnected hashes.

The adoption of hashes as temporal units carries significant importance. These

cryptographic hashes establish a logical flow of events by ensuring that one event can

be proven to have occurred before another. This sequential relationship is akin to the

way traditional clocks convey time progression in seconds.

However, the significance of employing hashes doesn't end here. Their

cryptographic nature imbues the chain with properties that enhance security and

verifiability. Each new hash not only incorporates the data of the previous hash but

also inherently ties the new block to the entire history that came before it. This property

forms a critical component of Solana's Proof of History mechanism, solidifying the

integrity and immutability of the chronological sequence.

The last phase in establishing accurate timestamps involves seamlessly

connecting these timestamps with their respective events. This crucial step is

illustrated in Figure 9, specifically highlighted in the row labeled with index 3. This

visualization demonstrates how events and timestamps are linked.

When a new transaction arrives, it becomes part of the data inputs used in

generating timestamps. This incoming transaction is combined with the hash output

created in the previous steps. This hash acts like a unique data identifier, encapsulating

both the earlier data and the current transaction.

The resulting hash, termed Hash3, acts as the link between the specific

transaction (let's say, Transaction A) and the corresponding timestamp (for instance,

timestamp 3). This ensures that Transaction A is securely tied to its correct timestamp,

preserving an accurate record in the blockchain's history.

41

Leader Selection and Rotation

As previously highlighted, it's crucial to clarify that Proof of History doesn't

function as a distinct consensus mechanism but rather serves to reinforce the Proof of

Stake framework. In parallel with the Proof of Stake approach, the mechanics of Solana

permit only one validator to produce ledger entries. (It's worth noting that Solana

differs from conventional block-based systems, as it operates at the transaction/entry

level.)

The singular leadership in producing ledger entries yields a significant benefit:

it ensures that all validators can recreate identical replicas of the ledger. However, this

approach also carries a drawback: the potential for a malicious leader to wield

censorship power over votes and transactions. Detecting this censorship becomes

complex since it's indistinguishable from network packet losses. Consequently, the

straightforward solution of indefinitely assigning a single node as the leader is

infeasible.

Solana addresses this challenge by adopting a strategy that mitigates the

influence of a malicious leader. This strategy revolves around the concept of leadership

rotation, where the role of the leader shifts periodically. This rotation mechanism

effectively curtails the impact that a malicious leader could exert over the network.

The operational framework for this rotation entails the selection of a leader for

a predefined timeframe known as an epoch. Remarkably, the duration of an epoch is

quantified using the unit of hashes as a temporal measure. Once designated, the leader

commences the process of receiving transactions and building the ledger, a procedure

analogous to the depiction in Figure 9. As the epoch concludes, often after a specific

number of hashes (for instance, 100), the mantle of leadership transitions to the next

designated leader.

This selection of leaders is orchestrated in advance, with the leader for the next

epoch being identified while the current epoch is underway. This foresighted

scheduling ensures a seamless transition between leadership roles. It's essential to

42

underscore that this selection process adheres to the same Proof of Stake principles

employed in Ethereum, adhering to established and tested mechanisms.

Validation through Parallel Computing

As previously mentioned, in the context of earlier blockchain systems,

transactions necessitated being grouped within blocks for transmission. This

methodology, however, imposed a constraint wherein a transaction could only be

processed once a specific time interval, known as the "block time," had elapsed.

Solana, in contrast, operates on a different premise. The unequivocal order of

events, fortified by the Proof of History mechanism, renders the notion of waiting for

transactions to aggregate within blocks obsolete. This distinctive attribute obviates the

need for a waiting period before transmitting and validating transactions. Instead,

transactions can be promptly transmitted once they are appended to the ledger.

Consequently, when a designated leader receives a transaction and

incorporates it into the ledger, the leader promptly disseminates the most current

version of the ledger to the network's validators. This ledger transmission enables the

validators to engage in the validation process, scrutinizing the ledger's updates and

verifying the accuracy of the included transactions.

This streamlined approach yields a tangible advantage: By the time validators

engage in voting and adhere to the consensus algorithm, the validation process has

already been completed. Consequently, the validators' efforts are streamlined, and no

additional time is expended. This efficiency is a direct result of Solana's innovative

approach, allowing validators to seamlessly transition from transaction validation to

the consensus algorithm, maximizing the utilization of available resources.

Furthermore, aside from the mentioned benefits, validators have the option to

leverage parallel computing techniques in order to expedite the validation process for

transactions. This is achieved by breaking down the validation tasks into smaller

43

segments, also known as chunks. These chunks are essentially distinct portions of the

ledger. By utilizing parallel computing, individual CPUs within a validator's setup can

be allocated to validate specific chunks simultaneously. This division of labor

capitalizes on the fact that, for validation purposes, validators only require access to

the previous output. As a result, the combination of segmenting the ledger and

employing parallel computing leads to a reduction in the time needed for the entire

validation process.

4.1.2. Confirmation Times

In comparison to Ethereum's block time, which stands at approximately 15

seconds, the actual confirmation time for transactions often extends far beyond this

due to considerable congestion. This congestion tends to drive up gas fees and

introduces substantial variability in confirmation times.

However, Solana takes a notably different approach by combining Proof of

History (PoH) with Proof of Stake (PoS) to shape its blockchain dynamics. In Solana's

context, instead of the conventional notion of "blocks," the interval between votes

serves as an analogous concept. Remarkably, this interval is remarkably brief, clocking

in at around 800 milliseconds.

This strategic incorporation of Proof of History and Proof of Stake has

significant implications for the network's efficiency. Solana's adoption of such a short

interval between votes mitigates congestion to a great extent. The outcome is a

network marked by consistently low and stable confirmation times, accompanied by

fees that remain predictable.

44

4.1.3. Turbine Block Propagation

The Turbine block propagation method is an innovative approach to efficiently

distribute new blocks across its blockchain network. It's designed to minimize

duplicate messages, optimize bandwidth usage, and enhance the speed and reliability

of block propagation. The process is as follows.

 Neighborhood Formation: Solana's network is divided into neighborhoods,

each containing a group of validators. Validators with higher stakes are placed

in higher layers of neighborhoods, creating a hierarchy based on their influence

in the network.

 Focal Nodes: Within each neighborhood, a validator is designated as a "focal

node." The focal node acts as a central hub for receiving and distributing chunks

of transactions.

 Chunk Creation: When a new block is to be propagated, it's divided into

smaller segments called "chunks." Each chunk contains a subset of transactions.

These chunks can be processed and validated independently. Data is divided

into chunks for a specific reason: the utilization of Erasure Codes. These codes

enable validators to reconstruct the complete original dataset using just half of

the available chunks. This incorporation enhances the method's resilience

against malicious actors.

 Local Validation: The focal node of a neighborhood receives a chunk first. It

validates the transactions within the chunk to ensure their authenticity and

correctness.

 Selective Forwarding: Instead of broadcasting the entire chunk to all

validators, the focal node selectively forwards the chunk to neighboring

validators within the same neighborhood. This minimizes the duplication of

messages and optimizes bandwidth usage.

45

 Aggregated Messages: Validators within a neighborhood aggregate the

validated chunks into larger messages. These aggregated messages contain

multiple chunks and are more efficient to transmit compared to individual

chunks.

 Communication Through Spokes: Selected validators, known as "spokes," are

responsible for maintaining communication between different neighborhoods.

Spokes help relay aggregated messages from one neighborhood to another,

ensuring cross-neighborhood connectivity.

4.2. Implications to the Blockchain Trilemma

4.2.1. Security

Although focusing on scalability, the technology features implemented in

Solana do have an impact on security, trying to reduce several issues in Ethereum.

Proof of History (PoH) forms a core element of Solana's security framework,

providing an immutable timestamp that guarantees the chronological order of

transactions. This timestamp-based ledger eradicates concerns about fork-related

issues, enhancing the security and resilience of the blockchain against tampering.

Confirmation times, streamlined by the turbine block propagation method, play

a crucial role in reducing network congestion (Solana Floor Content, 2023). In addition,

the integration of parallel processing further accelerates confirmation times, which

reduces the susceptibility to double-spending attacks. Moreover, Turbine's approach

using Erasure Codes further bolsters the network's defense against potential malicious

actors as it ensures data reconstruction even in scenarios of missing or corrupted data,

strengthening the security posture.

46

However, the Solana blockchain exhibits three significant vulnerabilities within

its security framework. These vulnerabilities warrant careful consideration due to their

potential implications for the network's robustness and overall reliability.

The first vulnerability pertains to the integrity of the Proof of History

mechanism, a key element of Solana's architecture. This mechanism heavily relies on

the accuracy of the initial timestamp. In the unfortunate event that this initial

timestamp is tampered with, the entire integrity of the Proof of History could be

compromised. This potential vulnerability emphasizes the criticality of ensuring the

tamper-proof nature of this timestamp and highlights the need for rigorous security

measures to safeguard against malicious tampering attempts.

A second notable vulnerability stems from the relative newness of Solana in the

blockchain landscape. While the platform boasts innovative features and high

scalability potential, its limited track record in real-world scenarios raises concerns

about battle-tested security. Given the rapid pace of evolution in emerging threats and

attack vectors, the absence of substantial real-world testing could potentially leave the

network susceptible to vulnerabilities that have yet to be identified or addressed. This

underscores the importance of continuous security auditing, stress testing, and

community collaboration to identify and rectify vulnerabilities proactively.

Furthermore, a third vulnerability involves the network's decentralization and

scalability dynamics. Inherent challenges within the current technological landscape

make it complex to become a validator on the Solana network. This limited

accessibility to validation roles could result in performance disparities that deviate

from the theoretical ideals of decentralization and scalability. These disparities not

only impact the network's overall security posture but also render it susceptible to

Denial of Service (DoS) attacks, particularly in light of the network's ability to maintain

impressively low transaction fees.

47

4.2.2. Decentralization

Regarding decentralization, Solana features don’t produce much impact

compared to Ethereum. As it also relies on Proof of Stake (PoS) the decentralization

characteristics introduce both familiar benefits and risks.

As with Ethereum, Solana's PoS obtains a reduction in the barriers to entry. PoS

allows participants to engage in consensus by staking tokens, requiring less energy-

intensive computations than traditional Proof of Work. This lowers the entry

threshold, fostering broader participation and contributing to a more decentralized

validator landscape.

However, PoS also brings to the forefront the "rich get richer" phenomenon.

Validators with larger stakes have proportionately greater influence in block

validation and consensus decisions. This dynamic can lead to the concentration of

power and resources in the hands of a few, potentially undermining the foundational

principle of decentralization.

However, there is a negative impact of Solana's technology on decentralization

due to its confirmation time optimization. While rapid confirmation times enhance

user experience and reduce congestion, they could inadvertently amplify the risk of

centralization. Validators with superior computational capabilities might have a

higher likelihood of being selected as leaders more frequently due to their faster

responses. This could tilt the playing field in favor of those with better resources,

potentially diminishing the diverse and decentralized nature of the validator set.

Moreover, a key factor impacting decentralization is the hardware requirement

for becoming a validator on Solana. The need for a robust setup — including a

minimum of a 12-core/24-thread CPU, 128 GB RAM, and 500 GB disk space — creates

a barrier to entry, limiting potential validators. This reduction in participants hampers

decentralization and, consequently, has a direct and adverse effect on scalability.

By excluding many due to the demanding hardware prerequisites, Solana

inadvertently shrinks its validator pool. This lack of diversity in validators contradicts

48

the essence of decentralization, which relies on broad participation. The network's

scalability ambitions are undermined as the limited validator count inhibits efficient

transaction processing for a growing user base.

4.2.3. Scalability

In contrast with security and decentralization, Solana's technology features

have a profound impact on its scalability. By leveraging innovative solutions and

optimizing data processing, Solana has crafted a framework that enhances its

scalability in significant ways.

The usage of Proof of History (PoH) significantly impacts Solana's scalability by

contributing to the platform's ability to handle a high volume of transactions

efficiently. By providing an immutable and verifiable timestamp for events on the

blockchain, PoH establishes a reliable chronological order. This chronological ordering

aids in the parallel processing of transactions, enabling multiple transactions to be

executed concurrently rather than sequentially. As a result, PoH's accurate

timestamps, combined with parallel processing, alleviate bottlenecks that often limit

the scalability of other blockchain networks.

In addition, the Turbine block propagation serves as the cornerstone of the

scalability framework by aggregating validated chunks of data and minimizing

redundant messages allowing Solana to optimize the data transmission process. This

not only conserves bandwidth but also streamlines the propagation of transactions and

blocks across the network, ensuring that scalability remains unhindered even as

transaction volumes increase.

All this allows for rapid confirmation times ensuring a quick transaction finality

which reduces the backlog of unprocessed transactions and prevents network

congestion.

49

However, as previously discussed, a significant challenge facing the Solana

network revolves around the scarcity of validators due to the demanding

requirements for assuming this crucial role. This challenge presents a complex

situation with two primary consequences that could impact the network's transaction

handling ability and make it vulnerable to potential Denial of Service (DoS) attacks.

This concern becomes even more relevant considering the network's practice of

offering consistent and low transaction fees.

The connection between the limited number of validators and the network's

transaction capacity is a crucial aspect to consider. With the pool of validators

constrained due to the high hardware demands, the network's ability to process and

confirm transactions could be hampered. This limitation could hinder the network's

goal of efficiently handling a large volume of transactions, which is a fundamental

requirement for a scalable and practical blockchain platform.

50

Chapter 5: Avalanche

The next technological advancement meriting examination is Avalanche. Just

as in the cases of Ethereum and Solana, our exploration framework shall entail a

meticulous dissection of the key distinctions inherent to Avalanche when juxtaposed

with the aforementioned technologies. This will be succeeded by an exhaustive

evaluation of how these divergences wield an influence on each facet encapsulated

within the paradigm of the Blockchain Trilemma.

Ethereum and Solana have garnered significant attention due to their unique

features and functionalities. Avalanche, in a similar vein, has carved its niche within

the blockchain landscape with its distinctive consensus mechanism and scalable

architecture. A rigorous comparative analysis of these platforms serves as the bedrock

of our examination.

5.1. Technical Differences with Ethereum and Solana

5.1.1. DAG Structure

In the preceding blockchain technologies we have examined, information was

encoded within a block structure. This structural arrangement was imperative in

arranging data systematically, ensuring a universally acknowledged sequence of

blocks, and facilitating the uniform distribution of the blockchain ledger among all

participants, thereby upholding its integrity. This simplifies the validation process for

each new block and, therefore, consensus can be reached more efficiently.

51

Moreover, this block structure introduced a pivotal advantage in the form of a

linear, chronological sequence, aptly named the blockchain. This linear concatenation

serves as a potent deterrent against long-range attacks, a security concern wherein a

malicious actor attempts to rewrite past transactions in an effort to alter the history of

the blockchain. The inherent immutability of the chain makes such endeavors

laborious and resource-intensive, thus bolstering the overall security and reliability of

the blockchain network.

However, employing a block structure presents several inherent drawbacks.

The primary inconvenience stems from its propensity to result in diminished

throughput. In cases where the volume of transactions surpasses the capacity of a

single block, certain transactions inevitably confront a delay until the subsequent block

is formed. This latency in transaction confirmation can undermine the efficiency and

responsiveness of the blockchain network.

A secondary concern arises in the form of potential forks. The necessity to

ensure the chronological sequence of blocks necessitates a minimal time interval

between block creations to account for network latency. This time constraint, while

ensuring order, introduces the possibility of forks, wherein competing versions of the

blockchain emerge due to slight variations in block arrival times. This divergence

undermines the network's cohesion and introduces complexities for participants.

These challenges were notably conspicuous within the Bitcoin and Ethereum

ecosystems. A paradigm shift transpired with Solana, which adeptly mitigated these

predicaments through the incorporation of the Proof of History (PoH) mechanism

alongside the Proof of Stake (PoS) consensus protocol. This strategic fusion enabled

Solana to operate at the transaction level, obviating the constraints of the block-based

approach. In a contrasting vein, Avalanche undertakes a complete reimagining of the

quandary. It forgoes the conventional Blockchain data structure and embraces a

Directed Acyclic Graph (DAG) architecture.

A Directed Acyclic Graph (DAG) is a specific type of data structure that

represents a set of elements (usually called nodes) connected by directed edges, where

52

the connections between nodes have a defined direction and do not form any cycles.

The term "acyclic" signifies that there are no loops or closed paths in the structure. Each

edge points from one node to another, indicating a specific relationship between them.

In the context of blockchain technology, a DAG is an alternative to the linear

block structure commonly associated with traditional blockchains like Bitcoin. In a

DAG-based system, transactions or data units are represented as nodes in the graph,

and the edges represent relationships or dependencies between these transactions.

Unlike the linear, sequential blocks in traditional blockchains, where each block

references the previous block, transactions in a DAG can reference multiple previous

transactions, creating a more complex network of connections. Figure 10 represents

this structure.

Figure 10. DAG Structure

Figure 10 provides a visual depiction that underscores the primary

differentiators between the DAG architecture and the structure characteristic of the

previously examined blockchains. Notably, two pivotal distinctions are readily

discerned. Firstly, the DAG framework operates at the transaction level, a departure

from the block-centric approach observed in conventional blockchains. Secondly, this

configuration engenders the existence of multiple forks, as evidenced in the instances

53

of TX2 and TX3. In such cases, the precise chronological order of these transactions

becomes indeterminable.

The adoption of this structure holds the potential to yield notable advantages

compared to the classical Blockchain. The avoidance of temporal delays associated

with block arrivals and the elimination of constraints tied to block sizes emerge as

immediate benefits. Furthermore, the pivotal capability to parallelize the validation

process (for instance TX2 and TX3 could be validated in parallel) manifests as a catalyst

for heightened throughput and expedited transaction confirmation times.

Certainly, the infeasibility of achieving these objectives served as the impetus

for various other blockchain platforms to embrace the conventional Blockchain

structure. This transition became a necessity due to the challenges posed by operating

at the transaction level, as it heightened the propensity for forks, a complexity that was

arduous to effectively manage.

However, a paradigm shift is evident through Avalanche's innovative approach

to its consensus algorithm. This pioneering alteration has paved the way for the

actualization of the DAG structure, diverging from the well-trodden path of classical

Blockchain architecture. This strategic evolution has empowered Avalanche to

seamlessly adopt and capitalize on the inherent potential of the DAG framework. The

culmination of these advancements is a remarkable surge in throughput, a testament

to the efficacy of the DAG structure in addressing the longstanding issues that

constrained previous attempts.

5.1.2. Avalanche Consensus Algorithm

As previously noted, the adoption of the DAG structure owes its realization to

the pioneering Avalanche consensus algorithm. Nevertheless, achieving this milestone

was far from effortless and required a series of progressive updates, with each iteration

building upon the advancements of its forerunners. The initial iteration, termed

54

"Slush," laid the groundwork, followed by subsequent versions—namely "Snowflake,"

"Snowball," and culminated in the pinnacle iteration, "Avalanche" (Buttolph, 2022).

Slush

The initial action taken by each node involves casting a vote to determine the

validity of the received transaction. After this step, each node initiates the process of

querying a randomly selected group of nodes to ascertain their voting stance. This

procedural sequence is elucidated in Figure 11.

Figure 11. Slush Algorithm

In the depicted instance within Figure 11, Node N1 undertakes inquiries

directed towards Nodes N10, N8, N5, and N2. Subsequently, Node N1 accumulates

responses indicating that the majority among these nodes have voted in favor of

validity. Consequently, Node N1 adjusts its initial vote from "invalid" to "valid," in

alignment with the prevailing majority.

This iterative process persists across all nodes, advancing through diverse

rounds of queries, until a unanimous consensus is achieved across the entire network.

This consensus necessitates a comprehensive agreement, rather than a mere majority

consensus (e.g., a scenario where 90% of the network votes "valid" is insufficient; 100%

alignment is obligatory). However, a potential vulnerability emerges when a malicious

55

node deliberately skews its voting response to align with the minority instead of the

majority. For instance, if Node N1 was malevolent, it could persistently uphold its

original "invalid" vote, thwarting convergence to a definitive consensus. This

disruptive behavior triggers an indefinite loop as the network remains devoid of a

harmonized consensus resolution.

Snowflake

To address the issue of continuous looping within the Slush algorithm,

Avalanche introduced an upgraded solution named Snowflake. This enhanced

approach incorporates a "counter" mechanism to effectively manage the looping

concern.

Here's how Snowflake works straightforwardly: In the Snowflake algorithm,

each participating node is assigned a counter. This counter keeps track of how

consistently a node sticks to its initial voting choice across several rounds. If a node

maintains its initial vote through consecutive rounds, the counter increases by one.

Conversely, if a node changes its vote, the counter resets to its starting value.

When a node's counter reaches a specified threshold, the node enters a "locked"

state. In simpler terms, this means the node's voting decision becomes fixed and

remains unchanged in subsequent rounds. This locking mechanism is a crucial way to

prevent never-ending loops. If a node doesn't achieve the locked state even after

multiple rounds, it might raise concerns about that node's intentions.

However, while Snowflake effectively addresses looping concerns, there's a

trade-off to consider in terms of efficiency. The counter's periodic resetting before

reaching the locked state can slow down the process. This elongates the time needed

to reach a consensus among the participating nodes.

56

Snowball

In response to the challenge of diminished efficiency stemming from recurrent

counter resets, Avalanche devised the Snowball algorithm. This innovative iteration

of the consensus mechanism addresses the efficiency concern by altering the counter

behavior. Unlike its predecessor, Snowflake, where the counter could reset, the

Snowball algorithm maintains an unbroken record of query outcomes.

In essence, Snowball functions as follows: When a node participates in the

consensus process, it initiates a series of rounds of queries. In each round, the node

gathers information from its peers regarding their voting choices. The novelty lies in

the fact that the counter's integrity is maintained across all these rounds, eliminating

any possibility of resetting.

For instance, let's consider a scenario where a node commences the consensus

process with an initial round of queries. If, after this first round, the accumulated vote

tally reflects a majority in favor of "valid," the "valid" counter will increase accordingly.

As these rounds of queries progress and culminate, the counter will embody a

comprehensive summary of the overall outcomes. For example, the counter could

display a total of 7 rounds endorsing "valid" and 2 rounds supporting "invalid." Based

on the outcome, where a greater number of rounds resulted in "valid" votes, the node

will subsequently cast its vote as "valid."

This mechanism introduces a level of aggregation and deliberation that

leverages the collective wisdom of the network to reach a consensus. By maintaining

a holistic view of all the queries and their results, the Snowball algorithm empowers

nodes to base their ultimate votes on a comprehensive perspective, derived from

multiple rounds of input.

57

Avalanche

Avalanche distinguishes itself from its predecessors through the culmination of

its consensus mechanism, which enables the implementation of the previously

discussed DAG (Directed Acyclic Graph) structure.

Central to Avalanche's distinctiveness is its ability to generalize the Snowball

algorithm, thereby addressing the intricate challenge associated with implementing

the DAG structure. Inherent to DAGs are the continuous occurrences of forks,

complicating the consensus process and presenting the potential for disagreements

regarding the validity of transactions. This phenomenon paves the way for the double

spend problem, a significant concern in the blockchain domain.

The double spend problem, in essence, refers to a scenario where a malicious

actor attempts to spend the same cryptocurrency funds more than once. This can occur

due to the lack of a central authority in decentralized systems to ensure that

transactions aren't duplicated. This issue jeopardizes the integrity and security of a

blockchain network, undermining the trust that it seeks to establish among

participants.

To surmount this challenge, Avalanche creatively applies the foundational

principles of the Snowball algorithm. However, there's a crucial departure: instead of

nodes voting solely on a single transaction, they extend their scrutiny to encompass a

range of transactions, specifically including several levels of predecessors.

For instance, envision the illustrative Figure 10. In Avalanche's context, the

process of validating a transaction like TX8 extends beyond merely assessing its

individual validity. Instead, the validating node evaluates not only TX8 but also its

preceding transactions. In a hypothetical scenario where three levels of predecessors

are considered, the validation process would encompass TX5, TX2, TX3, TX1, and TX8.

This multifaceted approach shifts the consensus landscape from one of binary

voting outcomes—valid or invalid—to one of nuanced confidence levels. Rather than

definitively labeling a transaction as correct or incorrect, nodes express their

58

confidence levels based on the collective assessment of multiple transactions. For

instance, a node might assert that out of five transactions analyzed, one is erroneous,

resulting in a confidence level of 80% that the chain analyzed is correct.

After this complex voting process, nodes proceed to engage in a sequence of

querying, analogous to the Snowball algorithm. Over time, consensus coalesces

around transactions that demonstrate correctness. Importantly, while the order of

these transactions might remain ambiguous, the potential security vulnerabilities

associated with forks are mitigated.

In sum, Avalanche's ultimate innovation lies in its ability to navigate the

intricate landscape of the DAG structure. By synthesizing the principles of Snowball,

extending transaction assessment to predecessors, and embracing confidence-based

voting, Avalanche achieves a robust consensus mechanism that not only

accommodates the challenges of forks but also fortifies the security of the blockchain

ecosystem.

5.1.3. Subnets

Ethereum gained immense popularity for its unparalleled flexibility in

developing specialized applications atop its blockchain, negating the need to create

separate blockchains for each application. However, this shared blockchain ecosystem

posed a challenge: while each application was distinctive, they were obliged to adhere

to common features such as the consensus algorithm and protocols.

Avalanche, in its pursuit of even greater flexibility, introduces a

groundbreaking concept called "subnets." Subnets constitute discrete, isolated

networks operating within the broader Avalanche framework, meticulously tailored

to cater to specific usage scenarios, security prerequisites, or organizational

imperatives.

59

Fundamentally, subnets function as tailored environments housing

transactions, validators, and participants uniquely configured for specific purposes.

This partitioning of the overarching network empowers Avalanche to accommodate a

diverse array of applications and requirements without compromising network

cohesion or operational efficiency.

Subnets grant users the authority to configure their blockchain networks in

alignment with their precise intentions. Consider, for example, an entity aiming for

heightened privacy; such an entity could establish a subnet fortified with stringent

privacy measures. Conversely, a decentralized finance (DeFi) initiative might fashion

a subnet optimized for high-speed transactions and seamless interaction with assorted

financial instruments.

The segmentation of the network into subnets presents Avalanche with an

extraordinary level of adaptability. Each subnet operates with a degree of autonomy,

enabling it to define its distinct rules, parameters, and consensus mechanisms. This

decentralized approach facilitates the diversification of applications, accommodating

a wide spectrum of requirements within a unified network architecture.

A critical aspect of the subnetting concept is its contribution to Avalanche's

horizontal scalability prowess. This dynamic capacity to scale horizontally entails the

establishment of new subnets as transaction demand escalates or novel specialized use

cases arise. The introduction of fresh subnets serves to avert congestion while

preserving the efficacy of network operations.

5.1.4. Primary Network

The intricate and versatile infrastructure of subnets within the Avalanche

ecosystem is meticulously organized under the guidance of the Primary Network

(Sekniqi, Laine, Buttolph, & Gün Sirer, 2020). This foundational layer constitutes the

cornerstone upon which the entire Avalanche architecture is built. Comprising three

essential blockchains—the X-Chain, the C-Chain, and the P-Chain—the Primary

60

Network orchestrates the multifaceted functionalities that underpin Avalanche's

diverse applications and subnets.

 X-Chain (Exchange Chain): The X-Chain assumes a pivotal role in the

Avalanche landscape by overseeing the management of token transactions and

the creation of tokens themselves. It acts as the conduit for seamless transfers of

tokens, providing the backbone for economic activities within the ecosystem.

Its responsibilities encompass facilitating rapid peer-to-peer transactions and

token issuance, contributing to the fluidity and efficiency of Avalanche's

economic transactions.

 C-Chain (Contract Chain): Central to Avalanche's versatility is the C-Chain,

entrusted with managing smart contracts and overseeing the dynamic

landscape of applications constructed within the ecosystem. It serves as the hub

for the execution of code-based applications, enabling developers to craft

decentralized solutions with ease. Of significance is its interoperability with

Ethereum's Virtual Machine, positioning Avalanche as an attractive destination

for Ethereum developers seeking to harness the benefits of the Avalanche

platform without the complexities of migration.

 P-Chain (Platform Chain): Steering the orchestration of subnets and the

intricate dance of validators is the P-Chain. Tasked with maintaining the

integrity of the entire ecosystem, the P-Chain assumes the vital role of

coordinating validators within subnets and orchestrating the consensus

mechanism that guarantees network security. This control mechanism acts as

the linchpin ensuring the collaborative harmony of Avalanche's distributed

infrastructure.

61

5.2. Implications to the Blockchain Trilemma

Similar to the examination conducted on the other technologies explored, the

analysis culminates with an assessment of the implications that this particular

technology holds for the Blockchain Trilemma.

5.2.1. Security

The implementation of a Directed Acyclic Graph (DAG) structure heralds a

fundamental transformation in transaction confirmation and security paradigms. This

structural innovation serves as a robust defense mechanism against the risk of "double

spending" attacks, a threat ubiquitous in conventional blockchains. Unlike the linear

progression of transactions within traditional blocks, the DAG structure ushers in a

realm of parallel and asynchronous transaction confirmations. This pivotal feature

dramatically truncates the temporal window within which malicious actors could

exploit transactions for double spending, thus augmenting security against this

specific form of attack.

Moreover, Avalanche's distinctive consensus algorithm further fortifies its

security architecture by thwarting the ominous specter of the "long-range attack." This

vector of attack involves manipulating transactions from bygone epochs in the

blockchain's history. The probabilistic nature of Avalanche consensus, buttressed by

its repeated voting cycles, erects an imposing barrier to long-range attacks. The swift

and iterative convergence of consensus renders the endeavor of revising historical

transactions resource-intensive and implausible, thus engendering an enhanced

security layer against this particular breed of threat.

Finally, the integrative utilization of Subnets and the Primary Network affords

the Avalanche ecosystem an intricate tapestry of security enhancements. Tailored to

specific use cases, Subnets serve as bulwarks against the relentless tide of "transaction

62

spam attacks." By configuring subnets to optimally accommodate distinct

functionalities, Avalanche curtails the effectiveness of attacks that seek to inundate the

network with low-value transactions. Moreover, the vigilant oversight of the Primary

Network acts as a guardian against the amplification of spam attacks across subnets,

orchestrating the identification and mitigation of such threats.

However, the adoption of novel technologies and approaches, like the DAG

structure and the Avalanche consensus algorithm, introduces a concomitant risk

profile. The introduction of novel elements can potentially unveil uncharted attack

vectors or interaction intricacies, demanding a learning curve for developers and

security experts to discern and rectify potential vulnerabilities.

Furthermore, akin to other blockchain frameworks, Avalanche is not immune

to vulnerabilities stemming from smart contracts and the potential for centralization.

However, unlike conventional 51% control mechanisms, Avalanche's consensus

requires an 80% network control threshold, rendering such control less attainable.

5.2.2. Decentralization

Regarding decentralization, only the integration of subnets and the primary

network brings forth a nuanced impact on decentralization. On one hand, subnets

offer the advantage of customization for specific use cases, fostering diverse and

specialized applications within the ecosystem. The primary network's oversight

ensures that while customization is encouraged, certain network standards are

maintained, providing a balanced environment for tailored operations.

However, a potential downside is the risk of centralization within subnets. If a

subset of validators within a subnet gains disproportionate control, the decentralized

nature of the network within that subnet could be compromised. This highlights the

need for ongoing vigilance to prevent unintended centralization within specialized

segments of the ecosystem.

63

5.2.3. Scalability

The introduction of the DAG structure in the Avalanche Blockchain has a

profound impact on scalability. The asynchronous and parallel transaction

confirmation enabled by the DAG structure holds the potential to dramatically

enhance scalability. Unlike traditional linear blockchains, where sequential transaction

confirmation can lead to congestion, the DAG structure allows for multiple

transactions to be confirmed simultaneously. This not only expedites the validation

process but also reduces the risk of bottlenecks during peak usage.

Moreover, the consensus algorithm employed by Avalanche significantly

impacts the scalability of the technology by allowing transactions to be confirmed

rapidly. This rapid confirmation process enhances the overall throughput of the

network, catering to high transaction volumes. However, the algorithm's assumption

of honest participation might introduce limitations to scalability. In scenarios where a

substantial portion of participants collude or behave maliciously, the decentralized

validation process could be hindered as more rounds would be needed to achieve

consensus. This might potentially slow down transaction throughput and impact

overall scalability.

The incorporation of subnets and the primary network further influences

scalability within the Avalanche ecosystem. Subnets, tailored to specific use cases,

offer the potential to improve scalability by enabling specialized transaction

environments. This ensures that transactions with distinct functionalities can be

processed independently, preventing congestion on the primary network. The

primary network's oversight also maintains consistency across subnets.

64

Chapter 6: Quantitative Analysis

After thoroughly examining the technical distinctions among Ethereum,

Solana, and Avalanche, it becomes imperative to delve beyond theoretical disparities

and grasp their tangible repercussions in practical contexts. To achieve this, the

execution of a quantitative analysis becomes paramount. This analytical approach not

only grants us profound insights into the practical implications but also furnishes us

with a systematic framework for juxtaposing these technologies.

Hence, the focal point of this chapter shifts towards an initial process of

handpicking and elucidating the metrics that will serve as our compass in this

comparative exploration. Additionally, the acquisition of metric-specific data for each

technology takes precedence. This data-driven endeavor is fundamental in enabling

us to conduct an insightful comparative analysis that encapsulates diverse facets of

these technologies.

4.1. Metrics

As mentioned earlier, this section involves the selection and explanation of

various metrics used to assess the real-world effectiveness of each technology.

Additionally, it encompasses outlining a method for comparing the studied

technologies.

Moreover, we will categorize the choice of metrics according to the Blockchain

Trilemma. This categorization will grant us insight into how each blockchain

addresses the Trilemma and evaluates the effectiveness of their respective approaches.

65

4.1.1. Security

Nakamoto Coefficient

The Nakamoto Coefficient draws inspiration from the GINI Index, a tool

utilized to assess wealth distribution within a nation. In its blockchain context, the

Nakamoto Coefficient is constructed as the minimum count of entities necessary to

collectively command authority over the network (Bybit, 2022). This metric serves as

a direct gauge to comprehend the feasibility of executing a 51% attack on the associated

blockchain.

The metric is obtained through the following formula.

𝐾 = min 𝑛 ∈ 𝑁: 𝑥 > 𝑝 𝑥

On the left-hand side of the equation, we observe the accumulation of the

control percentages attributed to 'n' validators. Conversely, the right-hand side

encapsulates the summation of control percentages attributed to the entire 'N'

validators present in the network. This value is then multiplied by the predetermined

requisite percentage 'p' needed to acquire control over the network—where 'p'

corresponds to the necessary proportion, such as 0.51 if a 51% threshold is essential for

network control.

Downtime

As the digital realm becomes increasingly intertwined with our daily lives, the

uninterrupted and secure operation of blockchain networks becomes essential.

Downtime, often associated with technical glitches, network failures, or malicious

attacks, can significantly impact the reliability and integrity of a blockchain. This has

prompted the exploration of downtime as a security metric, shedding light on its

potential significance in the realm of blockchain analysis.

66

Downtime in the context of blockchain refers to periods during which the

network is unavailable, incapable of processing transactions, or executing smart

contracts. While downtime might appear to be a conventional operational concern, it

possesses far-reaching implications in terms of security. The downtime metric

underscores the vulnerability of a blockchain to various threats, including distributed

denial-of-service (DDoS) attacks, consensus mechanism vulnerabilities, software bugs,

and even internal misconfigurations.

The concept of employing downtime as a security metric aligns with the

principle of availability, one of the key pillars of information security. Availability

ensures that a blockchain network remains operational, accessible, and resilient

against disruptions. When downtime occurs, it not only hampers the network's

performance but also exposes it to potential exploitation by malicious actors seeking

to take advantage of lapses in security protocols.

Measuring downtime involves tracking the duration and frequency of periods

when the blockchain is inactive or inaccessible. This metric can be quantified in terms

of hours, minutes, or even seconds, depending on the granularity required for analysis.

A blockchain with prolonged or recurrent downtime might indicate underlying issues

that compromise its security posture. Consequently, this metric serves as an indirect

indicator of the blockchain's resilience against both accidental disruptions and

intentional attacks.

4.1.2. Decentralization

Token Distribution Entropy

Token distribution entropy captures the diversity and evenness of the allocation

of tokens across network participants. In essence, it quantifies the randomness and

unpredictability of the distribution pattern. By scrutinizing the entropy of token

distribution, blockchain stakeholders can gain a deeper understanding of the equitable

distribution of influence and control within the network.

67

To apply token distribution entropy as a decentralization metric, one must

analyze the spread of tokens among users, accounts, or addresses within the

blockchain ecosystem. A higher entropy value signifies a more evenly dispersed token

ownership landscape, suggesting that control and economic power are not

concentrated in the hands of a select few entities. This resonates with the core principle

of decentralization – a network where no single entity commands undue influence.

The formula to calculate the token distribution entropy is the following.

𝑆 = − ∑ 𝑝 × 𝑙𝑜𝑔 (𝑝) 𝑤ℎ𝑒𝑟𝑒 𝑝 =
∑

Based on the aforementioned formula, an S value of 0 signifies minimal

decentralization (or heightened centralization), whereas an S value of log(N) signifies

maximal decentralization (or minimal centralization).

Number of Validators

The number of validators refers to the count of independent entities responsible

for validating transactions and maintaining the consensus mechanism within a

blockchain network. This metric captures the diversity of participants contributing to

the network's operation, reflecting the distribution of control and influence among

stakeholders. Analyzing the number of validators offers valuable insights into the

robustness of the network's decentralization architecture.

Applying the number of validators as a decentralization metric entails assessing

the participation and representation of various entities within the network. A higher

number of validators generally indicates a more decentralized ecosystem, as control is

distributed among a larger pool of participants. This diversity of validators minimizes

the risk of concentration of influence, promoting a healthier and more resilient

network.

68

4.1.3. Scalability

Transactions Per Second

TPS quantifies the number of transactions a blockchain network can process

within a single second. This metric is a direct reflection of the network's capacity to

handle a larger volume of transactions in a timely manner. Evaluating TPS as a

scalability metric provides invaluable information about the network's readiness to

support real-world applications that demand rapid transaction confirmation.

Applying TPS as a scalability metric entails assessing the blockchain's

responsiveness and performance under varying transaction loads. A higher TPS value

suggests that the network possesses the infrastructure and protocols to swiftly process

a substantial number of transactions without compromising its efficiency. This is

particularly crucial for blockchain platforms seeking to accommodate applications

ranging from financial transactions to supply chain management.

Time to Finality

Time to Finality refers to the duration it takes for a transaction to be fully

confirmed and considered irreversible on the blockchain. This metric offers a clear

measurement of how quickly a transaction achieves consensus and becomes an

immutable part of the blockchain's history. Evaluating Time to Finality as a scalability

metric is vital for assessing the network's responsiveness in processing transactions

and maintaining an efficient user experience.

Applying Time to Finality as a scalability metric involves assessing the time it

takes for a transaction to go through the consensus process and receive sufficient

confirmations to be considered finalized. A shorter Time to Finality implies that

transactions can be confirmed more rapidly, enabling the blockchain to handle a

higher throughput of transactions. This becomes particularly significant for blockchain

69

applications that require real-time confirmation, such as payment systems or supply

chain tracking.

4.2. Metrics Values per Blockchain

Now that we have a clear understanding of the variables involved, we can move

forward with a detailed analysis of each technology. It's important to note that a solid

grasp of these variables is essential for drawing accurate insights. With a good

understanding of these variables in mind, we are ready to thoroughly assess

quantitatively each of the technologies in question.

As of the current date, August 23rd, 2023, the specific values for each variable are

provided in Figure 12, obtained through the corresponding official webpages and

other resources (Ethereum, s.f.) (Solana Beach, s.f.) (Avalanche, s.f.) (Circle, 2023). This

visual representation serves as a useful reference point, ensuring our analysis is

grounded in the most recent and pertinent data. By using these current variable values

as a foundation, we can confidently begin our assessment, which will be both well-

informed and rigorous. Within this context, we will now proceed to carefully examine

the distinct merits and attributes associated with each technology on our agenda.

Figure 12. Metrics Values per Blockchain

70

Upon a thorough examination of the provided dataset, a conspicuous

observation emerges: Avalanche notably lacks both the Nakamoto Coefficient and

Token Distribution Entropy. This intriguing absence can be attributed to the

distinctive nature of Avalanche's consensus algorithm, wherein its voting mechanism

remains detached from token dependencies. Consequently, the utilization of these

particular metrics within the framework of Avalanche's analysis becomes impractical.

Furthermore, it is noteworthy that the metric of Downtime finds no

representation within Figure 12. This omission is grounded in the understanding that

Downtime is a multifaceted concept, necessitating an intricate analysis beyond a mere

numerical depiction. Downtime, as a measure, extends its roots into a plethora of

causative factors, encompassing a spectrum that goes beyond potential attacks.

Therefore, its absence from the visual representation is a result of its inherent

complexity, demanding a dedicated analysis in order to capture its diverse

manifestations comprehensively.

Nakamoto Coefficient

Starting with the Nakamoto Coefficient, it is evident that Ethereum requires a

notably higher number of validators to reach the critical 51% control threshold. This

observation is in line with the analysis that highlighted the resource-intensive nature

of being a Solana validator. The demanding resource requirements of the Solana

ecosystem inherently contribute to the practicalities of achieving validation within its

network.

Moreover, an important aspect to consider is the temporal dimension that sets

Ethereum apart from Solana. Ethereum's longer presence in the blockchain arena has

allowed it to cultivate a more extensive and diversified community. The extended

timeframe has provided Ethereum with the opportunity to nurture a broad user base,

a factor that naturally contributes to a more distributed decision-making process,

ultimately reflecting in its higher Nakamoto Coefficient.

71

Furthermore, Ethereum's historical resilience against challenges, forks, and

adversities has solidified its position as a reliable and secure platform. This stability

fosters ongoing participation and engagement from a diverse range of stakeholders,

which, in turn, contributes to a robust Nakamoto Coefficient.

Adding another layer to the analysis, Ethereum's global recognition and early

adoption have played a pivotal role in shaping its high Nakamoto Coefficient. Being a

trailblazer in the decentralized technology landscape has afforded Ethereum an

extensive legacy. Its influence on the blockchain domain has led to widespread

acknowledgment, drawing enthusiasts and experts alike to contribute to its ecosystem.

Lastly, it's worth noting that Solana's threshold for network control stands at

33%, in contrast to the conventional 51%, which inherently contributes to a

comparatively lower Nakamoto Coefficient.

Token Distribution Entropy

Revisiting the analytical landscape, an interesting facet emerges as we delve

into the metrics at hand. It's crucial to acknowledge that Avalanche's non-participation

in this particular metric adds a layer of distinctiveness to the analysis. In alignment

with the established trend highlighted by the Nakamoto Coefficient, Ethereum once

again takes the lead, surpassing Solana. Notably, Ethereum's distribution profile

stands out prominently, nearing the threshold of maximum distribution.

Conversely, Solana positions itself as a contender with a notable distribution

value, albeit distinct from Ethereum. This value is calculated to be close to the peak of

decentralization, registering at 10.93. This numeric representation, derived from the

logarithm base 2 of the validator count, provides an insightful assessment of

decentralization levels.

On the Solana front, the proximity of its distribution value to the theoretical

maximum suggests an interesting narrative. While the raw count of validators might

72

not be extensive, the network's architecture and consensus mechanisms promote a

relatively higher level of decentralization per validator. This architectural choice

encourages a distributed decision-making process, contributing to the observed

distribution value.

Number of Validators

When we transition our focus to Solana and Ethereum, a striking parallel

unfolds, echoing the analytical patterns witnessed in the Nakamoto Coefficient

assessment. Nevertheless, the advent of this analysis ushers in the prominent inclusion

of Avalanche, rendering the discourse multifaceted. Avalanche, in its distinctiveness,

steps forward as a participant, albeit with a notable distinction: it holds the record for

the lowest number of validators in comparison to Solana and, notably, Ethereum. This

disparity becomes a noteworthy point of discussion, which prompts a deeper

exploration into the intricacies that underlie this unique facet.

Avalanche's validator count, situated at the nadir of this comparison, raises

pertinent questions about the reasons behind this occurrence. To unravel this

narrative, it's crucial to delve into the core attributes that define Avalanche's validator

ecosystem. One pivotal aspect lies in the exclusivity of Avalanche's validator Primary

Network from which the data is extracted. With a limited number of positions

available, the selection process is designed to ensure optimal network performance

and security. While this selectivity underscores the network's robustness, it could

potentially contribute to the observed disparity in validator count.

A noteworthy nuance emerges in the form of the variability in validator

numbers across different subnets within Avalanche. This inherent fluctuation is

attributed to the unique characteristics and demands of each subnet. As a result, a

comprehensive analysis of the validator count necessitates a holistic consideration of

the broader context, encompassing the distinct subnets' contributions to the

overarching Avalanche ecosystem.

73

TPS

This juncture marks a pivotal shift in our analysis, especially when contrasting

Solana and Ethereum. Here, the discrepancy between the two platforms becomes as

pronounced as the variance in their respective validator counts. However, it is worth

noting a particularly intriguing metric: that which pertains to Avalanche. Despite its

consensus mechanism addressing scalability concerns, Avalanche remains in the

shadow of Solana, revealing an area where it has considerable room for improvement.

Time to Finality

Parallel to the TPS analysis, the outcomes presented here closely mirror those

observed in the TPS assessment. These results accentuate the evident scalability

limitations in Ethereum, stemming from its block-based consensus mechanism, which

stands in contrast to the transaction-based approach adopted by Solana and

Avalanche. Moreover, within the context of Avalanche, the incorporation of multiple

rounds of voting inadvertently results in the squandering of valuable time,

contributing to its suboptimal performance.

Downtime

While lacking a concrete quantification for this metric, its significance in

portraying network security necessitates an examination of each blockchain in this

context. As of the present day, Ethereum has remained uninterrupted, showcasing its

robust security posture. In contrast, Solana has encountered instances of downtime on

10 separate occasions, a noteworthy concern given its relatively brief existence,

signaling vulnerabilities in this domain (Mitchelhill, 2023). On the other hand,

Avalanche stands out for never having experienced a network downtime,

underscoring its strength, particularly when considering its comparatively younger

lifespan.

74

4.3. Conclusions Regarding the Blockchain Trilemma

Drawing from an in-depth analysis of the technological facets, along with the

subsequent practical implications elucidated by the aforementioned metrics, we can

arrive at insightful conclusions concerning how each blockchain addresses the

complexities of the Blockchain Trilemma.

 Ethereum: While it distinctly outshines Solana and Avalanche in terms of

Security and Decentralization, its shortcomings in Scalability and procedural

adaptability impede the seamless integration of modern Decentralized

Applications. The challenges it faces in achieving high transaction throughput

while maintaining network efficiency can potentially hinder its efficacy in

accommodating the demands of contemporary blockchain applications.

 Solana: Standing as a clear frontrunner in Scalability, Solana's commendable

performance is juxtaposed with marked concerns related to Decentralization

and Security. The susceptibility to Downtime, as evidenced by the metric

discussed, casts a shadow over its security profile. Without addressing these

vulnerabilities, only through rigorous testing and the passage of time can

Solana's standing remain unimpaired. In the realm of Decentralization, despite

the apparent low validator count, a promising horizon emerges. The dynamic

nature of blockchain ecosystems can lead to an increase in validators as

participation becomes more accessible, bolstering Solana's distribution, as

indicated by Token Distribution Entropy.

 Avalanche: Distinguished by its departure from the traditional Blockchain

Trilemma paradigm, Avalanche showcases an innovative path that prioritizes

flexibility. Operating outside the bounds of conventional categories, Avalanche

strikes a balance between Scalability, Security, and Decentralization, aligning

its Primary Network with optimal performance in these domains. This network

serves as the bedrock, demonstrating robust Scalability, Security, and

75

Decentralization. What further sets Avalanche apart is its visionary approach

to subnets. By offering the capacity for users to establish their own blockchains

within these subnets, Avalanche manifests unparalleled flexibility. This

adaptability empowers the platform to allocate resources in alignment with

specific blockchain requirements, marking it as a pioneer in customization and

optimization.

In summation, the analysis yields intriguing insights: Solana is well poised to

potentially resolve the Blockchain Trilemma through its notable Scalability attributes.

On the other hand, Avalanche has deftly evaded the constraints of the Trilemma by

ensuring the seamless fusion of Scalability, Security, and Decentralization within its

Primary Network. Additionally, the ingenuity of subnets positions Avalanche as an

optimized and versatile blockchain solution, augmenting its potential for industry

leadership. Thus, considering the comprehensive panorama, Avalanche emerges as a

formidable contender, boasting higher prospects to ascend as the preeminent

Blockchain Technology.

76

Chapter 7: Practical Takeaway

Beyond the theoretical explorations meticulously presented in the preceding

chapters, this project extends its impact to the practical realm, rendering it an

invaluable asset for GSR. Within the dynamic landscape of the blockchain ecosystem,

characterized by continuous evolution, this endeavor offers a tangible takeaway that

holds profound significance. Specifically, the project introduces a tool designed to

monitor and track the metrics delineated in Chapter 6 over time, thus furnishing a

continuous feedback mechanism regarding the progression of each blockchain in

tackling the intricate challenges posed by the Blockchain Trilemma.

To achieve this ambitious goal, a two-fold approach has been undertaken,

involving the development of two distinct Python files. These files encapsulate the

essence of a comprehensive data-tracking solution, affording GSR the means to gather

insights and assess the ever-evolving state of various blockchains.

The first Python file is tailored to the extraction and compilation of data from

diverse resources. This intricate process is meticulously orchestrated to ensure the

accurate collection of relevant metrics. The collated data is then judiciously saved,

laying the foundation for a meticulously curated database that evolves over time. This

database becomes a repository of valuable insights, affording GSR the ability to gauge

the trajectory of each blockchain's performance in addressing the Blockchain

Trilemma.

Complementing the data extraction and compilation endeavor, the second

Python file takes the form of a dashboard. This sophisticated dashboard is ingeniously

designed to provide an easily accessible and analyzable interface for the amassed data.

The dashboard serves as a visual conduit, rendering complex information

comprehensible at a glance. Its user-friendly design empowers GSR to delve into the

77

nuances of the tracked metrics, fostering informed decision-making and insights

generation.

In the subsequent chapter, our exploration will delve deep into the intricacies

of both these Python files, unraveling the technical underpinnings that bring this

visionary project to life. Through this pragmatic lens, the project evolves from

theoretical discourse to practical utility, forging a potent synergy between theoretical

insight and real-world application. Both codes will be displayed in the Annex.

7.1. get_data.py

As previously highlighted, the first Python file operates in a two-fold manner:

it procures data from a myriad of diverse resources and subsequently organizes and

stores this information within an Excel file. Consequently, this process involves a series

of sequential steps, each of paramount importance.

Web Scraping

To initiate the data procurement endeavor, the pivotal technique of web

scraping takes center stage. This procedure hinges on the utilization of specialized

tools designed to extract data from various online platforms. In the context of

blockchain data acquisition, each blockchain possesses its official platforms replete

with an array of statistics. While real-time data collection is indeed attainable,

obtaining historical data is often a formidable challenge. It is here that the significance

of crafting a comprehensive dataset, exclusive to GSR, becomes evident.

To fulfill this ambitious data compilation, a potent ally in the form of the

Selenium package is employed. This Python package constitutes a powerful

automation tool, granting the capability to programmatically interact with web pages.

78

In essence, Selenium empowers the script to navigate, access, and retrieve information

from websites as if an actual user were performing these actions.

The Selenium package's salient feature lies in its capacity to simulate human-

like interaction with web pages. This includes actions such as clicking buttons,

entering text, navigating through menus, and more. By accurately mimicking these

user interactions, Selenium effectively bypasses potential obstacles posed by website

structures designed to prevent automated data collection.

The emulation of human behavior through the utilization of the Selenium

package bears particular significance, especially in scenarios where the objective is to

extract intricate data nuances that replicate the token distribution across various

validators. A common scenario entails the token distribution data being presented in

tabular form, often with a limited number of entries viewable initially. To access

additional entries, a requisite action, such as clicking a button, is needed to unveil

further information.

To shed light on the technical intricacies, the process unfolds as follows:

 Initializing the Selenium Driver: This pivotal initial step involves launching

the Selenium driver, which acts as a virtual browser to navigate and interact

with web content. This initiation creates a seamless connection between the

script and the target webpage, paving the way for subsequent interactions.

 Webpage Exploration and Element Retrieval: Within the virtual browsing

environment, the script systematically scans through the webpage's structure.

Guided by the objective of retrieving specific elements, it seeks out the relevant

tokens of data, often employing techniques such as locating the element using

its Full X-Path. The emulation of human-like browsing is pivotal here, enabling

the script to seamlessly interact with the webpage elements.

 Execution of Interaction: Once the target element is identified, the Selenium

script effectively simulates the human action necessary to retrieve the desired

79

data. This could involve clicking buttons, selecting dropdowns, or performing

any action that triggers the display of additional data entries.

 Closing the Driver: Concluding the interaction, the Selenium driver is

gracefully closed, effectively terminating the virtual browsing session. This

phase is integral in maintaining system resources and ensuring a controlled

conclusion to the data extraction process.

Data Storage

With the successful extraction of data accomplished, the subsequent phase

seamlessly transitions into data storage, underpinned by a preliminary but crucial

preparatory step: data cleaning. This preparatory process becomes pivotal as the data

harvested through Web Scraping techniques typically manifests in text form, often

accompanied by contextual elements that include more than just the numerical values

sought after. A common occurrence involves instances such as '28,389 ETH', where the

relevant numerical value is coupled with extraneous textual descriptors.

In light of this, the process of data storage necessitates the integration of

effective data-cleaning methodologies. The ultimate objective is to refine the extracted

data, stripping away non-desirable elements and rendering it amenable for seamless

conversion into the intended data types.

 An example would be instances such as '28,389 ETH', where data cleaning

routines target the removal of extraneous characters, including commas and currency

symbols (such as 'ETH'). This action streamlines the data, leaving behind only the

numeric component which can then be converted into the corresponding data type,

being in this case, an integer.

Transitioning into the storage phase, the initial pivotal consideration revolves

around the determination of the optimal storage destination. At this juncture, a

80

strategic choice must be made regarding the repository that will house the

meticulously acquired and refined data.

The underpinning rationale for this data storage decision is tied to the intended

execution frequency of the code. It is meticulously designed to be executed daily.

Operating within such a narrow temporal interval, changes within the metrics may

not exhibit significant variations, rendering a shorter interval redundant.

Consequently, this daily execution rhythm culminates in the accumulation of a mere

365 new data rows each year. Given this relatively modest dataset size, leveraging

tools such as Excel is a viable and judicious approach.

In essence, the decision hinges on practicality and efficiency. The Excel

platform, known for its user-friendly interface and adeptness at managing smaller

datasets, aligns harmoniously with the limited data volume anticipated within the

context of this project. This strategic alignment streamlines both data storage and

subsequent analysis, rendering the decision to harness Excel as the storage medium

not only practical but also astute in optimizing resource allocation.

As a result, the Excel workbook has been thoughtfully compartmentalized into

four distinct Sheets, each serving a specific purpose:

 Sheets 'Ethereum', 'Solana', and 'Avalanche': These sheets are individually

designated to house the time series data for each respective technology. Each

sheet meticulously captures variables that exhibit temporal variations.

Specifically, these variables include the dynamic 'Number of Validators' and

'TPS'. Each sheet boasts a streamlined structure comprising three columns,

where the first two columns correspond to the mentioned variables, and the

third column is dedicated to recording the precise date of data extraction. This

organizational architecture is visually exemplified in Figure 13. Notably, in the

case of Solana, the metrics are expanded to incorporate two additional

variables: the Nakamoto Coefficient and the Token Distribution Entropy, both

of which exhibit temporal variations.

81

Figure 13. Solana Data Stored

 Sheet ‘Aggregated’: This sheet, illustrated in Figure 14, emerges as a pivotal

component, designed to encapsulate a comprehensive aggregation of all

studied metrics across the various blockchains. The strategic rationale

underlying this sheet lies in the convenience of facilitating holistic comparisons.

Here, an all-encompassing table is created, incorporating all metrics studied,

providing a readily accessible means of comparing these metrics across the

diverse blockchain platforms. The structure of this sheet is a masterstroke, with

the majority of metrics remaining static, barring those subject to temporal

variation. For the dynamically evolving metrics, such as 'Number of Validators'

and 'TPS', the Excel automatically populates the most recent available data,

ensuring the table remains consistently updated with the latest insights. In

essence, this table harmonizes the dual characteristics of being both static and

dynamic, enhancing its utility as a reference tool.

Figure 14. Aggregated Data Stored

82

7.2. dashboard.py

Given the perpetual influx of updated data, the imperative of a dynamic

dashboard emerges, one that possesses the agility to extract this evolving data and

seamlessly update its graphical representations. Beyond mere data presentation, the

dashboard assumes the pivotal role of enabling effective comparisons between

different metrics and blockchain technologies. To empower users with the ability to

control the displayed information, granting them the discretion to toggle between

displayed and hidden metrics, an interactive element is a prerequisite.

In light of these multifaceted requirements, Python rises once again as the

platform of choice. Python's inherent versatility, coupled with its rich ecosystem of

libraries and tools, uniquely positions it to fulfill the dynamic and interactive needs of

the envisioned dashboard. Python's capability to harness real-time data, process it, and

then translate it into dynamic visualizations aligns harmoniously with the project's

overarching goals.

Drawing from the available dataset, a constellation of four pivotal graphs

harmoniously coalesce to offer a comprehensive panorama of how diverse blockchains

fare when confronted with the intricacies of the Blockchain Trilemma.

 Radar Plot: Illustrated in Figure 15, the inaugural graph materializes as a Radar

Plot, adeptly capturing the performance of each blockchain across the array of

metrics under consideration. This visual representation leverages the

aggregated data stored in the 'Aggregated' table of the Excel file. The Radar Plot

ingeniously condenses complex data into an intuitive visual format, enhancing

comprehension and comparison.

Notably, this Radar Plot employs scaling mechanisms to standardize the data's

range to [0, 1]. Within this normalized range, the technology attaining the least

favorable metric outcome receives a value of 0, while the technology excelling

in the same metric attains a value of 1. Technologies achieving intermediate

results are assigned values that interpolate between the extremities, predicated

83

upon their proximity to the maximal and minimal values. This scaling

harmonizes diverse metrics and technologies, facilitating an equitable and

cohesive evaluation.

To empower user engagement and tailor insights, the dashboard facilitates

interaction. Users are empowered to toggle checkboxes, selecting specific

technologies for display. This intuitive feature amplifies the user's agency,

allowing them to customize their view of the Radar Plot based on their

analytical inclinations. Within Figure 15, Ethereum and Solana are both elected

for display, underscoring the versatility of the interactive dashboard in catering

to user preferences.

Figure 15. Radar Plot

 Aggregated Table: Evident in Figure 16, the Aggregated Table assumes a

prominent position within the visual repertoire. Conceived as an unabridged

replication of the 'Aggregated Table', its purpose harmonizes with that of the

Radar Plot, but with a distinct intent. This table mirrors the 'Aggregated Table'

84

in its entirety, meticulously capturing the unadulterated and up-to-date metric

values without resorting to scaling.

The rationale for incorporating the Aggregated Table lies in its capacity to

complement the insights gleaned from the Radar Plot. Unlike the scaled values

of the Radar Plot, the Aggregated Table showcases the precise, real-world

metric values, preserving their veracity without any normalization. This facet

augments the dashboard's capacity to cater to a spectrum of analytical

preferences, ensuring that users can choose to engage with unscaled, absolute

data when required.

Figure 16. Aggregated Table

 Number of Validators Time Series: Presented in Figure 17, the ensuing

visualization is dedicated to spotlighting the temporal flux in the number of

validators across distinct blockchains. This chart is thoughtfully designed to

encapsulate the dynamic changes that unfurl over time, specifically procuring

data from the 'Ethereum', 'Solana', and 'Avalanche' sheets within the Excel file.

Parallel to the Radar Plot, this visualization invites user interaction through

checkboxes. Users are empowered to select and display the blockchain of their

choosing, fostering a tailor-made analytical journey. By toggling checkboxes,

users can summon a focused representation of the number of validators for

their preferred blockchain(s).

85

Figure 17. Number of Validators Time Series

 TPS Time Series: Unveiled within Figure 18, the culminating visualization

mirrors the structure of the Number of Validators Time Series. However, in this

iteration, the spotlight pivots toward tracking the Time-Per-Second (TPS)

metrics. This dynamic chart illuminates the temporal shifts in TPS across

blockchain platforms. Similar to its counterpart, this visualization orchestrates

an intricate dance with user engagement, allowing for the selection of preferred

blockchains through intuitive checkboxes.

86

Figure 18. TPS Time Series

87

References

Antonopoulos, A. M. (2014). Mastering Bitcoin. O'Reilly Media, Inc.

Avalanche. (n.d.). Avalanche Dashboard. Retrieved from Avalanche:

https://stats.avax.network/dashboard/overview/

Bloomenthal, A. (2021, August 31). Retrieved from Investopedia:

https://www.investopedia.com/terms/m/marketmaker.asp

Buttolph, S. (2022). Snowman Consensus. Avalanche Summit 2022. Monastery.

Bybit. (2022, July 18). Nakamoto Coefficient: An Accurate Indicator for Blockchain

Decentralization? Retrieved from Bybit: https://learn.bybit.com/blockchain/nakamoto-

coefficient-decentralization/

Circle. (2023). Developers Circle: Blockchain Confirmations. Retrieved from Circle:

https://developers.circle.com/developer/docs/confirmations

Cryptopedia. (2022, March 17). What was the DAO? Retrieved from Cryptopedia:

https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

Ethereum. (2023, July 26). Proof-Of-Stake (PoS). Retrieved from Ethereum:

https://ethereum.org/en/developers/docs/consensus-

mechanisms/pos/#:~:text=Ethereum%20switched%20on%20its%20proof,proof%2Dof

%2Dwork%20architecture

Ethereum. (n.d.). BeaconScan. Retrieved from BeaconScan: https://beaconscan.com/

Frankenfield, J. (2021, July 26). Merkle Tree in Blockchain: What it is and How it Works.

Retrieved from Investopedia: https://www.investopedia.com/terms/m/merkle-tree.asp

88

Frankenfield, J. (2023, May 31). What Are Smart Contracts on the Blockchain and How They

Work. Retrieved from Investopedia: https://www.investopedia.com/terms/s/smart-

contracts.asp

Frankenfield, J. (2023, May 28). What Is a hash? Hash Functions and Cryptocurrency Mining.

Retrieved from Investopedia: https://www.investopedia.com/terms/h/hash.asp

Kasireddy, P. (2017, September 13). How does Ethereum work, anyway? Retrieved from

Preethi Kasireddy: https://www.preethikasireddy.com/post/how-does-ethereum-work-

anyway

Mitchelhill, T. (2023, February 28). The Solana Network Has Gone Down 10 Times. Will It

Recover? Retrieved from The Chainsaw: https://thechainsaw.com/defi/altcoins/solana-

down-network-freeze-ten-times-

recover/#:~:text=How%20many%20times%20has%20Solana,a%20total%20of%20ten

%20times

Sekniqi, K., Laine, D., Buttolph, S., & Gün Sirer, E. (2020). Avalanche Platform.

Solana. (2023). Solana Documentation. Retrieved from Solana: https://docs.solana.com/es/

Solana Beach. (n.d.). Solana Beach. Retrieved from Solana Beach: https://solanabeach.io

Solana Floor Content. (2023, April 19). Turbine: Solana's Revolutionary Block Propagation

Protocol. Retrieved from Solana Floor Content: https://ghost.step.finance/turbine-

solanas-revolutionary-block-propagation-protocol/

Tech Target. (2021, June). Data Security and Privacy: Public Key. Retrieved from Tech Target:

https://www.techtarget.com/searchsecurity/definition/public-

key#:~:text=A%20public%20key%20can%20be,is%20sent%20over%20the%20intern

et

89

Annex I: Code

get_data.py

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import numpy as np
import pandas as pd
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.keys import Keys
import math
import time
import re
from datetime import datetime

Get Date
today = datetime.now()
formatted_date = today.strftime("%d/%m/%Y")

################################### ETHEREUM

Number of Validators
Initialize the Selenium WebDriver
driver = webdriver.Chrome()

URL of the website to scrape
url = "https://beaconscan.com/validators#active"
driver.get(url)
driver.implicitly_wait(30)

xpath = "/html/body/main/section[1]/div/ul/li[2]/a"
element = driver.find_element(By.XPATH, xpath)
match = re.search(r'\((\d+)\)', element.text)
number_validators = int(match.group(1))
print(number_validators)

Close the Driver
driver.quit()

Transactions Per Second
Initialize the Selenium WebDriver
driver = webdriver.Chrome()

url =
"https://ethtps.info/#:~:text=Ethereum%20is%20doing%2029.33%20TPS&text=Drag%20the%2
0slider%20above%20to,compare%20the%20historical%20TPS%20distribution."
driver.get(url)

90

driver.implicitly_wait(10)

xpath = "/html/body/div/div[1]/center[2]/h4"
element = driver.find_element(By.XPATH, xpath)
match = re.search(r'([\d.]+)', element.text)
tps = float(match.group(1))
print(tps)

Close the Driver
driver.quit()

Read existing data from Excel file (specific sheet)
excel_file = "Data.xlsx"
sheet_number = 0
df = pd.read_excel(excel_file, sheet_name=sheet_number)

Create a new row as a dictionary
new_row = {
 'Date': formatted_date,
 'Number of Validators': int(number_validators),
 'TPS': float(tps)
}

Add the new row to the DataFrame
df = df.append(new_row, ignore_index=True)

Write the updated data to the same sheet in Excel file
with pd.ExcelWriter(excel_file, engine='openpyxl', mode='a',
if_sheet_exists='replace') as writer:
 df.to_excel(writer, sheet_name='Ethereum', index=False, header=True)

################################### SOLANA

Transactions Per Second

Initialize the Selenium WebDriver
driver = webdriver.Chrome()

URL of the website to scrape
url = "https://solanabeach.io"
driver.get(url)

Obtain Element
xpath =
"/html/body/div[1]/div[3]/div/div/div/div[6]/div/div[1]/div/div[1]/div/div/p/span"
timeout = 10
element = WebDriverWait(driver, timeout).until(
 EC.visibility_of_element_located((By.XPATH, xpath))
)
tps = element.text
tps = tps.replace(',', '')
print(tps)

Close the Driver
driver.quit()

Number of Validators

91

Initialize the Selenium WebDriver
driver = webdriver.Chrome()

URL of the website to scrape
url = "https://solanabeach.io/validators"
driver.get(url)
driver.implicitly_wait(10)

Obtain Element
selector_path = "#app > div.sc-dfVpRl.dEiGAe > div > div > div > div.sc-
kPVwWT.kRENfF.card.undefined > div > div > div:nth-child(1) > div > div > div > div
> p > span"
element = driver.find_element(By.CSS_SELECTOR, selector_path)
number_validators = element.text
print(number_validators)

Nakamoto Coefficient and Entropy

Scroll down all the page
actions = ActionChains(driver)
scroll_increment = 3000 # Adjust as needed
scroll_count = 0

while scroll_count < 350: # Perform scrolling a few times for demonstration
 actions.send_keys(Keys.PAGE_DOWN).perform()
 scroll_count += 1

Obtain Element
stake = np.array([])
number_validators = number_validators.replace(",", "")
for i in range(int(number_validators)+1):
 if i != 30:
 xpath =
"/html/body/div[1]/div[3]/div/div/div/div[4]/div/table/tbody/tr[{}]/td[2]/span[1]".
format(i+1)
 element = driver.find_element(By.XPATH, xpath)
 stake = np.append(stake, element.text)

stake = np.array([int(s.replace(',', '')) for s in stake])
total_amount = np.sum(stake)

Entropy
entropy = 0
for i in range(len(stake)):
 individual_stake = stake[i]/total_amount
 entropy = entropy + individual_stake*math.log2(individual_stake)
entropy = -entropy
print(entropy)

Nakamoto Coefficient
cumulative_stake = 0
i = 0
while i<len(stake):
 individual_stake = stake[i]/total_amount
 cumulative_stake = cumulative_stake + individual_stake
 i = i+1

92

 if cumulative_stake>1/3:
 break

nakamoto = i
print(nakamoto)

Close the Driver
driver.quit()

Read existing data from Excel file (specific sheet)
excel_file = "Data.xlsx"
sheet_number = 1
df = pd.read_excel(excel_file, sheet_name=sheet_number)

Create a new row as a dictionary
new_row = {
 'Date': formatted_date,
 'Number of Validators': int(number_validators),
 'TPS': float(tps),
 'Nakamoto Coefficient': int(nakamoto),
 'Entropy': float(entropy)
}

Add the new row to the DataFrame
df = df.append(new_row, ignore_index=True)

Write the updated data to the same sheet in Excel file
with pd.ExcelWriter(excel_file, engine='openpyxl', mode='a',
if_sheet_exists='replace') as writer:
 df.to_excel(writer, sheet_name='Solana', index=False, header=True)

################################### AVALANCHE

Number of Validators

Initialize the Selenium WebDriver
driver = webdriver.Chrome()

URL of the website to scrape
url = "https://stats.avax.network/dashboard/network-status/"
driver.get(url)
driver.implicitly_wait(30)

Avalanche page is an iFrame
iframe_xpath = "/html/body/div/main/div/iframe"
iframe_element = driver.find_element(By.XPATH, iframe_xpath)

Switch to the iframe context
driver.switch_to.frame(iframe_element)

Search inside the iFrame
number_validators =
driver.find_element(By.XPATH,"/html/body/div[1]/div/div/main/div/div/div/div[2]/div
/div/div/div/div[2]/span/h1").text
number_validators = number_validators.replace(',', '')

93

print(number_validators)

TPS

URL of the website to scrape
url = "https://stats.avax.network/dashboard/overview/"
driver.get(url)
driver.implicitly_wait(10)

Avalanche page is an iFrame
iframe_xpath = "/html/body/div/main/div/iframe"
iframe_element = driver.find_element(By.XPATH, iframe_xpath)

Switch to the iframe context
driver.switch_to.frame(iframe_element)

Search inside the iFrame
tps =
driver.find_element(By.XPATH,"/html/body/div[1]/div/div/main/div/div/div/div[2]/div
/div/div/div/div[2]/span/h1").text
print(tps)

Close the Driver
driver.quit()

Read existing data from Excel file (specific sheet)
excel_file = "Data.xlsx"
sheet_number = 2
df = pd.read_excel(excel_file, sheet_name=sheet_number)

Create a new row as a dictionary
new_row = {
 'Date': formatted_date,
 'Number of Validators': int(number_validators),
 'TPS': float(tps),
}

Add the new row to the DataFrame
df = df.append(new_row, ignore_index=True)

Write the updated data to the same sheet in Excel file
with pd.ExcelWriter(excel_file, engine='openpyxl', mode='a',
if_sheet_exists='replace') as writer:
 df.to_excel(writer, sheet_name='Avalanche', index=False, header=True)

94

dashboard.py

streamlit run dashboard.py

import streamlit as st
import pandas as pd
import plotly.express as px
import openpyxl # To read excel
import xlwings as xw # To retrieve calculated values
from sklearn.preprocessing import MinMaxScaler
import plotly.graph_objects as go
import math

################ Loading Data

Load the Excel
excel_file = "Data.xlsx"
sheet_name = "Aggregated"
wb = xw.Book(excel_file) # Read the excel getting only the calculated values
ws = wb.sheets[sheet_name] # Filter to get only sheet 3

ws0 = wb.sheets["Ethereum"]
ws1 = wb.sheets["Solana"]
ws2 = wb.sheets["Avalanche"]

Get the used range of the sheet
used_range = ws.used_range
used_range0 = ws0.used_range
used_range1 = ws1.used_range
used_range2 = ws2.used_range

Convert the used range to a DataFrame
df = pd.DataFrame(used_range.value[1:], columns=used_range.value[0])
df = df.dropna(how="all")
df = df.iloc[:, :-1]

df0 = pd.DataFrame(used_range0.value[1:], columns=used_range0.value[0])
df0 = df0.dropna(how="all")

df1 = pd.DataFrame(used_range1.value[1:], columns=used_range1.value[0])
df1 = df1.dropna(how="all")

df2 = pd.DataFrame(used_range2.value[1:], columns=used_range2.value[0])
df2 = df2.dropna(how="all")

Close the workbook
wb.close()

################ Creating Dashboard
st.set_page_config(layout="wide")

st.markdown('<h1 style="text-align: center;">Comparative Analysis of Blockchain
Metrics</h1>

', unsafe_allow_html=True)

Left section (1/2 width)

95

col1, col2, col3 = st.columns([5, 1, 5])

Column 1
with col1:

 # Scale the dataset
 scaler = MinMaxScaler()
 df_scaled = df.copy()
 first = df_scaled.pop('Metric')
 for i in range(len(df_scaled)):
 if i == 1:
 number_validators = [df0['Number of Validators'].iloc[-1], df1['Number
of Validators'].iloc[-1], df2['Number of Validators'].iloc[-1]]
 scaled_values = [df_scaled.iloc[i,0]/math.log2(number_validators[0]),
df_scaled.iloc[i,1]/math.log2(number_validators[1]),
df_scaled.iloc[i,2]/math.log2(number_validators[2])]
 scaled_series = pd.Series(scaled_values, index=['Ethereum', 'Solana',
'Avalanche'])
 else:
 reshaped_series = df_scaled.iloc[i].values.reshape(-1, 1)
 scaled_values = scaler.fit_transform(reshaped_series)
 scaled_series = pd.Series(scaled_values.flatten(), index=['Ethereum',
'Solana', 'Avalanche'])
 if i == len(df_scaled)-1:
 scaled_values = 1 - scaled_values
 scaled_series = pd.Series(scaled_values.flatten(), index=['Ethereum',
'Solana', 'Avalanche'])
 df_scaled.loc[i] = scaled_series

 df_scaled.insert(0, 'Metric', first)

 # Create the radar plot
 # Create checkboxes for selecting columns
 checks = st.columns(3)
 with checks[0]:
 show_ethereum = st.checkbox('Ethereum', value=True)
 with checks[1]:
 show_solana = st.checkbox('Solana')
 with checks[2]:
 show_avalanche = st.checkbox('Avalanche')

 # Create a custom radar plot using Plotly
 fig = go.Figure()
 fig.update_layout(
 polar=dict(
 radialaxis=dict(
 visible=True,
 range=[0, 1] # Adjust the range to match your data
)
),
 showlegend=True,
 title='Metrics Static Comparison at {}'.format(df0['Date'].iloc[-1])
)

 if show_ethereum:
 fig.add_trace(go.Scatterpolar(
 r=df_scaled['Ethereum'],
 theta=df_scaled['Metric'],

96

 fill='toself',
 name='Ethereum'
))

 if show_solana:
 fig.add_trace(go.Scatterpolar(
 r=df_scaled['Solana'],
 theta=df_scaled['Metric'],
 fill='toself',
 name='Solana'
))

 if show_avalanche:
 fig.add_trace(go.Scatterpolar(
 r=df_scaled['Avalanche'],
 theta=df_scaled['Metric'],
 fill='toself',
 name='Avalanche'
))

 col1.plotly_chart(fig, use_container_width=True)

 col1.table(df.style.hide_index())

Column 3
with col3:

 # Create checkboxes for selecting datasets
 checks = st.columns(3)
 with checks[0]:
 show_ethereum = st.checkbox('Ethereum ', value=True)
 with checks[1]:
 show_solana = st.checkbox('Solana ')
 with checks[2]:
 show_avalanche = st.checkbox('Avalanche ')

 # Create a line chart using Plotly with independent traces for each selected
dataset
 data = []

 if show_ethereum:
 trace_ethereum = go.Scatter(x=df0['Date'], y=df0['Number of Validators'],
mode='lines', name='Ethereum')
 data.append(trace_ethereum)

 if show_solana:
 trace_solana = go.Scatter(x=df1['Date'], y=df1['Number of Validators'],
mode='lines', name='Solana')
 data.append(trace_solana)

 if show_avalanche:
 trace_avalanche = go.Scatter(x=df2['Date'], y=df2['Number of Validators'],
mode='lines', name='Avalanche')
 data.append(trace_avalanche)

 layout = go.Layout(title='Number of Validators Over Time', xaxis_title='Date',
yaxis_title='Number of Validators')

97

 fig = go.Figure(data=data, layout=layout)

 col3.plotly_chart(fig, use_container_width=True)

 # Create checkboxes for selecting datasets
 checks = st.columns(3)
 with checks[0]:
 show_ethereum = st.checkbox('Ethereum ', value=True)
 with checks[1]:
 show_solana = st.checkbox('Solana ')
 with checks[2]:
 show_avalanche = st.checkbox('Avalanche ')

 # Create a line chart using Plotly with independent traces for each selected
dataset
 data = []

 if show_ethereum:
 trace_ethereum = go.Scatter(x=df0['Date'], y=df0['TPS'], mode='lines',
name='Ethereum')
 data.append(trace_ethereum)

 if show_solana:
 trace_solana = go.Scatter(x=df1['Date'], y=df1['TPS'], mode='lines',
name='Solana')
 data.append(trace_solana)

 if show_avalanche:
 trace_avalanche = go.Scatter(x=df2['Date'], y=df2['TPS'], mode='lines',
name='Avalanche')
 data.append(trace_avalanche)

 layout = go.Layout(title='TPS Over Time', xaxis_title='Date',
yaxis_title='TPS')
 fig = go.Figure(data=data, layout=layout)

 col3.plotly_chart(fig, use_container_width=True)

98

Annex II: Sustainable Development

Goals

In the fast-evolving landscape of blockchain technology, the project assumes a

pivotal role by conducting an in-depth evaluation of three prominent blockchain

platforms—Ethereum, Solana, and Avalanche. This comprehensive analysis is not

only a strategic endeavor but also aligns profoundly with the United Nations'

Sustainable Development Goals (SDGs). Specifically, the project resonates with SDG

8: Decent Work and Economic Growth, and SDG 9: Industry, Innovation, and

Infrastructure.

Project Alignment with SDG 8: Decent Work and Economic Growth

The project's central focus on evaluating three prominent blockchain

technologies, namely Ethereum, Solana, and Avalanche, demonstrates a profound

alignment with Sustainable Development Goal 8: Decent Work and Economic Growth.

Through an extensive and meticulous analysis, the project endeavors to provide

essential insights to a key partner, a crypto currency market maker. By equipping the

market maker with these valuable insights, the project empowers them to make

strategic resource allocation decisions and thereby engender well-informed choices

within the market.

In effect, the project directly contributes to the optimization of market-making

strategies, potentially yielding an enhanced level of efficiency in market operations.

This heightened operational efficiency, spurred by the analytical insights delivered by

the project, is a catalyst for economic growth within the spheres of blockchain

99

technology and financial technology at large. The underlying objective of stimulating

economic activities and consequently generating novel job prospects is a testament to

the project's synergy with the principles outlined in SDG 8.

Project Alignment with SDG 9: Industry, Innovation, and Infrastructure

The project's profound engagement with the intricate world of blockchain

technologies inherently aligns with the core tenets of Sustainable Development Goal

9: Industry, Innovation, and Infrastructure. By meticulously scrutinizing the nuances

of Ethereum, Solana, and Avalanche, the project propels innovation within the realm

of blockchain technology through a comprehensive and balanced analysis.

The evaluation of these blockchains, both from theoretical and practical

standpoints, provides a foundation for meaningful innovation by identifying their

respective strengths and limitations. As the project endeavors to construct a real-time

database and a visual dashboard that succinctly captures these findings, it cultivates a

resource that stands to benefit stakeholders seeking a deeper understanding of these

intricate systems. The project's commitment to enhancing comprehension of

blockchain technologies is inherently aligned with SDG 9's pursuit of fostering

resilient and robust industry practices.

