FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Aprendizaje automático	
Código	DTC-IMAT-221	
Título	Grado en Ingeniería Matemática e Inteligencia Artificial	
Impartido en	Grado en Ingeniería Matemática e Inteligencia Artificial [Segundo Curso]	
Créditos	6,0 ECTS	
Carácter	Obligatoria (Grado)	
Departamento / Área	Departamento de Telemática y Computación	

Datos del profesorado			
Profesor			
Nombre	Simón Rodríguez Santana		
Departamento / Área	Departamento de Telemática y Computación		
Correo electrónico	srsantana@icai.comillas.edu		
Profesor			
Nombre	Jaime Pizarroso Gonzalo		
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones		
Despacho	Santa Cruz de Marcenado 26		
Correo electrónico	jpizarroso@comillas.edu		
Teléfono	2732		
Profesores de laboratorio			
Profesor			
Nombre	Lidia Cerdán Orts		
Departamento / Área	Departamento de Telemática y Computación		
Correo electrónico	Icerdan@icai.comillas.edu		

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

Esta es la primera asignatura de análisis de datos de la titulación. En ella se cubrirán aspectos básicos de aprendizaje supervisado y no supervisado pero también conceptos avanzados. La asignatura pretende serntar las bases matemáticas del aprendizaje automático pero sin perder la componente práctica y aplicada de la disciplina.

Prerequisitos

Programación en python. Álgebra y Cálculo (en 1 y varias variables).

Competencias - Objetivos				
Competencias				
GENERALES	GENERALES			
CG02	Capacidad de razonamiento abstracto y sentido crítico, así como de cálculo, modelado, simulación, optimización y predicción, para dar respuesta a los problemas planteados por la ciencia, la tecnología y la sociedad en general.			
CG08	Capacidad para identificar, analizar y definir los elementos significativos que constituyen un problema vinculado a la explotación de datos e inteligencia artificial aplicada a las actividades empresariales para resolverlo con criterio y de forma efectiva			
ESPECÍFICAS				
CE01	Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería, aplicando con aptitud los conocimientos sobre: álgebra lineal y multilineal, geometría, cálculo diferencial e integral, ecuaciones diferenciales, métodos numéricos, estadística y optimización.			
CE22	Capacidad para analizar los datos mediante la aplicación de métodos y técnicas estadísticas, trabajando con datos cualitativos y cuantitativos.			
CE24	Capacidad para identificar los modelos estadísticos y de investigación operativa más adecuados para la toma de decisiones			
CE25	Conocimiento y capacidad para aplicar técnicas de inteligencia artificial, aprendizaje automático, aprendizaje profundo y aprendizaje por refuerzo que permiten extraer conocimiento de grandes volúmenes de datos.			
CE27	Capacidad para diseñar programas que usen software estadístico y de investigación operativa conociendo su alcance y limitaciones			

Resultados de Aprendizaje		
RA1	Conocer los principios básicos del aprendizaje automático	
RA2	Conocer, comprender y manejar el análisis de regresión como técnica para analizar dependencias entre variables	
RA3	Conocer, comprender y manejar las técnicas de clasificación para analizar dependencias entre variables	
RA4	Conocer, comprender y manejar las técnicas de reducción de la dimensión para analizar la interdependencia entre variables y simplificar problemas de aprendizaje	
RA5	Conocer, comprender y manejar el análisis de conglomerados para estudiar la interdependencia en los datos bajo estudio	
RA6	Ser capaz de seleccionar la técnica de aprendizaje automático más apropiada en función del problema a resolver	
RA7	Conocer las técnicas evolutivas en inteligencia artificial	
	1	

RA8

Conocer y manejar software estadístico para analizar un conjunto de datos multivariante utilizando técnicas de aprendizaje automático y extraer sus propias conclusiones

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

- 1. Fundamentos del aprendizaje automático.
- 2. Técnicas de clasificación.
- 3. Técnicas de regresión.
- 4. Técnicas de reducción de la dimensión.
- 5. Técnicas de clustering.
- 6. Metaheurísticas en aprendizaje automático. Algoritmos genéticos.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

Las actividades formativas serán:

Clases magistrales expositivas y participativas:

- El profesor combinará exposición de los contenidos teóricos y con ejemplos prácticos, tanto matemáticos como de programación.
- El alumno dispondrá de algunos ejemplos prácticos de código, generado dentro y fuera del aula por el profesor.
- Se plantearán tests cortos para evaluar el seguimiento de los contenidos, haciendo incidencia en aquellas partes con mayores dificultades.

Ejercicios prácticos y resolución de problemas:

- El alumno resolverá problemas planteados por el profesor de forma presencial durante la segunda sesión semanal de clase, fomentando las dinámicas de trabajo cooperativo.
- Puntualmente, alumnos (individualmente o en grupos) presentarán su resolución de ejercicios en clase y se trabajará sobre dicha resolución para mejorarla o discutir detalles de la misma.

Sesiones prácticas con uso de software:

- Se dedicarán las sesiones prácticas a resolver dudas de la práctica semanal y a que los alumnos finalicen su práctica.
- Las prácticas se graduarán por dificultad que los alumnos irán implementando conforme vayan finalizando cada hito.

Actividades de evaluación continua del rendimiento:

• se realizarán pruebas, desarrollarán prácticas complementarias a las semanales y retos gamificados.

CG02, CG08, CE01, CE22, CE24, CE25, CE27

Metodología No presencial: Actividades

Las actividades formativas serán:

Ejercicios prácticos y resolución de problemas:

- El alumno dispondrá de problemas concretos enfocados a asimilar los conceptos explicados téoricos en la sesión anterior de teoría para desarrollar de forma no presencial.
- La solución de problemas será subida a la plataforma la semana siguiente o bien expuesta en clase.

Sesiones prácticas con uso de software:

- Una vez liberada la práctica semanal después de la sesión de teoría correspondiente, el alumno trabajará sobre ella de forma no presencial. El alumno deberá llegar a la sesión presencial de prácticas con los objetivos propuestos en el enunciado al 80%.
- En el aula se extenderá el enunciado de manera incremental y se cubrirán los hitos planteados de forma progresiva.

CG02, CG08, CE01, CE22, CE24, CE25, CE27

Estudio personal:

- El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.
- Después de cada explicación teórica el profesor subirá a la web todos los códigos desarrollados y el alumno deberá revisarlos y plantearse cuestiones "Whatif" para asimilar mejor los conceptos teóricos.
- Se plantearán textos para la lectura en casa una o dos semanas antes de la sesión práctica en la que se trabajen los temas. Cuando corresponda, se preparará una sesión corta de preguntas acerca de dicha lectura.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES					
Clases magistrales expositivas y participativas	Ejercicios prácticos y resolución de problemas	Sesiones prácticas con uso de software	Tutorías para resolución de dudas	Actividades de evaluación continua del rendimiento	
30.00	18.00	10.00	5.00	2.00	
HORAS NO PRESENCIALES					
Estudio personal	Trabajos				
95.00	20.00				
CRÉDITOS ECTS: 6,0 (180,00 horas)					

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
	Examen intersemestral: 25%	
Puntuación asociada al examen final y el	Examen final: 45%	70
intersemestral de la asigntatura	Porcentajes en referencia al total de la nota final (intersemestral - 2 puntos de 10, final - 4 puntos de	70

	10)	
Retos colaborativos Trabajos no presenciales Prácticas	La colaboración, participación y realización exitosa de las prácticas semanales y los retos planteados a lo largo del curso, tanto en sesiones colaborativas como individuales. Incluye también pruebas cortas de clase, así como defensas de prácticas en el aula.	10 %
Proyecto final de la asignatura	Proyecto individual final de la asignatura que el alumno entregará al finalizar el curso.	20

Calificaciones

La calificación final en convocatoria ordinaria y extraodrinaria de la asignatura dependerá de la evaluación de las siguientes actividades:

- Nota Final = 25% Prueba Intersemestral + 45% Examen Final + 10% Prácticas semanales + 20% Proyecto final
- Para aprobar la asignatura, los alumnos deben obtener al menos 5 puntos sobre 10 en el examen final de la asignatura y en la práctica final, tanto en la convocatoria ordinaria como en la extraordinaria.
- Faltas de asistencia al 15% de las horas de clase o más pueden tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria.
- La práctica final será **INDIVIDUAL**. Copias o plagios podrían tener como consecuencia la imposibilidad de presentarse a las convocatorias ordinaria y extraordinaria.
- En clase se puede trabajar **en grupo**, pero la entrega de las prácticas semanales se realiza de manera individual a no ser que se indique explícitamente lo contrario.
- El examen **extraordinario** agrupa las notas del examen intersemestral y el final (70% de la nota).

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- C. Bishop (2007). Pattern Recognition and Machine Learning. Springer.
- T. Hastie, R. Tibshirani, J. Friedman (2017) The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer.
- A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, D. Rubin (2021). Bayesian Data Analysis (3rd edition).
- S. Russell, P. Norvig (2022), Artificial Intellicente: A Modern Approach (4th edition).

Bibliografía Complementaria

- E. Alpaydin (2014). Introduction to Machine Learning. 3rd Ed. MIT Press
- S. Marsland (2015), Machine Learning: An Algorithmic Perspective, 2nd Ed., Chapman & Hall/Crc Machine Learning & Pattern

Recognition.

- T. Mitchell (1997). Machine Learning. McGraw-Hill.
- G. James, D. Witten, T. Hastie & R. Tibshirani (2013). An Introduction to Statistical Learning with Applications in R. Springer.

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

 $\underline{https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792}$