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RESUMEN DEL PROYECTO  
Los sistemas de gestión de energía en microrredes eléctricas a menudo simplifican en exceso 
el modelado de la batería de ion-litio al considerar las pérdidas de potencia como lineales, 
lo cual puede llevar a una operación subóptima implicando costes de operación más 
elevados. Este proyecto tiene como objetivo incorporar una representación más realista del 
comportamiento de la batería desarrollando y resolviendo un modelo de optimización 
considerando pérdidas no lineales en la batería de ion-litio (NLL). Los resultados obtenidos 
al evaluar el rendimiento computacional de las combinaciones modelo-solver muestran que 
la combinación con mejor rendimiento supone resolver el modelo NLL usando DICOPT. 
También se ha concluido que usar un modelo con pérdidas lineales puede llevar a subestimar 
la verdadera eficiencia media de la batería de ion-litio, implicando costes de operación más 
elevados. Además, este proyecto muestra las ventajas de optimizar usando un horizonte 
móvil. 

Palabras clave: Sistema de gestión de energía, microrred, pérdidas no-lineales, 

optimización, horizonte móvil 

1. Introducción 

Las microrredes están adquiriendo una importancia creciente debido a la necesidad de 
llevar a cabo una transición hacia soluciones energéticas más limpias, satisfacer la 
demanda energética creciente a nivel mundial, proveer acceso a electricidad en lugares 
remotos y aumentar la seguridad del suministro eléctrico. Los sistemas de gestión de 
energía son esenciales para el correcto funcionamiento de las microrredes. Sin embargo, 
el modelado de la batería en los modelos de optimización a menudo es simplificado en 
exceso, lo cual puede llevar a una operación subóptima de una microrred, implicando 
costes de operación más elevados. 

2. Definición del proyecto 

El objetivo de este proyecto es desarrollar y resolver un modelo de optimización para 
gestionar una microrred residencial aislada que consiste en una carga, un panel solar, un 
generador diésel, y una batería de ion-litio con pérdidas no-lineales durante la carga y la 
descarga. Los resultados obtenidos serán analizados para determinar el impacto de 
incorporar una representación más realista del comportamiento de una batería en el 
modelo de optimización del funcionamiento de una microrred. 



3. Modelos de optimización 

Dos modelos de optimización deterministas para la gestión de energía en una microrred 
han sido desarrollados y programados usando GAMS. Estos modelos se diferencian en 
las ecuaciones usadas para calcular las pérdidas de potencia durante la carga o descarga 
de la batería de ion-litio. En el modelo LL, se usan ecuaciones lineales para calcular las 
pérdidas de potencia en la batería de ion-litio mientras que en el modelo NLL se usan las 
ecuaciones no lineales derivadas en [1]. En estas ecuaciones las pérdidas no lineales son 
modeladas como funciones bivariantes de la potencia de carga/descarga y del estado de 
carga de la batería. 

Además, se utilizarán dos enfoques de trabajo para implementar los modelos de 
optimización. El primero es un enfoque de optimización de horizonte completo, donde el 
modelo de optimización se resuelve una única vez para todo el horizonte temporal. El 
segundo es un enfoque de optimización de horizonte móvil, que supone resolver el 
problema de optimización de forma iterativa definiendo un horizonte de programación 
(SH), un horizonte de predicción (SH) y un horizonte de control (CH) y siguiendo la 
dinámica mostrada en la Figura 1. 

 

Figura 1: Horizontes temporales en el enfoque de optimización de horizonte móvil (Fuente: [2]) 

4. Resultados 

4.1. Análisis Comparativo de Modelos de Optimización y Solvers 

Los modelos estudiados incluyen LL, NLL y ZZI-J1. Este último, presentado en [1], 
utiliza aproximaciones lineales por tramos de las ecuaciones de pérdidas de potencia 
no lineales implementadas mediante una formulación entera de zig-zag. Para 
determinar el rendimiento de las combinaciones modelo-solver, estas han sido 
probadas usando un conjunto de datos de 168 horas obtenido en [3] y aplicando un 
enfoque de optimización de horizonte completo. Los resultados se muestran en la 
Tabla 1. 

Modelo Solver 
Principal 

Relaxed Sub-solver 
MIP 

Sub-solver 
NLP 

Obj. [€] Tiempo 
[s] 

Rel. 
Gap 

LL GUROBI - - - 5.4197 5.69 0.32% 



NLL DICOPT 1 GUROBI CONOPT 7.0354 3613.14 - 
NLL DICOPT 1 GUROBI IPOPT - - - 
NLL DICOPT 1 GUROBI MINOS 6.9869 11.11 - 
NLL DICOPT 1 GUROBI SNOPT 6.8991 6.09 - 
NLL DICOPT 0 GUROBI CONOPT 4.7509 35.47 - 
NLL DICOPT 0 GUROBI IPOPT 4.7509 3631.53 - 
NLL DICOPT 0 GUROBI MINOS 4.7509 23.97 - 
NLL DICOPT 0 GUROBI SNOPT 4.7510 133.20 - 
NLL BARON - Default Default 4.7421 3603.14 1.72% 
NLL BARON - Default MINOS 4.7436 3602.42 1.74% 
NLL BARON - Default SNOPT 4.7426 3602.50 1.73% 
NLL BARON - Default IPOPT 4.7459 3602.27 1.79% 

ZZI-J1 GUROBI - - - 4.7526 139.53 0.38% 
 

Tabla 1: Resumen del rendimiento computacional de las combinaciones modelo-solver 

El modelo con mejor rendimiento computacional considerando tanto el tiempo de 
ejecución como el valor de la función objetivo (coste de operación semanal) ha sido 
NLL-DICOPT fijando las variables binarias en el NLP inicial usando los resultados 
de LL-GUROBI, específicamente con MINOS como sub-solver NLP. La Figura 2 
ilustra cómo la energía es gestionada por esta combinación modelo-solver. 

 
Figura 2: Abastecimiento de la demanda (NLL, DICOPT, relaxed=0, GUROBI-MINOS, 

168 horas) 
 

La Figura 2 muestra que el pico de carga de la batería ocurre durante el pico de 
generación solar y, por la tarde, la batería se descarga para ayudar a abastecer el pico 
de demanda. Normalmente, el generador diésel está encendido durante los picos de 
demanda por la tarde ya que el nivel de irradiación solar es bajo y la batería no es 
capaz de suministrar toda la potencia demandada por si sola. Sin embargo, en el día 
5, la irradiación solar es más baja que el resto de los días, consecuentemente, el 
generador diésel suministra potencia prácticamente durante todo el día. 
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Al analizar la operación de los componentes de la microrred para diferentes 
combinaciones modelo-solver, se identificó que ZZI-J1 tiene un valor de la función 
objetivo superior debido a que el panel solar suministra potencia a la microrred de 
forma menos uniforme que otros modelos, presentando picos muy pronunciados. 
Esto resulta en picos de carga de la batería notablemente más altos y por ende 
pérdidas de potencia mayores. Por lo tanto, es necesario un mayor uso de potencia 
diésel y se incurre en mayores costes de operación. 

Aunque el modelo LL, en cuanto a tiempo de ejecución, supera a los demás modelos, 
en cuanto al valor de la función objetivo es menos efectivo. A través de la realización 
de un análisis de sensibilidad variando la eficiencia de la batería de ion-litio, se ha 
podido concluir que modelar las pérdidas como lineales puede llevar a subestimar la 
verdadera potencia media de la batería de ion-litio, implicando costes de operación 
más elevados. Esto resalta una clara desventaja de usar un modelo que considera 
pérdidas lineales. 

4.2. Implementación del Enfoque de Optimización de Horizonte Móvil 

Aunque NLL-BARON con la configuración por defecto de sub-solvers ha sido capaz 
de obtener el mejor valor de función objetivo, tuvo el tiempo de ejecución más largo. 
Para intentar resolver este inconveniente, se ha explorado la posible implementación 
del enfoque de horizonte móvil usando dos conjuntos de datos (uno correspondiente 
a una semana en verano y el otro a una semana en invierno). Los horizontes 
temporales usados se incluyen en la Tabla 2 y los resultados obtenidos se muestran 
en la Tabla 3. 

Horizonte temporal Longitud de 
tiempo [h] 

Horizonte de 
planificación (SH) 

168 

Horizonte de 
predicción (PH) 

24 

Horizonte de control 
(CH) 

8 

 

Tabla 2: Horizontes temporales 

Set de 
datos 

Enfoque de 
optimización 

Obj. [€] Tiempo 
[s] 

Verano Horizonte completo 4.7421 3603.14 
Verano Horizonte móvil 4.7251 1524.06 
Invierno Horizonte completo 19.0309 765.69 
Invierno Horizonte móvil 19.0190 578.50 

 

Tabla 3: Resumen del rendimiento computacional de NNL-BARON 



Este enfoque de optimización mejora el rendimiento computacional de NLL-
BARON, disminuyendo tanto el valor de la función objetivo como el tiempo de 
ejecución. 

Además, esta implementación sirve como simulación de la operación real de una 
microrred. La principal diferencia en cuanto a la gestión de la energía es que al usar 
un enfoque de horizonte móvil, el modelo aprovecha más la irradiación solar 
disponible, como se muestra en la Figura 3. 

 
Figura 3: Generación Solar (NLL-BARON, 168 horas Verano) 

5. Conclusiones 

Los resultados obtenidos muestran una clara ventaja al usar un modelo de optimización 
que considera pérdidas no-lineales en la batería de ion-litio. Las combinaciones modelo-
solver con mejor rendimiento son NLL-DICOPT fijando las variables binarias en el NLP 
inicial y NLL-BARON con las configuraciones por defecto al implementarlo usando un 
horizonte móvil. 

En general, este proyecto contribuye a aumentar la precisión y efectividad de la gestión 
de energía en microrredes, reduciendo costes de operación. 
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ABSTRACT  
Energy management systems in electrical microgrids often oversimplify the modeling of the 
lithium-ion battery by considering power losses as linear, which can lead to a suboptimal 
operation implying higher operation costs. This project is aimed at incorporating a more 
realistic representation of battery behavior by developing and solving an optimization model 
considering non-linear power losses in the Li-ion battery (NLL). The results obtained when 
evaluating the computational performance of model-solver combinations shows that the 
best-performing combination involved solving model NLL using DICOPT. It was also 
concluded that using a model with linear losses can lead to underestimating the actual 
average efficiency of the Li-ion battery implying higher operation costs. Moreover, this 
project shows the advantages of using a rolling horizon optimization approach. 

Keywords: Energy management system, microgrid, non-linear losses, optimization, rolling 

horizon 

1. Introduction 

Microgrids are gaining an increasing significance due to the need to transition towards 
cleaner energy solutions, meet increasing energy demands worldwide, provide access to 
electricity in remote locations and increase power reliability. Energy management 
systems are essential to the correct functioning of microgrids. However, the modelling 
of the battery in optimization models is often oversimplified, which can lead to a 
suboptimal operation of a microgrid, implying higher operation costs. 

2. Project Description 

The objective of this project is to develop and solve an optimization model to manage an 
isolated residential microgrid which consists of a load, a solar panel, a diesel generator, 
and a lithium-ion battery with non-linear power losses when charging and discharging. 
Results obtained will be analyzed to determine the impact of incorporating a more 
realistic representation of battery behavior into a microgrid optimization model. 

3. Optimization models 

Two deterministic optimization models for the energy management of the microgrid 
have been developed and coded using GAMS. These models differ in the equations used 
to calculate the power losses when the Li-ion battery is charging or discharging. In model 



LL, linear equations are used to calculate the power losses in the Li-ion battery whereas 
model NLL involves the use of non-linear equations derived in [1]. Through these 
equations, power losses are modeled as bivariate functions of the charging/discharging 
power and the state of charge of the battery. 

Moreover, two frameworks will be used to implement the optimization models. The first 
one is a whole horizon optimization approach, where the optimization model is solved 
once for the whole time horizon. The second one is a rolling horizon optimization 
approach, which involves solving an optimization problem in an iterative manner by 
defining a scheduling horizon (SH), a prediction horizon (PH) and a control horizon 
(CH) and following the dynamic illustrated in Figure 1. 

 

Figure 1: Time horizons in rolling horizon framework (Source: [2]) 

4. Results 

4.1. Comparative Analysis of Optimization Models and Solvers 

The models studied will include LL, NLL and ZZI-J1. The last model, which is 
presented in [1], uses piecewise linear approximations of the non-linear power losses 
equations implemented using an integer zig-zag formulation. To determine the 
performance of model-solver combinations, these have been tested using a 168-hour 
dataset obtained from [3] and applying a whole horizon optimization approach. The 
results are shown in Table 1. 

Model Main 
Solver 

Relaxed MIP Sub-
solver 

NLP Sub-
solver 

Obj. [€] Time [s] Rel. 
Gap 

LL GUROBI - - - 5.4197 5.69 0.32% 
NLL DICOPT 1 GUROBI CONOPT 7.0354 3613.14 - 
NLL DICOPT 1 GUROBI IPOPT - - - 
NLL DICOPT 1 GUROBI MINOS 6.9869 11.11 - 
NLL DICOPT 1 GUROBI SNOPT 6.8991 6.09 - 
NLL DICOPT 0 GUROBI CONOPT 4.7509 35.47 - 
NLL DICOPT 0 GUROBI IPOPT 4.7509 3631.53 - 
NLL DICOPT 0 GUROBI MINOS 4.7509 23.97 - 
NLL DICOPT 0 GUROBI SNOPT 4.7510 133.20 - 



NLL BARON - Default Default 4.7421 3603.14 1.72% 
NLL BARON - Default MINOS 4.7436 3602.42 1.74% 
NLL BARON - Default SNOPT 4.7426 3602.50 1.73% 
NLL BARON - Default IPOPT 4.7459 3602.27 1.79% 

ZZI-J1 GUROBI - - - 4.7526 139.53 0.38% 
 

Table 1: Summary of computational performance of model-solver combinations 

The model which had the best computational performance considering both the 
execution time and the objective function value (weekly operation cost) was NLL-
DICOPT fixing binary variables in the initial NLP using the results from LL-
GUROBI, specifically when MINOS was used as the NLP sub-solver. Figure 2 
illustrates how energy is managed by this model-solver combination. 

 
Figure 2: Demand fulfillment (NLL, DICOPT, relaxed=0, GUROBI-MINOS, 168 hours) 

 
Figure 2 shows that the battery charging peak occurs during the solar generation 
peak and, during the evening, the battery discharges to help fulfill the demand peak. 
Usually, the diesel generator is on during demand peaks in the evening since the 
level of solar radiation is low and battery can’t supply all the power demanded on 
its own. However, on day 5, the solar irradiation is lower than the rest of the days, 
consequently, the diesel generator supplies power practically throughout the whole 
day. 

When analyzing the operation of the microgrid components for the different model-
solver combinations, it was identified that ZZI-J1 has a higher objective function 
value due to the solar panel supplying power to the microgrid in a less uniform way 
than other models, presenting very pronounced peaks. This resulted in notably 
higher battery charging peaks and hence increased power losses meaning more 
diesel power had to be used and greater operation costs were incurred. 

Although model LL, in terms of execution time, outperforms all other models, in 
terms of objective function value it performed less effectively. Through carrying out 
a sensitivity analysis by varying the efficiency of the Li-ion battery, it was concluded 
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that modeling losses as linear can lead to underestimating the actual average 
efficiency of the Li-ion battery, implying higher operation costs. This highlights a 
clear drawback of using a model which considers linear losses. 

4.2. Implementation of Rolling Horizon Optimization Framework 

Although NLL-BARON with the default sub-solver configurations was able to 
obtain the best objective function value, it had the longest execution time. To address 
this, the implementation of a rolling horizon optimization approach was explored 
using two datasets (one corresponding to a week in summer and the other one to a 
week in winter). The time horizons used are included in Table 2 and the results are 
shown in Table 3. 

Time horizon Time length 
[h] 

Scheduling horizon 168 
Prediction horizon 24 

Control horizon 8 
 

Table 2: Time horizons 

Dataset Optimization 
approach 

Obj. [€] Time [s] 

Summer Whole horizon 4.7421 3603.14 
Summer Rolling Horizon 4.7251 1524.06 
Winter Whole horizon 19.0309 765.69 
Winter Rolling Horizon 19.0190 578.50 

 

Table 3: Summary of computational performance of NNL-BARON 

This optimization approach improved NLL-BARON’s computational performance, 
decreasing both the objective function value and execution time.  

Moreover, this implementation served as a simulation of the real-life operation of a 
microgrid. The main difference regarding energy management between both 
optimization approaches was that when using the rolling horizon framework, the 
model took more advantage solar irradiation available, as shown in Figure 3. 



 
Figure 3: Solar Generation (NLL-BARON, 168 hours Summer) 

5. Conclusions 

The results obtained have shown a successful performance when using an optimization 
model which considers non-linear losses in the Li-ion battery. The best-performing 
models are NLL-DICOPT fixing binary variables in the initial NLP and NLL-BARON 
with the default sub-solver configurations when implemented using the rolling horizon 
framework.  

Overall, this project contributes to the increase in accuracy and effectiveness of 
microgrid energy management, ultimately reducing operation costs. 
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Chapter 1.  INTRODUCTION 

1.1 INTRODUCTION 

Energy is a key resource present in our everyday lives. Its applications range from residential 

usage to powering industries that drive the global economy, thereby ensuring society’s well-

being and progress. Population growth, technological advancements, and urbanization have 

significantly increased the demand for energy over the past decade [1] and, nowadays, it is 

essential for manufacturing, transportation, communications, medical equipment, 

climatization, and much more. 

Although energy is a contributes notably to social and economic development, its 

decarbonization is an ongoing challenge. Over the past years, there has been a shift from 

fossil fuel power generation to reducing carbon emissions and addressing concerns regarding 

their limited supply. This is fostering a massive deployment of renewable energy sources 

(RES) within the electric power industry. Therefore, according to the International Energy 

Agency (IEA), renewables will become the largest source of global electricity generation by 

2025. In fact, renewable energy is forecasted to grow almost 2400 GW between 2022 and 

2027, which is equal to the entire installed power capacity of China in 2022. [2]  

The presence of higher shares of RES in the generation mix will be led by two technologies: 

photovoltaic panels and wind turbines [2]. Both can be installed as distributed generation 

and combined with storage systems, such as batteries, to create micro-networks. These are 

known as microgrids, and they will be defined more specifically in section 1.2. 

The use of microgrids not only enables transitioning towards cleaner energy but it is also a 

response to meet the increasing electricity demand worldwide. Demand for electricity is 

being driven by the electrification of sectors such as transport and heating as well as the 

growth of emerging and developing economies [3]. Over the next years, global electricity 

generation is expected to grow significantly and renewables will make up the majority of the 
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increase (Figure 1.1). Since microgrids are designed to incorporate various distributed 

energy resources, including solar panels and wind turbines, they will be beneficial for 

integrating and promoting the use of RES. 

 

Figure 1.1: Changes in global electricity generation by source, 2021-2025 (Source: [3]) 

As global electricity demand grows, another challenge emerges: ensuring universal access 

to electricity. Microgrids can help address this problem by providing access to electricity in 

remote locations [4]. Extending the main grid to reach isolated communities can sometimes 

be too expensive or technically unviable so microgrids can serve as a practical alternative in 

these situations.  

Moreover, microgrids can contribute to improving the reliability of power supply, which is 

especially relevant to protect critical systems from blackouts [5]. If electricity supply from 

the main grid to a country’s critical infrastructure were to cease unexpectedly, being 

connected to a microgrid would enable systems to keep running by using energy from 

storage systems and distributed energy sources. 

Overall, these factors will make the microgrid market keep growing in the coming years. 
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1.2 STATE OF THE ART 

A microgrid is a group of interconnected distributed energy resources, storage systems and 

loads that function as a single controllable entity [6]. Microgrids can either work grid-

connected or islanded. In a grid-connected mode, microgrids operate as part of the larger 

utility grid, interacting and exchanging power with the external network. Alternatively, in 

islanded mode, the microgrid is disconnected from the main grid and relies solely on its 

internal resources to meet energy demand. 

 

1.2.1 MICROGRID COMPONENTS 

Microgrids can be composed of different elements, however, in the literature, the most 

common components are shown in Figure 1.2 and include the following: 

Loads, such as households. Most loads have a variable power consumption which cannot be 

predicted with certainty. 

Renewable energy sources (RES), such as photovoltaic panels and wind turbines. Using 

RES can be beneficial from both a financial and an environmental point of view [7]. Once 

the initial investment is made in the infrastructure, the ongoing operation and maintenance 

costs of renewable energy systems can be lower than traditional fossil fuel-based systems. 

Energy storage systems (ESS), such as Li-ion batteries or a H2 storages. RES are 

intermittent and uncertain, meaning that their supply will not remain constant throughout the 

day and cannot be perfectly forecasted. ESS typically consume or generate power depending 

on whether generation is greater than demand or vice versa. This helps minimize costs since, 

if at one point in the day power generated by RES is greater than the one demanded, it can 

be stored and used later when there is a power shortage. [8] 
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Conventional generation sources, such as a diesel group or a microturbine. In an islanded 

microgrid, RES and ESS might not be enough to satisfy the demand at certain times of the 

day so other energy sources must be included to avoid power shortages. [5] 

 

Figure 1.2: Schematic representation of a possible microgrid setup (Source: [5]) 

Electric vehicles are additional loads during the charging process, and in case the vehicle to 

grid (V2G) mode is available, they can act as generators providing electricity to the micro-

grid using the energy stored in their batteries. 

 

1.2.2 MICROGRID ENERGY MANAGEMENT SYSTEMS 

All the components in a microgrid must be controlled in such a way that certain operational 

constraints are met and profits or costs, either economic or environmental, are maximized or 

minimized. Coordinating a microgrid can be challenging; therefore, to optimize its 

operation, Energy Management Systems (EMS) are used. A microgrid EMS is a control and 

optimization system designed to efficiently manage energy generation, storage, and 

consumption within a microgrid. These systems are especially relevant given the intermittent 

and stochastic nature of the energy management problem resulting from both the use of RES 

and variable loads. EMS ensure an efficient, reliable, and economical operation of 

microgrids [9]. 
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1.2.2.1 Optimization Techniques Used in Energy Management Systems 

Different optimization techniques have been proposed to solve the energy management 

problem in the literature. These can be classified into four groups: AI method-based EMS, 

Conventional method-based EMS, Metaheuristics method-based EMS, and Other method-

based EMS. [1] 

Figure 1.3 shows that mixed integer programming (MIP) is the most popular optimization 

technique for energy management of microgrids. This is due to the fact that it offers a 

rigorous and versatile approach to address the complex decision-making processes involved 

in EMS. MIP is used to model problems that involve both continuous and integer variables 

using constraints and an objective function. This technique stands out for its performance 

and simplicity [1], making it highly suitable for optimizing energy management in 

microgrids. 

 

Figure 1.3: Analysis of different optimization techniques based on the number of publications during 2010–

2020 (Source: [1]) 
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Energy management schemes in the context of microgrids can pursue one or multiple 

objectives, being the following the most common [1]: 

• Forecasting: Predicting future load or generation profiles. 

• Economic/environmental dispatch: Increasing environmental/economic benefits 

by improving the utilization of the microgrid’s elements. 

• Unit commitment: Coordinating electricity generators to fulfil demand minimizing 

costs and maximizing revenue if fossil fuel-based generators that require to be 

started-up or shut-down are being used together with RES. 

• Demand management: Scheduling load effectively to increase financial benefit. 

Depending on the optimization technique used, pursuing certain objectives is more usual in 

the literature. This analysis is shown graphically in Figure 1.4.  

 

Figure 1.4: Distribution of the objective of the EMS with respect to the type of optimization techniques 

(Source: [1]) 

From the chart presented, it can be deduced that the majority of the objectives are pursued 

in a similar proportion amongst the different optimization techniques, being unit 

commitment and environmental/economic dispatch the objectives which are addressed most 

by all of the techniques. 
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According to [1], the most cited paper within the field of AI method-based optimization is 

[10], which aims to minimize the operation cost and the environmental impact of a 

microgrid. This is done by formulating an energy management problem and solving it using 

linear-programming-based multi-objective optimization together with artificial intelligence 

techniques. This paper pursues three of the objectives mentioned above: forecasting, 

environmental/economic dispatch, and unit commitment. A fuzzy logic expert system is used 

for the scheduling of the battery, considering linear losses. 

[11] was identified as one of the most cited papers within conventional method-based 

optimization by [1]. The study focuses on component size optimization, optimal scheduling 

of shiftable appliances, and demand response planning. The decision variables included the 

capacity of RES (photovoltaic panels and wind turbines) and ESS (batteries, considering 

linear losses) and the operation times for dispatchable loads. 

Within metaheuristics method-based techniques, [11] proposes an optimal probabilistic 

energy management of a typical microgrid using robust optimization and a point estimate 

method. Microgrid components include a microturbine, a diesel generator, a battery 

(considering linear losses), a photovoltaic panel and a wind turbine. This paper also seeks to 

compare deterministic and probabilistic management in different scenarios. 

 

1.3 MOTIVATION 

Microgrid energy management systems are gaining an increasing significance given the need 

for sustainable energy solutions and efficient management of distributed energy resources.  

Literature on microgrid EMS focuses on a diverse range of topics from optimal sizing to 

demand response. However, regarding the modelling of the battery in the microgrids, the 

consideration of non-linear losses has not been explored much. This implies that battery 

dynamics are often oversimplified, which can lead to a suboptimal operation of a microgrid, 

implying higher operation costs. 
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Therefore, this project will be aimed at incorporating a more realistic representation of 

battery behavior by developing an optimization model to manage a residential microgrid 

which consists of a load, a solar panel, a diesel generator, and a lithium-ion battery with non-

linear power losses when charging and discharging. An islanded microgrid will be studied 

since the main focus of the EMS will be the modelling of the Li-ion battery. By studying the 

implications of considering non-linear losses, the project aspires to increase the accuracy 

and effectiveness of microgrid energy management, ultimately contributing to the 

advancement of sustainable and reliable energy infrastructures. 

 

1.4 OBJECTIVES 

Main objectives: 

• Formulate an optimization model for the energy management of a microgrid which 

consists of a solar panel, a diesel generator, and a lithium-ion battery with linear 

losses (model LL). 

• Modify the previous formulation to account for non-linear losses when charging and 

discharging the lithium-ion battery (model NLL). 

• Code and implement both optimization models. 

• Compare the obtained results when considering linear versus non-linear losses in the 

lithium-ion battery. 

Additional objectives: 

• Analyze the impact of the optimization problem solver chosen on the computational 

performance and the energy management of the microgrid. 

• Compare the obtained results when solving the optimization models developed in the 

project with other models proposed in the literature. 

• Carry out a sensitivity analysis considering different Li-ion battery efficiencies. 
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• Formulate, code and integrate a rolling horizon optimization framework into both 

microgrid models. 

• Analyze and compare results obtained when using a rolling horizon optimization 

approach versus a whole horizon optimization approach. 

 

1.5 METHODOLOGY AND RESOURCES 

The methodology for this project will be the following: 

• Definition of microgrid components: A review of existing literature regarding the 

components used in residential microgrids will be carried out in order to choose the 

characteristics of the components for this project’s microgrid model. This will 

include the research and selection of solar panel generation profile data and load 

profile data.  

• Formulation of the optimization models: Models will be formulated using mixed-

integer programming due the advantages mentioned in a previous section and its 

extensive use in literature, meaning it provides a solid base on which to build and 

innovate. Furthermore, it is mostly used in unit commitment, which will be the main 

objective of the models developed. 

• Coding of optimization models: In this phase, both models will be coded in the 

General Algebraic Modelling System (GAMS) [12].  

• Research of GAMS solvers: Conduct a review of academic papers and GAMS 

manuals to identify potential GAMS solvers that could be used to solve the 

optimization problems. 

• Validation of optimization models: To ensure the correct functioning of both models, 

various trials will be carried out with multiple datasets and solvers. Results will be 

analyzed to identify and address any potential issues. 
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• Case study analysis: The optimization models will be solved for a given case study 

and results obtained will be analyzed to compare model performance and energy 

management for different model and solver combinations. 

To complete the project, the schedule shown in Table 1.1 has been followed. 

Month Tasks 

January State of the art 

February Definition of microgrid components 

Formulation of optimization models 

Coding of optimization models 

March Validation of optimization models 

Research of GAMS solvers 

April Validation of optimization models 

Research of GAMS solvers 

May Case study analysis 

Report write-up 

Table 1.1: Project Schedule 
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Chapter 2.  MICROGRID COMPONENTS 

This chapter provides a comprehensive overview of the components comprising the 

microgrid studied in the project: a load, a solar panel, a diesel generator, and a lithium-ion 

battery, as shown in Figure 2.1. Each component is described in detail, including its function, 

operational characteristics, and specifications. 

 

Figure 2.1: Schematic representation of microgrid studied 

This project focuses on the operation phase of a microgrid and therefore, the optimal sizing 

of the microgrid is beyond its scope and initial investment costs for each component will not 

be evaluated. The characteristics of the microgrid components will be chosen based on those 

proposed in papers [5] and [13]. 

 

2.1 LOAD 

The load for the microgrid studied will be a residential household with a power demand 

which is independent of the operation state of the other components connected to the 

microgrid. Household power consumption varies throughout the day and, therefore, it will 
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be modeled using an hourly time series obtained from [14]. The dataset chosen consists of 

three years of hourly data for the power demanded by a typical household with a daily 

average consumption of 18kWh.  

Since the microgrid is not connected to the main grid, scenarios where power demanded in 

a given hour exceeds the total power microgrid components can supply during that period 

are possible. To penalize energy shortages when optimizing energy management, a cost of 

1 € per kWh of non-supplied energy will be accounted for. 

Throughout the model validation process, it was determined that this demand was too high 

for the characteristics of the microgrid studied given the ratio of non-served energy to 

supplied energy. Consequently, the demand was adjusted by applying a 30% decrease to the 

whole time series. Figure 2.2 shows the resulting demand profile for a time window of 168 

hours. 

 

Figure 2.2: Hourly load for a 168-hour period 
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2.2 SOLAR PANEL 

Solar panels are energy-generating components in the microgrid whose power output 

depends on the weather and the position of the sun relative to the solar panels. If not all of 

the power generated by the solar panel is required to fulfill power demand, it can be curtailed. 

This means that the net power supplied by the solar panel does depend on the operation of 

other components in the microgrid. It is assumed that this energy spillage does not imply an 

additional cost. 

The solar panel in the microgrid studied will be modelled using a dataset from [14] which 

consists of an hourly time series of the power generated by photovoltaic panels for a 

residential customer located in Belgium. The complete dataset covers a period of three years. 

Figure 2.3 shows a 168-hour period taken from a summer month. 

 

Figure 2.3: Hourly available PV power for a 168-hour period in summer 
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2.3 DIESEL GENERATOR 

The integration of a diesel generator into the microgrid addresses the uncertainty associated 

with solar panel power supply. By providing a reliable backup, the diesel generator 

contributes to minimizing non-supplied energy during periods of low solar output when there 

is a lack of PV power production. 

The operation of a diesel generator is managed by the control system can be modeled using 

two variables:  

• 𝑢𝑢𝑡𝑡𝑑𝑑: A binary variable which indicates whether the diesel generator is on or off in 

period t. 

• 𝑝𝑝𝑡𝑡𝑑𝑑: A positive continuous variable which indicates the power output of the diesel 

generator in period t. This value must be smaller than the diesel generator’s 

maximum power output (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑 ), whose value for the microgrid studied is indicated in 

Table 2.1. 

Neglecting the cost associated with the diesel generator’s start-up and shutdown, its total 

operating cost will be modeled as the sum of a fixed cost which is incurred if the generator 

is committed (𝑢𝑢𝑡𝑡𝑑𝑑=1) and a variable cost modeled as a quadratic function of the diesel 

generator’s power output [1]: 

𝐶𝐶𝑡𝑡�𝑝𝑝𝑡𝑡
𝑑𝑑, 𝑢𝑢𝑡𝑡𝑑𝑑� = 𝑎𝑎 (𝑝𝑝𝑡𝑡

𝑑𝑑)2 + 𝑏𝑏 𝑝𝑝𝑡𝑡
𝑑𝑑 + 𝑐𝑐 𝑢𝑢𝑡𝑡𝑑𝑑 

(1) 

In the microgrid studied, it will be assumed that the diesel generator is the only component 

for which a cost is incurred in its operation and parameters 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 will take the values 

shown in Table 2.1. 
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Parameter Definition Value Units 

a quadratic term of diesel 

generator cost-function 

0.31 €/kW2h 

b linear term of the diesel 

generator cost-function 

0.1080 €/kWh 

c independent term of the 

diesel generator cost function 

when the generator is 

committed 

0.0157 €/h 

Pd
max maximum output power of 

diesel generator [kW] 

1.0 kW 

Table 2.1: Diesel generator parameters 

 

2.4 LITHIUM-ION BATTERY 

The Li-ion battery is a component which can generate or consume power depending on 

whether it is charging or discharging. This feature provides flexibility to the microgrid given 

that, when managed optimally, the battery will charge during periods of high RES generation 

and discharge when RES generation is low, thereby reducing dependency on other more 

costly power sources such as the diesel generator.  

Both the charging/discharging decision and the magnitude of the power consumed or 

generated are decision variables managed by the control system. 

The Li-ion battery studied in this project is characterized by the parameters shown in Table 

2.2. 
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Parameter Definition Value Units 

ηb char charge efficiency of Li-ion 

battery 

0.9 - 

ηb disc discharge efficiency of Li-ion 

battery 

0.9 - 

Pb
max char maximum charge power of Li-

ion battery 

2.9 kW 

Pb
max disc maximum discharge power of 

Li-ion battery 

2.9 kW 

Eb
0 initial energy stored in Li-ion 

battery 

0.1 kWh 

Eb
min minimum energy storage of Li-

ion battery 

0.01 kWh 

Eb
max maximum energy storage of 

Li-ion battery 

2.9 kWh 

Vr rated voltage of Li-ion battery 51.2 V 

R internal resistance of battery  0.026464 Ω 

K polarization coefficient 0.0080625 Ω 

Table 2.2: Lithium-ion battery parameters 

 

2.4.1 POWER LOSSES IN LI-ION BATTERY 

Power losses in the Li-ion battery will be modeled using two equations, one for the power 

losses when charging and the other for the power losses when discharging. 
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2.4.1.1 Equations for linear losses in Li-ion battery 

In this section, two linear equations for the power losses in the Li-ion battery will be derived: 

one for discharging losses and the other for charging losses. Figure 2.4 illustrates the 

variables involved in these equations. 

 

Figure 2.4: Diagram illustrating power losses in Li-ion battery 

 

2.4.1.1.1 Discharge 

When discharging, the power extracted from the battery (𝐴𝐴𝑡𝑡) is equal to the sum of the power 

injected into the microgrid (𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and the power losses (𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑): 

𝐴𝐴𝑡𝑡 = 𝑝𝑝𝑡𝑡
𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐 + 𝑝𝑝𝑡𝑡

𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐 

(2) 
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Moreover, the discharging efficiency of the Li-ion battery (𝜂𝜂𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is defined as the power 

injected into the microgrid over the power decrease of the battery storage: 

𝜂𝜂𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑝𝑝𝑡𝑡
𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐

𝐴𝐴𝑡𝑡
 

(3) 

When combining equations (2) and (3), the following expression for the power losses when 

discharging is obtained: 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1− 𝜂𝜂𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐

𝜂𝜂𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐 𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

(4) 

2.4.1.1.2 Charge 

When charging, the power input into the battery (𝐵𝐵𝑡𝑡) is equal to the power extracted from 

the microgrid (𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎) minus the power losses (𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎). 

𝐵𝐵𝑡𝑡 = 𝑝𝑝𝑡𝑡
𝑏𝑏 𝑐𝑐ℎ𝑎𝑎𝑎𝑎 − 𝑝𝑝𝑡𝑡

𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑐𝑐ℎ𝑎𝑎𝑎𝑎 

(5) 

Moreover, the charging efficiency of the Li-ion battery (𝜂𝜂𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎) is defined as the power 

input into the battery over the power extracted from the microgrid. 

𝜂𝜂𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 =
𝐵𝐵𝑡𝑡

𝑝𝑝𝑡𝑡
𝑏𝑏 𝑐𝑐ℎ𝑎𝑎𝑎𝑎 

(6) 

When combining equations (5) and (6), the following expression for the power losses when 

charging is obtained: 
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𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 = (1− 𝜂𝜂𝑏𝑏 𝑐𝑐ℎ𝑎𝑎𝑎𝑎)𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 

(7) 

2.4.1.2 Equations for non-linear losses in Li-ion battery 

To model non-linear losses in the Li-ion battery, the expressions derived in [13] will be used. 

These equations model power losses as a function of two variables: the state of charge (𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡) 

and the discharging (𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) or charging power (𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎). The state of charge is defined as 

the charge stored in a particular moment divided by the maximum capacity [13]. 

These bivariate functions include three parameters that characterize the battery: the rated 

voltage (𝑉𝑉𝑎𝑎), the internal resistance (𝑅𝑅) and the polarization coefficient (𝐾𝐾). In the microgrid 

studied, these parameters will take the values shown in Table 2.2. 

2.4.1.2.1 Discharge 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 103 �𝑅𝑅+
𝐾𝐾
𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡

��
𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑉𝑉𝑎𝑎
�

2

 

(8) 

2.4.1.2.2 Charge 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 = 103 �𝑅𝑅+
𝐾𝐾

1.1− 𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡
��

𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎

𝑉𝑉𝑎𝑎
�

2

 

(9) 
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Chapter 3.  OPTIMIZATION MODELS 

This project proposes two deterministic optimization models for the energy management of 

the microgrid described in the previous chapter. These models differ in the equations used 

to calculate the power losses when the Li-ion battery is charging or discharging: 

• LL (Linear Losses): Optimization model for the energy management of a microgrid 

in which linear equations are used to calculate the power losses in the Li-ion battery. 

• NLL (Non-Linear Losses): Optimization model for the energy management of a 

microgrid in which non-linear equations are used to calculate the power losses in the 

Li-ion battery. 

Moreover, two frameworks for the implementation of the optimization models will be 

proposed: 

• Whole horizon optimization approach, where the optimization model is solved once 

for the whole time horizon. 

• Rolling horizon optimization approach, explained in detail in the following section. 

 

3.1 ROLLING HORIZON OPTIMIZATION FRAMEWORK 

The rolling horizon approach is a scheduling method which involves solving an optimization 

problem in an iterative manner. In each iteration, the optimization model is solved for a 

predetermined time horizon called prediction horizon. After each iteration, the prediction 

horizon is moved forward a defined time length (control horizon) along the time horizon 

studied (scheduling horizon) and the model is solved again. [15] This process is illustrated 

in Figure 3.1. 
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Figure 3.1: Time horizons in rolling horizon framework (Source: [16]) 

The implementation of a rolling horizon framework to solve an optimization problem has 

multiple advantages. Firstly, a rolling horizon approach is useful when solving problems 

incorporating a time structure, such as the ones studied in this project, since they are usually 

very large and, therefore, sometimes cannot be solved to optimality in a reasonable period 

of time [17]. Decomposing the problem by performing various iterations where the 

optimization model is solved for smaller time horizons can prove to be advantageous in this 

aspect. Moreover, solving the optimization problems using a rolling horizon approach allows 

to emulate what occurs in reality, where data is only available for a limited time horizon and, 

as time progresses, new data becomes available. Consequently, solving the optimization 

problems using a rolling horizon framework will provide a better understanding what would 

be the energy management decisions in a real-life scenario. 

To apply the rolling horizon approach to the optimization problems studied in this project, 

the following algorithm has been developed: 

1. Definition of the length of the scheduling horizon (𝑆𝑆𝑆𝑆), the prediction horizon (𝑃𝑃𝑆𝑆) and 

the control horizon (𝐶𝐶𝑆𝑆) 

2. Calculation of the number of iterations (𝑑𝑑𝑡𝑡): 

𝑑𝑑𝑡𝑡 = �𝑆𝑆𝑆𝑆−𝑃𝑃𝑆𝑆
𝐶𝐶𝑆𝑆

+ 1�     (10) 
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3. Iteration using a For loop for 𝑑𝑑 = 1 to 𝑑𝑑𝑡𝑡. 

3.1. Calculation of initial time period of prediction horizon: 

𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑 = 𝐶𝐶𝑆𝑆(𝑑𝑑 − 1) + 1     (11) 

3.2. Calculation of final time period of prediction horizon: 

𝑡𝑡𝑓𝑓𝑑𝑑𝑖𝑖 = 𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑 + 𝑃𝑃𝑆𝑆 − 1     (12) 

3.3. Definition dynamic set 𝑡𝑡𝑎𝑎ℎ with the time periods included in the current 

prediction horizon. 

3.4. Execution of optimization model. 

3.5. Updating of parameters which represent initial states of components. The value 

assigned will be that of the corresponding time-dependent variable for the time 

period in which the next prediction horizon starts. In this step it is assumed that 

the data for which the model is solved is what occurs in reality. This step is 

illustrated in Figure 3.2. 

 

Figure 3.2: Updating of parameters which represent initial states of components in rolling horizon 

framework (Source: [16]) 
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3.2 MATHEMATICAL FORMULATION OF OPTIMIZATION MODELS 

In this section, the mathematical formulation of models LL and NLL will be presented. This 

formulation includes the sets, parameters, objective function and constraints necessary to 

define the operation of the components connected to the microgrid studied as well as the 

interaction between them. Moreover, the classical optimization problem formulation has 

been adapted to adjust to the implementation of the rolling horizon framework algorithm 

explained in the previous section. 

 

3.2.1 SETS 

𝑡𝑡: time periods in scheduling horizon 

𝑡𝑡𝑎𝑎ℎ: time periods included in current prediction horizon 

 

3.2.2 PARAMETERS 

𝐷𝐷𝐷𝐷: duration of time period [h] 

𝐶𝐶𝑆𝑆:length of control horizon [h] 

𝑃𝑃𝑆𝑆:length of prediction horizon [h] 

𝑆𝑆𝑆𝑆:length of scheduling horizon [h] 

𝑑𝑑𝑡𝑡: number of iterations 

𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑: initial time period (included) of prediction horizon 

𝑡𝑡𝑓𝑓𝑑𝑑𝑖𝑖: final time period (included) of prediction horizon 

𝐶𝐶𝑖𝑖𝑑𝑑𝑛𝑛: cost of non-supplied energy [€/kWh] 
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3.2.2.1 Load 

𝐷𝐷𝑡𝑡: power demanded by load in period t [kW] 

3.2.2.2 Solar Panel 

𝑃𝑃𝑉𝑉𝑡𝑡:  power generated by PV panel in period t [kW] 

3.2.2.3 Diesel generator 

𝑎𝑎: quadratic term of diesel generator cost-function [€/kW2h] 

𝑏𝑏: linear term of the diesel generator cost-function [€/kWh] 

𝑐𝑐: independent term of the diesel generation cost-function when the generator is committed 

[€/h] 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 : maximum output power of diesel generator [kW] 

3.2.2.4 Li-ion battery 

𝜂𝜂𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎: efficiency of Li-ion battery when charging 

𝜂𝜂𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: efficiency of Li-ion battery when discharging 

𝑃𝑃max 𝑑𝑑ℎ𝑚𝑚𝑎𝑎𝑑𝑑 : Maximum charge power of Li-ion battery [kW] 

𝑃𝑃max𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 : maximum discharge power of Li-ion battery [kW] 

𝐸𝐸0𝑏𝑏: initial energy stored in Li-ion battery [kWh] 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏 : Maximum energy storage of Li-ion battery [kWh] 

𝑉𝑉𝑎𝑎: rated voltage of battery [V] 

𝑅𝑅: internal resistance of battery [Ω] 

K: polarization coefficient [Ω] 
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3.2.3 VARIABLES 

𝑝𝑝𝑡𝑡𝑖𝑖𝑑𝑑: non-supplied power in period t [kW] 

3.2.3.1 Solar panel 

𝑝𝑝𝑡𝑡𝑃𝑃𝑃𝑃: power output of solar panel [kW] 

𝑝𝑝𝑡𝑡𝑑𝑑𝑐𝑐𝑎𝑎𝑡𝑡: PV curtailment in period t [KW] 

3.2.3.2 Diesel generator 

𝑢𝑢𝑡𝑡𝑑𝑑: commitment of diesel generator in period t {0,1} 

𝑝𝑝𝑡𝑡𝑑𝑑: power output of diesel generator in period t [kW] 

3.2.3.3 Li-ion battery 

𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎: battery charge decision in period t {0,1} 

𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: battery discharge decision in period t {0,1} 

𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎: power consumed by Li-ion battery in period t [kW] 

𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: power generated by Li-ion battery in period t [kW] 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎: power loss of Li-ion battery if charging in period t [kW] 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: power loss of Li-ion battery if discharging in period t [kW] 

𝑒𝑒𝑡𝑡𝑏𝑏: energy stored in Li-ion battery at the end of period t [kWh] 

𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡: state of charge of Li-ion battery in period t [p.u.] 
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3.2.4 OBJECTIVE FUNCTION 

The objective of the model is to minimize the total cost of operating the microgrid, which is 

calculated as the sum of the cost curve for diesel generator, defined in equation (1), and the 

cost incurred due to the non-supplied energy. Note that the duration of each time step is one 

hour. 

𝑚𝑚𝑑𝑑𝑚𝑚��𝑎𝑎�𝑝𝑝𝑡𝑡𝑑𝑑�
2

+ 𝑏𝑏𝑝𝑝𝑡𝑡𝑑𝑑 + 𝑐𝑐𝑢𝑢𝑡𝑡𝑑𝑑 + 𝑐𝑐𝑖𝑖𝑑𝑑𝑛𝑛𝑝𝑝𝑡𝑡𝑖𝑖𝑑𝑑� 𝐷𝐷𝐷𝐷
𝑡𝑡

 

(13) 

3.2.5 CONSTRAINTS 

Constraints (14) – (20) and (23) – (30) are used in model LL and constraints (14) – (18) and 

(21) – (30) are used in model NLL. 

Energy balance of microgrid: 

𝑝𝑝𝑡𝑡𝑃𝑃𝑃𝑃 + 𝑝𝑝𝑡𝑡𝑑𝑑 + 𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑡𝑡𝑖𝑖𝑑𝑑 = 𝐷𝐷𝑡𝑡 + 𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(14) 

3.2.5.1 Solar panel 

Possible curtailment of power generated by solar panel: 

𝑃𝑃𝑉𝑉𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑃𝑃𝑃𝑃 + 𝑝𝑝𝑡𝑡𝑑𝑑𝑐𝑐𝑎𝑎𝑡𝑡    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(15) 

3.2.5.2 Diesel generator 

Maximum power diesel generator can generate: 

𝑝𝑝𝑡𝑡𝑑𝑑 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 𝑢𝑢𝑡𝑡𝑑𝑑    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(16) 
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3.2.5.3 Li-ion battery 

Battery dynamics: 

𝑒𝑒𝑡𝑡𝑏𝑏 = �
𝐸𝐸0𝑏𝑏 + �𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 − 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 − 𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐷𝐷𝐷𝐷     𝑑𝑑𝑖𝑖 𝑡𝑡 = 𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑
𝑒𝑒𝑡𝑡−1𝑏𝑏 + �𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 − 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 − 𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐷𝐷𝐷𝐷  𝑑𝑑𝑖𝑖 𝑡𝑡 > 𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑

    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(17) 

Approximation of state of charge for each period, where the average value between its 

instantaneous values at the beginning and at the end of the hour is proposed. 

𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡 =

⎩
⎪
⎨

⎪
⎧

1
2 �𝐸𝐸0

𝑏𝑏 + 𝑒𝑒𝑡𝑡�

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏   𝑑𝑑𝑖𝑖 𝑡𝑡 = 𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑

1
2 �𝑒𝑒𝑡𝑡−1

𝑏𝑏 + 𝑒𝑒𝑡𝑡�

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏   𝑑𝑑𝑖𝑖 𝑡𝑡 > 𝑡𝑡𝑑𝑑𝑖𝑖𝑑𝑑

    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(18) 

Linear expression for power losses in Li-ion battery when charging, based on equation (7): 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 = 𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎(1 − 𝜂𝜂𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎)    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(19) 

Linear expression for power losses in Li-ion battery when discharging, based on equation 

(4): 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 1 − 𝜂𝜂𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜂𝜂𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(20) 
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Non-linear expression for power losses in Li-ion battery when charging, based on equation 

(9): 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 = 103 �𝑅𝑅 +
𝐾𝐾

1.1 − 𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡
� �
𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎

𝑉𝑉𝑎𝑎
�
2

    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(21) 

Non-linear expression for power losses in Li-ion battery when charging, based on equation 

(8): 

𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 103 �𝑅𝑅 +
𝐾𝐾
𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡

� �
𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑉𝑉𝑎𝑎
�
2

    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(22) 

Maximum power Li-ion battery can consume when charging: 

𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑ℎ𝑚𝑚𝑎𝑎
𝑏𝑏 𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(23) 

Maximum power Li-ion battery can generate when discharging: 

𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑏𝑏 𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(24) 

Battery cannot charge and discharge at the same time: 

𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 + 𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 1     ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(25) 
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Maximum state of charge of Li-ion battery: 

𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡 ≤ 1    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(26) 

Minimum state of charge of Li-ion battery: 

𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡 ≥ 0.1     ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(27) 

Maximum energy storage of Li-ion battery: 

𝑒𝑒𝑡𝑡 ≤ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏      ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(28) 

3.2.5.4 Non-negativity and binary 

𝑝𝑝𝑡𝑡𝑖𝑖𝑑𝑑, 𝑝𝑝𝑡𝑡𝑃𝑃𝑃𝑃 ,𝑝𝑝𝑡𝑡𝑑𝑑𝑐𝑐𝑎𝑎𝑡𝑡,𝑝𝑝𝑡𝑡𝑑𝑑 ,𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 ,𝑝𝑝𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 ,𝑝𝑝𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑒𝑒𝑡𝑡𝑏𝑏 , 𝑑𝑑𝑙𝑙𝑐𝑐𝑡𝑡 ≥ 0    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ   

(29) 

𝑢𝑢𝑡𝑡𝑑𝑑, 𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑ℎ𝑚𝑚𝑎𝑎 ,𝑢𝑢𝑡𝑡𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∈ {0,1}    ∀𝑡𝑡 ∈ 𝑡𝑡𝑎𝑎ℎ 

(30) 

 

3.3 CODING OF OPTIMIZATION MODELS 

General Algebraic Modelling System (GAMS) has been used to code both optimization 

models LL and NLL. GAMS is a high-level algebraic modelling language used extensively 

to develop decision support models. It is widely used in fields such as Energy Production, 

Manufacturing, Logistics, Engineering and Economics for formulating and solving 
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mathematical optimization problems due to its ability to handle large-scale and complex 

problems efficiently [12]. The code developed for this project is included in Appendix I and 

has been implemented within a single .gms file where the user can select which model to 

execute. 
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Chapter 4.  GAMS SOLVERS 

Within the GAMS system, multiple solvers are available depending on the type of 

optimization problem to be solved. Using the most appropriate solver is crucial to reaching 

the optimal solution and achieving the best computational performance. 

LL is a mixed integer quadratic programming model due to the objective function being 

quadratic and the use of binary variables to specify the commitment of the diesel generator 

and whether the Li-ion battery is charging or discharging. In GAMS, this type of 

optimization model falls within the category of mixed integer quadratically constrained 

program (MIQCP) and it will be solved using GUROBI. This solver has been chosen instead 

of CPLEX due to its superior performance in a similar optimization problem solved in [13], 

which was confirmed during trial runs in the model validation stage. 

NLL contains non-linearities as well as integer variables. In addition to the quadratic 

objective function and the binary variables in model LL, non-linear terms are present in the 

constraints used to model power losses when the Li-ion battery is charging or discharging. 

Given these characteristics of the optimization problem, it is considered to fall within the 

category of mixed integer non-linear problems (MINLP).  

MINLP is frequently considered a “difficult” category of optimization problems due to the 

presence of both integer variables as well as non-linear functions, requiring a framework 

which addresses both by combining the capabilities of mixed-integer linear programming 

(MILP) and nonlinear programming (NLP) [18]. This requires the use of solvers different 

from those considered for model LL, such as CPLEX and GUROBI. 

Solver performance is highly dependent of the optimization problem being solved [19]. In 

fact, it is practically impossible to predict which solvers will be capable of solving a certain 

model and which will demonstrate a superior performance [20]. This implies that testing is 

required to identify the most suitable solver for a given optimization problem [12]. 
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This project will focus on testing and evaluating two MINLP solvers: DICOPT and BARON. 

Sections 4.1 and 4.2 will cover each solver separately, aiming to provide an overview of 

their characteristics based on the information provided by GAMS manuals for DICOPT [20] 

and BARON [21] and relevant papers regarding these algorithms, such as [22]. The 

following sections will cover why these solvers have been selected, basing this decision on 

their performance when solving a variety of MINLP problems in previous literature as well 

as their intrinsic differences when approaching the resolution of MINLP problems. 

Furthermore, even though the algorithms used by the solvers and the theory behind them is 

beyond the scope of this project, they will be briefly described to better illustrate the 

differences between the solvers and facilitate the understanding of solver options. 

Additionally, an explanation of the solver options relevant to this project will be provided. 

 

4.1 DICOPT 

DICOPT (Discrete Continuous Optimizer) is a program used to solve MINLP problems 

originally developed at the Engineering Design Research Center (EDRC) in Carnegie 

Mellon University by Jagadisan Viswanathan, Ignacio E. Grossmann, and Aldo Vecchietti. 

This solver was selected due to its proven outstanding efficiency and performance in 

previous literature. For instance, in [19], when compared to other MINLP solvers in time 

usage in 89 problems, it has the lowest average execution time. Moreover, it offers a wide 

range of optimization capabilities through its integration with other solvers which will be 

discussed further on in more detail. DICOPT is also a versatile solver given its ability to 

solve both convex and non-convex problems. Nevertheless, it is important to note that, even 

though the solver is equipped to handle non-convexities, it does not necessarily obtain the 

global optimum.  

DICOPT’s approach to solving MINLP problems involves the alternate resolution of mixed 

integer programming (MIP) and non-linear programming (NLP) sub-problems. Firstly, the 

algorithm begins by solving a relaxed version of the specified problem in which binary 
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variables are allowed to take continuous values between 0 and 1. The resulting optimization 

problem falls within the NLP category. If in the solution obtained the binary variables take 

integer values, the search ends. If not an alternating sequence of MIP master problems and 

NLP subproblems is executed. Each iteration of the sequence begins by solving a MIP 

problem which is based on the outer-approximation/equality-relaxation algorithm. An exact 

penalty function is used to allow violations of linearizations of non-convex constraints. After 

the MIP master problem has been solved, an NLP sub-problem is solved. This NLP problem 

is obtained through fixing binary variables with the values from the MIP master problem’s 

solution. The iterative process stops when the optimal value of the objective function for an 

NLP sub-problem is worse than the one of the previous NLP sub-problem. 

To solve the MIP and NLP sub-problems, any solver which runs under GAMS can be used. 

The performance of DICOPT will greatly depend on the sub-solvers selected so choosing 

the most appropriate ones for the model studied is crucial to achieve a successful 

implementation. However, it is difficult, especially for NLP problems, to know in advance 

how well a solver will perform. Consequently, an objective of this project will be to analyze 

the impact of the non-linear solver chosen on the computational performance and the energy 

management of the microgrid for model NLL. By using the DICOPT options mipsolver and 

nlpsolver, combinations of the following sub-solvers will be tested: 

• MIP solvers: GUROBI 

• NLP solvers: CONOPT, IPOPT, MINOS and SNOPT 

By default, DICOPT solves MIP sub-problems to optimality. However, when models have 

many integer variables, it is sometimes necessary to use the optcr option to ensure that the 

model is solved in a reasonable amount of time. This is known as the relative optimality 

criterion and it causes the solver to stop as soon as the best solution found minus the best 

possible solution all divided by the best possible solution is smaller than a specified value. 

This value set using a GAMS option file. 

Another stopping criterion which can be used is reslim, which enables restricting the 

execution time to a specified wall-clock time limit. 
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One final option to feature in this section which can prove to be extremely powerful is 

relaxed. By default, relaxed is equal to 1 and results in the initial NLP problem being solved 

with all integer variables relaxed between their bounds. If relaxed is set to 0, the initial NLP 

problem solved is obtained by fixing the integer variables to values set by the user, instead 

of by relaxing the integer variables. This is useful when the user can provide a known 

reasonable configuration of the integer variables in the problem. The second option can 

prove advantageous in tackling highly complex optimization problems, especially when the 

relaxed problem is unsolvable, but solving NLP sub-problems with fixed integer variables 

is considerably more manageable. This project can profit from the implementation of this 

feature since a known configuration for the integer variables in the model can be obtained 

by solving model LL first and feeding the results to the MINLP model NLL. 

 

4.2 BARON 

BARON (Branch and Reduce Optimization Navigator) is a GAMS solver which can provide 

the global solution to NLP and MINLP problems. Its algorithm involves the use of constraint 

propagation, interval analysis, and duality to achieve an efficient range reduction while, 

through the enlargement of the feasible region and/or underestimation of the objective 

function, rigorous relaxations are constructed. 

The main advantage of solving an optimization problem using BARON is its ability to 

provide a global optimum under fairly broad assumptions through the use of deterministic 

global optimization algorithms of the branch-and-bound type. This does not hold true for 

traditional solvers, such as DICOPT, which are only guaranteed to converge under specific 

convexity assumptions. Consequently, BARON excels in finding the best possible solutions, 

ensuring a high level of accuracy in optimization tasks. 

Even if BARON stands out for its ability to address non-convex problems through a global 

approach, it was also identified as one of the most efficient solvers for convex problems by 

[18], which presents a review of solvers applied to convex MINLP problems. BARON has 
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showcased superior performance compared to DICOPT in the literature. For instance, in [19] 

it was able to solve difficult problems to feasibility within 1000 seconds whereas DICOPT 

found no solution after a few seconds. In addition, when benchmarked against various global 

solvers in [23], it was concluded that BARON was the fastest and most robust one. 

However, it is important to note that these advantages can come at an expense of increased 

computational times. 

Similarly to DICOPT, BARON offers a wide range of optimization capabilities thanks to its 

integration with other solvers. By default, BARON may switch throughout its execution 

between available LP/MIP/QP solvers and available NLP solvers. BARON may use the 

following sub-solvers: 

• LP/MIP/QP solvers: CLP/CBC and ILOG CPLEX 

• NLP solvers: MINOS, SNOPT, External NLP, IPOPT and FILTERSQP 

BARON options LPSol and NLPSol allow the user to indicate a single specific LP/MIP/QP 

solver and NLP solver to use. The performance of BARON can vary depending on the solver 

combinations selected, therefore, in line with the objective mentioned in the previous section 

of analyzing the impact of the non-linear solver chosen on the computational performance 

and the energy management of the microgrid for model NLL, combinations of the following 

solver options will be tested: 

• LP/MIP/QP solvers: Default (automatic solver selection and switching strategy) 

• NLP solvers: Default (automatic solver selection and switching strategy), IPOPT, 

MINOS and SNOPT 

As stopping criteria, optcr and reslim will be used. In BARON, the definition of optcr differs 

slightly from that of DICOPT. For this solver, optcr specifies the relative termination 

tolerance for the global solver, not for a sub-solver, and is defined as the objective function 

value of the best feasible solution found up until that moment minus the current bound on 

the optimal value of the problem all divided by the maximum between these two values. 
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Chapter 5.  COMPARATIVE ANALYSIS OF 

OPTIMIZATION MODELS AND SOLVERS 

In this chapter, through application to a case study, a comparative analysis of models and 

solvers will be performed. The aim of the study will be to determine which model-solver 

combinations yield a better performance and evaluate the differences regarding the energy 

management for the best-performing combinations. 

The models studied will include the following: 

• LL: Optimization model for the energy management of a microgrid in which linear 

equations are used to calculate the power losses in the Li-ion battery. 

• NLL: Optimization model for the energy management of a microgrid in which non-

linear equations are used to calculate the power losses in the Li-ion battery. 

• ZZI-J1: Optimization model presented in [13] for the energy management of a 

microgrid. This model uses piecewise linear approximations of the non-linear power 

losses equations implemented using an integer zig-zag (ZZI) formulation. The 

resulting optimization model is of type MIQCP. Multiple models were presented in 

[13] using the ZZI formulation but ZZI-J1 8x8 exhibited superior behavior. 

The solver used for models LL and ZZ-J1 8x8 will be GUROBI and for NLL the following 

combinations will be tested: 

• DICOPT with a relaxed initial NLP (relaxed = 1), using GUROBI as the MIP sub-

solver and CONOPT, IPOPT, MINOS or SNOPT as the NLP sub-solver. 

• DICOPT with fixed binary variables in initial NLP (relaxed = 0), using GUROBI as 

the MIP sub-solver and CONOPT, IPOPT, MINOS or SNOPT as the NLP sub-

solver. Binary variables in the initial NLP will be fixed using results obtained from 

solving LL using GUROBI. 
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• BARON using the default configuration for the MIP sub-solver and MINOS, 

SNOPT, IPOPT or the default configuration for the NLP sub-solver. 

The case study used will consist in a large-scale problem of 168 hours (1 week) using data 

from [14], as explained in Chapter 2. 

A whole horizon optimization approach will be employed as the framework for the 

implementation of the three models, meaning that the optimization model is solved once for 

the whole time horizon. This can be considered a particular case of the rolling horizon 

optimization framework developed and coded in GAMS, where the scheduling horizon is 

equal to the prediction horizon. 

The stopping criteria used for all model-solver combinations are a wall-clock time limit of 

one hour (reslim = 3600) and a relative optimality criterion of 0.5% (optcr = 0.005). 

 

5.1 COMPARATIVE ANALYSIS OF COMPUTATIONAL PERFORMANCE 

Table 5.1 presents the results obtained when executing the model-solver combinations 

detailed previously. The model-solver performance parameters which will be compared are 

the best objective function value found, the execution time and the relative gap. Empty cells 

in the Obj. and Time columns indicate that the solver was unable to find an integer solution 

within the one-hour time limit. The relative gap was not included for models solved using 

DICOPT since it refers to the MIP sub-problems, whereas for the other solvers a global 

relative gap is provided. 
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Model Main 

Solver 

Relaxed MIP 

Sub-

solver 

NLP 

Sub-

solver 

Obj. 

[€] 

Time 

[s] 

Rel. 

Gap 

LL GUROBI - - - 5.4197 5.69 0.32% 

NLL DICOPT 1 GUROBI CONOPT 7.0354 3613.14 - 

NLL DICOPT 1 GUROBI IPOPT - - - 

NLL DICOPT 1 GUROBI MINOS 6.9869 11.11 - 

NLL DICOPT 1 GUROBI SNOPT 6.8991 6.09 - 

NLL DICOPT 0 GUROBI CONOPT 4.7509 35.47 - 

NLL DICOPT 0 GUROBI IPOPT 4.7509 3631.53 - 

NLL DICOPT 0 GUROBI MINOS 4.7509 23.97 - 

NLL DICOPT 0 GUROBI SNOPT 4.7510 133.20 - 

NLL BARON - Default Default 4.7421 3603.14 1.72% 

NLL BARON - Default MINOS 4.7436 3602.42 1.74% 

NLL BARON - Default SNOPT 4.7426 3602.50 1.73% 

NLL BARON - Default IPOPT 4.7459 3602.27 1.79% 

ZZI-J1 GUROBI - - - 4.7526 139.53 0.38% 
 

Table 5.1: Summary of computational performance of model-solver combinations 

 

For the models which consider non-linear losses in the Li-ion battery (NNL and ZZI-J1), 

based on the best solutions found across the model-solver combinations, the optimal value 

of the objective function for the case studied seems to be approximately between 4.7€ and 

4.8€ per week. 

Table 5.1 shows that, when solving model NLL using DICOPT with a relaxed initial NLP, 

the value of the objective function for all NLP sub-solvers tested is around 7€. This value is 

notably greater than the approximate optimal value for the case studied. Consequently, it can 
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be concluded that the DICOPT is converging towards a local optimum and is unable to reach 

the global optimum. This implies that the optimization problem studied is non-convex and, 

even though DICOPT is equipped to handle non-convexities, it does not necessarily obtain 

the global optimum.  

This issue is overcome when solving model NLL using DICOPT with fixed binary variables 

in the initial NLP. In Table 5.1 it can be observed that, for all solver combinations within 

this category, the model is converging towards the global optimum given that the objective 

function values lie between 4.7€ and 4.8€. Hence, for the MINLP model proposed in this 

project, aiding the MINLP solver by providing it with a known reasonable configuration of 

the integer variables in the problem, which in this case is the optimal solution obtained by 

the linear model LL, results in a successful outcome. 

When solving model NLL using BARON, the solution also converges towards the global 

optimum. This highlights BARON’s main strength as a global solver, which allows it to 

provide a global optimum under fairly broad conditions and not only under certain convexity 

assumptions. 

GUROBI solves optimization problems to global optimality subject to a specific optimality 

tolerance specified by the user. This can be seen in the objective function value obtained 

when using model ZZI-J1. 

It is noteworthy to mention that the objective function value for model LL, which considers 

linear losses in the Li-ion battery, is approximately 0.6€ greater than the previously 

suggested upper bound of the optimal value of the objective function for models which 

consider non-linear losses. The reason behind this is not that GUROBI is converging towards 

a local optimum but the fact that the linear and non-linear formulations cannot be considered 

equivalent since different parameters are used in the power losses equations.  

Consequently, whether the objective function value of the non-linear model is smaller or 

greater than the one obtained using the linear model will depend on the parameters used to 

characterize the Li-ion battery. In section 5.2, a possible approach to making parameters 
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used in the linear model equivalent to those used in the non-linear model will be explored 

and its impact on the results obtained analyzed.  

Although model LL does not seem directly comparable from the point of view of the 

objective function value, in terms of execution time it outperforms all other models. This 

stands as a clear advantage of modeling losses in the Li-ion battery as linear in the energy 

management of a microgrid. However, to further understand the differences between 

modeling power losses as linear versus non-linear, it will be interesting to analyze and 

compare the results obtained from an energy management perspective. 

Overall, the lowest objective function values are achieved when using BARON, specifically 

when the default option is used for both the MIP sub-solver and the NLP sub-solver. This 

model-solver combination would lead to the lowest microgrid operating costs. Moreover, it 

can be concluded that for the model developed in this project, using the default options for 

both sub-solvers, which allows BARON to switch between the ones available, results in a 

superior performance. 

For the model-solver combinations analyzed in this project, the relative gap does not enable 

a global comparison since it is defined differently for each solver. However, this parameter 

can be used to compare model NLL solved using BARON and model ZZI-J1. The latter has 

a lower relative gap which means that the final solution provided by the solver is closer to 

the best possible solution when the execution ends. Model NLL solved using BARON was 

unable to reach a lower relative gap since the time limit was reached. 

Regarding the execution time of models considering non-linear losses, DICOPT showcases 

a wide range of execution times, emphasizing the importance of the sub-solver selection. 

Considering only the DICOPT combinations that converged towards a global optima, the 

lowest execution time was achieved when MINOS was used as NLP sub-solver. It is worth 

noting that Model ZZI-J1 is solved in a very competitive time frame as well. On the other 

hand, BARON showed the lowest performance in this aspect since it reached the one-hour 

time limit for all sub-solver combinations. 
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Amongst the models which consider non-linear losses in the Li-ion battery, the one which 

showcases the best performance when considering both the objective function value and the 

execution time is NLL when solved using DICOPT with fixed binary variables in the initial 

NLP, specifically when GUROBI is used as the MIP sub-solver and MINOS is used as the 

NLP sub-solver. 

 

5.2 SENSITIVITY ANALYSIS 

As mentioned in the previous section, the linear and non-linear formulations cannot be 

considered completely equivalent since different parameters are used in the power losses 

equations. A possible approach to making these parameters equivalent would be determining 

the average operation efficiency for the period studied. To do this, the results provided by 

the NLL-BARON combination with the default sub-solver configurations were used.  

To calculate an estimation of the average operation efficiency, the instantaneous efficiencies 

for each time period were obtained and a weighted average based on the 

charging/discharging power calculated. The results obtained were a charging and 

discharging efficiency of approximately 99%. 

As a sensitivity analysis for the case study proposed, the model-solver combinations detailed 

previously were re-tested using a charging and discharging efficiency of 99%, instead of 

90%. The results obtained are shown in Table 5.2. 
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Model Main 

Solver 

Relaxed MIP 

Sub-

solver 

NLP 

Sub-

solver 

Obj. 

[€] 

Time 

[s] 

Rel. 

Gap 

LL GUROBI - - - 4.7530 5.66 0.40% 

NLL DICOPT 1 GUROBI CONOPT 7.0354 3613.14 - 

NLL DICOPT 1 GUROBI IPOPT - - - 

NLL DICOPT 1 GUROBI MINOS 6.9869 11.11 - 

NLL DICOPT 1 GUROBI SNOPT 6.8991 6.09 - 

NLL DICOPT 0 GUROBI CONOPT 4.7393 164.05 - 

NLL DICOPT 0 GUROBI IPOPT 4.7393 3147.75 - 

NLL DICOPT 0 GUROBI MINOS 4.7393 94.20 - 

NLL DICOPT 0 GUROBI SNOPT 4.7393 1154.16 - 

NLL BARON - Default Default 4.7421 3603.14 1.72% 

NLL BARON - Default MINOS 4.7436 3602.42 1.74% 

NLL BARON - Default SNOPT 4.7426 3602.50 1.73% 

NLL BARON - Default IPOPT 4.7459 3602.27 1.79% 

ZZI-J1 GUROBI - - - 4.7526 127.81 0.38% 
 

Table 5.2: Summary of computational performance for sensitivity analysis 

The model-solver combinations affected by this change are LL-GUROBI, given that the 

linear losses equations include the charging/discharging efficiency, and NLL-DICOPT with 

fixed binary variables in initial NLP, since these binary variables are fixed based on the 

results of LL-GUROBI. 

When comparing Tables 5.1 and 5.2, it can be seen that the objective function value of LL-

GUROBI now does fall between 4.7€ and 4.8€, where the global optimum when modeling 

losses as non-linear seems to be located. In addition, the objective function values for all 



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

BACHELOR'S DEGREE IN ENGINEERING FOR INDUSTRIAL TECHNOLOGIES 
 

COMPARATIVE ANALYSIS OF OPTIMIZATION MODELS AND SOLVERS 

52 

NLL-DICOPT combinations with fixed binary variables in the initial NLP have improved. 

However, the execution time when using sub-solvers MINOS and SNOPT has increased. 

Although this could be suggesting that this method improves the performance of NLL-

DICOPT with fixed binary variables in the initial NLP and makes LL-GUROBI more 

comparable, the real-life applicability and hence validity of this procedure is debatable. 

The reason for this is that average efficiency depends on the case study analyzed. Different 

load and PV generation profiles lead to a different optimal microgrid energy management 

strategies which may result in higher or lower average efficiencies. Consequently, if the 

average efficiency obtained for this case study were to be used with other datasets, it is likely 

that it would imply an overestimation or underestimation. Given this possible caveat in the 

method, the comparative analysis of the energy management in the following chapter will 

be done using the base case results. 

Modeling losses as non-linear is more realistic and, therefore, more accurate results will be 

obtained to fulfill the power demand for a given solar generation profile. This will imply 

lower operation costs if efficiency was being underestimated and possibly less unserved 

power if it was being overestimated. Furthermore, even if the impact of considering non-

linear losses as opposed to linear losses might seem small for a single microgrid, the 

advantages become clear when considering the aggregate impact of millions of microgrids. 

Overall, the analyses presented in this section highlight the disadvantages of using a model 

which considers linear losses. 

 

5.3 COMPARATIVE ANALYSIS OF ENERGY MANAGEMENT 

The objective of this section is to analyze how the best-performing sub-solver combination 

for each model and main solver optimize the energy management in the microgrid studied 

in the project. 
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Figures 5.1, 5.3, 5.5 and 5.7 show the results obtained for the operation of the microgrid 

components for each model-solver combination. Moreover, to graphically illustrate how 

demand is fulfilled in the 168-hour time period, stacked area charts are presented in Figures 

5.2, 5.4, 5.6 and 5.8. 

 

Figure 5.1: Operation of microgrid components (LL, GUROBI, 168 hours) 

 

 

Figure 5.2: Demand fulfillment (LL, GUROBI, 168 hours) 

 

-3,00

-2,00

-1,00

0,00

1,00

2,00

3,00

0 20 40 60 80 100 120 140 160

Po
w

er
 [k

W
]

time [h]

Diesel Gen. Solar Gen. Bat. Char. Bat. Disc.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Po
w

er
 [k

W
]

time [h]

Diesel Gen. Solar Gen. Bat. Disc. Bat. Char. Load



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

BACHELOR'S DEGREE IN ENGINEERING FOR INDUSTRIAL TECHNOLOGIES 
 

COMPARATIVE ANALYSIS OF OPTIMIZATION MODELS AND SOLVERS 

54 

 

Figure 5.3: Operation of microgrid components (NLL, DICOPT, relaxed=0, GUROBI-MINOS, 168 hours) 

 

 

Figure 5.4: Demand fulfillment (NLL, DICOPT, relaxed=0, GUROBI-MINOS, 168 hours) 
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Figure 5.5: Operation of microgrid components (NLL, BARON, Default-Default, 168 hours) 

 

 

Figure 5.6: Demand fulfillment (NLL, BARON, Default-Default, 168 hours) 
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Figure 5.7: Operation of microgrid components (ZZI-J1, GUROBI, 168 hours) 

 

 

Figure 5.8: Demand fulfillment (ZZI-J1, GUROBI, 168 hours) 
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of the time period, the controller dispatches a small amount of diesel power since the Li-ion 

battery’s SoC it at its minimum. Usually, the diesel generator is on during demand peaks in 

the evening since the level of solar radiation is low and battery can’t supply all the power 

demanded on its own. However, on day 5, since the solar irradiation is lower than the rest of 

the days, consequently, the diesel generator supplies power practically throughout the whole 

day. 

To allow a more accurate comparison between the models, in the following sections the most 

relevant variables which characterize the operation of the microgrid components will be 

studied separately. 

 

5.3.1 SOLAR PANEL 

The solar panel power output varies depending on the PV power available. On days with less 

sunlight, such as days 1 and 5, the solar panel supplies the microgrid with all the PV power 

available in all model-solver combinations. However, when more sunlight is available, the 

energy management strategies of the model-solver combinations analyzed differ. Figure 5.5 

shows that ZZI-J1 supplies solar power to the microgrid in a less uniform way than other 

models, presenting very pronounced peaks and deeper valleys. 
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Figure 5.9: Obtained results (Solar Gen., 168 hours) 
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Figure 5.10: Obtained results (Bat. Char., 168 hours) 

 

 

Figure 5.11: Obtained results (Losses Bat. Char., 168 hours) 
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Figure 5.12: Obtained results (Bat. Disc., 168 hours) 

 

Discharging power losses (Figure 5.9) are only noticeably different for model LL due to the 

efficiency used to characterize the Li-ion battery, as mentioned before. 

 

 

Figure 5.13: Obtained results (Losses Bat. Disc., 168 hours) 
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When analyzing the state of charge of the battery using Figure 5.10, on certain days, model 

ZZI-J1 presents a more abrupt charging of the battery than the other model-solver 

combinations due to the very pronounced charging peaks shown in Figure 5.6. 

 

Figure 5.14: Obtained results (SoC, 168 hours) 
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Figure 5.15: Obtained results (Diesel Gen., 168 hours) 
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Chapter 6.  IMPLEMENTATION OF ROLLING 

HORIZON OPTIMIZATION FRAMEWORK 

Based on the results analyzed in Chapter 5, NLL-BARON has showcased a superior 

performance in terms of the objective function value. Compared to all other model-solver 

combinations studied, it obtained the lowest objective function values and had the potential 

to lower them even further if allowed more time. 

However, a main drawback of using NLL-BARON is its lengthy execution time, since the 

one-hour time limit was reached for all sub-solver combinations. To address this, the 

implementation of a rolling horizon optimization approach, presented in Chapter 3, will be 

explored in this chapter. 

This will be done by executing NLL-BARON with the default sub-solver configurations for 

two 168-hour datasets, one corresponding to a week in summer and the other one 

corresponding to a week in winter, using a whole horizon optimization approach and a 

rolling horizon optimization approach. The time horizons used in the rolling framework are 

shown in Table 6.1. 

Time horizon Time length [h] 

Scheduling horizon 168 

Prediction horizon 24 

Control horizon 8 

 

Table 6.1: Time horizons used the in rolling horizon approach 
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These time horizon parameters result in 19 iterations in which the model is solved for 24-hour 

periods. For each iteration, the prediction horizon is moved forward 8 hours. Figures 6.1 and 6.2 

illustrate the rolling horizon dynamic for the case studied. 

 

Figure 6.1: Time horizons for time periods 1-40 

 

 

Figure 6.2: Time horizons for periods 129-168 

 

6.1 COMPARATIVE ANALYSIS OF COMPUTATIONAL PERFORMANCE 

Table 6.2 presents the results obtained for each dataset-optimization approach combination. 

From these results, it can be concluded that using a rolling horizon optimization approach 

decreases execution time and improves the objective function value. This supports the 

findings of paper [17] discussed in Chapter 3. 
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Dataset Optimization 

approach 

Obj. [€] Time [s] 

Summer Whole horizon 4.7421 3603.14 

Summer Rolling Horizon 4.7251 1524.06 

Winter Whole horizon 19.0309 765.69 

Winter Rolling Horizon 19.0190 578.50 

 

Table 6.2: Summary of computational performance of NNL-BARON 

Regarding the summer dataset, the decrease in the objective function value could be 

attributed to the fact that BARON is able to reach lower relative tolerances when solving a 

sequence of smaller sub-problems instead of one large optimization problem. The relative 

tolerances achieved for each rolling horizon iteration were all smaller that the relative 

optimality criterion used (0.5%), whereas, when using the whole horizon approach, the 

resulting relative tolerance was 1.74%, as shown in Table 5.1. 

Moreover, the BARON configuration used is flexible in terms of the sub-solvers chosen. 

This could be leading to the selection of solvers which are better suited for the smaller sub-

problems defined by the rolling horizon approach. Consequently, this would be contributing 

to achieving lower execution times and objective function values. 

It is important to note that the selection of an appropriate prediction horizon length greatly 

impacts how successful the implementation of a rolling horizon framework is [15]. For the 

optimization problem studied in this project, using a 24-hour prediction horizon leads to an 

improvement in computational performance compared to using a whole horizon approach 

meaning this time-window length appears appropriate for the problem. 
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6.2 COMPARATIVE ANALYSIS OF ENERGY MANAGEMENT 

The objective of this section is to determine whether there are differences in energy 

management strategies between summer and winter and analyze how energy management 

differs when using a whole horizon optimization approach versus a rolling horizon 

optimization approach. 

6.2.1 SEASONAL DIFFERENCES IN ENERGY MANAGEMENT 

To examine the differences in energy management between winter and summer, the results 

obtained using rolling horizon optimization approach will be compared. Figures 6.3 and 6.5 

illustrate the operation of the microgrid components and Figures 6.4 and 6.5  show how the 

different power sources are used to fulfill demand. 

 

Figure 6.3: Operation of microgrid components (NLL-BARON, 168 hours Summer, Rolling horizon) 
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Figure 6.4: Demand fulfillment (NLL-BARON, 168 hours Summer, Rolling horizon) 

 

 

Figure 6.5: Operation of microgrid components (NLL-BARON, 168 hours Winter, Rolling horizon) 
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Figure 6.6: Demand fulfillment (NLL-BARON, 168 hours Winter, Rolling horizon) 
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6.2.2 DIFFERENCES IN ENERGY MANAGEMENT BETWEEN OPTIMIZATION 

APPROACHES 

The main difference between both optimization approaches is that the rolling horizon 

optimization approach uses slightly more solar generation than the whole horizon 

optimization approach (Figures 6.3 and 6.4). This implies a lower diesel generation usage 

(Figures 6.5 and 6.6), which leads to lower overall operation costs. 

 

Figure 6.7: Demand fulfillment (NLL-BARON, 168 hours Winter, Rolling horizon) 
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Figure 6.8: Obtained results (Solar Gen., NLL-BARON, 168 hours Winter) 

 

 

Figure 6.9: Obtained results (Solar Gen., NLL-BARON, 168 hours Winter) 
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Figure 6.10: Obtained results (Diesel Gen., NLL-BARON, 168 hours Winter) 

 

Additional graphs for other variables have been included in Appendix II. 
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Chapter 7.  CONCLUSIONS 

7.1 CONCLUSIONS 

In this project, two optimization models for the energy management of a microgrid 

consisting of a load, a solar panel, a diesel generator, and a lithium-ion battery have been 

developed, one considering linear losses in the Li-ion battery (model LL) and another one 

considering non-linear losses (model NLL). 

These models, together with model ZZI-J1 proposed in [13], have been tested using different 

GAMS solvers and solver configurations for a 168-hour dataset and applying a whole 

horizon optimization approach. Solver BARON was able to find the global optimum 

whereas DICOPT converged towards a local optimum unless the binary variables in the 

problem were fixed using results obtained from solving model LL. Regarding computational 

performance, in terms of the objective function value (weekly operation cost), NLL-

BARON, specifically when the default configuration for the sub-solvers was used, 

showcased a superior performance. However, when looking at the execution time, BARON 

performed worse than the other solvers tested. Overall, the model which had the best 

computational performance considering both the execution time and the objective function 

value was NLL-DICOPT with fixed binary variables in the initial NLP, specifically when 

MINOS was used as the NLP sub-solver. This highlights the benefits of providing a known 

reasonable configuration of the binary variables in the problem. 

Analyses carried out concluded that modeling losses as linear can lead to underestimating 

the average efficiency of the Li-ion battery implying higher operation costs. This highlights 

a clear drawback of using a model which considers linear losses. 

Furthermore, in this project, a rolling horizon framework was developed and tested for the 

best-performing NLL-BARON model-solver combination. This optimization approach 

improved its computational performance decreasing both the objective function value 
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(weekly operation cost) and execution time. Moreover, this implementation served as a 

simulation of the real-life operation of a microgrid and how it affects energy management. 

Overall, the results obtained have shown a successful performance when using an 

optimization model which considers non-linear losses in the Li-ion battery. Therefore, this 

project contributes to the increase in accuracy and effectiveness of microgrid energy 

management, ultimately reducing operation costs and increasing power supply reliability. 

 

7.2 FUTURE WORK 

Given the promising results of model NLL, this model could be transformed from 

deterministic to stochastic to account for the uncertainty in solar power generation and 

household power demand. An interesting approach would involve the implementation of the 

rolling horizon framework developed in this project to allow for the continual adjustment of 

scenarios as new information becomes available. 

Future investigations could also analyze the impact of changing parameters of microgrid 

components on model performance. This could provide further insights into the influence of 

modeling losses as non-linear in the Li-ion battery for a variety of microgrid types and sizes. 

Linked with this, it would be valuable to explore the consequences of modeling losses as 

non-linear when scaling to industrial microgrids or applied to large batteries installed in the 

transmission network to provide flexibility in power systems with high RES penetration 

levels. 
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APPENDIX I.  GAMS CODE 

* Energy Management of a Microgrid Considering Non-Linear Losses in the Li-ion 
Battery 
* María del Carmen García Pardo 
 
* OPTIONS 
 
* Solver selection 
*OPTIONS LP=CPLEX, RMIP=CPLEX, MIP=CPLEX, RMIQCP=CPLEX, MIQCP=CPLEX; 
OPTIONS LP=gurobi, RMIP=gurobi, MIP=gurobi, RMIQCP=gurobi, MIQCP=gurobi; 
 
*OPTIONS MINLP=dicopt; 
OPTIONS MINLP=baron; 
 
* Other options 
OPTIONS LIMROW=1000, LIMCOL=1000, SOLPRINT=on; 
OPTIONS THREADS=0; 
OPTIONS RESLIM=3600; 
*OPTIONS ITERLIM=2000000; 
OPTIONS bratio=1; 
OPTION  optcr=0.005; 
 
 
SETS 
 
t time intervals included in imported data 
/h05041*h05208/ 
trh(t) time intervals included in current prediction horizon 
; 
 
* Import data 
parameter PV(t) power generated by PV panel at time period t [kW] 
/ 
$include genPV_168h.txt 
/ 
; 
 
parameter D(t) power demanded by load at time period t [kW] 
/ 
$include load_168h.txt 
/ 
; 
 
* Reduce demand profile by 30% to reduce the amount of non-served power 
D(t)=D(t)*0.7; 
 
 
PARAMETERS 
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DT Duration of time interval [h] /1/ 
 
* Rolling horizon 
CH length of control horizon [h] /8/ 
PH length of prediction horizon [h] /24/ 
SH length of scheduling horizon [h] /168/ 
it iteration 
t_ini initial time period (included) of prediction horizon 
t_fin final time period (included) of prediction horizon 
v_ofv_RH objective function value for whole scheduling horizon 
 
* Non-supplied energy: 
c_nse cost of non-supplied energy [€ per KWh] /1/ 
 
* Diesel generator: 
a quadratic term of diesel generator cost-function [€ per kW^2h] /0.31/ 
b linear term of the diesel generator cost-function [€ per kWh] /0.108/ 
c independent term of the diesel generator cost function when the generator is 
committed [€ per h] /0.0157/ 
 
P_d_max maximum output power of diesel generator [kW] /1/ 
 
* Li-ion battery:  
eta_b_char efficiency of Li-ion battery when charging /0.99/ 
eta_b_disc efficiency of Li-ion battery when discharging /0.99/ 
 
 
P_b_max_char maximum charge power of Li-ion battery [kW] /2.9/ 
P_b_max_disc maximum discharge power of Li-ion battery [kW] /2.9/ 
 
E_b_0 initial energy stored in Li-ion battery [kWh] /0/ 
E_b_max maximum energy storage of Li-ion battery [kWh] /2.9/ 
 
 
V_r rated voltage of Li-ion battery [V] /51.2/ 
R internal resistance of battery [ohm] /0.026464/ 
K polarization coefficient [ohm] /0.0080625/ 
; 
 
 
VARIABLES 
v_ofv objective function value [€] 
; 
 
POSITIVE VARIABLES 
 
v_p_ns(t) non-supplied power in t [kW] 
 
* Solar panel: 
v_p_pv(t) power output of solar panel [kW] 
v_p_curt(t) PV curtailment in t [kW] 
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* Diesel generator: 
v_p_d(t) power output of diesel generator in t [kW] 
 
* Li-ion battery: 
v_p_b_char(t) power consumed by Li-ion battery in t [kW] 
v_p_b_disc(t) power generated by Li-ion battery in t [kW] 
 
v_p_loss_char(t) power loss of Li-ion battery if charging at time t [kW] 
v_p_loss_disc(t) power loss of Li-ion battery if discharging at time t [kW] 
 
v_e_b(t) energy stored in Li-ion battery at the end of t [kWh] 
v_soc(t) state of charge of Li-ion battery at time period t 
; 
 
* Bounds of the variables 
v_soc.lo(t)=0.1; 
v_soc.up(t)=1; 
v_e_b.up(t)=E_b_max 
 
BINARY VARIABLES 
 
* Diesel generator: 
v_u_d(t) commitment of diesel generator in t 
 
* Li-ion battery 
v_u_b_char(t) battery charge decision at time t 
v_u_b_disc(t) battery discharge decision at time t 
; 
 
 
EQUATIONS 
eq_OF objective function: minimize cost of operating microgrid 
 
eq_ENERGY_BALANCE(t) energy balance of microgrid 
 
 
* Li-ion battery: 
eq_BATTERY_DYNAMICS(t) dynamics of Li-ion battery considering losses in Li-ion 
battery 
eq_SOC(t) approximation of state of charge 
 
* Constraints for model with LINEAR LOSSES 
eq_BATTERY_LOSSES_CHAR_LINEAR(t) linear expression for power losses in Li-ion 
battery when charging 
eq_BATTERY_LOSSES_DISC_LINEAR(t) linear expression for power losses in Li-ion 
battery when discharging 
 
* Constraints for model with NON-LINEAR LOSSES 
eq_BATTERY_LOSSES_CHAR_NONLINEAR(t) non-linear expression for power losses in Li-
ion battery when charging 
eq_BATTERY_LOSSES_DISC_NONLINEAR(t) non-linear expression for power losses in Li-
ion battery when discharging 
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eq_BATTERY_MAX_CHAR(t) maximum power Li-ion battery can consume when charging 
eq_BATTERY_MAX_DISC(t) maximum power Li-ion battery can generate when discharging 
eq_BATTERY_CHAR_OR_DISC(t) battery cannot charge and discharge at the same time 
 
* Diesel generator: 
eq_DIESEL_MAX_GEN(t) maximum power diesel generator can generate 
 
 
* Solar panel: 
eq_PV_CURT(t) possible curtailment of power generated by solar panel 
 
; 
 
eq_OF.. 
    v_ofv =E= SUM[trh(t),c*v_u_d(t) + b*v_p_d(t) + a*sqr(v_p_d(t)) + 
c_nse*v_p_ns(t)] * DT; 
 
 
eq_ENERGY_BALANCE(trh(t)).. 
    v_p_pv(t) + v_p_d(t) + v_p_b_disc(t) + v_p_ns(t) =E= D(t) + v_p_b_char(t); 
 
 
* Li-ion battery: 
eq_BATTERY_DYNAMICS(trh(t)).. 
    v_e_b(t) =E= E_b_0$(t.ord=t_ini)+  v_e_b(t-1)$(t.ord > t_ini) + 
(v_p_b_char(t) - v_p_b_disc(t) - v_p_loss_disc(t) - v_p_loss_char(t))*DT; 
 
eq_SOC(trh(t)).. 
    v_soc(t) =E= (1/2) * (E_b_0$(t.ord=t_ini)+  v_e_b(t-1)$(t.ord > t_ini) + 
v_e_b(t)) / E_b_max; 
 
* Constraints for model with LINEAR LOSSES 
eq_BATTERY_LOSSES_CHAR_LINEAR(trh(t)).. 
    v_p_loss_char(t) =E=  v_p_b_char(t) * (1-eta_b_char); 
     
eq_BATTERY_LOSSES_DISC_LINEAR(trh(t)).. 
    v_p_loss_disc(t) =E= v_p_b_disc(t) * (1-eta_b_disc)/eta_b_disc; 
 
* Constraints for model with NON-LINEAR LOSSES  
eq_BATTERY_LOSSES_CHAR_NONLINEAR(trh(t)).. 
    v_p_loss_char(t) =E= 10**3 * (R + K/(1.1 - v_soc(t))) * 
sqr(v_p_b_char(t)/V_r); 
     
eq_BATTERY_LOSSES_DISC_NONLINEAR(trh(t)).. 
    v_p_loss_disc(t) =E= 10**3 * (R + K/v_soc(t)) *sqr(v_p_b_disc(t)/V_r); 
 
 
eq_BATTERY_MAX_CHAR(trh(t)).. 
    v_p_b_char(t) =L= P_b_max_char*v_u_b_char(t); 
     
eq_BATTERY_MAX_DISC(trh(t)).. 
    v_p_b_disc(t) =L= P_b_max_disc*v_u_b_disc(t); 
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eq_BATTERY_CHAR_OR_DISC(trh(t)).. 
    v_u_b_char(t) + v_u_b_disc(t) =L= 1; 
 
 
* Diesel generator:    
eq_DIESEL_MAX_GEN(trh(t)).. 
    v_p_d(t) =L= P_d_max * v_u_d(t); 
 
* Solar panel: 
eq_PV_CURT(trh(t)).. 
    PV(t) =E= v_p_pv(t) + v_p_curt(t); 
 
 
MODEL MICROGRID_LINEARLOSSES / 
eq_OF 
eq_ENERGY_BALANCE 
eq_SOC 
eq_BATTERY_DYNAMICS 
eq_BATTERY_LOSSES_CHAR_LINEAR 
eq_BATTERY_LOSSES_DISC_LINEAR 
eq_BATTERY_MAX_CHAR 
eq_BATTERY_MAX_DISC 
eq_BATTERY_CHAR_OR_DISC 
eq_DIESEL_MAX_GEN 
eq_PV_CURT 
/ 
; 
 
MODEL MICROGRID_NONLINEARLOSSES / 
eq_OF 
eq_ENERGY_BALANCE 
eq_SOC 
eq_BATTERY_DYNAMICS 
eq_BATTERY_LOSSES_CHAR_NONLINEAR 
eq_BATTERY_LOSSES_DISC_NONLINEAR 
eq_BATTERY_MAX_CHAR 
eq_BATTERY_MAX_DISC 
eq_BATTERY_CHAR_OR_DISC 
eq_DIESEL_MAX_GEN 
eq_PV_CURT 
/ 
; 
 
 
*Rolling horizon implementation: 
it = ceil[((SH - PH) / CH) + 1]; 
scalar i; 
 
 
* Option file 
MICROGRID_NONLINEARLOSSES.optfile=1; 
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for (i = 1 to it, 
     
    t_ini = CH*(i - 1)+1; 
    t_fin = t_ini + PH -1; 
 
    trh(t) = yes$[t.ord >=t_ini and t.ord <=t_fin];     
 
*    SOLVE MICROGRID_LINEARLOSSES MINIMIZING v_ofv USING MIQCP; 
 
    SOLVE MICROGRID_NONLINEARLOSSES MINIMIZING v_ofv USING MINLP; 
     
    E_b_0 = sum(t$(t.ord = t_ini + CH -1), v_e_b.l(t)); 
 
); 
 
v_ofv_RH = SUM[t,c*v_u_d.l(t) + b*v_p_d.l(t) + a*sqr(v_p_d.l(t)) + 
c_nse*v_p_ns.l(t)] * DT; 
 
execute_unloaddi 'microgrid_results.gdx', 
 
PV 
D 
v_p_ns 
v_p_pv 
v_p_curt 
v_p_d 
v_p_b_char 
v_p_b_disc 
v_p_loss_char 
v_p_loss_disc 
v_soc 
v_u_d 
v_ofv_RH 
; 
 
execute '=gdx2xls microgrid_results.gdx'; 
executeTool 'win32.shellExecute microgrid_results.xlsx'; 
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APPENDIX II.  ADDITIONAL GRAPHS 

The following graphs are part of the comparative analysis of energy management between 

optimization approaches (Chapter 6). They have been included in this appendix for the 

convenience of readers interested in the further examination of results obtained. To facilitate 

the location of specific graphs, they have been divided into two sections depending on the 

dataset used. 

 

II.1 168-HOURS SUMMER 

 

Figure II.1: Obtained results (Bat. Char., NLL-BARON, 168 hours Summer) 
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Figure II.2: Obtained results (Bat. Disc., NLL-BARON, 168 hours Summer) 

 

 

Figure II.3: Obtained results (Losses Bat. Char., NLL-BARON, 168 hours Summer) 
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Figure II.4: Obtained results (Losses Bat. Disc., NLL-BARON, 168 hours Summer) 

 

Figure II.5: Obtained results (Losses Bat. Disc., NLL-BARON, 168 hours Summer) 
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II.2 168-HOURS WINTER 

 

Figure II.6: Obtained results (Bat. Char., NLL-BARON, 168 hours Winter) 

 

 

Figure II.7: Obtained results (Losses Bat. Char., NLL-BARON, 168 hours Winter) 
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Figure II.8: Obtained results (Losses Bat. Char., NLL-BARON, 168 hours Winter) 

 

 

Figure II.9: Obtained results (Losses Bat. Disc., NLL-BARON, 168 hours Winter) 
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Figure II.10: Obtained results (SoC, NLL-BARON, 168 hours Winter) 

 

 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0 20 40 60 80 100 120 140 160

Po
w

er
 [k

W
]

time [h]

Winter Winter_RH



UNIVERSIDAD PONTIFICIA COMILLAS 
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 

BACHELOR'S DEGREE IN ENGINEERING FOR INDUSTRIAL TECHNOLOGIES 
 

APPENDIX III 

91 

APPENDIX III.  ALIGNMENT WITH 

SUSTAINABLE DEVELOPMENT GOALS 

The Sustainable Development Goals (SDGs) are part of the United Nation’s 2030 Agenda 

for Sustainable Development. These goals are aimed at building a better and more 

sustainable future without leaving anyone behind by addressing three core areas: economic 

growth, social inclusion and environmental protection. [24] 

 

Figure III.1: Sustainable Development Goals (Source: [24]) 

This project is aligned with multiple SDGs given the importance of global commitment and 

involvement to accomplish them. To analyze this project’s contribution to the SDGs, one 

primary goal and two secondary goals belonging to the remaining two core dimensions were 

identified. 

The main goal addressed by this project is SDG 7: “Ensure access to affordable, reliable, 

sustainable and modern energy for all”. Development of microgrid technologies is directly 

aimed at tackling target 7.1: “By 2030, ensure universal access to affordable, reliable and 

modern energy services”. The improvement of energy management systems (EMS) used for 

microgrid operation results in a more efficient management of the connected energy sources 
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thereby reducing operation costs. Microgrids also increase the reliability of energy supply 

by providing energy from storage systems and distributed energy sources in case of a power 

outage. Furthermore, microgrids can provide electricity to remote communities where 

extending the microgrid would be too costly and, therefore, contribute to the ongoing 

objective of providing energy access to everyone. Sustainability is a key characteristic of 

microgrids since they promote the deployment of renewable energy resources, meaning this 

project also aligns with target 7.2: “By 2030, increase substantially the share of renewable 

energy in the global energy mix”. 

Regarding the environmental dimension of SDGs, this project is closely linked to SDG 13: 

“Take urgent action to combat climate change and its impacts”, specifically target 13.2: 

“Integrate climate change measures into national policies, strategies and planning”. The 

availability of more efficient EMS will lead to a greater penetration of microgrids, hence 

fostering the integration of renewable energy sources (RES) in the energy mix. RES, such 

as solar panels and wind turbines, are clean energy sources whose operation does not produce 

greenhouse gases. 

SDG 9 is the economic goal which is most strongly connected with this project: “Build 

resilient infrastructure, promote inclusive and sustainable industrialization and foster 

innovation”, more precisely, target 9.4: “By 2030, upgrade infrastructure and retrofit 

industries to make them sustainable, with increased resource-use efficiency and greater 

adoption of clean and environmentally sound technologies and industrial processes, with all 

countries taking action in accordance with their respective capabilities”. To increase the 

sustainability of the electric power industry, a transition towards the use of RES is necessary. 

This requires their deployment at both an industrial and a residential level, which can be 

implemented through the use microgrids. Specifically, the research and development aimed 

at improving energy management systems for microgrids will imply a more cost and 

resource efficient operation since the optimality of the decisions made regarding dispatch of 

energy sources and energy storage will increase.  
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APPENDIX IV.  BUDGET 

Table IV.1 presents the budget for this project from the point of view of an independent 

consultant.  

Item Unitary cost Quantity Total cost 

Direct costs 

Consulting fees 60.00  €/hour  200 hours   12,000.00 €  

Indirect costs 

Rent and utilities 700.00  €/month  5 months     3,500.00 €  

Software license 
amortization 409.29  €/month  5 months     2,046.46 €  

Laptop amortization 25.18  €/month  5 months        125.92 €  

     
  17,672.38 €  

Table IV.1: Budget 

The items included are described below: 

• Consulting fees: Hourly rate was determined taking into account the project is carried 

out by a junior consultant. 

• Rent and utilities: This includes office space lease, electricity, water, heating, 

cleaning services and internet. 

• Software license amortization: The project requires a Microsoft Office 365 

individual license (99 €/year) and a GAMS professional license including various 

modules: 

o GAMS/BASE:  3500€ 

o GAMS/BARON:  3500€ 

o GAMS/CONOPT:  3500€ 
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o GAMS/DICOPT:  1750€ 

o GAMS/MINOS:  3500€ 

o GAMS/SNOPT: 3500€ 

The GAMS licenses will be amortized over 4 years. 

• Laptop amortization: The laptop used is an HP ProBook 450 G10 with a retail price 

of 1,208.79€ amortized over 4 years. 
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