

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura					
Nombre completo	Ecuaciones diferenciales				
Código	DMA-IMAT-212				
Título	Grado en Ingeniería Matemática e Inteligencia Artificial				
Impartido en	Grado en Ingeniería Matemática e Inteligencia Artificial [Segundo Curso]				
Nivel	Reglada Grado Europeo				
Cuatrimestre	Semestral				
Créditos	6,0 ECTS				
Carácter	Básico				
Departamento / Área	Departamento de Matemática Aplicada				
Responsable	Ángela Jiménez Casas				
Horario de tutorías	Será acordado con los alumnos según sus necesidades				

Datos del profesorado	Datos del profesorado					
Profesor						
Nombre	Angela Jiménez Casas					
Departamento / Área	Departamento de Matemática Aplicada					
Despacho Alberto Aguilera 25 [D-202] 2386						
Correo electrónico ajimenez@comillas.edu						
Profesores de laboratorio						
Profesor						
Nombre	Alicia Castellano García					
Departamento / Área	Departamento de Matemática Aplicada					
Despacho	Alberto Aguilera 25 [D-201] 2377					
Correo electrónico	acastellano@icai.comillas.edu					

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

La asignatura de Ecuaciones diferenciales, como la mayoría de asignaturas de matemáticas, desempeña un doble papel en la formación de los graduados. Por una parte les dota de herramientas y métodos matemáticos que les serán de utilidad en otras muchas asignaturas de la titulación, y por otra parte, les aporta capacidades como la de abstracción, de pensamiento lógico y razonamiento crítico, tan importantes en el desarrollo integral de profesionales creativos que puedan abordar los problemas complejos de nuestra sociedad actual.

El principal objetivo, como consecuencia de los aprendizajes a desarrollar en Ecuaciones Diferenciales, es entre otros, aportar al perfil profesional de los graduados en iMAT los siguientes conocimientos, destrezas, habilidades y capacidades:

- 1. Capacidad de modelar y resolver en términos de ecuaciones diferenciales una gran variedad de problemas y fenómenos del campo de la ingeniería, así como de estudiar su buen planteamiento (existencia y unicidad de soluciones).
- 2. Adquirir habilidad y soltura en la aplicación de técnicas de resolución exacta de ecuaciones diferenciales, para resolver los problemas del área planteados, así como en el uso de software específico para su resolución.
- 3. Conocer las técnicas de representación de diagramas de fases de sistemas autónomos, y de estudio de la estabilidad de algunas soluciones (por métodos espectrales y por la construcción de funcionales de Lyapunov), con objeto de obtener información cualitativa del comportamiento de soluciones de sistemas no lineales.
- 4. Conocer el origen de los comportamientos caóticos de sistemas dinámicos no lineales.
- 5. Conocer técnicas de transformación de problemas de contorno generales en problemas de contorno de Sturm-Liouville, y manejar con fluidez la obtención de bases de autofunciones adecuadas y el desarrollo de funciones en serie de dichas bases.

Prerequisitos

Conocimientos básicos de Álgebra Lineal, Geometría y Cálculo:

- 1. Estructura de espacio vectorial, afín y euclídeo.
- 2. Concepto de base y coordenadas en un espacio vectorial.
- 3. Producto escalar. Concepto de ortogonalidad. Bases ortonormales.
- 4. Concepto de autovalor y autovector.
- 5. Cálculo de una forma canónica de Jordan de una matriz y de una matriz de paso asociada.
- 6. Expresión de una curva plana en forma explícita, implícita y paramétrica.
- 7. Derivabilidad: Interpretación geométrica, regla de la cadena y derivación implícita. Recta tangente y normal a una curva en un punto.
- 8. Derivadas parciales: Interpretación geométrica y cálculo de la matriz jacobiana de un campo vectorial.
- 9. Cálculo elemental de primitivas: integrales inmediatas, integración por cambio de variable, integración por partes, integración de fun racionales y trigonométricas.

Competencias GENERALES CG01 Capacidad para la resolución de los problemas matemáticos generales que puedan plantearse en la ingeniería. CG02 Capacidad de razonamiento abstracto y sentido crítico, así como de cálculo, modelado, simulación, optimización y predicción, para dar respuesta a los problemas planteados por la ciencia, la tecnología y la sociedad en general. ESPECÍFICAS Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería, aplicando con aptitud los conocimientos sobre: álgebra lineal y multilineal, geometría, cálculo diferencial e integral, ecuaciones diferenciales, métodos numéricos, estadística y optimización. Capacidad para saber aplicar las técnicas matemáticas más adecuadas en la resolución de los diferentes problemas,

CE03	técnicos y tecnológicos, planteados en el ámbito de la ingeniería y la inteligencia artificial. Aptitud para conocer el rango de aplicabilidad y limitaciones en la resolución de problemas de las diferentes herramientas matemáticas.
CE04	Capacidad para utilizar con habilidad y soltura software matemático, así como para implementar algoritmos y desarrollar programas informáticos que permitan resolver los problemas matemáticos planteados en el ámbito de la ingeniería y de la inteligencia artificial.
CE07	Aptitud para modelar y resolver sistemas físicos en el ámbito de la ingeniería, mediante técnicas de cálculo numérico, álgebra numérica, ecuaciones en diferencias, ecuaciones diferenciales o técnicas propias de la matemática discreta.

Resultados o	le Aprendizaje
RA1	Conocer las definiciones y conceptos básicos del ámbito de las ecuaciones diferenciales ordinarias y los principales resultados teórico-prácticos de problemas de valor inicial y problemas de contorno, así como utilizar software específico para su resolución
RA2	Ser capaz de modelar en términos de ecuaciones o sistemas de ecuaciones diferenciales una gran variedad de problemas y fenómenos del campo de la física y la ingeniería
RA3	Tener habilidad y soltura en la aplicación de las principales técnicas de resolución exacta de ecuaciones diferenciales de primer orden, lineales de coeficientes constantes y orden genérico y sistemas lineales de coeficientes constantes
RA4	Entender la estructura del conjunto de soluciones de una ecuación diferencial lineal de orden genérico, y conocer en el caso de coeficientes constantes el comportamiento asintótico de éstas para el estudio de los fenómenos de resonancia
RA5	Dominar la técnica de resolución de ecuaciones y sistemas de ecuaciones diferenciales lineales basada en la aplicación de la Transformada de Laplace, así como conocer sus principales ventajas y aplicaciones en el campo de la ingeniería
RA6	Saber obtener información cualitativa de muchas ecuaciones y sistemas de ecuaciones diferenciales no lineales, previo estudio de la estabilidad de sus soluciones estacionarias mediante linealización u obtención de un funcional de Lyapunov
RA7	Tener habilidad para obtener un esbozo del diagrama de fases de un sistema autónomo no lineal conservativo en el plano
RA8	Manejar con fluidez y soltura las técnicas de descomposición de funciones como suma de armónicos, sabiendo aplicar éstas a la resolución de problemas de contorno en ecuaciones diferenciales

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

Tema 1

1. Introducción: Ecuaciones diferenciales.

- Conceptos generales sobre ecuaciones diferenciales: ecuación diferencial ordinaria (EDO), orden y linealidad de una EDO, solución general y particular de una EDO, curvas integrales.
- Cálculo de la ecuación diferencial asociada a una familia de curvas planas.

- Problemas de Cauchy o de valor inicial (PVI) y problemas de contorno (PC).
- Teoremas de existencia y unicidad del problema de valor inicial: Teorema de Peano, Teorema de Picard.
- (*) Aproximaciones sucesivas de la solución de un PVI por el método de Picard.
- Modelado de problemas geométricos, de la física y la ingeniería mediante ecuaciones diferenciales (Problemas de movimiento, dinámicas de población, sistemas masa-resorte, circuitos eléctricos etc.).

Tema 2

2. Ecuaciones diferenciales (EDOs) de primer orden.

- Geometría de las EDOs de primer orden. Campo de direcciones. Isoclinas.
- Resolución de (EDOs) de primer orden:
 - Exactas. Factor integrante.
 - o Separables. Homogéneas.
 - Ecuaciones con coeficientes lineales: Reducibles a homogéneas o a separables.
 - Lineales. Bernoulli. Riccati (reducible a las anteriores).
- (*) Ecuaciones de Lagrange (soluciones paramétricas).
- (*) Ecuación de Clairaut. Soluciones Singulares.
- Aplicaciones: resolución de problemas de trayectorias (aerodinámica), geometría, óptica, dinámica de poblaciones, desintegración radioactiva, transmisión de calor, etc.

Tema 3

3. Sistemas de ecuaciones diferenciales lineales (SEDOs lineales).

- Estructura del conjunto de soluciones y cálculo de la solución general.
- Definición y propiedades de matriz fundamental.
- Método de variación de constantes. Solución general de SEDO lineal completo a partir de la matriz fundamental.
- Fórmula de resolución de SEDOs lineales con coeficientes constantes.
- Aplicaciones: resolución de problemas de movimiento en el plano y en el espacio, dinámicas de redes (mezclas) entre otros.

Tema 4

4. EDOs lineales de orden genérico.

- Definición. Propiedades. Relación con la teoría de sistemas. Método de variación de constantes.
- EDOs lineales de coeficientes constantes: Polinomio característico y método de coeficientes indeterminados.
- · Aplicaciones en el campo de la física y de la ingeniería: sistemas mecánicos masa- resorte y circuitos eléctricos RLC.
- Comportamiento asintótico de las soluciones: Fenómeno de resonancia (oscilaciones forzadas).
- EDOs lineales de coeficientes variables. Ecuación de Euler.
- (*) Ecuaciones de Euler-Cauchy (método de reducción de orden).

Tema 5

5. Transformada de Laplace.

• Definición y propiedades fundamentales.

- Transformada de Laplace de funciones elementales y del mundo de la física y la ingeniería (función de Heaviside, funciones a trozos, periódicas).
- Transformada de la delta de Dirac (impulsos).
- Transformada inversa de Laplace y propiedades fundamentales.
- Aplicación de la Transformada de Laplace a la resolución de ecuaciones y sistemas de ecuaciones diferenciales lineales.
- Aplicaciones en el campo de la ingeniería: sistemas masa-resorte, circuitos eléctricos RL, RLC y multimalla, cálculo de flexión de una viga, etc.

Tema 6

6. Sistemas dinámicos no lineales de ecuaciones diferenciales.

- Sistemas autónomos. Puntos críticos y soluciones periódicas de sistemas autónomos.
- Propiedades de las trayectorias de los sistemas autónomos.
- Diagramas de fase de sistemas autónomos.
- Estabilidad de un punto crítico de un sistema autónomo lineal.
- Estudio de la estabilidad de puntos críticos de un sistema autónomo no lineal (cuasilineal).
 - o Método de linealización.
 - o Método de energía: Funcional de Lyapunov.
- Ejemplos y aplicaciones: estudio de la estabilidad de los puntos críticos en la ecuación de Van der Pol para circuitos eléctricos con tubos de vacío.
- Sistemas conservativos: función potencial y estabilidad de los puntos críticos de un sistema conservativo.
- Diagrama de fases de un sistema conservativo. Ejemplos y aplicaciones: diagrama de fases del péndulo, etc.
- Soluciones periódicas y ciclos limite. Introducción a sistemas caóticos

Tema 7

7. Problemas de contorno de Sturm-Liouville. Desarrollos de Fourier.

- Introducción a los problemas de contorno unidimensionales.
- Definición y propiedades de los problemas de contorno de Sturm-Liouville (PCSL).
- Reducción de un problema de contorno de orden dos unidimensional a un PCSL.
- Cálculo de autovalores y autofunciones de un PCSL y principales propiedades.
- Condiciones de contorno periódicas y sistema trigonométrico de Fourier. Series de Fourier.
- Desarrollo de una función en serie de autofunciones de un problema de contorno de Sturm-Liouville (en series de Fourier).
- Ejemplos y aplicaciones.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

La docencia se centrará en el alumno y las actividades que éste realiza para alcanzar un aprendizaje significativo, de ahí que las técnicas didácticas activas tendrán gran importancia en el desarrollo de esta asignatura, es decir tanto las sesionespresenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

Metodología Presencial: Actividades

Clases magistrales expositivas y participativas (25 horas):

El profesor explicará los conceptos fundamentales de cada tema mediante una exposición dialogada en la que apoyándose en un buen material presenta de forma clara y organizada los contenidos a la vez que estimula la participación de los estudiantes en el proceso de enseñanza-aprendizaje. Se fomentará el diálogo a través de formulación de preguntas diversas dirigidas a la comprensión de la información. También se usará la presentación de ejemplos prácticos, problemas tipo y situaciones cercanas que despierten motivación de los estudiantes en torno al tema relacionadas con los retos de la sociedad actual.

• Tutorías para la resolución de dudas sobre resultados teóricos (5 horas):

A lo largo del periodo lectivo y después de cada bloque temático se realizarán tutorías sobre los resultados teóricos expuestos insistiendo en los planteados en el modelo de Clase Invertida.

• Ejercicios prácticos y resolución de problemas (27,5 horas):

En estas sesiones se explicarán, corregirán y analizarán problemas de cada tema análogos a los resueltos en las lecciones expositivas y también otros de mayor complejidad, previamente propuestos por el profesor y trabajados por el alumno. En estas clases se favorecerá la participación del alumno y la interacción alumno-profesor y alumno-alumno como vía para fomentar el aprendizaje colaborativo y la capacidad de autoaprendizaje. Además, siguiendo la metodología de clase invertida, se propondrá el aprendizaje de ciertos contenidos de la asignatura fuera del aula y así liberar tiempo para que se pueda facilitar la participación de los estudiantes en el aprendizaje activo.

• Sesiones prácticas con uso de software (3 horas):

Se realizarán en grupos reducidos. En ellas los alumnos ejercitarán los conceptos y técnicas estudiadas, resolviendo problemas prácticos con ayuda del software MATLAB.

• Casos prácticos (2 horas):

Para fomentar el aprendizaje colaborativo, se organizará un **concurso matemático** donde los estudiantes formarán equipos de 4 o 5 alumnos y competirán en dos pruebas presenciales evaluables de 1 hora de duración que se desarrollarán a lo largo del cuatrimestre. Las pruebas consistirán en la resolución en equipo de una serie de problemas matemáticos que contribuyan a la formación integral del alumnado. Las sesiones estarán diseñadas para que sea **imprescindible la colaboración, organización y comunicación entre los miembros del grupo.** Por su naturaleza, todos los integrantes deberán cooperar y trabajar sincronizados para poder abarcar los retos propuestos.

• Actividades de evaluación continua del rendimiento (2,5 horas)

A lo largo de todo el periodo lectivo se realizarán varias pruebas para poder valorar todo el proceso de aprendizaje del alumnado y mejorarlo, a medida que transcurre el curso. En concreto, se realizará:

- un examen intercuatrimestral de 1h y 30 min. hacia la mitad del cuatrimestre,
- una prueba corta de 30 min. antes del examen intercuatrimestral y
- una evaluación de prácticas con Matlab de 30 min. que se realizará después del examen intercuatrimestral.

Metodología No presencial: Actividades

• Estudio personal (sobre contenidos teóricos por parte del alumno) (22 horas):

El alumno debe realizar un trabajo autónomo para comprender e interiorizar los fundamentos teóricos de la asignatura. Este trabajo de asimilación se realizará después de las clases magistrales y previamente a las sesiones donde se utilice el modelo de Clase Invertida.

• Ejercicios prácticos y resolución de problemas (82,5 horas):

Es de vital importancia para la formación integral del alumnado que los estudiantes sean capaces de aplicar los conocimientos asimilados para resolver diferentes tipos de problemas. Para lograr este objetivo se aconseja la resolución de las hojas de problemas propuestas pues ayudarán a la asimilación, la reflexión y la interiorización del conocimiento adquirido. Además, con la realización de estas hojas se trata de promover una cultura de trabajo colaborativo ya que para conseguir un mayor aporte de ideas se sugiere la realización en grupo. Pasado un cierto tiempo desde su planteamiento, los alumnos dispondrán de la solución de dichos problemas, pudiendo pedir tutorías con el profesor (individuales o en grupo) para aclaración de dudas.

También llevarán a cabo este tipo de actividad en la preparación de todos los exámenes que realizarán a lo largo del curso.

• Sesiones prácticas con uso de software (3 horas):

El alumno, una vez realizada cada práctica con ordenador, en clase, guiada por el profesor, deberá poner en práctica los conocimientos adquiridos para resolver con ordenador otros problemas similares a los ya desarrollados. Al igual que en el apartado anterior, se aconseja la realización por grupos de las prácticas con ordenador propuestas.

• Casos prácticos (6 horas).

Se estima que, adicionalmente al estudio personal, a la resolución de ejercicios prácticos y a la resolución de problemas de los epígrafes anteriores, los estudiantes dedicarán aproximadamente 6 h. no presenciales específicamente entrenándose en equipo para preparar este tipo de problemas y además establecer estrategias coordinadas para afrontar los retos colaborativos que se les propone en estos casos tratados como competición matemática

Actividades de evaluación continua del rendimiento (1,5 horas):

Con la intención de ayudar a los alumnos a construir un conocimiento sólido en matemáticas que les permita enfrentarse con garantías a las diferentes situaciones de aprendizaje, se integrará un sistema de test basados en los conceptos fundamentales de cada tema. Presentada como un juego bajo el título **QUIZ desafío Ecuaciones**, esta actividad consiste en la realización periódica de cuestionarios de moodle (test online) que permiten proporcionar retroalimentación de los conocimientos adquiridos en un pequeño periodo de tiempo, más o menos al final de cada tema. Las preguntas de los cuestionarios abarcarán los conceptos e ideas fundamentales de la asignatura. El objetivo perseguido es ayudar al estudiante a detectar si ha adquirido los conocimientos requeridos o si debe llevar a cabo acciones adaptadas a sus carencias.

El Quiz, Desafío Ecuaciones no tiene un peso específico en la nota, pero haberlo superado será condición necesaria para aplicar las ponderaciones indicadas en el sistema de evaluación general de la asignatura.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES									
Clases magistrales expositivas y participativas	Sesiones prácticas con uso de software	Ejercicios prácticos y resolución de problemas	Casos prácticos	Actividades de evaluación continua del rendimiento	Tutorías para resolución de dudas				
25.00	3.00	27.50	2.00	2.50	5.00				
		HORAS NO PRESE	NCIALES						
Estudio personal	Sesiones prácticas con uso de software	Ejercicios prácticos y resolución de problemas Casos Actividades de evaluación continua del rendimiento							
22.00	3.00	82.50	6.00	1.50					

CRÉDITOS ECTS: 6,0 (180,00 horas)

Peso

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación

Exámenes de carácter teórico-práctico • Exámen Intercuatrimestral (EI) (20%) • Exámen Final (EF) (55%) • Prueba corta de seguimiento (PC) (5%) • Quiz, desafío Ecuaciones Diferenciales (Q) (selectivo) Nota: Para aplicar las ponderaciones indicadas en el sistema de evaluación general de la asignatura, será necesario obtener una nota mínima de al menos 4 puntos en el examen final de la asignatura y haber superado los test sobre conceptos básicos incluidos en la actividad Quiz, desafío Ecuaciones Diferenciales. Ver apartado de calificaciones para más detalles.	 Examen intercuatrimestral (EI): A mitad del cuatrimestre se realizará una prueba intercuatrimestral, que abarcará todo el temario impartido hasta el momento. En lo sucesivo denotaremos por EI a la nota (sobre 10 puntos) obtenida por el alumno en dicho examen. Examen final (EF): Al final del cuatrimestre se realizará un examen final de toda la asignatura, con el que el alumno obtendrá una nota EF (sobre 10 puntos). Prueba corta de seguimiento (PC): Se realizará una prueba corta, en horario de clase, que abarcará el temario especificado por el profesor de la asignatura, con la que el alumno obtendrá una nota (sobre 10 puntos) que denotaremos por PC. Quiz, Desafío Ecuaciones Diferenciales (Q): En cada tema se realizarán uno o varios test online (cuestionarios de Moodle) sobre conceptos fundamentales necesarios para una buena comprensión de la materia. Dado que estos test se centran en el aprendizaje y no en la evaluación de los alumnos, la actividad se presenta como un juego que no tendrá peso en la nota final, pero sí será necesario superarla para aplicar las ponderaciones indicadas en el sistema de evaluación. La superación de esta actividad tendrá un carácter selectivo, siendo necesario superar todos los test para mantener la evaluación continua. Por la realización de esta actividad, el alumno obtendrá una nota Q al final del cuatrimestre, cuyo valor será Q=1, si todos los test han sido superados, o Q=0, si algún test no ha sido realizado o superado. Se considerará que un test ha sido superado, cuando el número de respuestas correctas 	80 %
---	---	------

Criterios de evaluación

Casos prácticos en grupo (concurso matemático CM)	competición matemática por equipos de 4 o 5 participantes. Se realizarán 2 pruebas presenciales, consistentes en la resolución de problemas (casos prácticos), donde por una parte el alumno ha de manejar todas las destrezas adquiridas para afrontar dichos problemas y además por otra parte tiene que trabajar en equipo adecuadamente. Al final del cuatrimestre el alumno obtendrá una nota CM de esta actividad colaborativa (sobre 10 puntos) que constará de dos notas A+P. Una nota que representa la evaluación autónoma del rendimiento de cada equipo A, y otra nota P que representa la competición entre equipos y será un modificador de la anterior mediante "premios" otorgados a los mejores equipos de la competición. La participación en la actividad es obligatoria y la falta de asistencia no justificada de un alumno a las pruebas, supondrá una calificación de 0 en esta actividad y la pérdida de la evaluación continua para dicho alumno.	10 %
Evaluación de prácticas con Matlab (PM)	Al final del cuatrimestre se evaluarán las prácticas con Matlab mediante un proyecto en el que el alumno obtendrá una nota (sobre 10 puntos) que denotaremos por PM .	10 %

Calificaciones

Partiendo de las actividades anteriores, se obtendrán las siguientes calificaciones:

Evaluación en la convocatoria ordinaria:

La calificación final del alumno en la **convocatoria ordinaria** de la asignatura **NF**, siempre que supere una **nota mínima de 4 puntos** en el examen final de la misma, es decir si la nota **EF>=4**, será **el máximo** entre el 90% del examen final, $0.9 \times EF$ y la nota de evaluación continua **NC** cuya composición es la siguiente: **NC=Q** \times [(0.05 \times **PC**) +(0.1 \times **PM**)+(0.1 \times **CM**)+ (0.2 \times **EI**) + (0.55 \times **EF**)], siendo **Q=1** si se ha superado la actividad *Quiz, desafío Ecuaciones Diferenciales*, o **Q=0** en caso contrario.

Si la nota obtenida en el examen final de la asignatura es inferior a 4 puntos, la calificación del alumno será la nota obtenida en dicho examen.

Es decir:

- Si EF<4, entonces NF=EF.
- Si **EF>=4**, entonces la nota final **NF** viene dada por

 $NF = max(Q \times [(0.05 \times PC) + (0.1 \times PM) + (0.1 \times CM) + (0.2 \times EI) + (0.55 \times EF)], 0.9 \times EF)$

Observaciones:

1.- La asignatura se aprueba en esta convocatoria si NF>=5, y se suspende en caso contrario.

2.- El hecho de **no** haber participado con aprovechamiento de las actividades de evaluación continua del curso impedirá la obtención de matrícula de honor en la asignatura.

Evaluación en la convocatoria extraordinaria:

La calificación final del alumno en la **convocatoria extraordinaria** de la asignatura **NF**, siempre que supere una **nota mínima de 4 puntos** en el examen final extraordinario de la misma, es decir, si la nota **EF>=4**, será **el máximo** entre la nota del examen final extraordinario **EF** y la nota de evaluación continua **NC** cuya composición es de nuevo: **NC=Q** x [(0.05 x **PC**) +(0.1 x **PM**)+(0.1 x **CM**)+ (0.2 x **EI**) + (0.55 x **EF**)].

Si la nota obtenida en el examen final extraordinario de la asignatura es inferior a 4 puntos, la calificación del alumno será la nota obtenida en dicho examen.

Es decir:

- Si EF<4, entonces NF=EF.
- Si EF>=4, entonces la nota final NF viene dada por

NF=max(**Q** x [(0.05 x **PC**) +(0.1 x **PM**)+(0.1 x **CM**)+ (0.2 x **EI**) + (0.55 x **EF**)], **EF**)

Observaciones:

- **1.-**La asignatura se aprueba si **NF>=5,** y se suspende en caso contrario.
- **2.-** El hecho de **no** haber participado con aprovechamiento de las actividades de evaluación continua del curso impedirá la obtención de matrícula de honor en la asignatura.

Normas de la asignatura:

- En el examen intercuatrimestral de la asignatura no se liberará materia.
- La asistencia a clase será controlada por el profesor de la asignatura. La falta de asistencia durante el curso a más de un 15% de las horas lectivas de la asignatura (9 faltas de asistencia), podrá implicar para el alumno la pérdida del derecho a examinarse de ésta en la convocatoria ordinaria en dicho curso académico (cf. Artículo 93°. Escolaridad, del Reglamento General de la Universidad, Normas Académicas ETSI-ICAI).
- El alumno que cometa alguna irregularidad en la realización de cualquier prueba evaluable, será calificado con Suspenso (0) en dicha prueba y se le iniciará un proceso sancionador de acuerdo con el **Artículo 168º.Infracciones y sanciones del alumnado**, del Reglamento General de la Universidad.
- En ningún examen de la asignatura se permitirá el uso de libros, ni de apuntes de clase. En los exámenes intercuatrimestral y final, el alumno podrá disponer de una hoja resumen, escrita por ambas caras, confeccionada por él, tamaño DIN A4 y de color no blanco, en la que podrá incluir cualquier resultado teórico de la asignatura (teoremas, fórmulas, esquemas, procedimientos, etc.) pero nunca podrá incluir problemas resueltos, ni ejemplos prácticos.

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- CANO CASANOVA, S. y JIMÉNEZ CASAS, A. Ecuaciones Diferenciales y en Derivadas Parciales (Apuntes del curso en el Moodle de la asignatura). Departamento de Matemática Aplicada de la ETSI-ICAI.
- Presentaciones y transparencias de clase (elaboradas por los profesores de la asignatura, en el Moodle de la asignatura).

 Departamento de Matemática Aplicada de la ETSI-ICAI.
- GARCÍA, A. GARCÍA, F. LOPEZ, A. RODRÍGUEZ, G. VILLA, A. de la. Ecuaciones diferenciales ordinarias. Teoría y problemas. Métodos

exactos, métodos numéricos, estudio cualitativo. CLAGSA, 2006

- BOYCE, W.E. y DIPRIMA,R.C. Ecuaciones diferenciales y problemas con valores en la frontera. Limusa, Wiley,2013.
- HABERMAN, R. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Fifth edition. Pearson, 2013.

Bibliografía Complementaria

- ZILL, D.G. y CULLEN, M.R. Ecuaciones diferenciales con problemas de valores en la frontera (7ª edición). Cengage Learning.
- EDWARDS & PENNEY. Ecuaciones diferenciales con valores en la frontera. Pearson. Prentice Hall, 2008.
- POLKING, J., BOGGESS,A. and ARNOLD, D. Differential Equations with Boundary Value Problems, New International Edition. Pearson, 2014.

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

	ACTIVIDADES PRESENCIALES				ACTIV	IDADES NO PRES	ENCIALES		R	esultados de aprendizaje	
Semana	h/s	Clase teoría/problemas	Clase prácticas	Trabajo colaborativo	Evaluación	h/s	Estudio individual de conceptos teóricos	Resolución de problemas	Preparación previa de exámenes	Resultad os de aprendiz aje	Descripción
1	4	Presentación (1h)+Teoría+Problemas Tema 1 (3h)				4	Lectura y estudio de los contenidos teóricos y prácticos impartidos (2h)	Resolución de problemas propuestos (1h 45 minutos)+Resolución del Quiz 1 (15 min)			Cnocer las definiciones y conceptos básicos del ámbito de las ecuaciones diferenciales ordinarias y los principales resultados teórico-prácticos de problemas de valor inicial y problemas de contorno.
2	4	Teoría + Problemas Tema 2 (4h)				7	Lectura y estudio de los contenidos teóricos y prácticos impartidos (3h)	Resolución de problemas propuestos (4h)		RA1	Ser capaz de modelar en términos de ecuaciones o sistemas de ecuaciones diferenciales una gran variedad de problemas y fenómenos del campo de la física y la ingeniería.
3	4	Teoría + Problemas Tema 2 (3h)			Prueba corta de seguimiento Tema 1-2 (30-60 minutos)	8	Lectura y estudio de los contenidos teóricos y prácticos impartidos (2h)	Resolución de problemas propuestos (2h y 45 minutos)+ Resolución del Quiz 2 (15 minutos)	Preparación de la prueba corta de seguimiento de los Temas 1 y 2 (3h)		Tener habilidad y soltura en la aplicación de las principales técnicas de resolución exacta de los principales tipos de ecuaciones diferenciales de primer orden, así como utilizar software específico para su resolución.
4	4	Teoría + Problemas Tema 3 (3h)	Práctica 1:Resolución de problemas de valor inicial con Matlab) (1h)			8	Lectura y estudio de los contenidos teóricos y prácticos impartidos (4h)	Resolución de problemas propuestos (2h),Preparación del concurso matemático (2h)		RA3	Conocer la teoria, aplicación y métodos de resolución de los sistemas de ecuaciones diferenciales lineales de primer orden y cualquier dimensión.
5	4	Teoría + Problemas Tema 3 (1h) +Tema 4 (2h)		Concurso Matemático(Casos Prácticos) (1h)		8	Lectura y estudio de los contenidos teóricos y prácticos impartidos (4h)	Resolución de problemas propuestos (2h y 45 minutos)+ Preparación concurso matemático (3h)+Realización del Quiz 3 (15 minutos)		RA4	Introducir la ecuación lineaal de orden n y su relación con los sistemas de ecuaciones linealres de orden uno. Conocer sus propiedades y las técnicas de resolucion de la lineal de coeficientes constantes
6	4	Teoría + Problemas Tema 4 (4h)				9	contenidos teóricos y	Resolución de problemas propuestos (4h), Preparación de la Práctica 1B por grupos (1h)			Conocer las propiedades y técnicas de resolución de la ecuación lineal de orden n de coeficientes constantes y algún caso variable, asi como su relación con la ecuación lineal de orden n.
7	3,5	Teoría + Problemas Tema 4 (h)				7	Lectura y estudio de los contenidos teóricos y prácticos impartidos (3h)	Resolución de problemas propuestos (3h y 45 min) +Realización del Quiz 4 (15 minutos)		RA4	Conocer las técnicas de resolución de la ecuación lineal completa de coeficientes constantes y algun caso de coeficientes variables asi como sus aplicaciones
	1′5		Examen In	tercuatrimestral		6		Preparac	ion del examen interc	uatrimestral	
8	4	Teoría + Problemas Tema 5 (4h)				8	Lectura y estudio de los contenidos teóricos y prácticos impartidos (4h)	Resolución de problemas propuestos (4h)		RA5	Dominar la aplicación de la transformada de Laplace para la resolución de problemas de valor inicial o contorno de aplicación a la física y a la ingeniería
9	4	Teoría + Problemas Tema 5 (1h) , Tema 6 (3 h)				8	Lectura y estudio de los contenidos teóricos y prácticos impartidos (4h)	Resolución de problemas propuestos (4h)			Saber aplicar transformadas de Laplace a sistemas y a algunos tipos de ecuaciones de coeficientes variables. Introduccion a los sistemas autonomos lineales y no lineales de dimensión 2. Estabilidad de puntos críticos.
10	4	Teoría + Problemas Tema 6 (4h)				8	Lectura y estudio de los contenidos teóricos y prácticos impartidos (4h)	Resolución de problemas propuestos (3h y 45min)+Realización del Quiz 5 (15 minutos),			Saber estudiar la estabilidad por métodos espectrales y por Lyapunov. Conocer las técnicas de represenatición del diagrama de fases de un sistema conservativo
11	4	Teoría + Problemas Tema 6 (4h)				8	Lectura y estudio de los contenidos teóricos y prácticos impartidos (4h)	Resolución de problemas propuestos (4h)		RA5,RA6	Aplicación de la estabilidad al estudio de sistemas no lineales, bifurcaciones, atractores caóticos.
12	4	Teoría + Problemas Tema 7 (2h) Práctica + Evaluación Práctica con Matlab (2)	Practica 2: Diagramas conservativos			9	Lectura y estudio de los contenidos teóricos y prácticos impartidos (3h)	Resolución de problemas propuestos (4h)Preparación de la Práctica 2B por grupos (4 h) Preparación concurso matemático (1h)		RA6,RA/7	Conocer la teoria sobre problemas de contorno de Sturn-Luville y la trnsformación de un problema de contorno general a uno de Sturm- Liouville.

13	4	Teoría + Problemas Tema 7 (3h)	Concurso Matemático(Casos Prácticos) (1h)	7	Lectura y estudio de los contenidos teóricos y	Resolución de problemas propuestos (3h)Preparación concurso matemático (3h)	RA7	Soltura en el cálculo de una base de autofunciones asociada a un problema de contorno (Desarrollo en Serie de Fourier).
14	4	Teoría + Problemas Tema 7 (3h)			Lectura y estudio de los contenidos teóricos y prácticos impartidos (4h)	Resolución de problemas propuestos (3h y 45min)+Realización del Quiz 6 (15 minutos),	■D A ' /	Aplicar los desarrollos de Fourier a la resolución de problemas de contorno.
	3 EXAMEN FINAL			7				

		Actividades F	ormativas			
Actividad Formativa	Horas	Presencialida d	Horas presenciales	Horas no presenciales	Observaciones	Metodologías Docentes
Clases magistrales expositivas y participativas	25	100%	25 Clase magistral expositiva y participativa	0		Lección magistral
Tutorías para resolución de dudas	5	100%	5	0	Sobre temas (clase invertida)	
Ejercicios prácticos y resolución de problemas	110	25%	27,5 Resolución de problemas en clase	82,5 Resolución de problemas propuestos		Clase invertida
Sesiones prácticas con uso de software	6	50%	3 Prácticas A	3 Prácticas B	3hPrác.A=2,5 h+0,5h evalua.	Aprendizaje práctico
Estudio personal	22	0%	0	22 Trabajo autónomo sobre contenidos teóricos por parte del alumno		Aprendizaje colaborativo
Casos prácticos	8	25%	2 En clase	6 Fuera de clase	Resolución de casos prácticos por grupos Pruebas concurso matemático	

Actividades de evaluación continua del rendimiento	4	62%	2,5 En horario de clase	1,5 Quizs online (fuera de clase)	Intercuatrimestrales (1.5 h) Pruebas cortas (0,5 h) Evaluación de prácticas (0,5 h) Quizs online (1,5 h)	
---	---	-----	-------------------------------	---	--	--

SISTEMA DE EVALU	ACIÓN				
		Horquilla ANECA	Ponderación	Tipo de examen/actividad evaluable	
Examen escrito/oral/test		70% - 80%	80%	Examen final 55% Intercuatrimestral20 % Pruebas cortas 5%	
Trabajo/Proyecto/ Caso práctico en grupo		10% - 15%	10%	Pruebas concurso matemático (casos prácticos en grupo) 10%	
Evaluación del trabajo práctico de laboratorio y de las sesiones prácticas con uso de software		10% - 15%	10%	Evaluación de prácticas (Matlab) 10%	

Observaciones de Sistema de Evaluación:

1.- Es necesario obtener una nota mínima de 4 puntos en el examen final, para tener en cuenta las ponderaciones de evaluación continua (inter, prácticas, casos prácticos, etc.). En caso contrario, la nota final de curso es la nota obtenida en el examen final (consultar la guía de la asignatura)

2.- La nota final es el máximo entre la calificación con evaluación continua, y el 90% de la nota de

del examen

METODOLOGÍA DOCENTE					
METODOLOGÍA PRESENCIAL: ACTIVIDADES					Horas Presenciales(65 h)
1.	Clases magistrales expositivas y participativas (mix clase tradicional - inversa - vídeos)				25
2.	Tutorías sobre resultados teóricos				5
3	Ejercicios prácticos y resolución de problemas (mix clase tradicional - inversa - vide				27,5
4	Sesiones prácticas con uso de software			3	3
5	Casos prácticos				2
6	Actividades de evaluación continua del rendimiento				2,5
	5.1 Intercuatrimestral			1,5 horas	1,5
	5.2 Evaluación de prácticas			0,5 horas	0,5
	5.3 Pruebas cortas			0,5 horas	0,5
METODOLOGÍA NO PRESENCIAL: ACTIVIDADES					Horas No Presenciales(115h)
1.	Estudio personal. Trabajo autónomo sobre contenidos teóricos por parte del alumno				22
2.	Ejercicios prácticos y resolución de problemas				82,5
3.	Sesiones prácticas con uso de software			3	3
4.	Casos prácticos				6
5.	Actividades de evaluación continua del rendimiento			(no contempladas)	1,5
	5.1 Quizs	on-line		1,5	