
Optimal operation of a hydropower plant in a stochastic

environment

Isabel Figuerola-Ferretti1, Eduardo Schwartz2 and Ignacio Segarra3

Abstract

Given the currently changing climate conditions it is of primary importance
to optimise the management of hydropower resources. This paper proposes
a framework in a dynamic setting to determine the water outflow that max-
imises the value of a water resource for a given reservoir. The model includes
two sources of uncertainty, the water inventory determined mainly by the
water inflow and the electricity prices. It is implemented under the stochas-
tic optimal control approach and calibrated using monthly data of reservoir
characteristics from ResOpsUs. The results indicate that the inventory dy-
namics are specially important in valuing reservoir resources. The applica-
tion of optimal management policies guarantees the long term sustainability
of the reservoir. The possible effects of climate change are considered in a
sensitivity analysis to changes in the price and water inventory dynamics.
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1. Introduction

Extreme weather events in the Western US have driven the two largest
reservoirs in the U.S. Lake Powell (Utah-Arizona border) and Lake Mead
(Nevada-Arizona border), to the lowest points since they were filled in 1963
(Lake Powell) and in 1934 (Lake Mead). Reservoirs that operate in similar
conditions may present management difficulties since such scenarios were not
expected when operating policies were initially designed.

The term “deadpool” refers to a state in which water in a reservoir drops
so low that it cannot flow downstream from the dam. This condition has
important implications for water consumers, irrigation services and for hydro
power generators4. If a reservoir is at “deadpool” state it has previously
reached the minimum power pool elevation in which turbines are not longer
able to generate power. The word “deadpool” has recently been classified by
“The Economist”5 as one of the keywords that will shape the world in the
coming year.

As water draughts and water flood risk increase with climate change, the de-
termination of optimal strategies of reservoir water levels becomes a primary
concern among consumers, corporations, intergovernmental institutions and
academics. Hydroreservoirs are mainly used for hydropower production and
water consumption. They operate under high flexibility and low operating
costs. The decision on how to optimally schedule water storage to meet
random seasonal demand within minimum cost is of high relevance and has
important implications. While the optimal operation of hydro turbines may
be challenged by the increasing threat of higher temperatures and droughts,
hydro turbines will remain a desirable technology in the generator mix of
power system as they have a low carbon impact and they operate under
highly flexible and low costs conditions. Hydropower reservoirs can also be
used as pumped storage hydropower (PSH) which is a type of hydroelectric
storage. According to Uria-Martinez et al. (see the 2021 US hydropower
market report) hydropower generation represented 6.6% of U.S electricity

4See article ”What is a deadpool: a water expert explains” available at : The Conver-
sation, 12th of May 2022

5See The Economist Podcast “The World Ahead 2023” 19, Dec 2022
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generation and 38% of electricity from renewables. The same report shows
that PSH capacity grew over the past decade by almost as much as all other
U.S storage combined. 6 In this paper we introduce a framework that allows
the design of optimal reservoir policies when water resources are exclusively
used for hypro-power generation purposes.

Given the currently changing climate conditions, the primary focus for the
operation of these reservoirs is to optimise their operation so that there is
enough water to keep generating electricity. This will require that the affected
areas implement appropriate policies linking the supply and demand side of
the water resource so that reservoir dead pool levels can be avoided.

We propose a framework in a dynamic setting to determine the monthly water
outflow which maximises the value of the water resource for a given reservoir.
We follow the methodology formulated by Pizarro and Schwartz (2021) and
implement a stochastic optimal control approach to determine the optimal
level of water outflow that maximises the value of the natural resource. This
is done by modelling the water inventory or storage process and the electricity
price as two independent stochastic processes that affect the value of the
reservoir. We assume that operation takes place in a fully deregulated market
and therefore work under the assumption that the reservoir is a ”price taker.”
The power generator will set the production level that maximises profit for
a given inventory level.

This paper is related to the literature that derives optimal operation strate-
gies of power plants. Thompson et al. (2004) apply real option theory to
derive nonlinear partial-integro-differential equations (PIDEs) to value and
calculate optimal storage levels in hydroelectric and thermal power genera-
tors. Their paper discusses the different methods applied in the literature.
These include numerical techniques such as trinomial trees and Monte Carlo
Methods. Carmona and Ludkovski (2010) analyse the valuation of energy
storage facilities using the stochastic control approach applied to natural
gas storage and hydroelectric pumped storage. Their model is solved by
constructing a robust numerical scheme based on Monte Carlo regressions.

6The work of Uria-Martinez et al. is published in the 2021 US hydropower market
report
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Similar approaches are adopted by Latorre et al. (2014) who develop a sim-
ulation tool to solve the long term hydro-thermal problem to evaluate the
outcome from forecasts of either water inflows or future operation situations.
The limitations of such approaches from a financial view point is that a)
they are calibrated to a single data set b) they fail to efficiently account
for the price evolution in the optimisation process. The work of Thompson
et al. (2004) is an important exception as it applies the PIDES approach with
mean reverting prices to address these underlined limitations. Carmona and
Ludkovski (2010) consider a Markovian price model and solve a Bellman dy-
namic programming equation with a for the value function. The problem is
translated into a quasi-variational partial differential equation (pde) formu-
lation. However, the empirical application of the proposed solution in these
frameworks is based on a numerical analysis with simulated data.

A major contribution of this paper is that we propose a general framework
that can be applied to reservoir related variables and electricity price data
of any properly defined area. For this purpose we use two particularly rich
data sets: i) the GRandD data set which incorporates a cross section of dam
related information including reference river name, closest city, maximum
capacity, main dam use ii) the ResOpsUs data set which compiles daily time
series of reservoir characteristics for 679 major dams in the US. We exploit
the existence of rich data availability to study the effect of price and inflow
uncertainty on value and optimal storage strategy under realistic settings.
Note that our application can easily be extended to the analysis of any reser-
voir in the database that is solely used for hydropower generation.7

Another important contribution is that our framework provides a detailed
analysis of electricity price and water inventory dynamics and its effect in the
reservoir management. The empirical application is based on monthly data
of reservoir characteristics which differs from the empirical exercises based on
simulated data. Our results also show that while there are two main sources
of uncertainty affecting the optimal solution, inventory uncertainty is more
important than price uncertainty. This is the case under the assumption of

7The ResOpsus database includes the identifier of the facility. The GRandD data base
allows identification of the geographical area that is used to download the corresponding
monthly electricity prices. The full code will be provided upon request
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stochastic prices with and without mean reversion.

We solve the model using the Value-function iteration approach instead of
the more traditional partial differential equation approach. This formulation
allows to solve for the optimal dynamic storage policy of a given reservoir
and then use this policy to value the natural resource. The solution allows to
study how the optimal outflow level relates to the two state variables speci-
fied as the inventory and price processes. The model therefore takes explicit
account of the managerial control of the outflow rate. It also shows how
the outflow process optimally evolves with stochastic changes in the state
variables. The framework is used to simulate the price and storage dynam-
ics over specific time horizons based on the optimal policy under different
stochastic shocks. Results show that the optimal policy is closely linked to
the inventory dynamics and that optimal water storage does never run down
to zero.

The framework is additionally extended to analyse the changes in the es-
tablished state dynamics to perform a sensitivity analysis under various sce-
narios. The first objective is to address the impact of higher average future
electricity prices that could arise due a number of factors leading to long
term supply and demand disruptions.

The second objective is to measure the optimal management impact of cli-
mate change. We consider for this purpose the change of managerial policies
under lower future average water inflow as well as the policy adaptation to
extreme weather events.

Our results demonstrate that while shifts in long term average prices do not
result in significant policy changes in the long run, the impact of lower average
water inflow requires adjustment of optimal long run policies.The possibility
of extreme weather events as captured by increased volatility uncertainty
suggests that conservative storage adaptation policies should be pursued.

The paper is structured as follows. In section 2 we introduce the theoretical
valuation framework. The data description is provided in Section 3. In-
ventory dynamics and electricity price dynamics are described in sections 4
and 5, respectively. The implementation methodology is provided in Sec-
tion 6. Results are presented in 7. Section 8 analyses the sensitivity of policy
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responses with respect to changes in climate and electricity prices dynamics.
Finally, we conclude in section 9.

2. Theoretical Framework

In this section we introduce the dynamic stochastic modelling for the reser-
voir and the mathematical framework used to optimise the management of
the facility. The first step in determining the optimal policy is to specify
the dynamics of the two state variables: the water inventory and electricity
prices.

Figure 1 illustrates the operation of the reservoir. The facility has water
inventory which increases with the water inflow (from rains) and decreases
with the evaporation and the outflow of water used to generate electricity
through one or more turbines. There is a one to one mapping between the
elevation from the sea level to the inventory level so that one unit of elevation
corresponds to one unit of inventory. The elevation difference between the
reservoir level and the downstream river affect the efficiency of the turbine,
which is used to generate electricity.

2.1. Water inventory dynamics

The water dynamics of reservoirs are usually modelled as an Input-Output
process. Following Song et al. (2022) we define the water inventory dynamics
as:

dIt = [Φ(t)− (E(t) + F (t) + q(t))]dt+ σI dWt (1)

Where It (m
3) is the inventory of water, t is the calendar (time), Φ(t) (m3/s)

is the expected rate of water flow into the reservoir, E(t) (m3/s) is the ex-
pected quantity of water that evaporates at time t , F (t) (m3/s) represents
the rate of infiltration of water, and q(t) (m3/s) is the rate of water flowing
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Figure 1: Diagram of a generic hydropower plant.

out of the reservoir into the turbine. The later represents the stochastic con-
trol of the problem. W is a Brownian Motion that captures the randomness
of the process underlying inventory dynamics.

The reservoir’s manager does not have direct influence on the variables Φ(t),
E(t) and F (t). In what follows we treat these variables as stochastic processes
but use their expected value for our calculations. This requires that the
uncertainty of those processes is captured by σI dWt. Details on the dynamics
of each of these variables are provided in section 4, where we estimate a model
for every variable separately.

The manager does, nevertheless, have direct control on the water outflow
variable (q(t)) . The objective is to determine the (optimal) value of q(t)
(the managerial control) which maximises the value of the resource facility
given that he is constrained by the maximum and minimum storage levels
defined as (Imax) and (Imin) respectively

7



2.2. Electricity price dynamics

The consideration of the stochastic nature of output prices are highly impor-
tant for determining optimal managerial responses and valuation of natural
resources (see Brennan and Schwartz(1985)). As underlined by Thompson
et al. (2004) the existence of market prices under efficient deregulated markets
drives individual generators to choose the output quantity that maximises
production. Output prices in this context are specified by the electricity price
process. The latter have been extensively modelled in the past decades, es-
pecially after the liberalisation of power markets. Lucia and Schwartz (2002)
use daily Nord-Pool day ahead electricity prices and find evidence of mean
reversion. The also show that the underlying the seasonality is highly rele-
vant in the price process. These trends arise because electricity cannot be
stored at sufficiently large scale and therefore must be generated as needed.

Cartea and Figueroa (2005) propose a different approach to modelling daily
electricity prices, including the seasonal behaviour while adding jump pro-
cesses. Their results show that the addition of jump processes produce a well
specified model. Further extensions include Borovkova and Schmeck (2017)
which extend previous specifications by including a stochastic time change
and the temperature as a factor.

The price specification proposed in this paper is highly conditioned by data
frequency available for the electricity price series (see details in sections 3
and 6). This restricts us to use average monthly prices of electricity. We
shall see in section 3 that the consideration of monthly intervals smooths
jumps in the price dynamics. Jumps and seasonal dynamics are also lower in
a hydropower application because hydro reservoirs provide means for power
storage (see Uria-Martinez et al. (2021) for details in the US economy).

Since our secondary objective is to valuate the reservoir facility we require
a long time horizons implying that the problem formulation does not re-
quire inclusion of short term factors such as temperature. We contend that
weather conditions implicitly affect water inflows into the reservoir which are
considered under our formulation. Extreme movements in weather conditions
will affect the volatility of the inventory process. Changes in weather condi-
tions are also modelled endogenously in section 8.2 and section 8 where we
study how optimal management policies are adapted to the different forms

8



of climate change (lower water inflow and higher volatility respectively).

We have followed the literature and considered the specifications introduced
by Cartea and Figueroa (2005) as well as the assumptions of Lucia and
Schwartz (2002). Our results demonstrate that the best fitting model for the
monthly electricity price data is:

dPt = α + β Pt + γ1 sin((t+ τ1)
2 π

6
) + γ2 sin((t+ τ2)

2 π

12
) + σPdZt (2)

Where Pt is the electricity price at a given time (t), α is the average growth
rate, β is the speed of the mean-reversion, γ1 and γ2 measure the amplitude of
each seasonal behaviour, τ1 and τ2 are shifts in the wave, dZt is an increment
to a Wiener process and (dWt)(dZt) = ρ dt, ρ is the correlation between
the two Wiener processes corresponding to the price and inventory dynamics
respectively.8 Note that there are two seasonal components, this results in
two yearly price peaks and two yearly price lows. The length of a given peak
depends on the amplitude and shifts of the waves.

We follow Pizarro and Schwartz (2021) and consider mean reversion as a
benchmark case and extend the analysis to the non mean reversion as a ro-
bustness test. This alternative specification is given by the following equation
(3).

dPt = α + γ1 sin((t+ τ1)
2 π

6
) + γ2 sin((t+ τ2)

2 π

12
) + σPdZt (3)

When the non mean reversion case is considered we follow Pizarro and
Schwartz (2021) and remove the β term which captures the speed of mean
reversion in equation 2.

8This correlation is used when solving the entire system using the value function iter-
ation approach
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2.3. The operation of the Turbine

The next step is to model the electricity generation process. This is captured
by the dynamics of the turbine of the reservoir. We follow the formulation
introduced by Wu et al. (2018) in modelling the turbine process:

et = η q(t)

(
z(It) + z(It + dIt)

2
− zd

)

Where et (Kwh) is the power generated at a given time (t), η (Kwh s/m4)
is the power generating coefficient of the turbine, z(It)(m) is the elevation of

the reservoir level for a given inventory at a time t. Therefore z(It)+z(It+dIt)
2

is the average elevation of the reservoir and zd (m) is the elevation of the

downstream. In consequence, z(It)+z(It+dIt)
2

− zd measures the average eleva-
tion difference between the reservoir inventory and the downstream level at
time t.

The turbine model is therefore specified as the outflow of the water times the
pressure (captured by the elevation difference) times the constant η, which
converts the underlying factors factors to kwh.

In order to find the correct value of the η parameter we follow the work of
Chen et al. (2023) which models a series of reservoirs, and assumes η values
in the order of 9000 (Kwh s/m4).

Our analysis includes a formulation of the elevation function, z. Its dynamics
are specified in section 4.3, where we address the link between the reservoir
inventory and the elevation.

We additionally impose the following constraint: the quantity of water in
the turbine processes should not be less than zero and is expected to have
a maximum capacity. This implies that water outflow levels will lie between
qmin and qmax.
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2.4. Risk adjusted Discount rate

We estimate the risk-adjusted discount rate for reservoirs following the Cap-
ital Asset Pricing Model (CAPM) approach applied in Pizarro and Schwartz
(2021). The purpose is to discount future cash flows using the appropriate
rate.

We collect stock price data of a representative company in the hydropower
sector. We also construct proxies for the risk free rate variable and the
market portfolio for the 2004-2019 period of a company that trades publicly
and represents the hydropower production sector. We select Duke Energy as
it is the second largest investor in the U.S. hydropower.9 The company trades
publicly and its business is located in the Midwest of the country, which is
geographically close to the reservoir analysed in this paper (see section 3).

Our proxy for the market portfolio is obtained from Kenneth R.French’s web-
site10 using the Utilities portfolio of the Industry portfolios, which includes
water supply and electricity. We also use the US 13 week Treasury Bill as a
proxy for the historical risk free rates. We assume that the future inflation
rate is 2%, in line with the current target inflation of the Federal Reserve.11

The CAPM β applied for discount rate calculation is constructed by esti-
mating betas for 60-month rolling windows over our sample period. This
delivers an estimated median beta of 0.61 for the 2004-2019 period. We plug
this value within the CAPM framework and calculate that the real discount
rate is 4.8% for the U.S. hydropower plant. Estimation results are reported
in table 1.

9https://www.duke-energy.com/our-company/environment/renewable-energy/

hydroelectric-energy
10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.h

tml
11https://www.federalreserve.gov/faqs/economy_14400.htm
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Table 1: Estimation of the discount factor.

β 0.610

Rm −Rf 0.092

Rf 0.012

RNom
hydrpower 0.069

RReal
hydropower = (1 +RNom

hydrpower)/(1 + π)− 1 = 0.048

2.5. Valuation and optimal operation policy

The starting point for the valuation of any project is the determination of
the future cash flows that will be generated . In the current case the cash
flow generated by the system for a given outflow (q(t)) can be defined as:

π(It, Pt; q(t)) = et · Pt − C(q(t)) (4)

Where C(q(t)) is the cost of operating the plant for a given outflow.

Substituting the power generating model specified in section section 2.3 we
obtain the following:

π(It, Pt; qt) = ηqt

(
z(It) + z(It+1)

2
− zd

)
· Pt − C(q(t)) (5)

Given that our objective is to optimise with respect to q(t), we derive our
solution from (5) where π(It, Pt; qt) is the cash flow generated by the resource.

The next step requires that we define the value of the facility for a given time
(t), inventory level (It), electricity price (Pt) and outflow policy (q(t)). This
is specified as the actual value of the future cash flows of the resource, using
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the appropriate risk adjusted discount rate. In consequence, the value of the
facility is given by:

H(t, It, Pt; q(t)) = Et

(∫ ∞

τ=t

e−r(τ−t)π(Pτ , Iτ ; qτ ) dτ

)
(6)

Where r is the discount rate and e−r(τ−t) is the discount factor. H(t, It, Pt; q(t))
is the value of the facility for a given policy q(t). The outflow quantity that
maximises the function H(t, It, Pt; q(t)) is defined as (q(t)):

V (t, It, Pt) = max
q(t)

H(t, It, Pt; q(t)) (7)

Equation 7 can be transformed into the Bellman equation 8 for discrete time
specifications:

V (t, It, Pt) = max
q(t)

{
π(t, It, Pt; q(t)) + e−r∆tEt [V (t+∆t, It+∆t, Pt+∆t)]

}
(8)

This optimisation problem can be solved using the value-function iteration
approach. This methodology is explained and implemented in section 6.

3. Data

In our empirical application we calibrate our models using data from a spe-
cific US reservoir. The key processes to be modelled are the electricity price
and the inventory of the reservoir. The latter depends on a number of previ-
ously defined variables. The purpose is to address how optimal management
responses depend on the variations of the two state variables.12

12Note that the data used in this manuscript is provided as a supplementary file following
the Journal´s data sharing guidance
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3.1. Reservoir data

We collect reservoir information from the databases GRanD discussed in
Lehner et al. (2011) and ResOpsUS which is applied in Steyaert et al. (2022).
The GRanD database stores dam’s general information at the cross sectional
level (river name, nearest city, maximum capacity or the main use of the
dam). The ResOpsUS database provides information of 679 major reservoirs
in the US. Each reservoir has associated identifiers and time series data. The
time series data includes daily frequency for the following variables: inventory
(It), inflow (Φ(t)), evaporation (E(t)), elevation of the water level and the
outflow (q(t)).

In order to select the reservoir for this analysis we have applied a series of
filters to the data. It is important to highlight that our objective is to model
the operation of the reservoir that generates electricity. For this reason, we
have selected dams whose main use is the generation of electricity based on
the information available on GRanD database. From the 679 dams consid-
ered only 81 fulfilled this condition. Next, we dropped from the sample those
dams for which both inflow and outflow variables were not available. Once
we apply this second restriction the number of reservoirs with the required
data were 26.

The empirical application of the framework introduced in section 2 requires
a set of continuous data. The objective is to optimise the operation of the
facility in terms of water storage for a given price process. We establish that
if the operation managerial decision is not important then there should be a
strong correlation between the inflow and outflow variables.13 We therefore
calculated the correlation for each dam and sorted dam sample components
from the lowest to the highest correlation values. We excluded those dams
for which there were missing data.14 The applied selection procedure leaves
us with a reservoir located in Arkansas as the best candidate for model cali-

13We observed that daily correlations where low but they exhibited strong dependence.
For example, a dam that exhibits an inflow in time (t) and the same quantity of outflow
in time (t+1) indicate high dependence (even if there is low correlation). For this reason
the correlation measure was done grouping the data by months.

14The first 4 ranked dams had missing the evaporation data while the fifth only presents
0.01% of missing data
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bration purposes. The reservoir data is transformed from the daily frequency
to monthly in order to match the electricity price data.

3.2. Electricity price data

In order to calibrate the electricity price process we consider the time series of
Arkansas monthly electricity prices available from the U.S. Energy Informa-
tion Administration15. Our sample ranges from January 2004 to December
2019. The sample start date is motivated by the liberalization of the US
electricity market in the early years of the new century16 The sample end
date is selected on the basis of data availability.

4. Estimation of the water inventory dynamics

We use the ResOpsUS database, to estimate the models for the inventory
variables considered in equation 4, excluding the infiltration variable.

4.1. The inventory variables

We first present the model and estimation dynamics for the inventory vari-
ables of equation 4. One of the challenges in this formulation is that we
need to find an approach to determine the period length to be applied for
the seasonal components of the model. We tackled this problem using the
discrete Fourier Transform of the data. This transformation decomposes
the time-series into waves with different amplitudes taking place in different
times within a year. Relevant seasonal effects are expected to exhibit large
amplitudes in the Fourier decomposition.

Figure 2 shows the Fourier Transform for multiple variables. The horizontal
axis represents different periods of the transformation while the vertical axis

15https://www.eia.gov/
16https://www.epa.gov/greenpower/understanding-electricity-market-frame

works-policies
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Table 2: Estimation results for the Evaporation model.

Parameter Estimation Std. Error t-statistic P(> |t|)
α 4.9601 0.0178 278.3951 0.0000
γ 2.7452 0.0252 108.9507 0.0000
τ -2.5472 0.0175 -145.3087 0.0000

Residual standard error: 0.2469
Df: 189

indicates the amplitude of each wave. As stated, we use the peaks observed
in this Figure to determine the seasonal periods of the applied formulations.
For example, we use a 12-month period for the evaporation specification.

We explain in Appendix A the way in which this transformation is applied to
obtain the time-series seasonality frequencies. We also show the equivalence
between the Fourier transform and the seasonal functions.

4.1.1. Evaporation (E(t))

We find that the expected evaporation variable exhibits a clear seasonal be-
haviour with yearly dynamics. The framework used to model this variable is
represented in equation 9 below.

E(t) = α + γ sin

(
(t+ τ)

2 π

12

)
(9)

The model assumes that there is seasonality with a 12-month period based
on the Fourier decomposition observed in Figure 2. Parameters are esti-
mated accordingly minimising the mean square error. Results are reported
in table 2.17

17Model results show a high goodness of fit for model estimates. They suggest that the
process is highly predictable. This was not expected ex ante as weather related variables
are regarded as highly noisy. This raises the possibility that the data may be artificially
generated.
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Figure 2: Amplitude of the Fourier Transform for different periods, for different variables:
evaporation, water inflow, water inventory and electricity price.

4.1.2. The Inflow process (Φ(t))

The calibration of the expected inflow variable is complex, as it exhibits sea-
sonal behaviour (see Figure 2) and erratic variations across months. This
behaviour reflects multiple sources of noise, that emerge due to random fac-
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Table 3: Estimation results for the Inflow model.

Parameter Estimation Std. Error t-statistic P(> |t|)
α 51.7650 6.4057 8.0810 0.0000
β 0.2048 0.0716 2.8610 0.0047
γ 31.3252 6.5748 4.7644 0.0000
τ 1.3272 0.3918 3.3878 0.0009

Residual standard error: 60.7318
Df: 187

tors such as the early melting of snow or the variance in rain falls. We used
an autoregressive framework (AR) with a seasonal component similar to that
specified for the evaporation variable. The model is thus defined as:

Φ(t+ 1) = α + β Φ(t) + γ sin

(
(t+ τ)

2 π

12

)
(10)

The parameters of this equation were estimated following the same approach
as under the evaporation model. The results of the optimisation process are
reported in table 3.

4.1.3. The Infiltration Process (F (t))

We do not have access to infiltration data. We also failed in identifying a
clear pattern when calculating values as implied by equation 4. We therefore
followed Dessie et al. (2015), Song et al. (2016) and Dang et al. (2020),
and dropped this variable from the analysis by assuming that its value in
negligible.

4.2. The Inventory model (It)

Once we have completed calibration of model parameters we proceed to esti-
mate the proposed inventory specification (11) using the data for the selected
reservoir.
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dIt = [Φ(t)− (E(t) + F (t) + q(t))]dt+ σI dWt (11)

We take expected values for the inflow and evaporation variables estimated
in the previous subsections. Note that the outflow variable (q(t)) is not
estimated as it is defined as the control variable. Figure 3 illustrates the time
series evolution of the actual and estimated inventory values both measured
in million cubic meters (MCM). Thus, studying the differences between the
estimated and the measured we obtain residuals standard deviation (σI).
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Figure 3: Inventory model and observed data.

Reported values show that both series move very closely. This suggests that
the proposed model specified under (11) does deliver inventory dynamics
that are highly related to the observed process. Inventory dynamics are
stable during the sample analysed, suggesting that there were not important
shifts in the management process during the last two decades
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4.3. Elevation function (z(It))

The ResOpsUS database also provides time series data on elevation. The
relationship between elevation and inventory as underlined in the turbine
model (12). The elevation has a direct effect on mean values of the inventory
equation. The elevation does therefore affect the managerial problem speci-
fied in equation 5 through the inventory state variable. The power generating
equation is:

et = η q(t)

(
z(It) + z(It + dIt)

2
− zd

)
(12)

In our optimisation process elevation is calculated for every inventory value.
Because the elevation variable is required to evaluate the profit function,
we estimate the relationship between elevation and inventory using historical
data. We use this data to define z(It) as a real-valued function given that the
model inputs It, z(It) are defined as the interpolation between the elevation of
the two closest registered inventories This implies that if It = 2500 (MCM),
the two closest inventories recorded are 2498 (MCM) and 2505 (MCM) with
175.19(m) and 175.23(m) as elevations registered for those inventories, re-
spectively. This implies that z(2500) = 175.20 (m)).

5. Estimation of the electricity price dynamics

We have established in Section 2 that the the benchmark literature on elec-
tricity price modelling uses daily prices and includes jumps in the electricity
process reflecting the absence of storability of this commodity. Here we
contend that the same specification may not be optimal for monthly data.
Indeed, we have stated that the evolution of the monthly price series anal-
ysed in this paper is smoother implying that there are no jumps in our data.
In consequence, the electricity price model proposed does not include jump
dynamics.

In what follows we fit two different models to our data. The first model
includes a seasonal component. The second model incorporates a seasonal
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Table 4: Estimation results for the non-mean-reverting model.

Parameter Estimation Std. Error t-statistic P(> |t|)
α 0.0073 0.0148 0.4926 0.6229
γ1 0.1871 0.0210 8.9277 0.0000
τ1 0.9250 0.1069 8.6494 0.0000
γ2 0.1695 0.0210 8.0879 0.0000
τ2 -2.0302 0.2362 -8.5962 0.0000

σP : 0.2053
Df: 187

component as well as mean-reversion. These features are represented in equa-
tion 13 and 14, respectively. The non mean reverting model will be estimated
as a robustness test of the results obtained in the canonical specification
model (14).

dPt = α + γ1 sin((t+ τ1)
2 π

6
) + γ2 sin((t+ τ2)

2 π

12
) + σPdZt (13)

dPt = α + β Pt + γ1 sin((t+ τ1)
2 π

6
) + γ2 sin((t+ τ2)

2 π

12
) + σPdZt (14)

Note that in these two models the seasonal components are defined under a
6-month and a 12-month period. Estimated parameters of equations 13 and
14 are reported in Table 4 and Table 5, respectively.

Reported results demonstrate that the seasonal and mean reverting compo-
nents are statistically significant. The estimated seasonal parameters (γ1,
τ1, γ2 and τ2) show that there are two price peaks, dated in July and in
January. As we shall see under the simulations performed in Section 7, the
price peak registered in July is higher than the one reported in January. The
process corresponding to the price dynamics exhibits two minimum values
in April and October, respectively. Reported results therefore reveal that
periods with extreme temperatures (winter and summer) give rise to the the
highest electricity prices, but not necessarily the same peak price level. As
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Table 5: Estimation results for the mean-reverting model.

Parameter Estimation Std. Error t-statistic P(> |t|)
α 0.3634 0.1535 2.3671 0.0190
β -0.0394 0.0169 -2.3323 0.0208
γ1 0.1828 0.0208 8.8352 0.0000
τ1 0.8948 0.1086 8.2393 0.0000
γ2 0.1659 0.0208 7.9934 0.0000
τ2 -2.1829 0.2477 8.8138 0.0000

σP : 0.2030
Df: 186

expected, periods with comfortable temperatures (April and October) exhibit
the lowest prices.

6. Model Implementation

We solve the Bellman equation (8) introduced in section 2. We solve the
recursive problem using the value-function iteration approach. Model pa-
rameters are summarised in tables 2, 3 and 5.18.

6.1. The value-function iteration approach

We implement the value-function iteration algorithm in order to solve for
the optimal policy under different states. The problem solution involves
defining a discrete state space for the inventory, price and time variables.
The manager’s optimal policy is the determination of the quantity of water
used to generate electricity that maximises the value of the facility. This
decision depends on the time period (or season) within a given year, the
electricity price and the water inventory.

18We assume that the cost function takes a value of 0 due to lack of data availability.
Reservoir operation costs are typically very low see Latorre et al. (2014)
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The algorithm defined under 1 is implemented for this purpose. The esti-
mation delivers two outputs in the discrete state space i) the tensor V, which
calculates the optimal value of the facility given the state ii) the policy, which
returns the optimal strategy with managerial responses to variations in in-
ventory levels, prices and time (season). The cost of operation in the profit
function is assumed to be negligible.

Figure 4 reports estimation results for every given value of inventory and
price. [4a] illustrates the optimal policy for the facility on the first of July
while the value of the resource is presented in figure [4b]. Figure 4a, the
optimal policy implies that low electricity price value delivers lower outflow of
water to produce electricity. In a similar way, the water outflow is positively
related to the quantity of water stored.19 A close look at this figure shows
that the optimal outflow ranges from zero in states of low to medium storage
to 200 [MCM/month] in state of high storage and high prices. The optimal
policy is a non linear function of the state variables. For example, the water
outflow policy in a high price state ranges from zero to 200 [MCM/month]
in high price states and from zero to 100 [MCM/month] in low price states.

Figure 4b shows the value of the facility at a given time illustrating the
economic trade off of the model as the marginal increase of the value of
the resource per unit increase in price and storage. It is clear that the
value of the facility is positively related to the electricity price. However
the relationship is non linear over the state space. An extra unit of storage
becomes more valuable in high price states when compared to low price
states, as it improves current and future profitability. In agreement with
results reported by Pizarro and Schwartz (2021) and Carmona and Ludkovski
(2010) when the resource price increases the current value and the incentives
to produce more output also increase. The resource value is also positively
related to the level of water inventory. However, an increase in the water
outflow diminishes the storage level reducing the future value of the facility.

Reported results suggest that for the current state of the reservoir (Decem-

19Note that electricity production depends on the the elevation of the reservoir since
this variable determines the pressure of the water flowing into the turbine, as modelled in
section 2.3
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Figure 4: Optimal policy and value of the facility when the time is fixed to July. Electricity
price and inventory, the other state variables, are not fixed.

ber 2019) with a storage of 2,624 (MCM) and a price of 8.45 (¢/kwh) the
value of the resource is 224 million US dollars. It is important to under-
line that the calculated resource value only represents the value of the water
used to generate electricity. The reservoir could potentially be used for dif-
ferent purposes such as irrigation or man´s use that may provide additional
value. For instance in an analysis applied to the Aswan High Dam Strzepek
et al. (2008) show that there are large premiums derived from the terrain
downstream available for growing crops and the benefits of flood control .
This analysis is exclusively focused on hydro production.

Our findings also suggest that the reservoir should optimally reduce water
outflow to zero if the water storage ranges between 2000 and 2400.

In what follows we provide a series of simulation exercises that illustrate how
the reservoir is optimally managed so that the deadpool related states can
be avoided under future management.
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Algorithm 1 Value-function iteration, assuming the non-mean-reverting
electricity price model.

λI ← probability of state for the Inventory
ZI ← States for the Inventory (normal shocks)
λP ← probability of state for the electricity Price
ZP ← States for the electricity price (normal shocks to log-price)
ρ← The correlation imposed between λI and λP

r ← discount factor
N ← length of Storage values grid
M ← length of Prices values grid
Q← Outflow grid (policies)
T ← Latest time step (in months)
V ← Value of the states (it depends on time, price and inflow)
while not stop condition do

for t in [latest date + 1, ... , T] do
for (n,m) in [(1,1),..., (N,M)] do

V (t, n,m)← max
q∈Q

π(In, Pm, q)+
1

1 + r

∑
k,j

λI
kλ

P
j V (t+∆t, In +∆In, Pm +∆Pm)

Where:

t+∆t = t+ 1

In +∆In = In + Φ(t, ·)− E(t)− q + σIZ
I
k

Pm +∆Pm = Pm + α + βPm + γ1 sin

(
(t+ τ1)

2 π

6

)
+ γ2 sin

(
(t+ τ2)

2 π

12

)
Policy(t, n,m)← q

end for
end for

end while
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7. Results

This section illustrates how the water inventory, the electricity price and the
optimal outflow evolve if the optimal reservoir policy is implemented. We
simulate 10,000 paths over a period of 6 years of monthly observations for
the price and inventory processes combining their respective distributions
with the optimal policy. This requires that the evaporation and the water
inflow processes are also simulated. The simulations are performed assuming
normality of the residuals in every equation specification.

We use the outflow variable of the inventory model (1) in every step as
the optimal policy derived in section 6. Expected values are used for the
evaporation and inflow variables therefore assuming that their variability
will be captured by the random process of the inventory. All simulations
start from the current state (defined under the last observation, December
2019). The following initial values values are assumed for the and inventory
variables; price = 8.45 and inventory = 2624.

Figure 5 illustrates simulation results for the underlying stochastic variables.
Simulations of median paths and corresponding 99% and 90% confidence
interval levels for inventory, electricity price and optimal outflow and inflow
variables are presented in Figs [5a], [5b], [5d] and [5c], respectively. Reported
simulation results suggest that the manager should store the water and use
it in periods in which the electricity price is highest. This is consistent with
the natural resource valuation literature (see Brennan and Schwartz(1985))
which uses stochastic control theory to explicitly account for output rates
which are explicitly linked to the output price. The outflow rate is the
analogue to the output variable in the valuation literature. The inventory
level (which can be regarded as the input variable) does always affect the
policy. The effect of storage on water outflow is highly conditioned by the
defined storage boundaries which are Imax and Imin. These boundaries induce
limitations in the stored water levels of the resource. Hence, the dispatch of
water has to be carefully managed depending on the current level of water
stored in order to guarantee the optimal amount of water in future states.

Results also suggest that median values of inventory and policy are stable over
time implying that storage is above 2000 with 95% probability level. Storage
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therefore never runs down to zero. In the same line, water inventory is always
under 3000 (its upper boundary), hence, the risk of flood emergence is also
controlled. The simulated median price path increases smoothly over time
crossing the $10 threshold with 0.5% probability under normal conditions and
with 5% probability only in the summer peaks. The degree of uncertainty
as signalled by the 99.5% and 95% confidence intervals increases after the
first six months for the three simulated series but remains stable thereafter.
As a result there is a 0.5% probability that prices are above $10.5 after 1.5
years. Water outflow is zero just before the summer inventory peaks. Outflow
levels reach the 150 (MCM/month) threshold with 5% probability and the
200 (MCM/month) level only with 0.5% probability.

Appendix B reports robustness test results when the electricity price process
does not exhibit mean-reversion. Results are highly consistent with those
delivered under the benchmark canonical model specified in equation (14).

27



Dec19 Jul20 Feb21 Sep21 Apr22 Nov22 Jun23 Jan24 Aug24 Mar25
Months

2000

2200

2400

2600

2800

In
ve

nt
or

y 
(M

CM
)

Facility Inventory simulation
Median
5% - 95% confidence interval
0.5% - 99.5% confidence interval

(a) Inventory level simulated

Dec19 Jul20 Feb21 Sep21 Apr22 Nov22 Jun23 Jan24 Aug24 Mar25
Months

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Pr
ice

 (¢
/k

wh
)

Electricity price simulation
Median
5% - 95% confidence interval
0.5% - 99.5% confidence interval

(b) Electricity price simulated

Dec19 Jul20 Feb21 Sep21 Apr22 Nov22 Jun23 Jan24 Aug24 Mar25
Months

0

50

100

150

200

Ou
tfl

ow
 (M

CM
 / 

m
on

th
)

Policy used (water outflow)
Median
5% - 95% confidence interval
0.5% - 99.5% confidence interval

(c) Optimal policy used in the simulations

Dec19 Jul20 Feb21Sep21 Apr22Nov22 Jun23 Jan24 Aug24Mar25
Months

30

40

50

60

70

80

90

100

W
at

er
 in

flo
w 

(M
CM

)

Water inflow per month
inflow

(d) Water inflow used, state variable.

Figure 5: Simulating the inventory and electricity price dynamic applying the optimal
policy obtained in section 6. The price dynamic follows the non-mean-reverting model
proposed in (13).
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8. Sensitivity analysis

The results reported in the previous section were obtained assuming that the
parameters of the stochastic processes for the inventory and price remain the
same in the future as they were under the estimation period. However, the
quantity and volatility of rain falls in the future may be different than in
the past due to climate change. Average future prices may also be higher
in the future due to a number of reasons such as the increase of geopolitical
disruptions or the emergence of regulatory or technical changes related to
the energy transition.

To evaluate the impact of future changes in the price and in the inflow pro-
cesses on our results we solve the valuation problem using different assump-
tions about model parameters. Our focus will be on addressing the sensitiv-
ity with respect to the parameters in the electricity price model and climate
change (as captured by changes in water inflow and inventory uncertainty)
on the optimal policy.

8.1. Sensitivity analysis to changing electricity market price process

The analysis in the previous section has shown that prices are an important
driver of optimal policies. The proposed model illustrates the managerial
control over the outflow rate which responds to the electricity price. It is
therefore of great relevance to analyse the effects of future price scenarios
on the optimal policy. We therefore analyse model solutions for parameter
changes in the electricity price dynamics. The process of the electricity price
is defined under (15). In what follows, we illustrate model results under
the assumption that prices in the future behave differently than they have
done in the past. This involves analysing the model under two different α
parameter values. Note that α is the average growth of the process (which
also influences the mean reversion level). As previously underlined, prices
may follow a different growth rate in the future in response to a number of
factors. Supply side disruptions arising from geopolitical tensions, natural
resource scarcity or the need for market re-design to support the ongoing
energy transition are potential drivers of future average price regime shifts.
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We analyze the different scenarios by considering two α parameter values
representing benchmark and high price conditions.

dPt = α + β Pt + γ1 sin((t+ τ1)
2 π

6
) + γ2 sin((t+ τ2)

2 π

12
) + σP dZt (15)

Specifically, we follow the same method as in Section 6 and provide optimal
solutions for the benchmark case, using the estimated α, and for the high
price scenario, multiplying α by 2.

Figure 6 reports median of the simulated paths for inventory, prices and
water outflow under the two different scenarios considered.

Figure 6a, illustrates the projected inventory for the benchmark and high
price scenarios. It shows that the electricity price is a key decision making
variable that will affect the optimal inventory level. Depicted results show
that during the first 12 months the storage is much higher than in the long
term. This is specially the case for the scenario in which the expected price
is high (see the red line) in which case it is most profitable to store water
to sell electricity at the highest price and thus obtain higher profitability.
There are two peaks in the simulated inventory process during the first year,
mirroring the seasonal component of prices. Projected inventory decreases
monotonically for lower price scenarios. This effect slowly disappears in the
long term (after month 12) where we see similar levels of inventory for the
two projected price scenarios (with more scenarios simulated the pattern of
converging in the long run stands). This implies that the policy applied re-
sponds to a stabilised price process under both scenarios. More importantly,
Figure 6c shows that the optimal outflow policies are similar in the long run.
Thus, the long term optimal operation of the reservoir is not too sensitive to
the changes in the estimated α of the price model.

Figure 6c shows the outflow optimal policy under the benchmark and high
price scenarios. Under the highest price scenario (red line) inventory is max-
imised during the first 12 months under the expectation of higher prices.
This delivers lowest outflow levels during the first six months when com-
pared to the benchmark case. The outflow rate is however highly related for
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(a) Median water inventory of the simulations for different param-
eters of the electricity price model.
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(b) Median electricity price of the simulations under different val-
ues of average growth for the electricity price model.
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(c) Median water outflow of the simulations for different parame-
ters of the electricity price model.

Figure 6: Simulations for the water inventory, electricity price and water outflow under
different average growth specifications of the electricity price model.
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all price scenarios from month 12 onward suggesting that in the long run the
optimal policy is independent from the emergence of different trends in the
price process.

8.2. Sensitivity analysis: shift in water inflow due to climate change

The second objective is to assess the effect of different water inflow sup-
ply scenarios on the optimal policy. This is an important challenge for the
optimal management of the reservoir. For instance, the Financial Times20

has recently underlined that nearly one-fifth of humanity lives in stressed
river basins. The decrease in water supplies is largely determined by cli-
mate change. In what follows we analyse the future consequences of change
weather conditions by considering different scenarios of water inflows in op-
timal policy solutions.

The quantity of water flowing into the reservoir is modelled by (16) and it is
defined as a mean reverting process. We follow the same approach as in the
previous section and address the sensibility of the optimal policy to different
scenarios of water inflows by considering a scenario with lower value in the
parameter α, α is scaled by 0.5, is compared to the benchmark case, α scaled
by 1.

Φ(t+ 1) = α + β Φ(t) + γ sin

(
(t+ τ)

2 π

12

)
(16)

We solve the optimisation problem deriving the optimal policy for each fu-
ture state and use this policy to simulate future scenarios. Figure 7 shows
resulting median inventory, water inflow and optimal policy for the simulated
paths for two different α values, the benchmark case and the the lower water
inflow scenario.

Figure 7a shows that there is a clear difference of resulting simulated in-
ventory paths that respond to the two water inflow scenarios illustrated in

20Water pricing is the key to equitable access, 12th of March 2023
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(a) Median water inventory of the simulations for different param-
eters of the water inflow model.
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(b) Median water inflow of the simulations under different values
of average growth for the water inflow model.
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(c) Median water outflow of the simulations for different parame-
ters of the water inflow model.

Figure 7: Simulations for the water inventory, water inflow and water outflow under
different average growth specifications of the water inflow model.
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Figure 7b. Optimal policies store water for the high price season (summer) in
order to have water during the peak times in electricity prices. The scenario
that represents the possibility of lower water inflows due to less frequent rains
(see blue line) indicate that the optimal policy is to start storing water earlier
than under the benchmark case (see the orange line). This implies that the
policy is more conservative in the use of the resource.

Figure 7c illustrates the outflow policy that is applied under the two sce-
narios. A close look at this picture shows that under the the scenario with
water scarcity (represented by the blue line) a more conservative policy is
applied which concentrates the highest production during the period with
the highest electricity peak, identified during the summer season.

In the previous analysis we showed that the electricity price does not affect
the inventory in the long run. Note that this is not the case for the water
inflow analysis under climate change as illustrated in 7a. This give rise to
different long term patterns reflecting the impact of extreme weather events.

8.3. Increased inventory uncertainty due to climate change

This section assesses the impact of uncertainty on estimated results by solv-
ing the model under different assumptions related to the volatility of the
inventory process. We are particularly interested in addressing the effect
of extreme weather events in the form of storms or floods, exceptionally
high heat and draughts. This is important at the time of writing when
drought conditions in western states of America are replaced by abnormally
wet weather as stated by government scientists.21

The adaptation of management policies to extreme weather events is there-
fore considered under shifts in the inventory uncertainty dynamics. The
purpose of this analysis to provide management guidance to avoid situations
in which emergency measures are adopted to deal with abnormal heat and
drought. Such scenarios can lead to a supply chain problems that have to

21see article “Climate graphic of the week: flood risk replaces drought across western
US states” 1st of April 2023
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be deeply considered. For instance, emptying rivers and reservoirs have re-
cently hit hydropower plants supplying electricity in China forcing companies
such as Toyota and Foxconn to suspend operations.22 In order to design the
optimal adaptation policy we have incorporated the possibility of abnormal
weather characteristics by analysing the effects of scaling the volatility value
by a factor 2. We follow the same procedure as in section 8.1 and 8.2 for this
purpose. Figure 8 shows the estimated median paths for the water inventory
and the water policy outflow.
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(a) Median water inventory of the simulations for different param-
eters of the inventory volatility.
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(b) Median water inflow of the simulations under different values
of inventory volatility.

Figure 8: Simulations for water inventory and water outflow under different volatility
scenarios

A close look at Fig. 8a demonstrates that under high volatility conditions it is
optimal to increase storage and keep its level high during longer periods than
under benchmark case. The optimal management adapts to extreme weather
events by following a conservative inventory policy. Fig. 8b shows that the
derived optimal median water outflow policy is more variable under the high
volatility scenario than under the benchmark case. Specifically the median
water outflow policy reaches a very low level twice a year just before the
winter and summer electricity price peaks. Illustrated results also show that

22See the FT article “The trickle-down effect of empty rivers and reservoirs”, 22th
August 2022)
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there are two annual outflow peaks. These may be reflecting the possibility
of facing floods in the future.23

The overall results within this section do, therefore, demonstrate that when
considering the possibility of adapting to extreme abnormal weather events
it is optimal to store more water during longer periods so that to future
production can be guaranteed. Because the effect of draughts cannot be
mitigated via immediate management, optimality requires adaptation of the
storage policies so that they become more conservative or risk averse.

9. Summary and conclusion

This paper develops and implements a stochastic optimal control approach
to value a hydropower plant. The model includes two stochastic variables,
water inventory and electricity price and one deterministic factor calendar
date or time. This specification gives rise to a Bellman equation that is solved
using the Value-Function Iteration approach. The solution is implemented
using estimated parameter values for a US reservoir located in Arkansas. We
compute the optimal policy for the problem and analyse the future develop-
ment of the facility under 10,000 simulated paths. Finally, we analyse the
possibility that the parameters in the stochastic inventory and price processes
change in the future.

The Bellman equation is solved for seasonal mean reverting price dynamics.
However, as a robustness test solutions are also provided under the non mean
reversion assumption. Estimation results are robust to the specification of
non mean reverting prices.

Reported results highlight the (non linear) strong link between the value
of the reservoir, the optimal policy and the inventory and price state vari-
ables. Specifically they show that with a 90% probability, inventory levels of
the facility evolve within a narrow region. Moreover, With more than 99%

23The analysis of confidence intervals (which can be provided upon request) confirms
that, as expected ex ante the 5% and 95% bands are significantly wider for the high
volatility case than under the benchmark case.
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probability the reservoir will not reach the “deadpool” state. The reservoir
maximum threshold level is never reached implying that the flooding risk
is controlled. Nevertheless, the optimal storage varies significantly between
scenarios suggesting that a change in the optimal solution has a large impact
on the management of the facility.

This paper presents two major contributions. First, it provides a detailed
analysis of electricity price and water inventory uncertainty and its effect in
the reservoir management. The empirical application is based on monthly
data of reservoir characteristics which differs from the empirical exercises
based on simulated “toy” data applied in the literature (see Thompson
et al.(2004)). Second, the proposed framework allow analysis of long term
management policy. The sensitivity analysis shows that that changes in av-
erage prices will not have a significant effect in the long run policy. More
interestingly, climate change does affect the optimal policy that has to be
implemented. Higher inventory will be required under lower water inflow
levels. Increased uncertainty in inventory dynamics reflecting the possibility
of extreme weather events lleads to higher storage during longer periods.

The results in this paper have important policy implications for regulators
and managers of reservoirs. First, optimal policies will need to be adjusted
under the presence of climate change. The optimal policy adapts to lower fu-
ture water inflow levels by providing higher and earlier water storage. Higher
inventory uncertainty also leads to more conservative and long lasting storing
policy. Changes in average prices will not have a long term policy effect.

The methodology presented in this paper can be extended other reservoirs
acting as price takers with main focus in hydro production. However, given
that a significant number of dams are used for irrigation as well as for human
consumption purposes a natural extension of this analysis will involve the
multi use case. This should allow the consideration of future energy transition
related applications such as the consumption of water for green hydrogen
production purposes or the use of water as means of electricity storage under
PSH technologies. The practical implementation of future extensions will
require the use of improved cost estimates of the facility including the value
of water before and after its use for electricity generation.
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Appendix A. The Fourier approach for frequency computations

Given a function f(x) with reasonably good properties it is possible to de-
compose it as:

f(x) =
∞∑

k=−∞

ck e
ikx

Note that eikx is a periodic function (spins around the unit circle in the
complex plane with a frequency of k) and ck is the amplitude of the wave.
Using the Euler formula24 it is intuitive that the trigonometric functions
form a base of the functional space, if we rotate this base by a factor ρk
it is possible to make the decomposition in terms of just one trigonometric
function. It is done as follows:

f(x) =
∞∑

k=−∞

ck e
ikx = c0 +

∞∑
k=1

ak cos(kx) + bk sin(kx)

= c0 +
∞∑
k=1

√
a2k + b2k (sin(kx− ρk +

π

4
))

Furthermore, it is known that ρk = arccos
a2k√
a2k+b2k

and
√

a2k + b2k is the value

represented in the vertical axis of Figure 2. So it is clear the equivalency
between the seasonal models we propose (see, for example, equations 13 or
14) and the Fourier approach and how appropriate it is to obtain the period
of the seasonal components.

Although values such as ρk or the amplitude are known, we estimate those
values via statistical methods in sections 4 and 5 in order to obtain other
information such as the statistical significance.

24eix = cos(x) + i sin(x)
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Appendix B. Results assuming electricity price is non-mean-reverting

Section 7 shows the results using the optimal policy and assuming a mean-
reverting electricity price model. For robustness we have obtained the same
results assuming that the electricity price is non-mean-reverting, as intro-
duced in equation (B.1).

dPt = α + γ1 sin((t+ τ1)
2 π

6
) + γ2 sin((t+ τ2)

2 π

12
) + σPdZt (B.1)

Figure B.9 shows the results under these assumptions. The simulations are
similar to those observed for the canonical model.
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(b) Electricity price simulated.
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(c) Optimal policy used in the simulations.
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Figure B.9: Simulating the inventory and electricity price dynamic applying the optimal
policy obtained in section 6. The price dynamics follows the non-mean-reverting model
proposed in (B.1).
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