

# **COURSE DATA SHEET**

| Course Data       |                                                                                                                                                                                                                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Full Name         | Álgebra/Algebra                                                                                                                                                                                                                                                                                       |
| Code              | E000012781                                                                                                                                                                                                                                                                                            |
| Taught in         | Bachelor in Business Analytics & Bachelor in International Relations [First Year]<br>Bachelor in Business Analytics & Bachelor in Law [First Year]<br>Bachelor in Business Analytics [First Year]<br>Bachelor in Business Administration and Management & Bachelor in Business Analytics [First Year] |
| Level             | Regulated European Degree                                                                                                                                                                                                                                                                             |
| Duration          | Half Yearly                                                                                                                                                                                                                                                                                           |
| Credits           | 6,0 ECTS                                                                                                                                                                                                                                                                                              |
| Character         | Mandatory (Bachelor)                                                                                                                                                                                                                                                                                  |
| Department / Area | Department of Quantitative Methods                                                                                                                                                                                                                                                                    |
| Person in Charge  | David Roch Dupré                                                                                                                                                                                                                                                                                      |
| Office Hours      | Students will be informed on the first day of class.                                                                                                                                                                                                                                                  |

| Faculty Data      |                                    |  |  |
|-------------------|------------------------------------|--|--|
| Professor         |                                    |  |  |
| Name              | David Roch Dupré                   |  |  |
| Department / Area | Department of Quantitative Methods |  |  |
| Office            | Alberto Aguilera 23 [OD-415]       |  |  |
| Mail Address      | David.Roch@iit.comillas.edu        |  |  |
| Professor         |                                    |  |  |
| Name              | Federico Brazzi                    |  |  |
| Mail Address      | fbrazzi@icade.comillas.edu         |  |  |
| Professor         |                                    |  |  |
| Name              | José Daniel Madrigal Martínez      |  |  |
| Department / Area | Department of Quantitative Methods |  |  |
| Mail Address      | jdmadrigal@comillas.edu            |  |  |
| Professor         |                                    |  |  |
| Name              | José Portela González              |  |  |
| Department / Area | Department of Quantitative Methods |  |  |
| Office            | Santa Cruz de Marcenado 26         |  |  |
| Mail Address      | Jose.Portela@iit.comillas.edu      |  |  |
| Phone             | 2741                               |  |  |



| Professor         |                                    |
|-------------------|------------------------------------|
| Name              | Patricia Yagüe Inglada             |
| Department / Area | Department of Quantitative Methods |
| Mail Address      | pyague@icade.comillas.edu          |

# SUBJECT SPECIFIC DATA

### **Contextualization of the subject**

### Contribution to the professional profile of the degree

A graduate in Business Analytics must use data and analytical techniques to improve business decision making. Thus, he/she must be able to abstract the essence of each problem in order to use the most appropriate analytical method to solve it. Algebra will provide students with skills that will help them in these tasks, because it will foster the ability to abstract and because it is the basis of many mathematical processes that they will have to use in the future.

#### Prerequisites

None. It would be advisable for students to have taken the Mathematics course offered at the Pre-University Campus.

### **Competencies - Objectives**

### Competencies

#### **General Competencies**

CG02 Ability to analyze massive data from different sources: text, audio, numerical and image.

RA1 Being able to analyze and synthesize the information received in mathematical language.

CG03 Problem solving and decision making in an environment of massive quantitative and qualitative data.

RA1 To know the basic mathematical tools that enable them to pose and solve real problems in the business world.

RA2 Acquire the ability to make decisions with knowledge, initiative and critical spirit.

CG09 Ethical commitment in the information society.

RA1 Pursue excellence in professional actions.

CG11 Ability to learn and work autonomously in the information society.

RA1 Be able to apply the knowledge obtained in new contexts.

RA2 Be able to learn new methods and theories autonomously in their professional life.

#### **Specific Competencies**

CE17 To acquire the ability to solve problems posed in the business environment using mathematical tools. RA1 To know the basic tools of linear algebra.

#### **Learning Outcomes**

Included in the previous section, as they are associated with the competencies.



# CONTENTS

### CONTENT

### **Unit 0: Matrices**

- 1. Introductory example
- 2. Matrices. Basic types
- 3. Operations with matrices
- 4. Square matrices
- 5. Range of a matrix

### Unit 1: Systems of Linear Equations

- 1. Introductory example
- 2. Systems of linear equations
- 3. Types of systems according to their solution
- 4. Rouché-Frobenius Theorem
- 5. Solving systems of linear equations

#### **Unit 2: Vector Spaces**

- 1. Introductory example
- 2. Definition of (Real) Vector Space (VE)
- 3. Linear combination of vectors. Linear Variety
- 4. Generating system of an EV
- 5. Linearly dependent/independent vectors
- 6. Basis of an EV. Dimension of an EV. Change of basis in an EV
- 7. Vector subspace (VSS)

## Unit 3: Linear Maps

- 1. Definition of linear map
- 2. Matrix expression of a linear map
- 3. Change of basis in a linear map

#### **Unit 4: Endomorphisms and Diagonalization**

- 1. Eigenvalues and eigenvectors. Determination and important theorems
- 2. Diagonalization of an endomorphism
- 3. Applications of diagonalization of endomorphisms.
- 4. Diagonalization of symmetric matrices

### **Unit 5: Quadratic Forms**

- 1. Definition of quadratic form. Matrix expression.
- 2. Sign of a quadratic form.
- 3. Study of the sign of a quadratic form through eigenvalues.
- 4. Study of the sign of a quadratic form through principal minors.
- 5. Restricted quadratic forms.



## **TEACHING METHODOLOGY**

General methodological aspects of the course

## Face-to-Face Methodology: Activities

Expository sessions always combining theory and solving exercises as an application of that theory.

Laboratories. There is only one preset session initially. As the classes develop, laboratories and computer practices will be incorporated in the classroom. Therefore, students will be asked to bring their computers to class.

### Non-attendance Methodology: Activities

Tutorial sessions

Learning in groups of students

r of proposed exercises for personal study

## SUMMARY OF STUDENT WORKING HOURS

Lessons:

- Lectures: 58 h
- Practical Seminars: 2h

Individual Work:

• Individual and/or group study and organized reading: 90 h

ECTS CREDITS: 6 (150 hours)

### **EVALUATION AND GRADING CRITERIA**

#### **Midterm Texts**

- Two midterm tests throughout the course to motivate the student in his study and allow him to be aware of his performance.
- One or two short (15-minute) quizzes to ensure basic content knowledge.

Unexcused absence from any of the tests will result in a "zero".

#### **Final Exam**

It will contain questions of different types:

- 1. Theory exercises
- 2. Exercises to be solved with a computer



# Grades

### **Ordinary Examination:**

Weighted average: final exam (70%) and continuous evaluation grades (30%).

### **Extraordinary Examination:**

Best option from the following:

- Option a: final exam (100%)
- Option b: final exam (70%) and continuous evaluation grades (30%).

## WORK PLAN AND SCHEDULE

| Activities                                                     | Date   | Delivery Date |
|----------------------------------------------------------------|--------|---------------|
| Unit 0: Matrices<br>MatLab Introduction and Installation       | Week 1 |               |
| Unit 0: Matrices<br>Unit 1: Linear systems of equations        | Week 2 |               |
| Unit 1: Linear systems of equations<br>Unit 2: Vector spaces I | Week 3 |               |
| Test Units 0 - 1<br>Unit 2: Vector Spaces I                    | Week 4 |               |
| Unit 2: Vector Spaces II                                       | Week 5 |               |
| Unit 2: Vector Spaces II                                       | Week 6 |               |
| Unit 2: Vector Spaces III                                      | Week 7 |               |
| Test Unit 2<br>Unit 3: Linear Maps                             | Week 8 |               |
| Unit 3: Linear Maps                                            | Week 9 |               |



| Unit 4: Diagonalization | Week 10 |  |
|-------------------------|---------|--|
| Unit 4: Diagonalization | Week 11 |  |
| Unit 4: Diagonalization | Week 12 |  |
| Unit 5: Quadratic forms | Week 13 |  |
| Unit 5: Quadratic forms | Week 14 |  |

## BIBLIOGRAPHY

**Basic Bibliography** 

- Giménez Abad, MªJ., Martín Antón, G. y Serrano Rey, A.: Matemáticas para ADE: Teoría y Ejercicios. Editorial Pearson. 2014
- De la Villa, A. (2010) Problemas de álgebra. Ed. CLAGSA. Madrid

**Complementary Bibliography** 

Lay, D. C. (2003). Linear algebra and its applications. Pearson Education India.