

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

TRABAJO FIN DE GRADO

DISEÑO Y PUESTA EN MARCHA DE UN TALLER DE FORMACIÓN EN INSTALACIONES FOTOVOLTAICAS.

Autor: Pablo Villagrán Fernández Salvador

Director: Jesús María Gasco Ramírez

Co-Director: Fidel Fernández Bernal

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Diseño y puesta en marcha de un taller de formación en instalaciones fotovoltaicas

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el curso académico 2023/24 es de mi autoría, original e inédito y no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido tomada de otros documentos está debidamente referenciada.

Fdo.: Pablo Villagrán Fernández Salvador Fecha: 08 / 07 / 2024

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Jesús María Gasco Ramírez Fecha: 08 / 07 / 2024

EL CO-DIRECTOR DEL PROYECTO

FERNANDEZ BERNAL FIDEL -33501930S Firmado digitalmente por FERNANDEZ BERNAL FIDEL - 335019305 Nombre de reconocimiento (DN): c=ES, serialNumber=IDCES-33501930S, givenName=FIDEL, sn=FERNANDEZ BERNAL, cn=FERNANDEZ BERNAL FIDEL - 33501930S Fecha: 2024.07.08

Fdo.: Fidel Fernández Bernal Fecha: 08 /07 / 2024

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

TRABAJO FIN DE GRADO

DISEÑO Y PUESTA EN MARCHA DE UN TALLER DE FORMACIÓN EN INSTALACIONES FOTOVOLTAICAS.

Autor: Pablo Villagrán Fernández Salvador

Director: Jesús María Gasco Ramírez

Co-Director: Fidel Fernández Bernal

Agradecimientos

Agradezco todo el apoyo y dedicación prestado por D. Jesús María Gasco y D. Fidel Fernández en este proyecto. Adicionalmente, es muy de agradecer los buenos consejos recibidos de grandes compañeros de trabajo que son Juan Alberto y Manuel. Y, por último, agradecer todo el apoyo que me han brindado familiares y amigos.

DISEÑO Y PUESTA EN MARCHA DE UN TALLER DE FORMACIÓN EN INSTALACIONES FOTOVOLTAICAS.

Autor: Villagrán Fernández Salvador, Pablo.

Director: Gasco Ramírez, Jesús María. Co-Director: Fernández Bernal, Fidel

Entidad Colaboradora: ICAI – Universidad Pontificia Comillas

RESUMEN DEL PROYECTO

En el presente trabajo se realiza el diseño de un conjunto de prácticas para un taller de formación como auxiliares de instaladores fotovoltaicos. Además, complementariamente al diseño de las prácticas, se ha procedido a diseñar y a estudiar la instalación de una pequeña instalación fotovoltaica en la azotea del edificio donde tendrá lugar el curso. El fin de esta instalación es que los alumnos puedan familiarizarse con esta tecnología y, así, ganar experiencia y aprender a desenvolverse en situaciones reales que se encontraran al salir del curso.

Palabras clave: Energías renovables, Taller de formación, Caritas Madrid, Fundación ICAI.

1. Introducción

El proyecto surge de una petición de diversas instituciones, entre ellas Cáritas, a la Fundación de Ingenieros de ICAI. Estas entidades buscan ofrecer una oportunidad de formación y capacitación a personas en riesgo de exclusión social para que puedan integrarse en el mercado laboral como montadores de instalaciones fotovoltaicas.

Actualmente, nos encontramos en un contexto de transición energética hacia un modelo más sostenible y respetuoso con el medio ambiente. La energía solar se ha convertido en una fuente de energía renovable con un gran potencial de crecimiento, generando nuevas oportunidades laborales en este sector.

Las personas beneficiarias de este proyecto son aquellas que se encuentran en situación de riesgo o exclusión social, con dificultades para acceder al mercado laboral, mejorando así sus condiciones de vida.

2. Definición del proyecto

A lo largo del proyecto, se plantea trabajar tres puntos concretos.

El primero, diseñar e implementar un conjunto de prácticas de laboratorio para la formación de auxiliares de instaladores fotovoltaicos. Estas prácticas abarcarán los aspectos teóricos y prácticos de la instalación de paneles fotovoltaicos, incluyendo la caracterización de paneles fotovoltaicos, la caracterización de inversores, la conexión de paneles en serie y paralelo, la medida del ángulo de orientación y la instalación de un sistema fotovoltaico completo.

El segundo, instalar un sistema fotovoltaico de ocho paneles en la azotea del edificio donde se llevará a cabo el taller. Esta instalación servirá como plataforma práctica para que los participantes puedan aplicar los conocimientos adquiridos en las prácticas de laboratorio y familiarizarse con las condiciones reales de trabajo en la instalación de sistemas fotovoltaicos.

Y, por último, el tercero, diseñar un cuadro eléctrico que facilite el trabajo en el laboratorio y en la azotea. Este cuadro permitirá a los participantes realizar las conexiones eléctricas necesarias para las prácticas de laboratorio y para la operación del sistema fotovoltaico instalado en la azotea.

3. Conclusiones

El taller de formación en instalaciones fotovoltaicas se presenta como una iniciativa innovadora y socialmente responsable que busca contribuir a la formación e integración laboral de personas en situación de riesgo o exclusión social. El proyecto tiene un gran potencial para generar un impacto positivo en la vida de los participantes y en la comunidad en general.

DESIGN AND IMPLIMENTATION OF A PHOTOVOLTAIC INSTALLATION TRAINING WORKSHOP

Author: Villagrán Fernández Salvador, Pablo.

Supervisor: Gasco Ramírez, Jesús María. Co-Supervisor: Fernández Bernal, Fidel

Collaborating Entity: ICAI – Universidad Pontificia Comillas

ABSTRACT

This project presents the design of a set of hands-on training activities for a photovoltaic installer's assistant workshop. In addition to designing the training activities, a small photovoltaic installation has been designed and studied for installation on the rooftop of the building where the course will be held. The purpose of this installation is to allow students to become familiar with this technology, gain experience, and learn how to handle real-world situations that they will encounter after completing the course.

Keywords: Renewables Energy, Training Workshop, Caritas Madrid, Fundación ICAI.

1. Introduction

The project is being initiated by the Fundación de Ingenieros de ICAI in response to a request from various organizations, including Caritas Madrid. These organizations aim to provide training and education opportunities for people at risk of social exclusion to enable them to enter the labor market as photovoltaic installers.

In the current context of an energy transition towards a more sustainable and environmentally friendly model, solar energy has emerged as a renewable energy source with great growth potential, generating new job opportunities in the photovoltaic installation sector.

The beneficiaries of this project are those who are in a situation of social risk or exclusion, facing difficulties in accessing the labor market and improving their living conditions.

2. Project definition

Throughout the project, it is proposed to work on three specific points:

Design and implement a set of laboratory practices for the training of photovoltaic installer assistants. These practices will cover the theoretical and practical aspects of photovoltaic panel installation, including photovoltaic panel characterization, inverter characterization, connection of panels in series and parallel, measurement of the orientation angle and installation of a complete photovoltaic system.

Install an eight-panel photovoltaic system on the roof of the building where the workshop will take place. This installation will serve as a practical platform for participants to apply the knowledge acquired in the laboratory practices and become familiar with the real working conditions of photovoltaic system installation.

Design and build an electrical panel to facilitate work in the laboratory and on the roof. This panel will allow participants to make the electrical connections necessary for the laboratory practices and for the operation of the photovoltaic system installed on the roof.

3. Conclusions

The photovoltaic installation training workshop is presented as an innovative and socially responsible initiative that seeks to contribute to the training and labor integration of people at risk of social exclusion or who are socially excluded. The project has great potential to generate a positive impact on the lives of the participants and the community as a whole.

ÍNDICE DE LA MEMORIA

Índice de la memoria

Capíti	ulo 1. Introducción	8
1.1	Estado de la cuestión. Recurso solar.	8
1	.1.1 Predicciones del sector eléctrico en los próximos diez años	12
1	.1.2 Transición hacia las energías limpias (1990-2030)	14
1	.1.3 Auge del sector eléctrico y oportunidades laborales	
1.2	Caritas y la Fundación de Ingenieros de ICAI	17
1.3	Motivación del proyecto	18
1.4	Objetivos	19
1.5	Estructura de la memoria	19
1.6	Alineación con los objetivos de desarrollo sostenible	21
Capíti	ulo 2. Elementos de la instalación	23
2.1	Módulos fotovoltaicos	23
2.2	Inversor	27
2.3	Cableado	29
2.4	Fijación	31
2.5	Elementos de medición	33
2	2.5.1 Pinza multí-metrica	34
2	2.5.2 Vatímetro	35
2.6	Protecciones de baja tensión	37
2	2.6.1 Protecciones en continua	37
2	2.6.2 Protecciones en alterna	38
2.7	Caja de décadas	40
Capíti	ulo 3. Emplazamiento	42
3.1	Justificación	42
3	2.1.1 Radiación solar	44
3	2.1.2 Temperatura ambiente	46
3	2.1.3 Velocidad del viento	47
Capíti	ulo 4. Pérdidas	49
4.1	Pérdidas óhmicas	49

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

ÍNDICE DE LA MEMORIA

4.2	Pérdidas por temperatura	49
4.3	Pérdidas calidad de módulo	50
4.4	Pérdidas por LID.	50
4.5	Pérdidas por suciedad	51
4.6	Pérdidas por desajuste.	52
Capíti	ulo 5. Simulación PVsyst	53
5.1	Disposición de los módulos	53
5.2	Resultado de la simulación.	55
Capíti	ulo 6. Diseño cuadro de mando	60
Capíti	ulo 7. Desarrollo de las prácticas	63
7.1	Práctica 1: Caracterización panel fotovoltaico	64
7.2	Práctica 2: Medición paneles	69
7.3	Práctica 3: Caracterización del inversor	74
7.4	Práctica 4: Conexión de paneles en serie, paralelo y mixta	80
7.5	Práctica 5: Medida del ángulo de incidencia y orientación	88
7.6	Práctica 6: Medida del rendimiento del inversor	93
Capíti	ulo 8. Viabilidad económica	<i>97</i>
Capítu	ulo 9. Bibliografía	98
ANEX	XO I. Planos	100
ANEX	XO II. Informe PVGIS	102
ANEX	XO III. Informe PVsyst	104
ANEX	XO IV. Fichas técnicas	116

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Índice de ilustraciones

Ilustración 1. Perihelio y Afelio	9
Ilustración 2. Incidencia solar sobre la Tierra	9
Ilustración 3. Radiación solar	10
Ilustración 4. Posición del Sol en las distintas estaciones	10
Ilustración 5. Incidencia solar sobre un módulo fotovoltaico	11
Ilustración 6. Módulo fotovoltaico monocristalino	24
Ilustración 7. Módulo fotovoltaico policristalino	24
Ilustración 8. Módulo fotovoltaico bifacial	25
Ilustración 9. Módulo fotovoltaico elegido	26
Ilustración 10. Inversor Huawei	28
Ilustración 11. Cable corriente continua	30
Ilustración 12. Cable corriente alterna	31
Ilustración 13. Tracker de seguimiento en granja solar	32
Ilustración 14. Tornillo sin fin	33
Ilustración 15. Diferencial	33
Ilustración 16. Clamp meter multifunction.	34
Ilustración 17. Vatímetro	36
Ilustración 18. Magnetotérmico en corriente continua	38
Ilustración 19. Interruptor automático	39
Ilustración 20. Protección diferencial	40
Ilustración 21. Caja de décadas de décadas de resistencias	41
Ilustración 22. Sitio del emplazamiento	42
Ilustración 23. Edificio Caritas	43
Ilustración 24. Irradiación solar mensual	44
Ilustración 25. Radiación difusa	45
Ilustración 26. Temperatura media mensual	46
Ilustración 27. Velocidad del viento	47
Ilustración 28. Orientación óptima	54

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 29. Plano del emplazamiento con la instalación	55
Ilustración 30. Resultados de la simulación con PVsyst	56
Ilustración 31. Diagrama Sankey de pérdidas	58
Ilustración 32. Estimación de envejecimiento de los módulos	59
Ilustración 33. Cuadro de mando	61
Ilustración 34. Presupuesto de los elementos de la instalación.	97

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Índice de tablas

Tabla 1. Características módulo	27
Tabla 2. Carácteristicas pinza multimétrica.	35
Tabla 3. Carácteristicas vatímetro.	37
Tabla 4 Características Caia de Décadas de Resistencias	41

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Índice de ecuaciones

Ecuación 1. Radiación global	11
Ecuación 2. Ley de Joule	49
Fouación 3 II-value	50

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 1. INTRODUCCIÓN

1.1 ESTADO DE LA CUESTIÓN. RECURSO SOLAR.

La energía solar surge del proceso de fusión nuclear continuo que tiene lugar en el Sol.

Para entender bien este proyecto de fin de grado, el punto de partida será conocer el principal elemento: el recurso solar, acercarnos a qué es y de qué que se trata. El recurso solar hace referencia a la energía proveniente del Sol. Esta energía llega a la Tierra en todas las direcciones a través de ondas electromagnéticas, las cuales dan lugar a la conocida radiación solar. Esta fuente de energía es abundante, renovable y limpia, viaja a través del espacio para dar vida a los seres vivos, además de determinar dinámicas climáticas y meteorológicas¹.

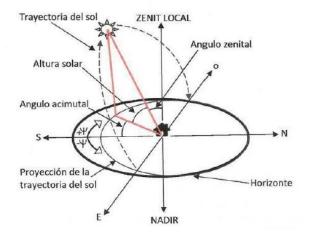
El Sol es la estrella más cercana al planeta Tierra. Se trata de un cuerpo gaseoso cuya composición es fundamentalmente hidrógeno (en al menos 70%), el resto de su composición es un conjunto de gases: Helio, Oxígeno y Carbono, aunque este último en menor cantidad. Los científicos han estimado que el Sol tiene una vida alrededor de 5.000 millones de años, lo cual es una fuente de energía que podría considerarse inagotable en vista a los próximos años. La distancia media del Sol a la Tierra es, aproximadamente, de 149 millones de kilómetros -conocida como UA, Unidad Astronómica- la luz tarda ocho minutos y veinte segundos en recorrer esa distancia.

En la siguiente imagen veremos como la Tierra describe una órbita alrededor del Sol. Dentro de esta hay dos puntos característicos: Perihelio y Afelio. Por un lado, el punto más cercano de la Tierra al Sol es el Perihelio que está a 147 millones de kilómetros. Por otro lado, el

¹ Medición del recurso solar. Iberdrola. Puede consultar en: Recurso solar

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

punto más lejano al Sol es el Afelio a 152 millones de kilómetros de la estrella. Cabe resaltar la idea de que la Tierra en la estación de verano es el momento en el que más alejado está del Sol. Y, al contrario, sucede en invierno. Esto no lleva a concluir que la temperatura del planeta no se ve afectada por la distancia al Sol. Lo que verdaderamente influye es la perpendicularidad de los rayos solares. Sucede que en invierno el Sol está más bajo y, por lo tanto, sucede que calienta menos a pesar de estar más cerca.

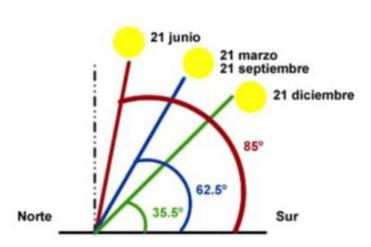

Enero Perihelio

147 millones de km

1521 millones de km

Ilustración 1. Perihelio y Afelio

Ilustración 2. Incidencia solar sobre la Tierra


ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

La posición del Sol queda establecida con dos ángulos: altura y azimut. Según estos ángulos habrá más o menos incidencia solar sobre la posición estudiada. La altura solar es el ángulo que forman los rayos solares con la superficie horizontal. Tendrá valor nulo en el amanecer y en la puesta del Sol. Sin embargo, obtendrá su mayor valor al medio día solar. Por otro lado, el azimut es el ángulo formado por el eje sur de la Tierra y el Sol.

W Horizon S Azimuth

Ilustración 3. Radiación solar

Ilustración 4. Posición del Sol en las distintas estaciones

Con relación a la ilustración 4, puede apreciarse claramente como la inclinación de la incidencia solar respecto a un mismo punto de la Tierra. En nuestro caso, para Madrid en los solsticios de primavera y otoño el Sol incidirá con una inclinación alrededor de los 40°. Se tomará este valor con inclinación base si se fijaran los módulos, se decide esto porque tratará

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

de ser la inclinación óptima en un gran periodo de tiempo. Cabe incluir que en el solsticio de verano la inclinación óptima del módulo sería un ángulo menor, cercano a los 20° debido a que la incidencia solar es muy vertical en esta época. Lo contrario sucederá en el solsticio de invierno.

La radiación emitida por el Sol llega a la atmosfera de distintas maneras. La atmósfera absorbe, refleja y dispersa la radiación solar. Con estas tres funciones que realiza la atmosfera al recibir la radiación desde el Sol, dará lugar a tres tipos de radiación existentes en la Tierra: radiación directa, radiación difusa y radiación reflejada.

- Radiación directa (B): radiación que incide sobre la superficie de la Tierra que viene directa desde el Sol, sin agentes externos que influyan.
- Radiación difusa (D): radiación que cambia su trayectoria al atravesar la capa atmosférica de la Tierra debido a choques con moléculas y partículas de aire.
- Radiación reflejada (R): conocida como albedo, radiación dirigida hacia arriba después de haber sido reflejada por la superficie terrestre.

La radiación global (G), es la resultante de las tres radiaciones anteriores, la suma de las tres. Esta se define como potencia solar por unidad de superficie (kW/m2).

Ecuación 1. Radiación global

G = B + D + R

Ilustración 5. Incidencia solar sobre un módulo fotovoltaico

La radiación en el emplazamiento en cuestión se analizará en el Capítulo 3. Se analizará con los datos obtenidos con el programa PVGIS.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Desde hace años, los paneles solares fotovoltaicos aprovechan el recurso solar para generar electricidad mediante la conversión fotovoltaica, el proceso que transforma una partícula con energía lumínica (fotón) en energía electromotriz. El uso de esta energía renovable es una tendencia al alza a nivel mundial, en la producción fotovoltaica y el autoconsumo.

1.1.1 PREDICCIONES DEL SECTOR ELÉCTRICO EN LOS PRÓXIMOS DIEZ AÑOS.

El sector eléctrico global está en una fase crucial de transformación hacia un futuro más sostenible, impulsado por avances tecnológicos, políticas ambientales más estrictas y un creciente consenso internacional sobre la necesidad de mitigar el cambio climático. En los próximos diez años, se espera que la adopción de energías renovables se acelere significativamente, mientras que la dependencia de los combustibles fósiles disminuya de manera sostenida.

Las proyecciones indican un crecimiento sin precedentes en la capacidad de generación de energías renovables. Según el "World Energy Outlook 2023" de la Agencia Internacional de Energía (AIE), la capacidad de generación de energías renovables se incrementará en más de 500 GW en 2023, marcando un nuevo récord histórico². La energía solar fotovoltaica y la eólica seguirán siendo las tecnologías líderes, debido a su competitividad económica y su apoyo gubernamental.

En el escenario de Políticas Declaradas (STEPS), la capacidad instalada de energía solar y eólica se espera que continúe expandiéndose rápidamente hasta 2030. La capacidad solar fotovoltaica global podría triplicarse, mientras que la energía eólica, tanto terrestre como marina, también verá un aumento considerable³.

² International Energy Agency (IEA). "World Ennergy Outlook 2022." Puede consultar en: World Energy Report 2022

³ International Energy Agency (IEA). "World Ennergy Outlook 2023." Puede consultar en: World Energy Report 2023

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El uso de combustibles fósiles, que ha dominado el mix energético mundial durante décadas, alcanzará su pico antes de 2030 y comenzará a disminuir progresivamente ⁴⁵. La demanda de carbón, petróleo y gas natural, que históricamente ha representado alrededor del 80% del suministro energético global, se reducirá al 73% para 2030. Este cambio se debe a la adopción de vehículos eléctricos, la mejora en la eficiencia energética y la implementación de políticas ambientales más rigurosas.

La AIE destaca que las políticas energéticas más estrictas y el aumento de las inversiones en energías limpias están contribuyendo significativamente a esta reducción. La Ley de Reducción de la Inflación en Estados Unidos y las políticas energéticas de la Unión Europea están acelerando la transición hacia un sistema energético más limpio y sostenible⁶. Como muestra el siguiente gráfico, para 2030 se prevén unas inversiones que superan los dos trillones de dólares americanos, esto es un claro reflejo de cuánto está creciendo y ganando fuerza este sector.

La próxima década verá una rápida adopción de nuevas tecnologías energéticas, especialmente en el sector del transporte y el almacenamiento de energía. En Estados Unidos, se prevé que el 50% de los nuevos vehículos matriculados en 2030 sean eléctricos, en comparación con el 12% proyectado hace dos años⁷. Además, la instalación de bombas de calor y la expansión de la energía nuclear serán clave para la descarbonización del sector eléctrico.

⁴ International Energy Agency (IEA). "World Ennergy Outlook 2022." Puede consultar en: World Energy Report 2022

⁵International Energy Agency (IEA). "World Ennergy Outlook 2023." Puede consultar en: World Energy Report 2023

⁶ International Energy Agency (IEA). "World Ennergy Outlook 2023." Puede consultar en: <u>World Energy</u> Report 2023

⁷ International Energy Agency (IEA). "World Ennergy Outlook 2023." Puede consultar en: World Energy Report 2023

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Las tecnologías de almacenamiento de energía, como las baterías de iones de litio y las baterías de flujo, seguirán mejorando, permitiendo una mayor integración de energías renovables intermitentes y mejorando la estabilidad de la red eléctrica⁸.

1.1.2 Transición hacia las energías limpias (1990-2030)

La transición hacia las energías limpias y renovables ha sido un proceso continuo y acelerado durante las últimas tres décadas. Este cambio ha sido impulsado por avances tecnológicos, políticas más estrictas y una creciente conciencia sobre el impacto del cambio climático. A continuación, se describen los principales hitos y tendencias en este periodo:

- Década de 1990: Durante la década de 1990, el interés global por las energías renovables comenzó a crecer debido a la creciente preocupación por el cambio climático. Se implementaron los primeros proyectos piloto y políticas iniciales centradas en la energía eólica y solar. Esta década sentó las bases para la expansión futura de estas tecnologías.
- Década de 2000: La década de 2000 vio una expansión significativa en la capacidad instalada de energías renovables. Europa y Estados Unidos lideraron este crecimiento, impulsados por incentivos económicos como subsidios y créditos fiscales. La capacidad global de energía eólica y solar se multiplicó varias veces, marcando el inicio de una era de crecimiento acelerado.
- Década de 2010: La década de 2010 fue crucial para la consolidación de las energías renovables como una alternativa viable y competitiva frente a los combustibles fósiles. Los costos de las tecnologías solares y eólicas disminuyeron drásticamente, haciéndolas más accesibles. En 2015, el Acuerdo de París estableció un marco

_

⁸ Corficolombiana. "Informe Sectorial del Sector Eléctrico." Puede consultar en: <u>Investigaciones</u> <u>Corficolombiana</u>

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

internacional para la reducción de emisiones de CO₂, impulsando a muchos países a comprometerse con objetivos ambiciosos de energía limpia^{9 y 10}.

- Década de 2020: En la actual década de 2020, la pandemia de COVID-19 y la crisis energética han acelerado la inversión en energías renovables. Las políticas más estrictas y los objetivos de cero emisiones netas para 2050 están siendo adoptados por un número creciente de países y empresas. Este impulso está llevando a una rápida expansión de la capacidad instalada de energías renovables y a una disminución sostenida en la dependencia de combustibles fósiles^{11 y 12}.
- Predicciones para 2030: Para 2030, se espera que la capacidad de generación de energías renovables continúe creciendo robustamente. La energía solar y eólica seguirán siendo las tecnologías predominantes, con un aumento significativo en la adopción de tecnologías de almacenamiento de energía para mejorar la estabilidad de la red. La demanda de combustibles fósiles continuará disminuyendo, y se espera que más de la mitad de los nuevos vehículos matriculados en grandes mercados sean eléctricos.

1.1.3 AUGE DEL SECTOR ELÉCTRICO Y OPORTUNIDADES LABORALES

El auge del sector eléctrico y la transición hacia las energías renovables están generando numerosas oportunidades laborales, especialmente en la instalación y mantenimiento de sistemas fotovoltaicos. Esta tendencia es particularmente relevante para las personas en riesgo de exclusión social, ya que el sector ofrece trabajos estables y bien remunerados.

⁹ International Energy Agency (IEA). "World Ennergy Outlook 2022." Puede consultar en: <u>World Energy</u> Report 2022

¹⁰ International Energy Agency (IEA). "World Ennergy Outlook 2023." Puede consultar en: World Energy Report 2023

¹¹ International Energy Agency (IEA). "World Ennergy Outlook 2023." Puede consultar en: <u>World Energy</u> Report 2023

¹² BBVA Research. "Sector eléctrico colombiano: retos y oportunidades." Puede consultar en: <u>Sector electrico colombiano retos y oportunidades</u>

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El crecimiento de las energías renovables está impulsando la creación de empleos en varias áreas, incluyendo la instalación de paneles solares, la operación y mantenimiento de plantas eólicas y solares, y el desarrollo de tecnologías de almacenamiento de energía. Según la Agencia Internacional de Energía Renovable (IRENA), el sector de las energías renovables empleó a más de 11 millones de personas en 2018, y se espera que este número continúe aumentando a medida que más países adopten fuentes de energía limpia 13.

Los montadores de paneles fotovoltaicos están en alta demanda debido a la rápida expansión de la capacidad solar. Este trabajo no solo es crucial para la implementación de proyectos de energía solar, sino que también ofrece estabilidad laboral y buenas condiciones salariales. Los programas de formación específicos para instaladores de paneles solares están diseñados para proporcionar las habilidades necesarias y facilitar la inserción laboral de personas en riesgo de exclusión social.

La inclusión social en el sector de las energías renovables no solo mejora la calidad de vida de las personas involucradas, sino que también beneficia a las comunidades locales. Los proyectos de energía renovable a menudo se implementan en áreas rurales o desfavorecidas, proporcionando empleo local y contribuyendo al desarrollo económico de la región. Además, la formación y el empleo en este sector promueven la integración social y ofrecen oportunidades para una vida digna y estable.

En resumen, la transición hacia un sistema energético más limpio y sostenible está en marcha y se acelerará en la próxima década. Esta transición no solo es impulsada por la necesidad de mitigar el cambio climático, sino también por los avances tecnológicos y las políticas energéticas cada vez más ambiciosas. La colaboración internacional y el compromiso con los objetivos de energía limpia serán cruciales para alcanzar un futuro energético más seguro y sostenible. Además, el auge del sector eléctrico y las energías renovables está creando numerosas oportunidades laborales, ofreciendo trabajos estables y bien remunerados,

¹³ International Energy Agency (IEA). "World Ennergy Outlook 2022." Puede consultar en: <u>World Energy</u> Report 2022

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

especialmente para personas en riesgo de exclusión social, contribuyendo así a una transición justa e inclusiva.

1.2 CARITAS Y LA FUNDACIÓN DE INGENIEROS DE ICAI

"Movilizamos a los ingenieros y a las empresas para que pongan su conocimiento al servicio de un mundo más justo y sostenible", este es el lema que propone la Fundación de Ingenieros de ICAI. La misión de la fundación es contribuir para que las personas más desfavorecidas alcancen unas condiciones de vida dignas, facilitando que la comunidad de ICAI y las empresas relacionadas pongan al servicio de estas su conocimiento y sus recursos.

Dentro de este marco, este proyecto nace de una petición de distintas instituciones, entre ellas Caritas, a la Fundación de Ingenieros de ICAI para ofrecerles el reto de formar a personas en riesgo de exclusión social como montadores de instalaciones fotovoltaicas. Esta petición surge a raíz del auge de este sector emergente, la energía solar. Nos encontramos en una sociedad que apunta hacia una descarbonización total buscando la generación de electricidad con fuentes renovables y no contaminantes. Con esta conciencia que ha tomado la sociedad surge este nuevo mercado y, con ello, nuevas oportunidades laborales en el largo plazo.

Es, por tanto, una gran oportunidad de crear buenos y nobles artesanos que quieren ganarse la vida dignamente dentro de sus dificultades sociales y económicas. Se lanza este curso con el fin de ofrecerles una buena manera de ganarse la vida aprovechando la gran demanda y la buena proyección de este mercado. Estas personas emprenden un nuevo camino aprendiendo un oficio para dignificar sus vidas y ganarse la vida honradamente.

El mundo se encuentra en una era de transformación energética, con un giro hacia un futuro más sostenible impulsado por la creciente demanda de energía limpia. En este contexto, la energía solar fotovoltaica se ha convertido en una fuente renovable de energía con un gran potencial de crecimiento, generando nuevas oportunidades laborales en el sector de las instalaciones fotovoltaicas.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El análisis previo realizado sobre el recurso solar en las energías renovables y la evolución del sector eléctrico, especialmente con este tipo de energía, ha puesto de manifiesto el auge de este sector y la necesidad de profesionales cualificados para su desarrollo.

Las proyecciones indican un crecimiento sin precedentes en la capacidad de generación de energías renovables. Según el "World Energy Outlook 2023" de la Agencia Internacional de Energía (AIE), la capacidad de generación de energías renovables se incrementará en más de 500 GW en 2023, marcando un récord histórico. La energía solar fotovoltaica y la eólica seguirán siendo las tecnologías líderes, debido a su competitividad económica y su apoyo gubernamental.

Este auge del sector fotovoltaico ha generado una creciente demanda de profesionales cualificados en la instalación y mantenimiento de sistemas fotovoltaicos. Los montadores de paneles solares son especialmente solicitados debido a la rápida expansión de la capacidad solar. Este trabajo no solo es crucial para la implementación de proyectos de energía solar, sino que también ofrece estabilidad laboral y buenas condiciones salariales.

1.3 MOTIVACIÓN DEL PROYECTO

La realización de este proyecto tiene el potencial de ayudar a personas en riesgo de exclusión social a desarrollar nuevos conocimientos y habilidades que les ofrecerán mejorar su situación tanto personal como laboral. La formación en energía fotovoltaica permitirá a estas personas acceder a un sector en crecimiento y con buenas perspectivas de crecimiento en empleo. Es una gran oportunidad de brindarles a estas personas aprender un oficio para desarrollarse como personas y estabilizar sus situaciones.

Más aún, este proyecto me permitirá adquirir experiencia en el sector no lucrativo, podré adquirir experiencia en el ámbito de formación profesional y educación para el empleo. Tendré la suerte de poder trabajar en colaboración con Cáritas Madrid, lo que supondrá una experiencia muy enriquecedora. Creo que la formación profesional es una herramienta fundamental para la inclusión social y económica de estas personas.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Finalmente, este proyecto me permitirá poner mis dones y aprendizaje ingenieril al servicio de aquellos que más lo pueden necesitar. Supondrá un broche final a una etapa de crecimiento continuo, obtendrá sentido todo el esfuerzo y dedicación que han supuesto estos años de formación académica y humana. Además, me permitirá también desarrollar mis habilidades de diseño, planificación y gestión. También me ofrecerá aprender del sector emergente de las energías renovables.

1.4 OBJETIVOS

El objetivo general de este proyecto es: capacitar a personas en riesgo de exclusión social en la instalación, mantenimiento y puesta en marcha de instalaciones fotovoltaicas, brindándoles las habilidades y conocimientos necesarios para desempeñarse con éxito en este oficio y mejorar sus oportunidades de integración laboral, contribuyendo así a su desarrollo personal, profesional y social.

Con este fin se establecen tres objetivos:

El primero objetivo consiste en diseñar un bloque de prácticas que cumplimentará a la formación teórica que actualmente ya se imparte. Para un buen desarrollo de las prácticas se han llevado a cabo dos proyectos los cuales potenciaran el desarrollo de estas.

El segundo en desarrollar un cuadro de control en el laboratorio: Este cuadro estará conectado a la instalación fotovoltaica y permitirá a los alumnos realizar distintas medidas eléctricas y monitorizar el funcionamiento del sistema.

El tercer objetivo consiste en desarrollar una instalación de ocho módulos fotovoltaicos para el uso de las prácticas que han sido diseñadas. Para ello, se utilizará el programa PVsyst. Esto permitirá realizar simulaciones de una instalación real, incluyendo el montaje de estructuras, la conexión de paneles y la puesta en marcha del sistema.

1.5 ESTRUCTURA DE LA MEMORIA

El presente documento está formado por nueve capítulos.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El presente capítulo, presenta el estado de la cuestión. Analiza en un marco temporal desde los años noventa hasta los años venideros el desarrollo del sector eléctrico. Además, presenta cómo nace este proyecto social y de qué se trata. Más aún, incluye mi motivación al escoger este proyecto. Seguidamente, se fijan los objetivos y el alcance que tiene este proyecto y se determinan las fuentes y la estructura que seguirá. Finalmente, se cierra este capítulo con los objetivos de desarrollo sostenible.

El segundo capítulo presenta los elementos de una instalación fotovoltaica. De tal modo que se hace un repaso sobre las características de cada uno de ellos y la importancia que tienen dentro de la instalación.

El tercer capítulo comprende una descripción detallada sobre el emplazamiento en donde tendrá lugar la instalación fotovoltaica. Además, se analizan los datos obtenidos a través del programa PVGIS sobre la radiación solar, la temperatura y la velocidad del viento que se estiman en el lugar del emplazamiento.

El cuarto capítulo recoge las pérdidas que se programaran en el programa PVsyst para obtener una simulación lo más cercana a la realidad posible. Es por ello, que se realiza este estudio detallado de las pérdidas que tendremos en cuenta en la instalación fotovoltaica.

El quinto capítulo recoge la simulación de la instalación fotovoltaica a través del programa PVsyst. A través de los resultados obtenidos analizaremos la localización óptima de los paneles para un mejor rendimiento. Además, se realiza un estudio detallado de los resultados obtenidos en la simulación.

El sexto capítulo recoge el diseño del cuadro de mandos que se instalará en el laboratorio y con el cual los alumnos tendrán acceso a realizar las prácticas que han sido diseñadas.

El séptimo capítulo agrupa las prácticas de laboratorio que han sido diseñadas. Son un total de seis prácticas las que se han diseñado con el objetivo de que se familiaricen con la medida de las distintas magnitudes eléctricas y, además, sepan desenvolverse en una instalación real.

El octavo capítulo es un breve estudio económico sobre una estimación del costo de la instalación general.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El noveno capítulo comprende la bibliografía.

Los anexos que se adjuntan incluyen fichas técnicas, planos e informes.

1.6 ALINEACIÓN CON LOS OBJETIVOS DE DESARROLLO

SOSTENIBLE

El mundo actual enfrenta grandes desafíos, desde la necesidad de garantizar una educación de calidad para todos hasta la lucha contra el cambio climático. En este contexto, los Objetivos de Desarrollo Sostenible (ODS)¹⁴ establecen un marco de acción global para hacer frente a estos desafíos y construir un futuro más próspero y sostenible para todos.

Este proyecto de formación de montadores de instalaciones fotovoltaicas para personas en riesgo de exclusión social contribuye al cumplimiento de cuatro ODS específicos: Educación de calidad (ODS 4), Trabajo decente y crecimiento económico (ODS 8), Reducción de las desigualdades (ODS 10) y Acción por el clima (ODS 13).

ODS 4: Educación de calidad

El proyecto de formación de montadores de instalaciones fotovoltaicas ofrece una educación de calidad que está alineada con las necesidades del mercado laboral actual. La formación se centra en preparar a las personas para el empleo, proporcionándoles las habilidades y conocimientos necesarios para desempeñar las funciones requeridas en este sector emergente.

Este enfoque práctico y orientado a las competencias garantiza que los participantes adquieran las habilidades necesarias para ser competitivos en el mercado laboral y acceder a un empleo digno.

ODS 8: Trabajo decente y crecimiento económico

-

¹⁴Objetivos de desarrollo sostenible propuestos por Naciones Unidas. Puede consultar en: <u>Sustainable</u> <u>Development</u>

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El proyecto tiene como objetivo principal proporcionar a personas en riesgo de exclusión social la oportunidad de acceder a un empleo decente y bien remunerado. El sector de las instalaciones fotovoltaicas presenta un alto potencial de crecimiento en los próximos años, lo que significa que habrá una creciente demanda de mano de obra cualificada.

Al capacitar a personas en este sector, el proyecto les brinda la oportunidad de mejorar sus perspectivas laborales y contribuir al crecimiento económico de la región.

ODS 10: Reducción de las desigualdades

El proyecto contribuye a la reducción de las desigualdades sociales al brindar a personas en situación de vulnerabilidad la oportunidad de adquirir nuevas habilidades y conocimientos que les permitirán mejorar su situación económica y social.

La formación en este sector emergente puede suponer para estas personas una vía para salir de la exclusión social y acceder a un futuro más próspero.

ODS 13: Acción por el clima

El proyecto forma a personas en la instalación y mantenimiento de sistemas fotovoltaicos, lo que contribuye a la lucha contra el cambio climático. La energía solar fotovoltaica es una fuente de energía limpia y sostenible que no produce emisiones de gases de efecto invernadero.

Al promover la adopción de energía solar, el proyecto ayuda a reducir la dependencia de los combustibles fósiles y mitigar los efectos del cambio climático.

El proyecto de formación de montadores de instalaciones fotovoltaicas para personas en riesgo de exclusión social es un ejemplo de cómo la educación y la formación profesional pueden contribuir al cumplimiento de los ODS. Al proporcionar a las personas las habilidades y conocimientos necesarios para acceder a un empleo decente, reducir las desigualdades y combatir el cambio climático, el proyecto contribuye a construir un futuro más sostenible e inclusivo para todos.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 2. ELEMENTOS DE LA INSTALACIÓN

2.1 MÓDULOS FOTOVOLTAICOS

En el mercado eléctrico actual hay tres tipos de paneles dominantes: módulos monocristalinos, módulos policristalinos y módulos bifaciales. Se compararán los tres tipos de paneles para, así, realizar la correcta elección para la instalación. La decisión final se basará en criterios de eficiencia, durabilidad, coste y disponibilidad, con un enfoque particular en los paneles monocristalinos, que son los más utilizados actualmente.

Se estudiarán los tres tipos de paneles.

- <u>Módulos solares monocristalinos</u>: se fabrican a partir de un solo cristal de silicio. Este proceso de fabricación da lugar a una estructura cristalina uniforme, lo que permite una mayor eficiencia en la conversión de luz solar en electricidad. Estos paneles se conocen por su alta eficiencia, la cual oscila entre el 15% y el 20%, aunque algunos modelos pueden alcanzar hasta el 22%.

Además de su alta eficiencia, los paneles monocristalinos se caracterizan por ser duraderos y tener una vida útil prolongada, con garantías que pueden superar los 35 años.

Otra ventaja es su mejor rendimiento en condiciones de baja luz, lo que los hace ideales para climas nublados o áreas con menos luz solar directa. Sin embargo, su proceso de fabricación más complejo respecto a los paneles policristalinos resulta en un coste inicial más elevado.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 6. Módulo fotovoltaico monocristalino

- <u>Módulos solares policristalinos</u>: se crean utilizando fragmentos de silicio fundido que se solidifican, formando múltiples cristales en cada célula. Este proceso de fabricación es más económico y requiere menos energía, lo que reduce su costo para los consumidores. Sin embargo, la eficiencia de estos paneles generalmente se sitúa entre el 13% y el 16%, inferior a la de los paneles monocristalinos. Además, su rendimiento en condiciones de baja luz es menor, lo que puede afectar su eficacia en ciertas áreas geográficas. A pesar de estas limitaciones, los paneles policristalinos siguen siendo populares debido a su menor costo.

Ilustración 7. Módulo fotovoltaico policristalino

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

- <u>Módulos bifaciales</u>: entre las innovaciones recientes en el mercado de la energía fotovoltaica destacan los módulos bifaciales. Estos paneles, diseñados para captar la luz solar por ambas caras, aumentan la producción de energía. En comparación con los paneles tradicionales, los módulos bifaciales pueden generar hasta un 30% más de energía, especialmente en superficies con alta reflectividad, como nieve o arena. Esta tecnología es ideal para instalaciones con espacio limitado que necesitan maximizar la producción energética. Sin embargo, requieren estructuras específicas para reflejar y captar la luz en la cara posterior, lo que puede aumentar los costos iniciales de instalación.

Ilustración 8. Módulo fotovoltaico bifacial

La elección para nuestra instalación serán los paneles solares monocristalinos debido a su combinación de alta eficiencia, durabilidad y relevancia tecnológica. Estos paneles, ampliamente utilizados en el mercado, ofrecen una excelente relación costo-beneficio a largo plazo y un rendimiento superior en diversas condiciones de luz. Su uso en las prácticas proporciona una experiencia práctica con una tecnología ampliamente empleada en el sector. Al optar por paneles monocristalinos, garantizamos que los alumnos se familiaricen con las soluciones más avanzadas y comunes en el ámbito de la energía solar.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El panel elegido es de la marca Canadian Solar, modelo Hiku5 Mono CS3Y-500MS de dimensiones 2250x1048x35 mm, cuyas características se presentan en la tabla 1.

Ilustración 9. Módulo fotovoltaico elegido

Los parámetros básicos que caracterizan los paneles son los siguientes:

- Potencia nominal máxima: potencia máxima a la que podría trabajar el panel.
- Tensión óptima máxima (Vmp): tensión generada a máxima potencia.
- Intensidad óptima máxima (Imp): intensidad generada a máxima potencia.
- Tensión de vacío (Voc): tensión máxima generada en condiciones de circuito abierto:
 corriente nula y, por tanto, potencia nula.
- Intensidad de cortocircuito (Isc): intensidad máxima generada en condiciones de cortocircuito: tensión nula y, por tanto, potencia nula.
- Rendimiento: es la relación entre la cantidad de energía eléctrica que el panel produce
 y la cantidad de energía solar que recibe.
- Rango de temperaturas de operación: límites de temperatura dentro de los cuales el panel puede funcionar de manera eficiente y segura

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Tabla 1. Características módulo

Módulo Fotovoltaico	CS3Y-500MS
Potencia nominal máxima	500 W
Tensión óptima máxima	45 V
Intensidad óptima máxima	11.12 A
Tensión de vacío	53.7 V
Intensidad de cortocircuito	11.77 A
Eficiencia	21.2 %
Rango de temperaturas de operación	-40°C - +85°C

2.2 INVERSOR

El inversor es un componente de la instalación que juega un papel crucial para poder aprovechar la electricidad generada por los módulos fotovoltaicos. Este elemento se encarga de transformar la corriente continua que generan los módulos en corriente alterna. El funcionamiento se basa en la electrónica de potencia, haciendo que el inversor sea capaz de pasar de continua a alterna, transformando así la electricidad. Esto se consigue a través de la conmutación de semiconductores los cuales a partir de la señal en continua son capaces de generar una onda cuadrada. Los armónicos de la onda cuadrada se filtran de tal manera que se transforma en una onda senoidal.

Para una correcta elección del inversor se han de tener en cuenta diversos factores: tensión máxima del sistema en continua, potencia máxima a la salida del inversor, la cual deberá ser mayor que la potencia máxima consumida por el sistema y, en el caso de que hubiese sistema de almacenamiento, la capacidad de regular la electricidad en la carga y descarga de baterías.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Para nuestra instalación se utilizará un inversor con dos canales de entrada, es decir, de dos entradas MPPTs. Esto se decide para que el inversor nos ofrezca una mayor versatilidad y poder, así, ensayar distintas configuraciones con los alumnos. Nos favorece para el diseño de las prácticas y nos ofrece mayor juego.

Ilustración 10. Inversor Huawei

La elección para esta instalación se trata del inversor de marca Huawei, modelo SUN2000-3KTL-L1. La instalación cuenta con ocho módulos de 500 W cada uno, lo que hace que tengamos una potencia de entrada al inversor de hasta 4000W. Esta potencia se nos queda a medio camino entre el modelo SUN2000-2KTL-L1 y el actual, cuyas potencias máximas en las entradas MPPTs son 3000W y 4500W, respectivamente. Se planteó escoger el de menor potencia, lo que no era posible al superar en un 30% la potencia máxima de entrada. Esto podría suponer un peligro para la integridad del inversor. Se elige entonces la entrada de 4500W para asegurar en todo momento la seguridad del inversor.

Se planteó la opción de 3000W con el fin de llevar la potencia al valor máximo de entrada al inversor, ya que cuanto más cerca de este valor mejor rendimiento ofrecerá.

Más aun, los límites de tensión son más que suficientes para la configuración de nuestra instalación de mayor tensión, que sería la de los ocho paneles conectados en serie, lo cual daría una tensión de 325 V, no superando los 360V de la entrada. En cuanto a la intensidad, cabe decir que esta nos limita a la hora de conectar los paneles en paralelo, ya que el límite

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

del inversor en la entrada de corriente continua son 12.5 A, teniendo los módulos 11.13 A. Gracias a las dos entradas MPPTs nos facilitará ensayar con distintas configuraciones.

2.3 CABLEADO

El cableado en una instalación fotovoltaica es un aspecto importante que debe ser elegido con cuidado y siguiendo las buenas prácticas para garantizar la seguridad, eficiencia y durabilidad de la instalación. Haremos distinción entre dos cables. El primero para la corriente continua y el segundo para la corriente alterna.

Para el cableado de continua se ha decido escoger el siguiente cableado de baja tensión, el cual está diseñado para instalaciones fotovoltaicas. El modelo escogido es PRYSMIAN PRYSOLAR H1Z2Z2-K. Este tipo de cable soporta hasta un 1.8 kV en continua. El diseño viene amparado por la Norma UNE-EN 50618 y la Norma IEC 62930.

La composición del cable presenta tres capas. Empezando desde el centro se describen, a continuación, las tres capas.

La primera será la parte conductora, está es la que se encargará de transportar la electricidad de la generación hasta el inversor. Está compuesta por cobre recocido estañado, lo cual, es reconocido como un gran conductor ofreciendo un gran rendimiento, garantizando escasas pérdidas. Además, se trata de un cable flexible, de clase 5, según UNE EN 60228, esto facilitará el manejo y manipulación a la hora de realizar la instalación.

La segunda capa trata del asilamiento, este juega un papel crucial hablando en términos de seguridad ya que garantizará que no haya derivaciones mientras el transporte de la energía. El material es un compuesto reticulado libre de halógenos según tabla B.1 anexo B de EN 50618.

La tercera y última capa se trata de la cubierta, esta juega el papel de proteger de las condiciones externas a la capa aislante para que no se vea expuesta a las inclemencias meteorológicas y no se pierdan características aislantes. Se trata de un compuesto capaz de soportar condiciones poco favorables, es muy resistente al agua y no propaga la llama en

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

caso de incendios. El material es un compuesto reticulado libre de halógenos según tabla B.1 anexo B de EN 50618.

Todo esto lo hace ser el cableado elegido, es un cable que garantiza las siguientes propiedades: máxima resistencia al agua, resistencia al frío, cable flexible, resistencia a los rayos ultravioleta, resistencia a los golpes, resistencia a los agentes químicos, resistencia al ozono y resistencia al calor húmedo.

Por último, este cableado ofrece que la capa exterior sea de dos posibles colores, rojo y negro. Esto nos favorecerá a la hora de localizar de manera inmediata el positivo y el negativo siempre y cuando se hayan realizado las conexiones adecuadamente.

Ilustración 11. Cable corriente continua

Para el cableado en alterna, escogeremos otro modelo ya que requiere distintas características que en continua. Se escoge el cable AFUMEX CLASS 1000V (AS) – RZ1-K (AS). Este cable tiene una tensión asignada de entre 600V y 1000V, más que suficiente para nuestra instalación. El diseño viene amparado por la Norma UNE 21123-4. Se escogerá el cable de tres hilos: fase, tierra y neutro. Este cable podría aplicarse perfectamente al tramo de corriente continua, pero se escoge el otro al ser más adecuado.

La composición del cable presenta cuatro o cinco (si aplica) capas. Empezando desde el centro se describen, a continuación, las cuatro o cinco (si aplica) capas.

La primera capa es el conductor, el cual es de cobre recocido, un material altamente conductor que garantiza una baja pérdida de potencia. El cable es flexible, de clase 5 según UNE EN 60228, lo que facilita su manejo e instalación.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

La segunda capa se corresponde con el aislamiento. El aislamiento está hecho de un compuesto reticulado libre de halógenos, lo que significa que no emite gases tóxicos ni corrosivos en caso de incendio. El aislamiento cumple con la norma UNE-EN 50618 y la norma IEC 62930. Se evita a toda costa el material PVC ya que este contiene cloro.

La tercera capa es el elemento separador. Esta separa los tres hilos con una capa especial antiadherente. Conseguimos una fácil separación entre los distintos cables.

La cuarta capa (si aplica) es la capa de relleno, si no es de tres hilos el conductor. Se rellana con una capa de un material mezcla LSOH libre de halógenos.

La quinta y última capa es la cubierta. Es la parte exterior que protegerá el aislamiento y el conductor de las inclemencias meteorológicas. Esta hecha de un material mezcla especial libre de halógenos tipo AFUMEX recogido en la norma UNE 21123-4.

Ilustración 12. Cable corriente alterna

2.4 FIJACIÓN

En un principio, se ideó que se fijarán según la normativa los paneles en una estructura fija, con una inclinación base de 40°, como se explica en la introducción. Pero, sin embargo, esto nos limitaba mucho a la hora de diseñar las prácticas. La estructura fija nos limitaba a la hora de manipular la inclinación de los módulos con el fin de poder obtener los puntos óptimos de funcionamiento da igual la época del año. Por lo tanto, aunque no está dentro del alcance de este proyecto, se ofrecerá una descripción del sistema novedoso que se ha pensado para poder modificar la inclinación de los paneles libremente.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

En las grandes plantas fotovoltaicas esto ya está a la orden del día. Existe una tecnología de seguimiento que hace que los paneles varíen su inclinación en función de la época del año. Todo con el fin de conseguir siempre la mayor generación posible de energía eléctrica. En la siguiente figura se puede apreciar como es el sistema en las grandes plantas fotovoltaicas.

Ilustración 13. Tracker de seguimiento en granja solar

Fuente: DGIT. Industry news.

Es por eso por lo que se ha ideado el diseño de una estructura de fijación con un tornillo sin fin. Esto es, en la instalación que se ha diseñado de ocho paneles permitir que puedan variar su inclinación. La idea se basa en el mecanismo de un diferencial. Este sistema permitirá que el módulo tenga dos apoyos verticales a través de los cuales se realizará la variación de ángulo. Además, la fijación tendrá en el apoyo de la parte superior del módulo se instalará un tornillo sin fin. Este elemento es clave para que los módulos puedan variar su inclinación. Se procede a definir un final de carrera coincidente con la inclinación máxima que queramos programarle. La inclinación se fijará para que pueda inclinarse el módulo libremente desde los 10º hasta los 75º. Esto ofrecerá al alumno tomar conciencia y experimentar cuán importante es realizar un estudio previo para fijar en la inclinación óptima el módulo, según su localización.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 14. Tornillo sin fin

El tornillo sin fin se acciona al girar cada barra. Aquí juega su papel el diferencial. Habrá que poner los dos tornillos sin fin con paso cambiado ya que el diferencial girará las barras en sentidos contrarios.

Ilustración 15. Diferencial

Todo esto se idea para accionarlo o a través de un diseño electrónico/automático o un diseño mecánico más rustico como seria la manivela de un toldo.

2.5 ELEMENTOS DE MEDICIÓN

Los equipos de medición son herramientas esenciales los profesionales que trabajan con magnitudes eléctricas. Estos equipos permitirán realizar distintas medidas y ensayos para evaluar el correcto funcionamiento de cualquier instalación eléctrica. En el desarrollo de las prácticas los alumnos se verán expuestos a familiarizarse con tres aparatos de medida

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

esenciales: amperímetro, voltímetro y vatímetro. En este caso se ha escogido una pinza multi-métrica la cual ofrecerá medidas de intensidad y tensión, tanto en continua como en alterna.

2.5.1 PINZA MULTÍ-METRICA

La pinza es multifunción y se utilizará tanto de amperímetro, para la medida de intensidades, como de voltímetro, para medida de tensiones. Estas dos magnitudes eléctricas son cruciales para familiarizarse con el recurso solar. En torno a estas dos magnitudes giran muchas de las decisiones a la hora del montaje y de toma de decisiones para la optimización de la energía obtenida.

Se ha escogido el modelo RS PRO Clamp Meter UT216 Multifunction, la cual nos ofrece la posibilidad de realizar medidas tanto en continua como en alterna. Aunque los módulos trabajen en corriente continua será necesario en el transcurso de las prácticas realizar medidas también, a la salida del inversor, en donde encontraremos corriente alterna.

La pinza presenta suficiente precisión para el uso que se le va a dar que son medidas de campo. Además, los límites de tensión e intensidad son suficientes para nuestra instalación, en ningún momento se superarán dichos valores. Se ha escogido sobredimensionar aquí para no poner en riesgo a los aparatos.

Ilustración 16. Clamp meter multifunction.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Fuente: RS PRO

Tabla 2. Carácteristicas pinza multimétrica.

Pinza multimétrica	RS PRO Clamp Meter UT216	Precisión
Corriente alterna (AC)	600 A	±(2.5%+5)
Corriente continua (DC)	600 A	±(2.5%+5)
Tensión en alterna (AC)	750 V	±(1.2%+5)
Tensión en continua (DC)	1000 V	$\pm (0.8\% + 3)$
Resistencia	60 MΩ	±(1%+2)
Capacitancia	60 mF	±(4%+5)
Frecuencia	10 Hz – 1 MHz	

2.5.2 VATÍMETRO

Este elemento nos permitirá la medida de la potencia, lo cual ayudará a saber si es óptimo o correcto el funcionamiento de distintos elementos de la instalación, como el inversor y los módulos.

Se ha encontrado en el mercado una pinza amperimétrica la cual nos ofrece la potencia en alterna, lo que supone un gran avance, pues se trata de un equipo que podrá utilizarse en campo. Queríamos evitar completamente el uso de aparatos de medida que no fuesen útiles en el trabajo de campo. Es por ello que se adapta completamente a nuestras necesidades. Además, los límites de tensión e intensidad son más que suficientes para la instalación diseñada. En el Anexo IV se facilitará la ficha técnica con los datos que facilita el fabricante.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

El aparato elegido es: Medidor/pinza digital medidora de potencia PCE-UT232. Se trata de un medidor multifuncional, sirve para la medida de potencia de una o tres fases, así como contador de energía activa hasta 9999 kWh. Otra de las características a resaltar es que ofrece el factor de potencia de la instalación.

Ilustración 17. Vatímetro

Fuente: PCE.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Tabla 3. Carácteristicas vatímetro.

Pinza vatímetro	PCE-UT232	Precisión
Tensión (AC/TRMS)	15/100/300/600 V	±1,2 % + 5 dígitos
Corriente (AC/TRMS)	40/100/400/1000 A	±2,0 % + 5 dígitos
Medición potencia activa	0,01 kW 600 kW	± 3,0 % + 5 dígitos
Medición potencia aparente	0,01 kVA 600 kVA	± 3,0 % + 5 dígitos
Medición potencia reactiva	0,01 kVAr 600 kVAr	± 4,0 % + 5 dígitos
Energía activa (Kh)	1 9999 kWh,	\pm 3,0 % + 2 dígitos
Frecuencia	20 Hz – 500 Hz	

2.6 Protecciones de baja tensión

La elección correcta de las protecciones es un hito esencial para el diseño de cualquier instalación eléctrica, ya que en todo proyecto debe prevalecer la seguridad y la salud de aquellos que van a esta en contacto o expuestos a la instalación. Por ello, se han escogido las siguientes, se diferencian entre protecciones para continua y protecciones para alterna.

2.6.1 PROTECCIONES EN CONTINUA

Estas protecciones se encargarán de proteger el inversor de cualquier anomalía que presente la generación de los módulos. A sabiendas de que el inversor por si mismo presenta en su configuración interna con protecciones para actuar ante sobrecargas, se decide también proteger las dos entradas monofásicas. Esto es debido a que se realizarán distintas configuraciones con los módulos y, bajo ningún concepto, quisiéramos que se vea afectado el inversor.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Por ello, en el cuadro de mando se instalarán dos protecciones magnetotérmicas de corriente continua. Se trata de dos Miniature circuit breaker – C60H – 2 poles – 15 A – C curve. En ningún momento serán necesarios los cuatro polos en esta instalación, por los que se escogen de dos polos. Se ha escogido con 15 A de corriente límite con el fin de que no se supere la intensidad límite de las entradas MPPTs del inversor, que serían 12.5 A. Con esto se logra el objetivo principal que se idea con esta protección.

Ilustración 18. Magnetotérmico en corriente continua

Fuente: Schneider.

2.6.2 PROTECCIONES EN ALTERNA

Estas protecciones sí que juegan un papel más crucial que las de continua. Serán las encargadas de despejar cualquier falta, anomalía o derivación que provoque el sistema o al que sea vea expuesto. Por ello, se ha decido proteger con la instalación de un diferencial y un magnetotérmico.

En el mundo de las instalaciones eléctricas, estos dos dispositivos resultan cruciales para la seguridad y protección. Si bien ambos desempeñan funciones esenciales, es importante comprender sus diferencias para garantizar una instalación eléctrica segura y eficiente.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Por un lado, el magnetotérmico o interruptor automático protegerá el circuito antes dos fallos característicos: las sobrecargas y los cortocircuitos. Es por eso por lo que se ha escogido un magnetotérmico de dos polos (2p), dieciséis amperios (16A), curva tipo C y seis kiloamperios (6kA). Con esta elección se garantiza la buena protección de nuestra instalación.

Ilustración 19. Interruptor automático

Fuente: Schneider.

Por otro lado, el diferencial protegerá contra fugas a tierra, previniendo descargas eléctricas y daños en los equipos. Se escoge un diferencial de veinticinco amperios, lo cual cubrirá de sobra nuestra intensidad con una sensibilidad de treinta miliamperios lo cual es más que suficiente. Se trabaja en monofásica por lo que se escoge de dos polos. Por último, el diferencial estará supere inmunizado lo cual hace más segura su actuación.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 20. Protección diferencial

Fuente: Schneider.

2.7 CAJA DE DÉCADAS

Las cajas de décadas de resistencias son instrumentos esenciales en los laboratorios de electrónica y electricidad. Permiten a los estudiantes, investigadores y técnicos medir y ajustar con precisión la resistencia en un circuito eléctrico. Estas cajas son herramientas versátiles que ofrecen diversas ventajas para el trabajo en laboratorio: experimentación y demostración de principios eléctricos. Este dispositivo ofrece 7 décadas de rangos de resistencia desde 1 a más de 11 M Ω (en saltos de 1Ω). Los interruptores deslizantes permiten sumar y restar fácilmente los valores de resistencia. Los bornes ofrecen conexiones simples y seguras. Ello nos dará el juego necesario para realizar ensayos en carga con los módulos.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 21. Caja de décadas de décadas de resistencias.

Fuente: RS Pro.

Tabla 4. Características Caja de Décadas de Resistencias

Resistencia	
Rangos de resistencia	1 a 11, 111, 111 Ω en saltos de 1 Ω
Resistencia interna	Aprox. 0.3Ω
Potencia	Resistencias 0.3W
Precisión	1%

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 3. EMPLAZAMIENTO

3.1 JUSTIFICACIÓN

El emplazamiento en el que se realizará la instalación de los módulos fotovoltaicos pertenece a Caritas Madrid. Se encuentra localizado en la Comunidad de Madrid, en el ensanche de Vallecas y en la dirección calle Cañada del Santísimo 27. En concreto, las coordenadas geográficas del edificio son las siguientes: latitud 40°22'00"N y Longitud -3°35'45"W.

Ilustración 22. Sitio del emplazamiento

Fuente: Google maps.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 23. Edificio Caritas

Fuente: Google earth.

Una vez definido el emplazamiento para la instalación de los módulos fotovoltaicos en el edificio de Caritas Madrid, sito en la calle Cañada del Santísimo 27 del ensanche de Vallecas, se hace necesario evaluar las condiciones meteorológicas a las que estará expuesto el sistema. Para ello, se utilizará la herramienta PVGIS, un software gratuito desarrollado por la Unión Europea.

PVGIS (Photovoltaic Geographical Information System) es una herramienta online que permite estimar la radiación solar y el rendimiento de un sistema fotovoltaico para cualquier ubicación en el mundo. Esta información es crucial para el diseño y dimensionado óptimo de una instalación fotovoltaica, ya que permite conocer la cantidad de energía solar que se puede generar en un lugar determinado.

Mediante PVGIS, se analizarán los siguientes parámetros meteorológicos para el emplazamiento de Caritas Madrid: radiación solar, temperatura ambiente y velocidad del viento.


ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

3.1.1 RADIACIÓN SOLAR.

Se evaluará la cantidad de radiación solar directa, difusa y total que recibe el edificio a lo largo del año. Esta información es esencial para determinar la producción de energía fotovoltaica del sistema.

Ilustración 24. Irradiación solar mensual

Irradiación solar mensual

Fuente: PVGIS.

Se observa que la incidencia solar presenta una variación estacional significativa a lo largo del año. Los meses con mayor incidencia solar son julio y agosto, con valores superiores a 200 kWh/m2 para la radiación horizontal y a 250 kWh/m2 para la radiación ángulo óptimo. Por el contrario, los meses con menor incidencia solar son diciembre y enero, con valores inferiores a 50 kWh/m2 para la radiación horizontal y a 100 kWh/m2 para la radiación ángulo óptimo.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Esta variación estacional se debe principalmente a la posición del sol en el cielo. En los meses de verano, el sol se encuentra a mayor altura sobre el horizonte, lo que aumenta la cantidad de radiación solar directa que recibe el emplazamiento. Por el contrario, en los meses de invierno, el sol se encuentra a menor altura sobre el horizonte, lo que disminuye la cantidad de radiación solar directa y aumenta la cantidad de radiación difusa.

Ilustración 25. Radiación difusa

Ratio difusa a global medio mensual

Fuente: PVGIS.

Se observa que la incidencia de radiación difusa presenta una variación estacional significativa a lo largo del año, aunque menos pronunciada que la incidencia de radiación total. Los meses con mayor incidencia de radiación difusa son diciembre y enero, con valores superiores a 500 Wh/m2 para la superficie horizontal y a 600 Wh/m2 para la superficie inclinada. Por el contrario, los meses con menor incidencia de radiación difusa son julio y agosto, con valores inferiores a 400 Wh/m2 para la superficie horizontal y a 500 Wh/m2 para la superficie inclinada.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Esta variación estacional se debe principalmente a la nubosidad. En los meses de invierno, la nubosidad suele ser mayor, lo que aumenta la cantidad de radiación difusa que recibe el emplazamiento. Por el contrario, en los meses de verano, la nubosidad suele ser menor, lo que disminuye la cantidad de radiación difusa y aumenta la cantidad de radiación directa.

3.1.2 TEMPERATURA AMBIENTE

La temperatura ambiente influye en la eficiencia de los módulos fotovoltaicos, por lo que es importante considerarla en el diseño del sistema.

Ilustración 26. Temperatura media mensual

Temperatura media mensual

Fuente: PVGIS.

Se observa que la temperatura media presenta una variación estacional significativa a lo largo del año. Los meses con mayor temperatura media son julio y agosto, con valores superiores a 25°C. Por el contrario, los meses con menor temperatura media son diciembre y enero, con valores inferiores a 5°C.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Esta variación estacional se debe principalmente a la posición del sol en el cielo y a la duración del día. En los meses de verano, el sol se encuentra a mayor altura sobre el horizonte y la duración del día es más larga, lo que aumenta la cantidad de radiación solar que recibe el emplazamiento y, por lo tanto, la temperatura. Por el contrario, en los meses de invierno, el sol se encuentra a menor altura sobre el horizonte y la duración del día es más corta, lo que disminuye la cantidad de radiación solar que recibe el emplazamiento y, por lo tanto, la temperatura.

3.1.3 VELOCIDAD DEL VIENTO

La velocidad del viento puede afectar la suciedad y el rendimiento de los módulos fotovoltaicos, por lo que también se debe tener en cuenta en el diseño.

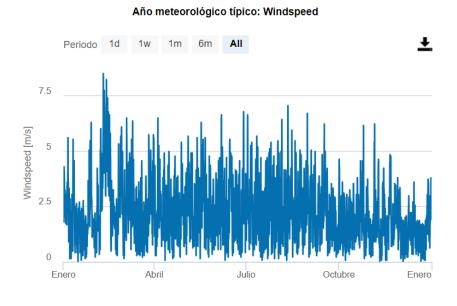


Ilustración 27. Velocidad del viento

Fuente: PVGIS.

La gráfica muestra la velocidad del viento en metros por segundo (m/s) a lo largo de un año típico, revelando una considerable variabilidad en diferentes meses. Durante enero y abril, se observan picos altos que alcanzan cerca de 7.5 m/s, mientras que en otros meses, como julio y octubre, la velocidad del viento es más constante, con fluctuaciones entre 2 y 5 m/s.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Los valores mínimos de la velocidad del viento se acercan a 0 m/s, aunque estos son poco frecuentes y se dispersan a lo largo del año.

En general, no hay una tendencia clara de aumento o disminución de la velocidad del viento a lo largo del año, pero sí se notan patrones estacionales distintivos. Los meses de enero a marzo y de julio a septiembre muestran una alta variabilidad con frecuentes picos de velocidad, mientras que los períodos de abril a junio y octubre a diciembre presentan una mayor estabilidad con picos moderados. Este comportamiento sugiere una dinámica de viento bastante cambiante, con periodos específicos de mayor intensidad.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 4. PÉRDIDAS

Las pérdidas en los módulos fotovoltaicos, cruciales para la eficiencia del sistema, incluyen factores como la reflexión de la luz, las condiciones medioambientales, la degradación de los materiales, y las pérdidas de conversión en inversores y cables. Identificar y mitigar estas pérdidas es esencial para maximizar la producción de energía.

4.1 PÉRDIDAS ÓHMICAS.

Estas pérdidas tienen lugar debido a la ley de Joule. Esta ley describe la potencia que se disipa debido al calor cuando circula la corriente por un cable.

Ecuación 2. Ley de Joule

$$P = i^2 * R$$

P: potencia; i: intensidad; R: resistencia del cable.

La instalación comprende principalmente el tramo de corriente continua, es decir, el tramo que va desde la generación hasta el inversor. Se ha considerado unas pérdidas de 0,5%.

4.2 PÉRDIDAS POR TEMPERATURA.

La tensión de las celdas fotovoltaicas y, por lo tanto, la potencia del módulo, están ligadas a la temperatura de celda. Cuando se opera fuera de las características estándar, conocidas como STEM (radiación de 1000W/m2 y temperatura ambiente de 25° C), la tensión e intensidad del módulo se ven modificadas y también la potencia.

La temperatura es un factor determinante cuando se habla de la tensión que puede ofrecer una celda fotovoltaica. De esta manera, al verse afectada la tensión también lo hará la potencia que ofrece dicha celda fotovoltaica. El fabricante suele ofrecer las características de los módulos bajo condiciones estándar: radiación de 1000 W/m2 y temperatura de 25°C.

COMILLAS
UNIVERSIDAD PONTIFICIA
ICAI ICADE CIHS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Cuando los módulos quedan expuestos a otras condiciones, que suele ser lo normal, la tensión de cada celda varía y con ello la potencia que ofrecerá el módulo entero.

Es relevante señalar que el factor de pérdidas de un módulo esté condicionado por las características eléctricas de los módulos instalados. Cabe destacar, especialmente, el coeficiente de temperatura. En este caso, el fabricante nos da la información de que los paneles tiene un factor de -0.35% C.

La evaluación de estas pérdidas se obtendrá tras la simulación que se realizará con el programa PVSYST. Para ello es necesario fijar un parámetro con anterioridad. Este parámetro es el U-value (parámetro que hace referencia a la transmitancia térmica del módulo). Se compone de dos términos: uno relativo a la temperatura y otro relativo al viento de la ubicación.

Ecuación 3. U-value

$$U = U_c + U_v * v$$

U_c: es el relativo a la temperatura y se fija a 20 W/m2K.

U_v: se considerará como nulo.

4.3 PÉRDIDAS CALIDAD DE MÓDULO.

Este coeficiente de perdidas tiene una peculiaridad y es que se parametriza con un valor que es negativo, en este caso se ha fijado a -0,3%. Esto viene motivado debido a que el fabricante afirma que el módulo que vende es de mayor potencia. Esto lo hace para que con el paso de los años con la pérdida de eficiencia de los módulos se siga manteniendo en los niveles iniciales establecidos por el fabricante en la ficha técnica.

4.4 PÉRDIDAS POR LID.

LID (Degradación Inducida por la Luz) es una pérdida de rendimiento de los módulos que ocurre en las primeras horas de exposición al sol. Esto puede afectar el rendimiento real en

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

comparación con los datos de las pruebas finales de fábrica proporcionados por algunos proveedores de módulos fotovoltaicos.

La pérdida por LID está relacionada con la calidad de la fabricación de la oblea y puede ser del orden del 1% al 3% (o incluso más).

Esta degradación se debe a rastros de oxígeno incluidos en el silicio fundido durante el proceso de Czochralski. Bajo el efecto de la exposición a la luz, estos dímeros de O2 con carga positiva pueden difundirse a través de la red de silicio y crear complejos con aceptores de dopantes de boro. Los complejos boro-oxígeno crean sus propios niveles de energía en la red de silicio y pueden capturar electrones y huecos que se pierden para el efecto fotovoltaico.

Para la instalación diseñada se ha considerado un valor del 1%.

4.5 PÉRDIDAS POR SUCIEDAD.

La acumulación de suciedad y su efecto en el rendimiento del sistema es una incertidumbre que depende en gran medida del entorno del sistema, las condiciones de lluvia, etc. En climas moderadamente lluviosos (como en el centro de Europa) y en zonas residenciales, esto suele ser bajo y puede ser ignorado (menos del 1%).

En entornos rurales con actividad agrícola, puede ser importante durante algunas actividades estacionales. En zonas industriales, se pueden observar efectos no despreciables del orden de cientos. La acumulación de polvo y el crecimiento de musgos y líquenes a lo largo del marco de los módulos produce sombras parciales en las celdas inferiores y tiende a retener más polvo. Además, estas contaminaciones no son eliminadas por las lluvias. Por lo tanto, con inclinaciones bajas, se recomienda usar módulos sin marco cuando sea posible.

Las heces de aves representan un problema serio, ya que usualmente no son eliminadas por las lluvias. Sin embargo, su impacto se reporta como relativamente pequeño (menos del 2%).

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Se ha considerado unas pérdidas del 1,5%, siendo un valor ciertamente elevado. Se podrían reducir implantando un sistema de limpieza periódico mensualmente. De esta manera, podrían reducirse estas pérdidas, aunque resultaría un incremento considerable en el presupuesto de operación y mantenimiento.

4.6 PÉRDIDAS POR DESAJUSTE.

Por último, se tendrá en cuenta las pérdidas por incidencia. Las pérdidas por desajuste de módulos se refieren a las pérdidas ocasionadas por pequeñas diferencias en las características eléctricas de los módulos fotovoltaicos instalados. Estas pérdidas pueden surgir debido a variaciones en la fabricación, envejecimiento desigual, sombras parciales, suciedad, u otros factores que afectan el rendimiento de cada módulo de manera diferente. Estas pérdidas se aplican como una reducción porcentual fija en la producción de energía en corriente continua del sistema.

Al no tener un gran número de módulos en la instalación, se ha establecido que estas pérdidas serán del 1%.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 5. SIMULACIÓN PVSYST

Una vez analizados en apartados anteriores los factores que influirán a la hora de realizar una simulación para, así, obtener estimaciones lo más próximo a lo real de la generación eléctrica de la instalación en cuestión. La simulación se realizará con el programa PVsyst.

PVsyst es un software especializado en el dimensionamiento, simulación y análisis de sistemas fotovoltaicos (PV). Es ampliamente utilizado por ingenieros y profesionales del sector para diseñar y optimizar plantas solares, tanto a nivel residencial como comercial e industrial. Fue desarrollado por el Dr. André Mermoud en la Universidad de Ginebra, Suiza, a principios de la década de 1990.

Para la simulación será esencial incorporar datos climáticos del sitio donde se llevará a cabo el estudio, con el fin de determinar la cantidad de radiación solar que recibirá la instalación. Estos datos se han obtenido del programa PVGIS y han sido previamente analizados. Luego, se seleccionarán los sistemas que se utilizarán y, finalmente, se detallará la disposición de los paneles.

5.1 DISPOSICIÓN DE LOS MÓDULOS.

La base de datos de PVGIS se ha utilizado también para ofrecerle al software el horizonte geográfico o conocido como horizonte lejano. Esta opción es de gran relevancia para instalaciones situadas cerca de elementos los cuales puedan interrumpir la incidencia de los rayos del Sol en los paneles.

El emplazamiento donde se realizará la instalación ocupa un lugar privilegiado ya que no tiene nada a su alrededor que pueda darle sombra y, así, interrumpir la incidencia solar en los módulos. A estas sombras que provocan factores geográficos externos se conocen como sombras lejanas.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Por otro lado, se han de tener en cuenta las sombras cercanas, que serían las que provocan los paneles entre ellos. Esto se ha tenido en cuenta para una correcta colocación de los paneles.

En la siguiente imagen, se obtiene el resultado de cómo será la posición del Sol en el emplazamiento escogido. Se aprecia como en verano será óptima una inclinación de 60° para una mayor incidencia en el módulo. En cambio, en la estación de invierno nos encontramos que la mejor inclinación será de 24°. Visto, anteriormente, para optimizar el uso de los paneles según la estación del año se quiere diseñar un sistema de soporte en el que se pueda variar la inclinación de los paneles para que la incidencia sea siempre perpendicular a los módulos. Partiendo de la base de los 40° llegando en verano a los 60° y a los 24° en invierno.

Orientation #1 Fixed plane, Tilts/azimuths: 40°/ 0° Shading loss: 1% 1: 22 June Attenuation for diffuse: 0.010 Shading loss: 5% 2: 22 May and 23 July and albedo: 0.252 Shading loss: 10% 3: 20 Apr and 23 Aug 75 Shading loss: 20% 4: 20 Mar and 23 Sep 14h Shading loss: 40% 5: 21 Feb and 23 Oct 6: 19 Jan and 22 Nov 7: 22 December 60 11h Sun height [°] 10h 45 30 -30 0 Azimuth [°]

Ilustración 28. Orientación óptima

Fuente: PVsyst.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

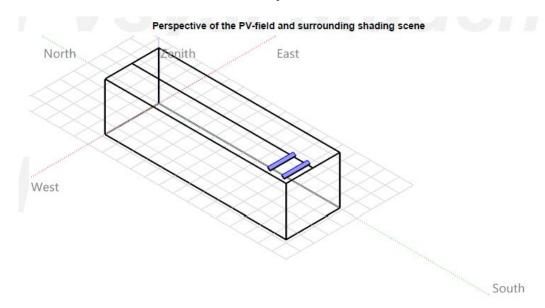
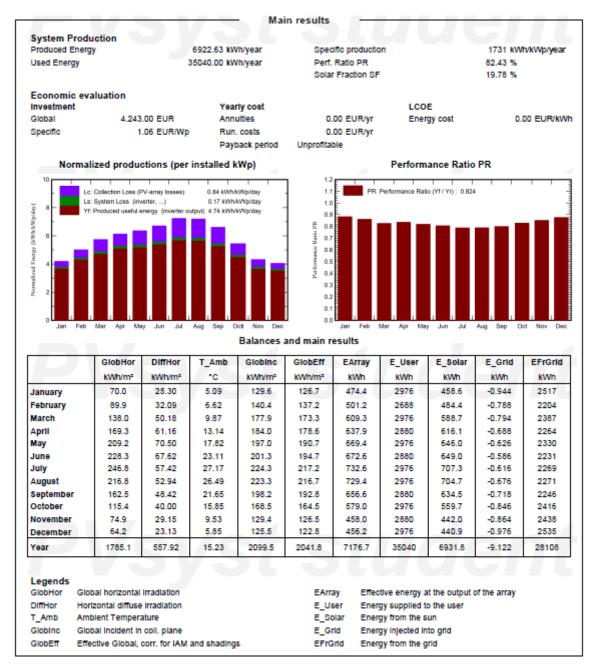


Ilustración 29. Plano del emplazamiento con la instalación

Fuente: PVsyst.

5.2 RESULTADO DE LA SIMULACIÓN.

Con todo esto se ha obtenido una estimación de la producción esperada de la instalación. En la siguiente imagen se muestran los resultados obtenidos.


Tras el ajuste de los parámetros de la instalación en cuestión se ha simulado el comportamiento de esta misma. Con ello se ha obtenido que, simulando para un consumo continuo, lo cual se ha hecho para poder ver la influencia de la generación de los módulos respecto a este. Se ha obtenido que la instalación generará 6922.63 kWh/año. Este resultado nos ofrece energía más que suficiente para realizar las prácticas de laboratorio. Aun así, como se ha dicho, se ha simulado para un consumo continuo de 4 kWp lo cual lleva a un consumo de 35040.00 kWh/año. Siendo así necesaria consumir de la red 28000 kWh/año.

Para que nuestro edificio fuese autosuficiente teniendo en cuenta el consumo continuo de 4 kWp se necesitaran al menos la instalación de veintisiete módulos más, formando una instalación de treinta y cinco módulos en total, con esto se estima que la demanda estimada quedará satisfecha.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 30. Resultados de la simulación con PVsyst

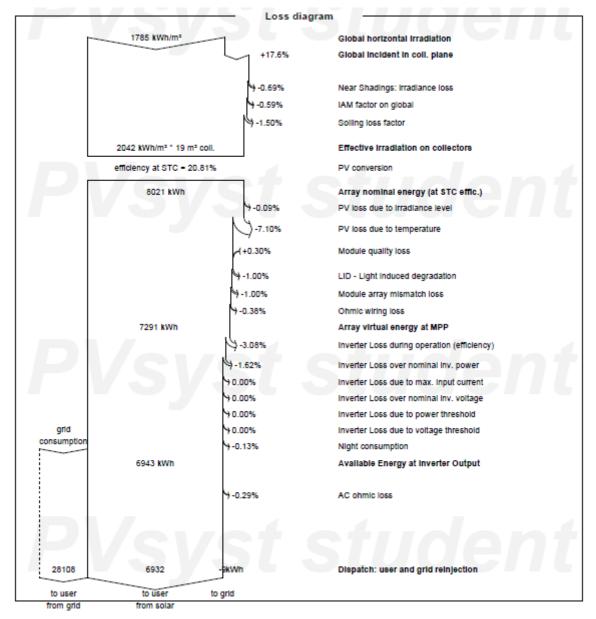
Fuente: PVsyst.

Más aún, conviene pararse en el índice de rendimiento (PR) de 82.43% anual, el cual viene definido en la norma IEC EN 61724. Es una métrica clave utilizada para evaluar el rendimiento de los sistemas fotovoltaicos. Este índice compara la energía producida con la

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

energía que se generaría en condiciones STC¹⁵. Hay diversos factores que podrían afectar negativamente al índice PR como, por ejemplo, el sombreado, la suciedad, la temperatura, el desajuste y el envejecimiento de los paneles. Este índice nos ayudará a conocer una clara imagen del estado de nuestra instalación fotovoltaica. Observamos en el gráfico como en los meses en que la temperatura es más elevada el índice PR baja, aunque la generación es mayor. Esto se debe a que hay más horas de radiación solar pero las temperaturas elevadas influyen negativamente, no pudiendo aprovechar toda la energía solar.

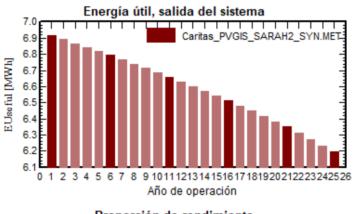
A continuación, se evalúan las pérdidas del sistema. Estas vienen reflejadas en un diagrama de Sankey, a través del cual se pueden apreciar claramente y ayuda a su entendimiento. El sistema presenta un factor de 0,7% de pérdidas del sistema. Por otro lado, las pérdidas diarias agrupan alrededor del 13% de las pérdidas.

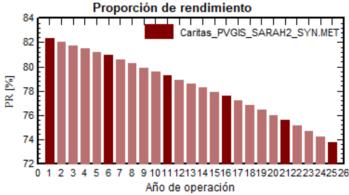


¹⁵ STC: condiciones estándar. Temperatura de 25°C, radiación de 1000 Wh/m2 y masa de aire de 1,5.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 31. Diagrama Sankey de pérdidas




Fuente: PVsyst

A continuación, se ha simulado la degradación de la instalación en un periodo de veinticinco años. En los resultados vemos como el deterioro de los módulos y la acumulación de las pérdidas diarias llevan a la instalación producir en el año veinticinco al menos un dieciséis por ciento menos que en el año primero, es decir, 6.2 MWh. De igual manera, el índice PR se ve influenciado con el paso de los años, llegando a bajar a un 75% este índice.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 32. Estimación de envejecimiento de los módulos

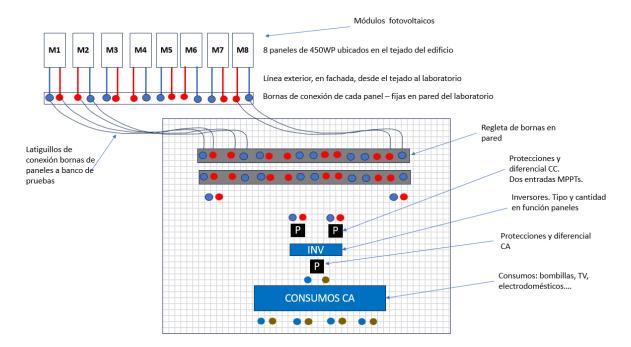
Fuente: PVsyst

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 6. DISEÑO CUADRO DE MANDO

Se presenta el diseño del cuadro de mando el cual ha sido diseñado para facilitar el uso de los elementos principales de una instalación fotovoltaica para, así, realizar las prácticas diseñadas de una manera óptima.

El objetivo principal del cuadro de mando de la instalación fotovoltaica para laboratorio es ofrecer una herramienta educativa práctica que permita a los estudiantes:


- Comprender los principios básicos de la energía solar fotovoltaica.
- Experimentar con diferentes configuraciones de paneles fotovoltaicos (serie, paralelo y serie-paralelo).
- Analizar el impacto de la cantidad y disposición de los paneles fotovoltaicos en la producción de energía.
- Estudiar el funcionamiento del inversor, incluyendo sus protecciones y la posibilidad de conectar dos grupos independientes de paneles.

El diagrama de la instalación fotovoltaica para laboratorio es una herramienta útil para la enseñanza y el aprendizaje de los conceptos básicos de la energía solar fotovoltaica. Los estudiantes pueden utilizar el diagrama para realizar diversas prácticas de laboratorio y comprender el funcionamiento de los diferentes componentes de un sistema fotovoltaico.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ilustración 33. Cuadro de mando

Fuente: Elaboración propia.

El diagrama proporcionado representa una instalación fotovoltaica simplificada diseñada para su uso en un laboratorio de prácticas. Esta instalación simula el funcionamiento de un sistema fotovoltaico real, permitiendo a los estudiantes experimentar con diferentes configuraciones y componentes para comprender mejor los principios de la energía solar fotovoltaica. El sistema tiene se ha diseñado con dos bananas de conexión las cuales ofrecerán muchos tipos de configuraciones de conexiones distintas para las dos entradas MPPTs del inversor.

El cuadro se ha diseñado de tal manera que tenga un diseño sencillo y visual, sin complicaciones para que sirva fácilmente en los fines didácticos.

El sistema está compuesto de los siguientes elementos:

<u>Módulos fotovoltaicos.</u> El sistema está compuesto por una instalación de ocho módulos instalados en la azotea del edificio. Cabe destacar que la disposición de los módulos puede modificarse para analizar el impacto de distintas magnitudes eléctricas.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

<u>Inversor.</u> En el diagrama se representa con dos entradas independientes, correspondientes a las dos entradas MPPTs del inversor que se ha escogido. Esto nos permitirá configurar diversas configuraciones y comparar el rendimiento de diferentes aspectos que se evalúen de los módulos.

<u>Protecciones</u>. Las protecciones de CC protegen a los paneles fotovoltaicos, el controlador de carga y las baterías ante sobretensiones, cortocircuitos y otras anomalías eléctricas. Las protecciones de CA protegen al inversor y a los consumos conectados a la salida del inversor ante sobretensiones, cortocircuitos y otras anomalías eléctricas.

<u>Consumos:</u> el sistema incluye cargas simuladas que representan el consumo eléctrico. Estas cargas simuladas permiten analizar el impacto del consumo de energía en el rendimiento del sistema fotovoltaico. La cantidad y el tipo de cargas simuladas pueden modificarse para evaluar diferentes escenarios de consumo.

<u>Instrumentación de medida:</u> el sistema cuenta con instrumentos de medición para monitorizar el funcionamiento de sus componentes y analizar el rendimiento de la instalación. Además, también, para acercarse a las magnitudes eléctricas básicas para, así, dominar este campo tan importante. El sistema dota de amperímetro, voltímetro y vatímetro. La información obtenida de estos instrumentos es fundamental para comprender el comportamiento del sistema y optimizar su funcionamiento.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 7. DESARROLLO DE LAS PRÁCTICAS

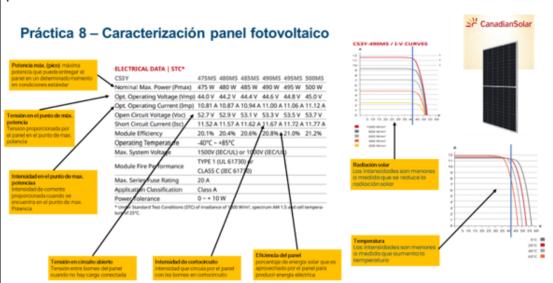
En este apartado se presentan las prácticas de laboratorio diseñadas para comprender y analizar diferentes aspectos de los sistemas fotovoltaicos. Estas prácticas incluyen la medición y caracterización de paneles solares, la caracterización de inversores, la conexión de paneles en serie y paralelo, y la medición del ángulo de orientación. Cada una de estas actividades ofrece una perspectiva práctica sobre los componentes y el funcionamiento de un sistema fotovoltaico, facilitando un aprendizaje integral y aplicado.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

7.1 PRÁCTICA 1: CARACTERIZACIÓN PANEL FOTOVOLTAICO

COMPONENTES INSTALACION FOTOVOLTAICA						
	Práctica Nº: 1					
Título:	Título: CARACTERIZACIÓN DE UN PANEL FOTOVOLTAICO					
	Tiempo estimado:	45 minutos				

OBJETIVO


Identificación de los principales parámetros técnicos de un panel fotovoltaico a partir de la hoja de datos técnicos. Conocimiento de las curvas I-V según la potencia incidente sobre la placa (W/m²), y según la temperatura a la que está expuesta la placa fotovoltaica.

MATERIALES

Paneles fotovoltaicos y ficha técnica.

DESARROLLO

En la siguiente imagen se detallan los datos característicos que el fabricante facilita sobre el panel fotovoltaico.

Estos datos facilitados por el fabricante son para situaciones ideales, situaciones que son muy complicadas de alcanzar ya que requieren de una radiación y temperatura perfectas, lo cual es muy complicado principalmente por motivos meteorologicos.

Es por ello que el fabricante nos ofrece otra tabla según condiciones conocidas como NMOT (Under Nominal Module Operating Temperature; bajo condiciones nominales operativas de

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

temperatura). Estas condiciones son las más problables a la que se expondran los paneles: radiación de 800 W/m², temperatura ambiente de 20°C y velocidad del viento de 1m/s.

ELECTRICAL DATA | NMOT*

CS3Y	475MS	480MS	485MS	490MS	495MS	500MS
Nominal Max. Power (Pmax)	354 W	358 W	362 W	365 W	369 W	373 W
Opt. Operating Voltage (Vmp)	41.0 V	41.2 V	41.4 V	41.6 V	41.8 V	42.0 V
Opt. Operating Current (Imp)	8.64 A	8.69 A	8.75 A	8.79 A	8.83 A	8.89 A
Open Circuit Voltage (Voc)	49.6 V	49.8 V	50.0 V	50.2 V	50.3 V	50.5 V
Short Circuit Current (Isc)	9.29 A	9.33 A	9.38 A	9.42 A	9.46 A	9.50 A

 ^{*} Under Nominal Module Operating Temperature (NMOT), irradiance of 800 W/m² spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

Además, para seguir familiarizándonos con los datos que nos ofrece el fabricante, en la ficha técnica nos incluye una tabla en la que vemos como influye la variación de la temperatura en las distintas magnitudes eléctricas: potencia, tensión e intensidad.

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.35 % / °C
Temperature Coefficient (Voc)	-0.27 % / °C
Temperature Coefficient (Isc)	0.05 % / °C
Nominal Module Operating Temperature	42 ± 3°C

RESULTADOS

La imagen que hemos estado analizando es un ejemplo de un fabricante en particular. A continuación, debéis rellenar las siguientes tablas a partir de los datos de la ficha técnica que os toque.

En esta práctica se trabajará con las distintas características que los fabricantes nos facilitan en la ficha técnica de los paneles, principalmente las características STC (ideales) y las características NMOT (cotidianas). Además, se hará hincapié en cómo se ve afectado el panel bajo distintas condiciones climatológicas, tales como la radiación solar y la temperatura ambiente.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

En el primer caso, se debe rellenar la tabla con los datos que se consideren oportunos para un panel modelo 485MS.

	STC	NMOT	Unidades
Potencia máxima	485	362	MW
Tensión de trabajo para potencia máxima	44.4	41.4	V
Intensidad de trabajo para potencia máxima	10.94	8.75	Α
Tensión circuito abierto	53.1	50	V
Intensidad de cortocircuito	11.62	9.38	Α
Eficiencia del panel	20.6	20.6	%
Rango de temperatura de trabajo	[-40, 60]	[-40, 60]	°C

Tras rellenar la tabla anterior, se aprecia el cambio en la generación eléctrica del panel según las condiciones a las que queda expuesto. Las condiciones STC (o ideales), como es de esperar son mucho más beneficiosas a la hora de la generación de potencia eléctrica, el panel ofrecerá 120 MW más de potencia que en las condiciones NMOT. Es por esto, por lo que se ha de estudiar bien el terreno donde implantar esta fuente renovable con el fin de obtener la mayor potencia eléctrica posible.

En el segundo caso, se pide que se rellene la misma tabla para una potencia de 800W/m² para el mismo modelo de módulo fotovoltaico que en el primer caso (485MS). <u>Para este</u> apartado, se recomienda hacer uso de la gráfica I-V.

	Valor	Unidades
Potencia máxima	423	MW
Tensión de trabajo para potencia máxima	45	V
Intensidad de trabajo para potencia máxima	9.4	I

Cometario: para hallar la potencia máxima se obtendrá a través de la tensión y la intensidad obtenidas en la gráfica I-V. Se realizará con la siguiente fórmula: P=V*I.

En el tercer caso, se pide que se rellene la siguiente tabla para un día de invierno, se buscará el punto óptimo de funcionamiento, para el mismo modelo de módulo fotovoltaico que en el primer caso (485MS). <u>Para este apartado, se recomienda hacer uso de la gráfica I-V.</u>

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

	Valor	Unidades
Potencia máxima	524.4	MW
Tensión de trabajo	46	V
Intensidad de trabajo	11.4	I

<u>Cometario</u>: se cogerá la curva para 5° C. Para hallar la potencia máxima se obtendrá a través de la tensión y la intensidad obtenidas en la gráfica I-V. Se realizará con la siguiente fórmula: $P=V^*I$.

CONCLUSIONES:

¿Cómo influye la radiación solar sobre el panel fotovoltaico?

Se busca en este apartado que el alumno sepa identificar como influye la incidencia solar sobre la generación de electricidad en los paneles fotovoltaicos. Busca que aprendan a manejarse con las gráficas I-V. Estas gráficas recogen situaciones más realistas que los datos ideales recogidas en la tabla. Aprenderán que los paneles no siempre están expuestos a situaciones idóneas de radiación solar. Y, que, con ello, saber sacar las características necesarias. Se buscará que el alumno comente la gráfica.

¿Qué ocurre cuando el panel fotovoltaico está expuesto a distintas temperaturas?

En la misma línea que la pregunta anterior, esta pregunta tiene por objetivo saber recorrer la gráfica I-V caracterizada por la temperatura. La temperatura tiene un menor impacto, pero, aun así, sigue habiendo variaciones. Tendrán que ver y analizar la influencia sobre la intensidad y la tensión con la temperatura.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

¿Cuál es el punto óptimo de funcionamiento de la placa (apoyaros en la gráfica de temperatura)?
Esta pregunta busca un poco más de nivel. Se trata de saber identificar cual sería el punto óptimo de funcionamiento según las distintas temperaturas. Si nos vamos a la gráfica I-V de la temperatura veremos que en el punto de inflexión se recogerá el área mayor.
¿Cómo afecta la temperatura sobre la potencia, sobre la tensión y sobre la intensidad?
Esta pregunta busca hacer ver que la temperatura afecta a los paneles y sus magnitudes eléctricas. Busca identificar los factores que determinan la relación de la temperatura con los paneles, como influye negativamente en la potencia y en la tensión y, como se ve beneficiada la intensidad.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

7.2 PRÁCTICA 2: MEDICIÓN PANELES

	COMPONENTES INSTALACION FOTOVOLTAICA				
	Práctica Nº: 2				
Título:	Título: Medición y caracterización de cada panel de la instalación.				
	Tiempo estimado:	45 minutos			
OBJETTVO					

OBJETIVO

Realizar mediciones de tensión e intensidad de cada panel, y conocer sus características en la instalación para futuras prácticas.

MATERIALES

Paneles fotovoltaicos, resistencia y pinza multimétrica.

DESARROLLO

Importancia de Caracterizar Cada Panel

La caracterización de cada panel solar mediante la medición de su tensión e intensidad es un aspecto crucial para la optimización y mantenimiento de una instalación fotovoltaica. Esta práctica permite identificar el rendimiento individual de cada panel, detectar posibles fallos y asegurar que todos los componentes operen dentro de sus especificaciones. Conocer las características eléctricas de cada panel ayuda a:

- Optimizar el Rendimiento Global: Al detectar paneles que no funcionan correctamente, se pueden tomar medidas para corregir estos problemas, asegurando que la instalación opere a su máxima eficiencia.
- <u>Facilitar el Mantenimiento Preventivo y Correctivo</u>: Permite identificar paneles defectuosos que pueden necesitar limpieza, reparación o reemplazo, reduciendo el riesgo de fallos mayores.
- Mejorar la Planificación y Gestión de la Instalación: Con datos precisos, es más fácil planificar el mantenimiento y gestionar los recursos necesarios para mantener la instalación en óptimas condiciones.

Proceso de Medición

Para realizar mediciones precisas de tensión e intensidad en los paneles solares, se sigue un procedimiento específico. A continuación, se detalla el proceso paso a paso:

- Preparación y disposición de la zona de trabajo:
 Asegúrese de que el área esté segura y libre de obstáculos. Utilice los EPIs según
 queda recogido en la normativa, como guantes aislantes, gafas de seguridad y casco.
- 2. Medición de la Tensión en Vacío (Voc): Configure el multímetro en el modo de medición de tensión en corriente continua (DC). Desconecte el panel del sistema para medir su tensión en circuito abierto (Voc). Conecte las sondas del multímetro a los terminales positivo y negativo del panel. Registre la tensión medida y anote la identificación del panel. Repite este proceso para cada panel, asegurándose de anotar todas las lecturas.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

3. Medición de la Intensidad en Cortocircuito (Isc): Utilice una pinza amperimétrica configurada para medir corriente en corriente continua (DC). Desconecte el panel del sistema para medir su intensidad en cortocircuito (Isc). Conecte la pinza amperimétrica alrededor de uno de los conductores que salen del panel solar. Registre la intensidad medida. Repita este procedimiento para cada panel, asegurándose de documentar todas las lecturas.

Asegúrese de que el panel esté expuesto a la radiación solar para obtener una medición precisa de la corriente máxima que puede generar. Además, busque el punto de inclinación del panel en donde se obtenga la mayor tensión y, sin mover el panel, realizar la medida de la intensidad para la misma inclinación de forma seguida.

NOTAS:

**Importante que sean medidas simultáneas

** Ponerle un elemento de consumo a todos igual; algo que consuma esos 500W, a traves de bombillas incandescentes, medir en la carga la tension y la inetensidad para verificar la potencia. Cargas resistivas. Caja de décadas.

RESULTADOS

Registro de los datos obtenidos:

Se realizarán dos medidas: en vacío y en carga.

Medida en vacío.

La primera medida que se realizarán serán medidas tomadas sin conectar la resistencia. Los datos obtenidos de cada panel se registraran en las siguiente tabla.

	P1	P2	Р3	P4	P5	Р6	P7	Р8
Nº de serie								
Fecha								
Hora								
Tensión de vacío (Voc)								

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Intensidad de cortocircuito (Isc)				
Temperatura				

Una vez obtenidas estas medidas, se procede a la siguiente toma de medidas.

Medida en carga.

La segunda medida que se realizará será en carga, es decir, se le conectará a cada módulo individual una resistencia.

Para ello, habrá que ajustar la resistencia a un valor adecuado. Para calcular el valor de la resistencia, se utilizará la ley de Ohm.

 $V = i^*R$

La tensión de los módulos será de unos 40 V y, la intensidad de unos 11A. Por ello, la resistencia se ajustará en 4Ω .

	P1	P2	Р3	P4	P5	Р6	P7	Р8
Nº de serie								
Fecha								
Hora								
Tensión en la resistencia								
Intensidad en la resistencia								
Temperatura								

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

CONCLUSIONES:
Analice los datos para identificar cualquier anomalía en el rendimiento de los paneles. Compare las mediciones con las especificaciones del fabricante para asegurar que los paneles están operando dentro de los parámetros esperados.
Panel 1:
Panel 2:
Fallel 2.
Panel 3:
Panel 4:
Panel 5:
Pallel 5:
Panel 6:
Panel 7:
Panel 8:
- uner or

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Importancia de las Mediciones

Realizar mediciones precisas de tensión e intensidad es esencial para varios motivos:

- Detección de Anomalías: Permite identificar paneles que no están funcionando correctamente, lo cual podría afectar el rendimiento general de la instalación.
- Optimización del Sistema: Al conocer las características exactas de cada panel, es posible optimizar su disposición y configuración para maximizar la eficiencia energética.
- Planificación de Mantenimiento: Facilita la planificación de tareas de mantenimiento preventivo y correctivo, asegurando que la instalación funcione de manera óptima y continua.
- Seguridad: Garantiza que los paneles operan dentro de los parámetros seguros establecidos por el fabricante, evitando riesgos de sobrecarga o daños.

En conclusión, la realización de mediciones de tensión e intensidad de cada panel solar es una práctica esencial para asegurar el óptimo funcionamiento, mantenimiento y gestión de una instalación fotovoltaica. Estas mediciones proporcionan datos valiosos que permiten mejorar la eficiencia del sistema, detectar fallos tempranos y planificar adecuadamente las actividades de mantenimiento.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

7.3 PRÁCTICA 3: CARACTERIZACIÓN DEL INVERSOR

COMPONENTES INSTALACION FOTOVOLTAICA							
Práctica Nº: 3							
Título:	Título: CARACTERIZACIÓN DEL INVERSOR EN UNA INSTALACION FOTOVOLTAICA						
	Tiempo estimado:	35 minutos					
ОВЈЕТІVО							
Caracterización de inversores para instalaciones fotovoltaicas. Conocimiento de la tecnología MPPT.							

MATERIALES

Inversor y ficha técnica.

DESARROLLO

<u>Inversor:</u> es el dispositivo que se encarga de transformar la energía continua generada por los paneles solares en energía alterna para el consumo.

Los inversores puedes ser para instalaciones aisladas o conectadas a red. Pueden ser híbridos para trabajar con baterías y/o conectados a red y pueden ser cargadores para cargar baterías.

- En instalaciones aisladas, el inversor, se conecta a la batería.
- En instalaciones conectadas a red, el inversor, se conecta directamente a los paneles.
 Los parámetros principales del inversor son:
 - Potencia máxima: es la potencia máxima admisible desde los paneles. Nos indicará el número de paneles necesarios.
 - Intensidad de entrada: es la intensidad máxima que admite el inversor.
 - Intensidad de cortocircuito: es la intensidad máxima que soporta el inversor en el lado de c.c. para que no se produzca fallo.
 - Tensión mínima de funcionamiento: es la tensión mínima que deben suministrar los paneles para que el inversor trabaje en el punto de máxima potencia MPPT.
 - Tensión máxima de funcionamiento: es la tensión máxima que pueden proporcionar los paneles para que el inversor trabaje en el punto de máxima potencia MPPT.
 - Tensión máxima soportada: es la tensión máxima que soporta el inversor en el lado de c.c. para que no se produzca fallo.
 - Tensión de entrada de arranque: tensión a partir de la cual se empieza a verter energía a la red.
 - Eficiencia: relación entre las potencias de salida y entrada al inversor en porcentaje.
 - Forma de la onda: típicamente senoidal o cuadrada (superposición).

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

En la siguiente imagen, se muestra una ficha técnica de un inversor de la marca Huawey.

Especificaciones técnicas	SUN2000	SUN2000	SUN2000	SUN2000	SUN2000	SUN2000	SUN2000
especificaciones tecinicas	-2KTL-L1	-3KTL-L1	-3.68KTL-L1	-4KTL-L1	-4.6KTL-L1	-5KTL-L1	-6KTL-L1
Eficiencia Máxima	98.2 %	98.3 %	98.4 %	Eficiencia 98.4 %	98.4 %	98.4 %	98.4 %
Eficiencia europea	96.7 %	97.3 %	97.3 %	97.5 %	97.7 %	97.8 %	97.8 %
			Er	ntrada (FV)			
Entrada de CC máxima recomendada ²	3,000 Wp	4,500 Wp	5,520 Wp	6,000 Wp	6,900 Wp	7,500 Wp	9,000 Wp
Máx. tensión de entrada				600 V 3			
Tensión de arranque				100 V			
Rango de tensión de operación de MPPT l'ensión nominal de entrada				90 V - 560 V ³ 360 V			
Máx. intensidad por MPPT				12.5 A			
Máx. Intensidad de cortocircuito por MPPT				18 A			
Cantidad de MPPTs				2			
Máx. número de entradas por MPPT				1			
			Entra	da (Batería	CC)		
Batería compatible				em RESU 7H_R / 10			
Rango de tensión de operación				350 ~ 450 Vcc			
Max. corriente de operación				97H_R / 15 A @10			
Potencia de carga máxima				@7H_R / 5,000 W (
Potencia máxima de descarga @ 7H_R Potencia máxima de descarga @ 10H_R	2,200 W 2,200 W	3,300 W	3,500 W 3,680 W	3,500 W 4,400 W	3,500 W 4,600 W	3,500 W 5,000 W	3,500 W
rotencia maxima de descarga (g. 10H_)K	2,200 W	3,300 W	3,680 W	4,400 W	4,600 W	5,000 W	5,000 W
Batería compatible			HUAWEI Sma	rt ESS Battery 5kW	h – 30kWh 1		
Rango de tensión de operación				350 ~ 560 Vdc			
Max. corriente de operación				15 A			
Max. comiente de operación otencia de carga máxima	2,200 W	3,300 W	3,680 W	15 A 5,000 W ⁴ 4,400 W	4,600 W	5,000 W	5,000 W
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga	2,200 W	3,300 W	3,680 W	15 A 5,000 W 4 4,400 W	4,600 W	5,000 W	5,000 W
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15 A 5,000 W 4 4,400 W Salida Monofásica			
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal	2,000 W	3,000 W	3,680 W	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W	4,600 W	5,000 W ^s	6,000 V
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia abarente de CA Tensión nominal de Salida			3,680 W 3,680 VA	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 244	4,600 W 5,000 VA ⁶		6,000 W
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de red de CA	2,000 W 2,200 VA	3,000 W 3,300 VA	3,680 W 3,680 VA 220	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 244 50 Hz / 60 Hz	4,600 W 5,000 VA ⁶	5,000 W ⁵ 5,500 VA ⁷	6,000 W
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de salida Frecuencia nominal de red de CA Máx. Intensidad de salida	2,000 W	3,000 W	3,680 W 3,680 VA 220	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 240 50 Hz / 60 Hz	4,600 W 5,000 VA ⁶ 0 Vac	5,000 W ^s	6,000 W
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Fensión nominal de red de CA Máx. intensidad de salida Frecuencia nominal de red de CA Máx. intensidad de salida Factor de potencia ajustable	2,000 W 2,200 VA	3,000 W 3,300 VA	3,680 W 3,680 VA 220	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 240 50 Hz / 60 Hz 20 A 8 leading 0.8 lz	4,600 W 5,000 VA ⁶ 0 Vac	5,000 W ⁵ 5,500 VA ⁷	6,000 W
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de Salida Frecuencia pominal de red de CA Máx. Intensidad de salida Frecuencia nominal de red de CA Máx. Máx. distorsión amónica total	2,000 W 2,200 VA	3,000 W 3,300 VA	3,680 W 3,680 VA 220 16 A	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 240 50 Hz / 60 Hz	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 agging	5,000 W ⁵ 5,500 VA ⁷	6,000 V
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de Salida Frecuencia pominal de red de CA Máx. intensidad de salida Frector de potencia ajustable Máx. distorsión armónica total	2,000 W 2,200 VA	3,000 W 3,300 VA	3,680 W 3,680 VA 220 16 A 0	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 246 50 Hz / 60 Hz 200 A 8 leading 0.8 lz ≤ 3 % ravés de Bedup Bo	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 egging	5,000 W ⁵ 5,500 VA ⁷	6,000 V
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nomínal Mix. potencia aparente de CA Tensión nomínal de salida Frecuencia nomínal de red de CA Mix. intensidad de salida Factor de potencia ajustable Mix. distorsión armónica total Salida para SAI	2,000 W 2,200 VA	3,000 W 3,300 VA	3,680 W 3,680 VA 220 16 A 0	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 244 50 Hz / 60 Hz 20 A 8 leading 0.8 lz £ 3 %	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 egging	5,000 W ⁵ 5,500 VA ⁷	6,000 V
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de red de CA Máx. intensidad de salida Factor de potencia ajustable Máx. distorsión armónica total Salida para SAI	2,000 W 2,200 VA	3,000 W 3,300 VA	3,680 W 3,680 VA 220 16 A 0	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 24 50 Hz / 60 Hz 20 A 8 leading 0.8 lz ≤ 3 % ravés de Bedup Bo ón & Caract	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 egging	5,000 W ⁵ 5,500 VA ⁷	6,000 W
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Mix. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de red de CA Mix. intensidad de salida Factor de potencia ajustable Mix. distorsión armónica total Salida para SAI Protección anti-Isla Protección contra polaridad inversa de CC Monitorización de aislamiento	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 244 50 Hz / 60 Hz 20 A 8 leading 0.8 lz ≤ 3 % ravés de Bedup Bo ón & Caract Si Si	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 egging H-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ⁸	6,000 W
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de red de CA Máx. intensidad de salida Factor de potencia ajustable Máx. distorsáción armónica total Salida para SAI Protección contra pelaridad inversa de CC Monitorización de aislamiento Protección contra descargas atmosféricas CC	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t Protecci	15 A 5,000 W 4 4,400 W Salida Menofásica 4,000 W 4,400 VA Vac / 230 Vac / 244 50 Hz / 60 Hz 20 A 8 leading 0.8 lz ≤ 3 % ravés de Bedrup Bo fón & Caract Si Si Si IPO II compatible s	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 ggging n-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ^a	6,000 W
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de red de CA Máx. intensidad de salida Factor de potencia ajustable Máx. distorsión armónica total Salida para SAI Protección anti-isla Protección contra pelaridad inversa de CC Monitorización de aislamiento Protección contra descargas atmosféricas CC Protección contra descargas atmosféricas CA	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t	15 A 5,000 W 4 4,400 W Salida Menofásica 4,000 W 4,400 VA Vac / 230 Vac / 240 50 Hz / 60 Hz 20 A 8 leading 0.8 lz 3 3 % ravés de Bedup Bo ón & Caract SI SI IPO II compatible s IPO II compatible s IPO II compatible s	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 ggging n-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ^a	6,000 W
Max. comiente de operación rotencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica rotencia de salida nominal Máx. potencia aparente de CA fensión nominal de Salida recuencia nominal de red de CA Máx. intensidad de salida factor de potencia ajustable Máx. distorsión armónica total Salida para SAI Protección contra polaridad inversa de CC Monitorización de aislamiento Protección contra descargas atmosféricas CC Protección contra descargas atmosféricas CC Monitorización de la corriente residual	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t Protecci	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 246 50 Hz / 60 Hz 20 A 8 leading 0.8 lz ≤ 3 % ravés de Beckup Bo Són & Caract Sí	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 ggging n-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ^a	6,000 W
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA fensión nominal de Salida Frecuencia nominal de red de CA Máx. intensidad de salida Factor de potencia ajustable Máx. distorsión armónica total Salida para SAI Protección contra polaridad inversa de CC Monitorización de alsilamiento Protección contra descargas atmosféricas CC Protección contra descargas atmosféricas CA Monitorización de la corriente residual Protección contra descargas atmosféricas CA Monitorización de la corriente residual Protección contra descargas atmosféricas CA Monitorización de la corriente residual Protección contra sobreintensidad de CA	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t Protecci	15 A 5,000 W 4 4,400 W Salida Menofásica 4,000 W 4,400 VA Vac / 230 Vac / 240 50 Hz / 60 Hz 20 A 8 leading 0.8 lz 3 3 % ravés de Bedup Bo ón & Caract SI SI IPO II compatible s IPO II compatible s IPO II compatible s	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 ggging n-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ^a	6,000 W
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Fersión nominal de Salida Fercuencia aparente de CA Máx. intensidad de salida Fercuencia nominal de red de CA Máx. intensidad de salida Factor de potencia ajustable Máx. distorsión armánica total Salida para SAI Protección contra polaridad inversa de CC Monitorización de aislamiento Protección contra descargas atmosféricas CC Protección contra descargas atmosféricas CA Monitorización de la corriente residual Protección contra observaria descargas atmosféricas CA Protección contra bescargas atmosféricas CA Protección contra sobreintensidad de CA Protección contra sobreintensidad de CA	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t Protecci	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 246 50 Hz / 60 Hz 20 A 8 leading 0.8 lz ≤ 3 % ravés de Beckup Bo Són & Caract Sí	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 ggging n-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ^a	6,000 W
Max. corriente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Máx. potencia aparente de CA Tensión nominal de Salida Frecuencia nominal de red de CA Máx. intensidad de salida Frecuencia nominal de red de CA Máx. intensidad de salida Frecuencia nominal de red de CA Máx. intensidad de salida Frecuencia nominal de red de CA Máx. ofistorsión armónica total Salida para SAI Protección contra polaridad inversa de CC Monitorización de alsilamiento Protección contra descargas atmosféricas CC Protección contra descargas atmosféricas CA Monitorización de la corriente residual Protección contra coberintensidad de CA Protección contra sobreitensida de CA Protección contra sobretensión de CA Protección contra sobretensión de CA Protección contra sobrecalentamiento	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t Protecci	15 A 5,000 W 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 244 50 Hz / 60 Hz 20 A 8 leading 0.8 lz 23 % ravés de Badup Bo ón & Caract Si Si Si IPO II compatible s Si	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 ggging n-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ^a	6,000 W
Max. comiente de operación Potencia de carga máxima Potencia máxima de descarga Conexión a la red eléctrica Potencia de salida nominal Mix. potencia aparente de CA Tensión nominal de Salida Precuencia nominal de red de CA Mix. intensidad de salida Frecuencia nominal de red de CA Mix. nitensidad de salida Factor de potencia ajustable Mix. distorsión armónica total Salida para SAI Protección contra descargas atmosféricas CC Monitorización de la corriente residual Protección contra descargas atmosféricas CA Monitorización de la corriente residual Protección contra sobreintensidad de CA Protección contra sobretensión de CA Protección contra sobretensión de CA Protección de falla de arco Carga inversa de la batería desde la red	2,000 W 2,200 VA	3,000 W 3,300 VA 15 A	3,680 W 3,680 VA 220 16 A 0 Si (a t Protecci	15 A 5,000 W 4 4,400 W Salida Monofásica 4,000 W 4,400 VA Vac / 230 Vac / 246 50 Hz / 60 Hz 20 A 8 leading 0.8 lz ≤ 3 % ravés de Beckup Bo Són & Caract Sí	4,600 W 5,000 VA ⁶ 0 Vac 23 A 8 ggging n-80 ¹) erísticas	5,000 W ⁵ 5,500 VA ⁷ 25 A ^a	6,000 W

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

	Protección & Características
Protección anti-isla	Si Si
Protección contra polaridad inversa de CC	9
Monitorización de aislamiento	Si
Protección contra descargas atmosféricas CC	SI, clase de protección TIPO II compatible según EN / IEC 61643-11
Protección contra descargas atmosféricas CA	Si, clase de protección TIPO II compatible según EN / IEC 61643-11
Monitorización de la corriente residual	Si Si
Protección contra sobreintensidad de CA	Si Si
Protección contra cortocircuito de CA	Si
Protección contra sobretensión de CA	Si Si
Protección contra sobrecalentamiento	Si
Protección de falla de arco	Si
Carga inversa de la batería desde la red	S
	Datos generales
Rango de temperatura de operación	-25 ~ +60 °C
Humedad relativa de operación	0 %8H - 100 %8H
Altitud de operación	 0 – 4,000 m (disminución de la capacidad eléctrica a partir de los 2000 m)
/entilación	Convectión natural
Pantalla	Indicadores LED; WIAN integrado + aplicación FusionSolar
Comunicación	RS485, WLAN a través del módulo WLAN incorporado en el inversor Ethernet a través de Smart Dongle-WLAN-FE (Opcional); 4G / 3G / 2G a través de Smart Dongle-4G (Opcional)
Peso (incluido soporte de montaje)	12.0 kg
Dimensiones (incluido soporte de montaje)	365mm * 365mm * 156 mm
Grado de protección	1965
Consumo de energía durante la noche	< 2,5 W
	Compatibilidad con optimizadores
Optimizador compatible con MBUS CC	SUN2000-450W-P
	Cumplimiento de estándares (más opciones disponibles previa solicitud)
Seguridad	EN/IEC 62109-1, EN/IEC 62109-2
Estándares de conexión a red eléctrica	G98, G99, EN 50549-1, CEI 0-21, VDE-AR-N-4105, AS 4777.2, C10/11, ABNT, UTE C15-712, RD 1699, TOR D4, IEC61727, IEC62
3 El limite máximo de tensión de entrada y de operación se 4 2.500 W en las baterías HUAWEI ESS de SkWh	se de 10,000 Wp cuando las cadenas langas se diseñen y conectien al completo de optimizadores de potencia SUR2000-450W-P. reduzirán a 405 V cuando el Inventor se conecte y funcione con la bateria LG. 12.4,999VA. *7. AS4777.2-4,999VA. / C30/11/1,000VA.* S. AS4777.3. 21.3A.

RESULTADOS

Indicar los valores para las principales características indicadas en la siguiente tabla:

	Valor
Potencia máxima en la entrada.	
Tensión máxima de entrada	
Rango de tensión del MPPT	
Número de strings independientes	
Tensión de entrada	
Intensidad máxima de entrada	
Rendimiento	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Explicación de las Dos Entradas MPPT del Inversor

MPPT (Maximum Power Point Tracking) es una tecnología utilizada en inversores fotovoltaicos para maximizar la energía extraída de los paneles solares. Los controladores MPPT ajustan continuamente la carga eléctrica para mantener los paneles solares operando en su punto de máxima potencia (MPP), lo que permite una mayor eficiencia en la conversión de energía solar a electricidad utilizable.

Función de las Entradas MPPT en el Inversor

El inversor Huawei SUN2000L1 incluye dos entradas MPPT, lo que significa que puede gestionar dos conjuntos independientes de paneles solares. Cada entrada MPPT puede optimizar la energía de su conjunto respectivo de paneles, permitiendo una operación más eficiente y flexible del sistema fotovoltaico.

Ventajas:

1. Optimización de la Energía:

- Las dos entradas MPPT permiten conectar dos series de paneles solares con diferentes orientaciones o ángulos de inclinación. Esto es especialmente útil para maximizar la captación de energía a lo largo del día, aprovechando diferentes trayectorias del sol.
- Cada entrada MPPT optimiza el rendimiento de su serie de paneles independiente, asegurando que cada grupo opere en su punto de máxima potencia, incluso si están bajo diferentes condiciones de irradiancia o sombra.

2. Reducción de Pérdidas por Sombra:

- Si una serie de paneles está parcialmente sombreada, la otra serie puede seguir funcionando a su máxima eficiencia. Esto reduce significativamente las pérdidas de energía que podrían ocurrir si todos los paneles estuvieran conectados a un único MPPT.
- Al separar los paneles en dos entradas MPPT, se minimiza el impacto de sombras parciales o suciedad en algunos paneles, mejorando el rendimiento global del sistema.

3. Flexibilidad en el Diseño del Sistema:

- Permite una mayor flexibilidad en el diseño y la configuración del sistema fotovoltaico. Los instaladores pueden diseñar sistemas que se adapten mejor a las características del sitio, como diferentes orientaciones de techos o áreas con sombras parciales.

Cómo Funciona la Electrónica de Potencia para la Salida de Corriente Alterna

La electrónica de potencia se encarga de convertir y controlar la energía eléctrica utilizando componentes electrónicos como transistores, diodos, capacitores y bobinas. En sistemas solares, por ejemplo, convierte la corriente continua (CC) generada por los paneles solares en corriente alterna (CA) utilizable en hogares y redes eléctricas. Esta conversión es crucial para que la energía solar pueda ser integrada eficientemente en la infraestructura eléctrica existente.

Además, la electrónica de potencia optimiza el rendimiento energético ajustando el voltaje y la corriente según las necesidades del sistema, reduciendo pérdidas y mejorando la estabilidad del suministro eléctrico. Los controladores de potencia, como los MPPT en instalaciones solares, aseguran que los paneles operen en su punto de máxima eficiencia, maximizando la captación de energía y contribuyendo a una operación más sostenible y económica del sistema.

Diseño de la Configuración de Paneles

Para aprovechar al máximo las dos entradas MPPT del inversor, es importante diseñar correctamente la configuración de los paneles solares:

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

- Conexión en Serie: los paneles conectados en serie deben tener una tensión combinada que no exceda los 600 V, el límite de entrada del inversor. Por ejemplo, si cada panel tiene una tensión de 40 V, se pueden conectar hasta 15 paneles en serie.
- Conexión en Paralelo: la corriente combinada de los paneles en paralelo no debe exceder los 12.5 A por MPPT. Si
 cada panel genera 5 A, se pueden conectar hasta 2 series de 3 paneles en paralelo para cada MPPT.

En definitiva, las dos entradas MPPT del inversor Huawei SUN2000L1 ofrecen una flexibilidad y eficiencia superiores al permitir la conexión de dos conjuntos independientes de paneles solares, optimizando así la captación de energía y mejorando el rendimiento general del sistema fotovoltaico.

CONCLUSIONES

¿Cuántos paneles se deben conectar en serie para alcanzar los 365 V?

Aún conectando los ocho paneles en serie no llegaríamos a la máxima tensión. Quedaría en 355V para condiciones STC y obteniendo el punto de máxima potencia.

¿Cuántos paneles se pueden conectar en paralelo? ¿Qué magnitud limita esta conexión?

No podrán realizarse conexiones en paralelo ya que excederíamos los 12,5 A máximos que soportan las entradas MPPT.

¿Qué ventaja ofrece el inversor al tener dos entradas MPPT?

Las dos entradas MPPT del inversor Huawei SUN2000L1 ofrecen una flexibilidad y eficiencia superiores al permitir la conexión de dos conjuntos independientes de paneles solares, optimizando así la captación de energía y mejorando el rendimiento general del sistema fotovoltaico.

¿Cómo afecta al inversor las distintas disposiciones de las placas?

Según las limitaciones del inversor podrán conectarse o no las configuraciones.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Supongamos que tiene un techo con dos secciones, una orientada hacia el sur y otra hacia el este. ¿Cómo podría aprovechar las dos entradas MPPT del inversor para optimizar la generación de energía solar en este caso?

Utilizar las dos entradas MPPT del inversor Huawei SUN2000L1 para un techo con dos secciones permite optimizar la generación de energía solar, minimizar el impacto de las sombras y aumentar la flexibilidad en el diseño del sistema fotovoltaico.

Si algunos de los paneles solares en una de las entradas MPPT están parcialmente sombreados, ¿cómo afectaría esto al rendimiento general del sistema fotovoltaico? ¿Cómo podrían las dos entradas MPPT ayudar a mitigar este problema?

Las dos entradas MPPT ofrecen una ventaja significativa al mitigar el impacto del sombreado parcial en los paneles solares. Al separar los paneles en dos entradas y optimizar el rendimiento de cada conjunto de forma independiente, se puede maximizar la generación de energía solar y reducir las pérdidas de energía, incluso en condiciones de sombreado no uniforme.

Investiga otros inversores fotovoltaicos en el mercado y compara sus características, incluyendo el número de entradas MPPT, potencia nominal y rango de voltaje de entrada. ¿Qué factores debería considerar al elegir un inversor para su instalación?

Comparar: precio, eficiencia, número de entradas MPPTs,...

Imagina que eres un instalador de sistemas fotovoltaicos. ¿Cómo explicaría las ventajas de un inversor con dos entradas MPPT a un cliente potencial? ¿Qué ejemplos concretos utilizaría para ilustrar su punto?

Un inversor con dos entradas MPPT ofrece varias ventajas significativas para los sistemas fotovoltaicos residenciales y comerciales. Mayor eficiencia, mayor flexibilidad, mayor facilidad de expansión y mayor generación de energía, incluso en condiciones de sombreado, son solo algunos de los beneficios que puede obtener al elegir un inversor con esta tecnología.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PRÁCTICA 4: CONEXIÓN DE PANELES EN SERIE, PARALELO Y **MIXTA**

INSTALACIONES FOTOVOLTAICAS						
Práctica Nº: 4						
Título:	Título: CONEXIÓN DE PANELES EN SERIE PARALELO Y MIXTA					
		Tiempo estimado:	1,5 hora			

OBJETIVO

Conexión de paneles en diferentes configuraciones serie, paralelo y mixta. Medir las magnitudes eléctricas básicas en circuitos serie, paralelo y mixta. Demostrar los principios básicos eléctricos y la ley de ohm. Aprender a manejar aparatos de medida.

Practicar la conexión en serie, paralelo y mixto.

MATERIALES

Paneles fotovoltaicos, cables de conexión y equipos de medida (pinza amperimétrica y

DESARROLLO En esta práctica vamos ensañar con los paneles fotovoltaicos. Se trabajarán distintas configuraciones con tal de buscar que ventajas e inconvenientes presentan cada una de ellas. Se van a realizar medidas conectando paneles en serie, en paralelo y de manera mixta.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Conexión de paneles en serie:

En la configuración serie, se consigue una tensión suma de las tensiones de todos los paneles y una intensidad que será la del panel con corriente más baja.

La conexión se realizará conectando el polo positivo de un módulo al polo negativo del módulo siguiente.

Advertencias:

- Lo ideal es conectar paneles que sean idénticos.
- No conectar paneles en serie de diferente potencia o con diferente número de células

Conexión de paneles en paralelo:

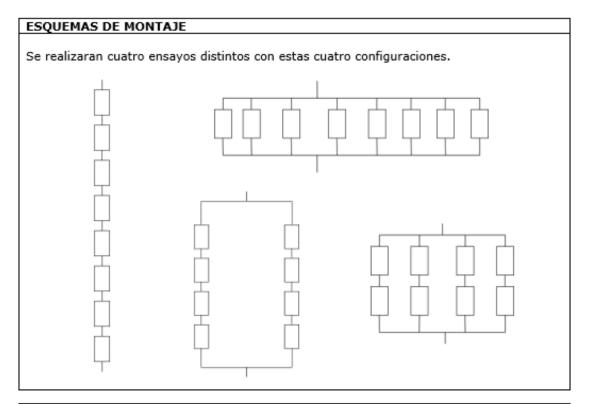
En la configuración paralelo, se consigue una intensidad de corriente suma de las intensidades de corriente de cada panel y una tensión de salida que será la mínima de todos los panelescoonectados.

La conexión se realizará conectando los polos positivos por un lado y los polos negativos por otro.

Conexión de paneles mixta:

Es una conficiguración que es combinación de la conexión serie y la paralelo. Se disponen paneles conectados en serie formando ramas y las ramas se conectan en paralelo.

Advertencias:


- Todas las series en paralelo deben tener el mismo número de módulos.
- No combinar paneles de diferente voltage.

Se tomarán dos medidas por cada configuración.

La primera medida se realizará con los paneles en vacío y la segunda medida se realizará con un resistencia conectada.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

RESULTADOS

Resultados medidos en función de la configuración:

Configuración 1: 8 paneles en serie.

Medida en vacío (sin carga).

	P1	P2	Р3	P4	P5	P6	P7	P8	
Intensidad por									
panel									
Tensión por									
panel									
Intensidad del									
conjunto									
Tensión del									
conjunto									
Potencia del									
conjunto									

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Medida con carga.

Se espera una potencia alrededor de 4000W, para poder alcanzarla se debe ajustar la resistencia alrededor de 30 Ω . Con estas dos ecuaciones se obtiene el valor esperado.

$$\begin{aligned} P &= i^{2*}R \\ V &= i^*R \end{aligned}$$

	Medidas
Intensidad del	11 A
conjunto	
Tensión del	330 V
conjunto	
Potencia del	4000 W
conjunto	

Configuración 2: 8 paneles en paralelo.

Medida en vacío (sin carga).

	P1	P2	Р3	P4	P5	P6	P7	P8	
Intensidad por									
panel									
panel Tensión por									
panel									
Intensidad del									
conjunto									
Tensión del									
conjunto									
Potencia del									
conjunto									

Medida con carga.

Se espera una potencia alrededor de 4000W, para poder alcanzarla se debe ajustar la resistencia alrededor de 450 m Ω . Con estas dos ecuaciones se obtiene el valor esperado.

$$P = i^{2*}R$$

 $V = i*R$

	Medidas
Intensidad del	88 A
conjunto	
Tensión del	40 V
conjunto	
Potencia del	4000 W
coniunto	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Configuración 3: 2 ramas de 4 paneles en paralelo.

Medida en vacío (sin carga).

	P1	P2	Р3	P4	P5	P6	P7	P8	
Intensidad por									
panel									
panel Tensión por									
panel Intensidad del									
Intensidad del									
conjunto									
Tensión del									
conjunto									
Potencia del									
conjunto									

Medida con carga.

Se espera una potencia alrededor de 4000W, para poder alcanzarla se debe ajustar la resistencia alrededor de 9 Ω . Con estas dos ecuaciones se obtiene el valor esperado.

$$P = i^{2*}R$$

 $V = i^*R$

	Medidas
Intensidad del	22 A
conjunto	
Tensión del	160 V
conjunto	
Potencia del	4000 W
conjunto	

Configuración 4: 4 ramas de dos paneles en paralelo.

Medida en vacío (sin carga).

	P1	P2	Р3	P4	P5	P6	P7	P8	
Intensidad por									
panel									
panel Tensión por									
panel									
Intensidad del									
conjunto									
Tensión del									
conjunto									
Potencia del									
conjunto									

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Medida con carga.

Se espera una potencia alrededor de 4000W, para poder alcanzarla se debe ajustar la resistencia alrededor de 2 Ω . Con estas dos ecuaciones se obtiene el valor esperado.

 $P = i^{2*}R$ $V = i^*R$

	Medidas
Intensidad del	44 A
conjunto	
Tensión del	80 V
conjunto	
Potencia del	4000 W
conjunto	

CONCLUSIONES

¿Cuáles son las diferencias en tensión e intensidad de las distintas configuraciones?

Cada configuración presentará una intensidad y una tensión distinta. Esto se debe a que según el conexionado de las placas estas magnitudes se comportaran de una manera u otra. Al conectar en paralele la tensión igual a la menor tensión de los ocho paneles. Sin embargo, la intensidad será la suma de todas las intensidades de los ochos paneles. De manera contraria sucederá cuando conectamos en serie, aumentará la tensión y la intensidad será la mínima.

¿Qué configuración ofrece mayor intensidad de conjunto?

En base a las medidas obtenidas, se observará que la configuración que mayor intensidad ofrece deberá ser la Configuración 2, los ocho paneles en paralelo.

¿Qué configuración ofrece mayor tensión de conjunto?

En base a las medidas obtenidas, se observará que la configuración que mayor tensión ofrece deberá ser la Configuración 1, los ocho paneles en serie.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

¿Qué configuración ofrece mayor potencia de conjunto (P=V*I)? Este resultado se obtendrá según las condiciones meteorológicas y la radiación del día en que se realice la práctica. Deberán ser los alumnos los que comparen las cuatro situaciones distintas y ver cuál de ellas les ofrece la mayor potencia. ¿Qué sucederá si en la configuración 1 a uno de los paneles le incide sombra sobre él? Ante esta situación, ¿cómo se ve afectada la configuración? En la conexión en serie, todos los paneles fotovoltaicos están conectados en un solo circuito, lo que significa que la corriente eléctrica fluye a través de todos los paneles en la misma dirección. Si uno de los paneles está sombreado, la corriente total se limita a la corriente que puede generar el panel sombreado. Como consecuencia, la potencia total generada por la cadena de paneles en serie se reduce significativamente, incluso si solo un panel está sombreado. La reducción en la potencia puede ser considerable, dependiendo del tamaño y la ubicación de la sombra.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Nota: Ayuda para la conexión de los paneles.

✓ Para paneles

· Conexión en serie de paneles solares

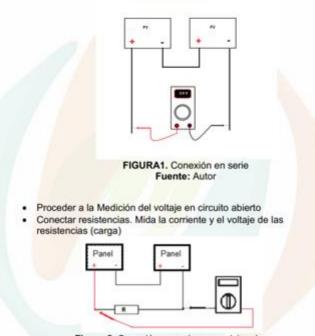


Figura 2. Conexión en serie con resistencias Fuente: Autor.

· Realizar la misma operación con los módulos FV en paralelo

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

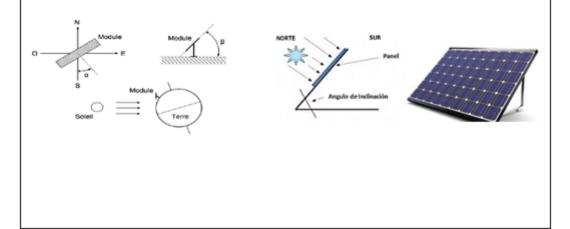
7.5 PRÁCTICA 5: MEDIDA DEL ÁNGULO DE INCIDENCIA Y ORIENTACIÓN

COMPONENTES INSTALACION FOTOVOLTAICA					
	Práctica N	lº: 5			
Título:	Título: MEDIDA DEL ANGULO DE INCIDENCIA Y ORIENTACIÓN				
	Tiempo estimado:	1 hora			

OBJETIVO

Medición de influencia inclinación y orientación. Se ensayará con detalle la influencia de la orientación de los paneles solares respecto a la fuente de energía.

MATERIALES


Paneles fotovoltaicos, elementos de conexión y pinza multímetro.

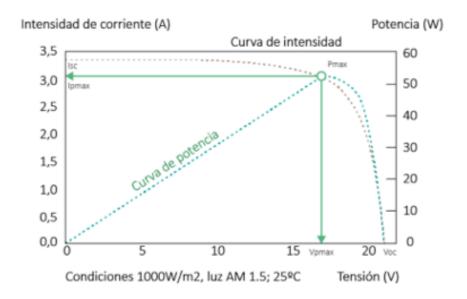
ESQUEMAS ELÉCTRICOS

La orientación de los paneles solares es un factor determinante para una óptima generación de energía eléctrica. El panel deberá colocarse de tal manera que la radiación solar incida de forma perpendicular en el panel, será en esta posición donde mayor rendimiento obtendremos en la generación de energía.

Para ello, se definen dos parámetros que nos fijan la posición de los paneles: orientación e inclinación.

- La orientación viene dada por el azimut α, que es el ángulo formado por el sol y el eje sur.
- La inclinación viene dada por el ángulo β, que es el ángulo entre el plano de la superficie y el plano horizontal.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES


Nuestra instalación está fija en cuanto al azimut, con los paneles orientados prácticamente a α=0. Esto significa que están perfectamente alineados hacia el sur, lo que es ideal para maximizar la generación de energía solar. Esta orientación asegura que los paneles capten la mayor cantidad de luz solar durante todo el día, optimizando la producción de electricidad.

La estructura de los paneles solares está diseñada para permitir ajustar el ángulo de inclinación (β) según la estación del año. Esto es importante porque el ángulo de incidencia del sol varía a lo largo del año, y ajustar la inclinación ayuda a maximizar la captación de energía solar.

- Posición base: Comenzamos con un ángulo de β=40°, ideal cuando el sol está cerca del meridiano.
- Ajustes estacionales:
 - Verano: Reducimos la inclinación a 17º para adaptarnos al sol más alto en el cielo.
 - Invierno: Aumentamos la inclinación a 60º para captar más radiación solar cuando el sol está más bajo.

Estos ajustes nos permiten observar cómo la inclinación afecta el rendimiento de los paneles y optimizar la producción de energía en cada estación.

El punto óptimo que buscaremos será el siguiente:

Buscaremos ese punto óptimo de rendimiento de nuestros paneles para, así, identificar la máxima potencia que estos pueden ofrecer.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

RESULTADOS

En esta práctica, debéis tomar ocho medidas a distintas inclinaciones manteniendo la posición del panel. De tal manera que lleguéis a dar con la inclinación óptima para ese momento del día.

Pasos a seguir:

- Fija la posición del panel solar: Asegúrate de que el panel solar esté orientado hacia el sur (azimut 0°) y nivelado horizontalmente.
- Ajusta la inclinación del panel: Utiliza un inclinómetro o una herramienta similar para ajustar la inclinación del panel en incrementos de 10°.
- Realiza las mediciones: Para cada inclinación (10°, 20°, 30°, 40°, 50°, 60° y 70°);
 - Conecta el panel solar a la pinza multímetro.
 - Mide y anota la tensión de circuito abierto (Voc) y la intensidad de cortocircuito (Icc).

Medidas respecto a la variación en la inclinación:

	Inclinación	Tensión de circuito abierto	Intensidad de cortocircuito
Medida 1			
Medida 2			
Medida 3			
Medida 4			
Medida 5			
Medida 6			
Medida 7			
Medida 8			

Ahora, una vez tomado las primeras medidas, se vuelven a realizar las mismas medidas. En este caso, variaremos la posición del panel en lugar de la inclinación. (Con un panel auxiliar que habrá en nuestro taller, sin haberse instalado se realizaran estas medidas)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

				,			
Medidas	respecto	a I	а	variación	en	la.	nosición:
riculuus	1 COPCCCO	u 1	ч	variacion:	~11	14	posicion.

	Posición	Tensión de circuito abierto	Intensidad de cortocircuito
Medida 1			
Medida 2			
Medida 3			
Medida 4			
Medida 5			
Medida 6			
Medida 7			
Medida 8			

Se deberán registrar también la hora y el día en que se realizan las medidas.

	Fecha	Hora	Observaciones
Proceso 1			
Proceso 2			

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

CONCLUSIONES

La elección de un rango de ángulos de 10º a 70º se basa en las siguientes consideraciones:

- Inclinación mínima (10º): Permite capturar una cantidad significativa de radiación solar, incluso cuando el sol está bajo en el cielo (por ejemplo, en invierno o al amanecer/atardecer).
- Inclinación máxima (70º): Permite evitar la reflexión excesiva de la radiación solar en la superficie del panel, lo que puede reducir la eficiencia de conversión de energía.
- Incrementos de 10º: Ofrecen una resolución adecuada para identificar la inclinación óptima con precisión.

Este rango de ángulos cubre una amplia gama de condiciones y permite obtener datos suficientes para determinar la inclinación óptima para el momento específico del día en que se realiza la práctica.

¿Qué sucede cuando variamos la inclinación del panel?

Al variar la inclinación del panel, la incidencia de la radiación solar en el panel fotovoltaico varía. Se obtendrá el máximo valor cuando la incidencia sobre el panel sea de 90 grados.

¿Qué sucede cuando variamos la posición del panel?

Al variar la posición, vamos encontrando o perdiendo al Sol. A medida que encaramos al sol directamente mayor incidencia solar habrá sobre los paneles.

¿Qué importancia tiene registrar la hora y el día en que se realizan

Para ver y comparar las distintas medidas respecto de las estaciones del año, ver como varia la incidencia solar según la época del año.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

7.6 PRÁCTICA 6: MEDIDA DEL RENDIMIENTO DEL INVERSOR

	COMPONENTES INSTALACION FOTOVOLTAICA						
	Práctica Nº	: 6					
Título:	MEDIDA DEL RENDIMIENTO DEL INVERSOR						
	Tiempo estimado:	1,5 horas					

OBJETIVO

Comprender el funcionamiento de las entradas MPPT (Maximum Power Point Tracking) en un inversor fotovoltaico.

Medir la potencia en la entrada de CC del inversor.

Medir la potencia en la salida de CA monofásica del inversor.

Calcular el rendimiento del inversor.

Comparar la potencia de entrada de CC con la potencia de salida de CA.

MATERIALES

Inversor, amperimetro, voltimetro, vatimetro y resistencias.

DESARROLLO

Analizar el rendimiento de un inversor con dos entradas MPPT y la comparación entre la potencia en la entrada de corriente continua (CC) y la potencia en la salida de corriente alterna (CA) monofásica. Se realizarán mediciones con una sola entrada MPPT y con dos entradas MPPT para evaluar las ventajas y desventajas de cada configuración.

Las entradas MPPT (Maximum Power Point Tracking) son circuitos electrónicos que ajustan automáticamente la impedancia de entrada del inversor para maximizar la potencia extraída de los paneles solares. Esto se logra al buscar el punto de máxima potencia (MPP) de la curva I-V del panel solar, donde la corriente y la tensión se encuentran en un equilibrio óptimo para generar la mayor potencia posible.

En un inversor ideal, la potencia de salida de CA debería ser igual a la potencia de entrada de CC. Sin embargo, en la práctica existen pérdidas de energía debido a la eficiencia del inversor y a otros factores como la temperatura, la radiación solar y la calidad de la red eléctrica. La comparación entre la potencia de entrada de CC y la potencia de salida de CA permite evaluar el rendimiento del inversor y detectar posibles problemas o ineficiencias.

Se realizarán medidas para dos configuraciones distintas. En la primera, sólo se utilizará una entrada MPPT del inverrsor. Y, en la segunda, se utilizarán las dos entradas MPPT del inversor.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

RESULTADOS

Para ambas configuraciones (una entrada MPPT y dos entradas MPPT):

- 1. Encender el inversor y la carga resistiva.
- Ajustar la potencia de la carga resistiva para obtener diferentes valores de corriente de salida (Ica).
- 3. Para cada valor de Ica, registrar las siguientes medidas.
- 4. Se realizarán tres medidas simultaneas en desfases de 10 minutos.

Configuración con una entrada MPPT:

- 1. Conectar los ocho paneles solares en serie.
- 2. Conectar la cadena de paneles solares a una entrada MPPT del inversor.
- 3. Conectar la salida de CA monofásica del inversor a la carga resistiva.
- Conectar la pinza multímetro a la entrada de CC del inversor para medir la tensión (Vcc) y la corriente (Icc). La potencia en corriente continua se calculará como P=V*I.
- Conectar el vatímetro a la salida del inversor. Se leerán los valores obtenidos en el vatímetro.

Medidas en CC:

	Tensión (V)	Intensidad (A)	Potencia (W)
Medida 1			
Medida 2			
Medida 3			

Medidas en CA:

	Tensión (V)	Intensidad (A)	Potencia monofásica (W)
Medida 1			
Medida 2			
Medida 3			

Configuración con dos entradas MPPT:

- Dividir la serie de paneles solares en dos grupos de cuatro paneles cada uno.
- 2. Conectar cada grupo de cuatro paneles en serie.
- 3. Conectar cada serie de paneles solares a una entrada MPPT del inversor.
- Conectar la salida de CA monofásica del inversor a la carga resistiva.
- Conectar la pinza multímetro a cada entrada de CC del inversor para medir la tensión (Vcc) y la corriente (Icc) de cada cadena. La potencia en corriente continua se calculará como P=V*I.
- Conectar el vatímetro a la salida del inversor. Se leerán los valores obtenidos en el vatímetro.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Μe	adid	25	en	CC	

	Tensión (V)	Intensidad (A)	Potencia (W)
Medida 1			
Medida 2			
Medida 3			

Medidas en CA:

	Tensión (V)	Intensidad (A)	Potencia monofásica (W)
Medida 1			
Medida 2			
Medida 3			

El rendimiento representa la eficiencia con la que el inversor convierte la energía de corriente continua (CC) de la entrada en energía de corriente alterna (CA) de la salida.

Obtención del rendimiento:

$$\eta = \frac{P_{CA}}{P_{CC}}*100$$

	Rendimiento
Medida 1	
Medida 2	
Medida 3	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

CONCLUSIONES:	
¿Qué ventajas y desventajas hay en cada configuración? Basándose en el análisis del rendimiento, identifique las ventajas y desventajas de usar una o dos entradas MPPT.	
La elección entre una o dos entradas MPPT depende de las necesidades y prioridades del proyecto. Si la simplicidad, el bajo costo y la facilidad de mantenimiento son prioridades, una entrada MPPT puede ser suficiente. Sin embargo, si se busca una mayor eficiencia en condiciones de sombreado, flexibilidad en la orientación de los paneles y facilidad para la expansión futura, dos entradas MPPT son la mejor opción	
En estas medidas, ¿Cuáles son las condiciones óptimas de operación? Indique las condiciones de operación en las que se obtiene el mayor rendimiento.	
Se escogerá el punto en el que el inversor ha obtenido el mejor rendimiento. Hay que explicar qué punto es.	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 8. VIABILIDAD ECONÓMICA

En este apartado se realizará una estimación básica del coste de la instalación fotovoltaica. Se incluye exclusivamente el coste de los materiales, sin incluir el coste de personal o mano de obra que entendemos que se realizará por alumnos o voluntarios. Se trata de una estimación de lo que puede llegar a costar todo el proyecto, con el fin de poder presentarlo a futuros patrocinadores o solicitar subvenciones a la Comunidad de Madrid.

Se ha realizado la estimación a través de la aplicación PVsyst. Se estima que el proyecto rondará los cuatro mil euros. El posible coste adicional en relación con el aula y el profesorado para impartir el curso, no se tendrá en cuenta al ser una actividad sin ánimo de lucro.

Ilustración 34. Presupuesto de los elementos de la instalación.

Installation costs

Item	Quantity	Cost	Total
	units	EUR	EUR
PV modules			
CS3Y-490MS 1500V	8	140.00	1.120.00
Supports for modules	8	100.00	800.00
Inverters			
SUN2000-3KTL-L1	1	614.00	614.00
Other components			
Wiring	30	3.50	105.00
Measurement system, pyranometer	6	154.00	924.00
Protecciones baja tensión	4	170.00	680.00
		Total	4.243.00
		Depreciable asset	2.534.00

Fuente: PVsyst.

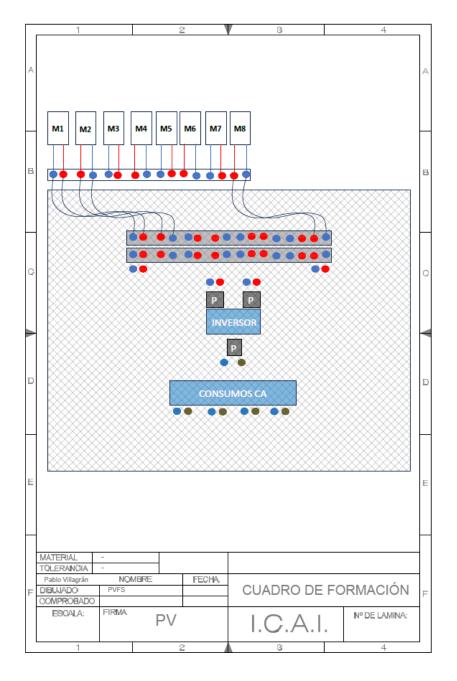
COMILLAS UNIVERSIDAD PONTIFICIA ICAI ICADE CIHS

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Capítulo 9. BIBLIOGRAFÍA

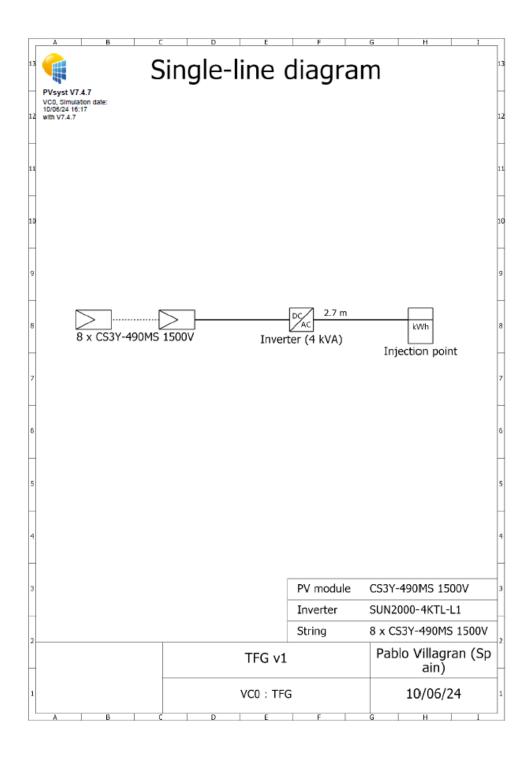
- [1] Amatrol. (23 de Julio de 2023). *Amatrol*. Obtenido de Photovoltaic installation learning system.: https://amatrol.com/product/950-spf1/
- [2] Ferichola, J. F. (2016). Caracterización de módulos fotovoltaicos con dispositivo portátil.Madrid: Universidad Carlos III.
- [3] Hemetsberger, W. (2023). *Global Market Outlook. For Solar Power 2023-2027*. Bruselas: Solar Power Europe. Obtenido de Solar Power Europe.
- [4] Madrid, J. (22 de Noviembre de 2023). Taller de formación en instalaciones fotovoltaicas. *Curso práctico*. Madrid, Madrid, Madrid: FICAI.
- [5] Muñoz, A. (4 de enero de 2023). edp energías. Obtenido de edp energía: https://www.edpenergia.es/es/blog/energia-fotovoltaica/previsiones-crecimiento-autoconsumo-2023/
- [6] International Energy Agency (IEA). (2022). World Energy Outlook 2022.
- [7] International Energy Agency (IEA). (2023). World Energy Outlook 2023.
- [8] Corficolombiana. (2021). *Informe Sectorial del Sector Eléctrico*. Bogotá. Obtenido de Investigaciones Corficolombiana
- [9] BBVA Research. (2019). Sector eléctrico: retos y oportunidades. Obtenido de https://www.bbvaresearch.com/publicaciones/sector-electrico-colombiano-retos-y-oportunidades/
- [10] DGIT. (2019). NCLAVE suministra sus seguidores de un eje para un proyecto seguidor solar de 125 MW en Australia. Obtenido de https://es.dgitreducer.com/info/nclave-solar-tracker-solar-damper-i00022i1.html
- [11] Iberdrola. (2022). Recurso solar: Medición de la radiación solar para mejorar estimaciones de producción. Obtenido de https://www.iberdrola.com/conocenos/nuestra-actividad/energia-solar-fotovoltaica/recurso-solar
- [12] Consejo Europeo, Conclusiones, EUCO 29/19, Bruselas, 12 de diciembre de 2019. Disponible en: https://www.consilium.europa.eu/media/41792/12-euco-final-conclusions-es.pdf
- [13] European Commission, *Photovoltaic Geographical Information System (PVGIS)*, EU Science Hub. Disponible en: Photovoltaic Geographical Information System (PVGIS) (europa.eu)


ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

- [14] Consejo Europeo, Conclusiones, EUCO 29/19, Bruselas, 12 de diciembre de 2019. Disponible en: https://www.consilium.europa.eu/media/41792/12-euco-final-conclusions-es.pdf
- [15] Energías Renovables. (2023). Anuario 2023. La energía de la gente.
- [16] Solar Power Europe. (2022). Global Market Outlook. For solar power 2023-2027
- [17] Anpier. (2020). Anuario Fotovoltaico 2020.
- [18] European Commission, EU Solar Energy Strategy, 18.5.2022 COM(2022) 221 final.
- [19] World Meteorological Organization, *Provisional State of the Global Climate 2022*. En: https://storymaps.arcgis.com/stories/5417cd9148c248c0985a5b6d028b0277
- [20] Universidad de Jaén: Curso de energía solar fotovoltaica.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

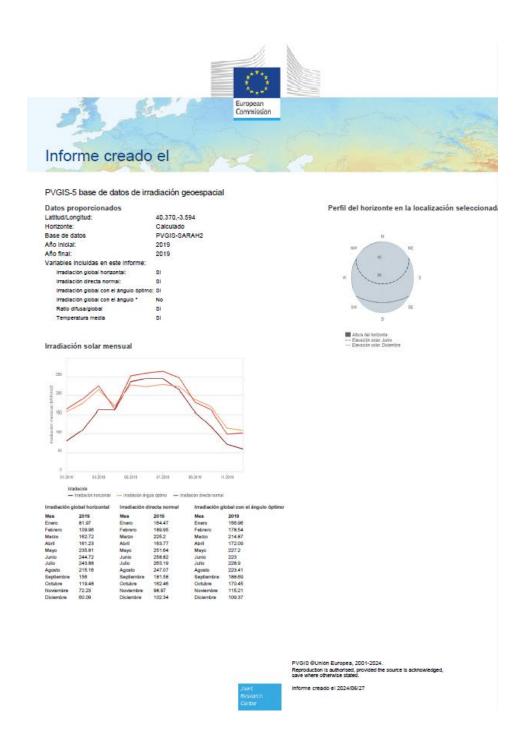
ANEXO I. PLANOS


Planos del cuadro de mando.

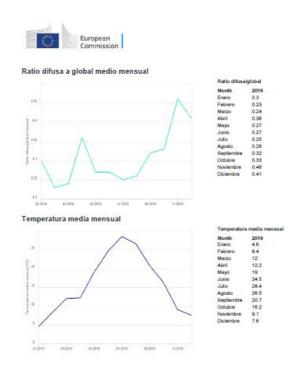
Elaboración propia con Autocad.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Plano instalación.



Fuente: elaborado con PVsyst.


ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

ANEXO II. INFORME PVGIS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

3. Direction Processes and the extra service of the control of

PVGIS @Union Europea, 2001-2024. Reproduction is authorised, provided the source is acknowledged, save where otherwise stated.

Informe creado el 2024/06/27

Fuente: elaborado con PVGIS.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

ANEXO III. INFORME PVSYST

Version 7.4.7

PVsyst - Simulation report

Grid-Connected System

Project: TFG v1 Variant: TFG Sheds, single array System power: 4000 Wp Caritas - España

Pablo Villagran (Spain)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

Project summary

Geographical Site Situation

Caritas Latitude 40.37 °N Еѕраñа Longitude -3.60 °W

649 m Altitude UTC+1 Time zone

Weather data

Caritas

PVGIS-SARAH2 averages 01/01/05 to 31/12/20 - Sintético

System summary

Grid-Connected System Sheds, single array

PV Field Orientation

Fixed plane

TIIt/Azimuth 40/0 **Near Shadings**

Linear shadings : Fast (table)

User's needs Fixed constant load 4000 W Global

Project settings

Albedo

35.0 MWh/Year

System information

PV Array

Nb. of modules Pnom total

8 units 4000 Wp

Nb. of units Pnom total Pnom ratio

Inverters

3000 W 1.333

1 unit

Results summary

Produced Energy Used Energy

6922.63 kWh/year 35040.00 kWh/year Specific production

1731 kWh/kWp/year Perf. Ratio PR

Solar Fraction SF

19.78 %

0.20

Table of contents

Project and results summary General parameters, PV Array Characteristics, System losses 3 Near shading definition - iso-shadings diagram 5 Main results 6 Loss diagram Predef. graphs 8 Single-line diagram 11 Cost of the system 12

02/07/24

PVsyst Student License for Pablo Villagran (Spain)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

General parameters

2 units

5.00 m

1.05 m

21.0 %

0.02 m 0.02 m

Sheds, single array

Nb. of sheds

Single array

Sheds spacing

Collector width

Sizes

Sheds configuration

PV Field Orientation

Grid-Connected System

Orientation Fixed plane

Horizon

Free Horizon

Unit Nom. Power

Nominal (STC)

Modules

Pmpp

U mpp

I mpp

Number of PV modules

At operating cond. (50°C)

Tilt/Azimuth

40/0

Ground Cov. Ratio (GCR) Top Inactive band Bottom Inactive band Shading limit angle Limit profile angle

Near Shadings

Linear shadings : Fast (table)

Models used

Transposition Perez Diffuse Perez Meteonorm

Circumsolar separate

User's needs Fixed constant load

4000 W Global 35.0 MWh/Year

PV Array Characteristics

Inverter

Model

Manufacturer

Unit Nom. Power

PV module Manufacturer Generic Model CS3Y-490MS 1500V

> 500 Wb 8 units

4000 Wp 2 string x 4 in series 3593 Wp

161 V

22 A

Number of Inverters Total power

Operating voltage Pnom ratio (DC:AC)

(Original PVsyst database)

No power sharing between MPPTs

Total inverter power

Total PV power Nominal (STC) 4.00 kWp Total power 8 modules Number of Inverters Total Module area Pnom ratio

18.9 m²

3 kWac 1 unit 1.33

1.33

Array losses

Array Soiling Losses 1.5 % Loss Fraction

(Custom parameters definition)

Thermal Loss factor Module temperature according to irradiance Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K/m/s DC wiring losses Global array res. Loss Fraction

40 mΩ 0.5 % at STC

Generic

SUN2000-3KTL-L1

3 00 kWac

3.0 kWac 80-600 V

2 " MPPT 50% 1 unit

LID - Light Induced Degradation Loss Fraction 1.0 %

Module Quality Loss Loss Fraction

-0.3 %

Module mismatch losses

Loss Fraction 1.0 % at MPP

IAM loss factor

Incidence effect (IAM): User defined profile

20*	40°	60*	65*	70°	75°	80*	85*	90*
1.000	1.000	1.000	0.990	0.960	0.920	0.840	0.720	0.000

02/07/24

PVsyst Student License for Pablo Villagran (Spain)

Page 3/12

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Project: TFG v1 Variant: TFG

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

AC wiring losses

Inv. output line up to injection point

 Inverter voltage
 230 Vac mono

 Loss Fraction
 0.50 % at STC

Inverter: SUN2000-3KTL-L1

Wire section (1 inv.) Copper 1 x 2 x 2 mm²
Wires length 3 m

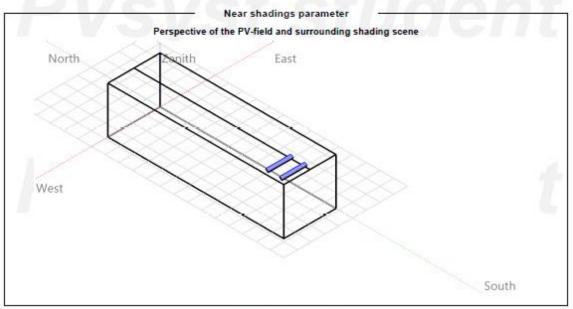
PVsyst student

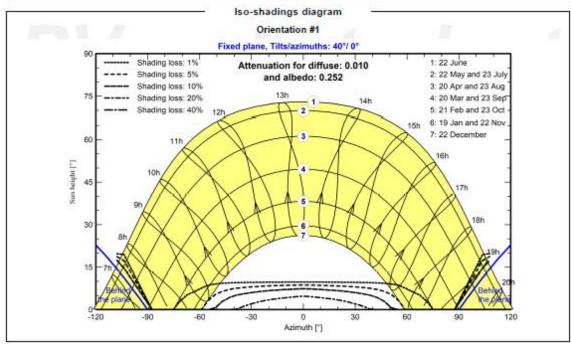
PVsyst student

PVsyst student

02/07/24

PVsyst Student License for Pablo Villagran (Spain)


Page 4/12



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

02/07/24 PVsyst Student License for Pablo Villagran (Spain) Page 5/1

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Project: TFG v1

Variant: TFG

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

Main results System Production Produced Energy 6922.63 kWh/year Specific production 1731 kWh/kWp/year Used Energy 35040.00 kWh/year Perf. Ratio PR 82.43 % Solar Fraction SF 19.78 % Economic evaluation Investment Yearly cost LCOE Global 4.243.00 EUR Annuities 0.00 EUR/yr Energy cost 0.00 EUR/kWh Specific 1.06 EUR/Wp Run. costs 0.00 EUR/yr Payback period Unprofitable Normalized productions (per installed kWp) Performance Ratio PR PR: Performance Ratio (Yf / Yr): 0.824 Lc: Collection Loss (PV-array losses) 0.84 kWh/kWp/day 0.17 kWh/kWp/day Ls: System Loss (inverter, ...) 4.74 kWh/kWp/day 0.9 0.8 0.7 0.6 0.5 Balances and main results

	GlobHor	DIffHor	T_Amb	Globino	GlobEff	EArray	E_User	E_Solar	E_Grld	EFrGrld
	kWh/m²	kWh/m²	*C	kWh/m²	kWh/m²	kWh	kWh	kWh	kWh	kWh
January	70.0	25.30	5.09	129.6	126.7	474.4	2976	458.6	-0.944	2517
February	89.9	32.09	6.62	140.4	137.2	501.2	2688	484.4	-0.788	2204
March	138.0	50.18	9.87	177.9	173.3	609.3	2976	588.7	-0.794	2387
April	169.3	61.16	13.14	184.0	178.6	637.9	2880	616.1	-0.688	2264
Мау	209.2	70.50	17.82	197.0	190.7	669.4	2976	646.0	-0.626	2330
June	228.3	67.62	23.11	201.3	194.7	672.6	2880	649.0	-0.586	2231
July	246.8	57.42	27.17	224.3	217.2	732.6	2976	707.3	-0.616	2269
August	216.8	52.94	26.49	223.3	216.7	729.4	2976	704.7	-0.676	2271
September	162.5	48.42	21.65	198.2	192.8	656.6	2880	634.5	-0.718	2246
October	115.4	40.00	15.85	168.5	164.5	579.0	2976	559.7	-0.846	2416
November	74.9	29.15	9.53	129.4	126.5	458.0	2880	442.0	-0.864	2438
December	64.2	23.13	5.85	125.5	122.8	456.2	2976	440.9	-0.976	2535
Year	1785.1	557.92	15.23	2099.5	2041.8	7176.7	35040	6931.8	-9.122	28108

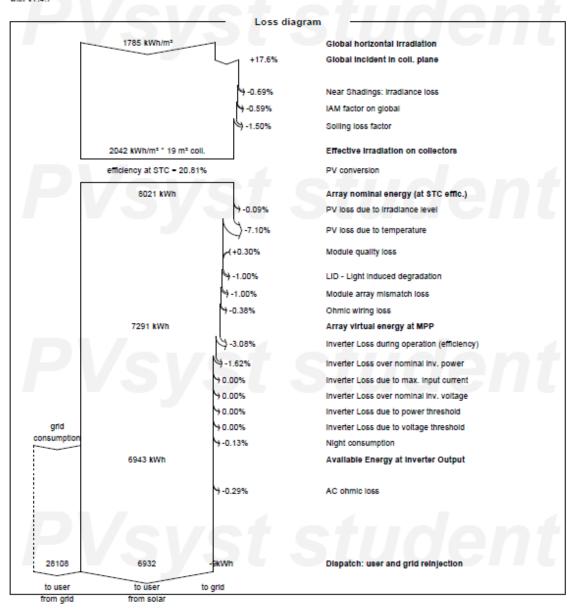
Legends

GlobHor Global horizontal irradiation EArray Effective energy at the output of the array

DiffHor Horizontal diffuse irradiation E User Energy supplied to the user E_Solar Energy from the sun T_Amb Ambient Temperature Globino Global Incident in coll. plane E_Grld Energy injected into grid EFrGrid Energy from the grid GlobEff Effective Global, corr. for IAM and shadings

02/07/24

PVsyst Student License for Pablo Villagran (Spain)

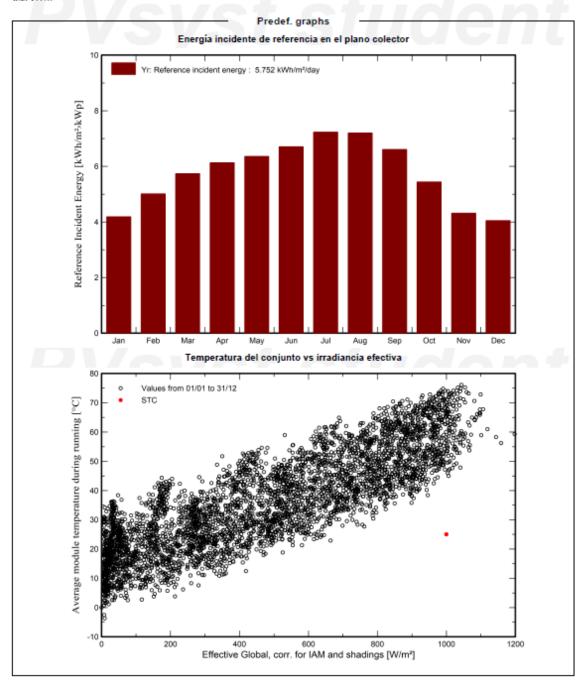

Page 6/12

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

02/07/24

PVsyst Student License for Pablo Villagran (Spain)


Dane 7/12

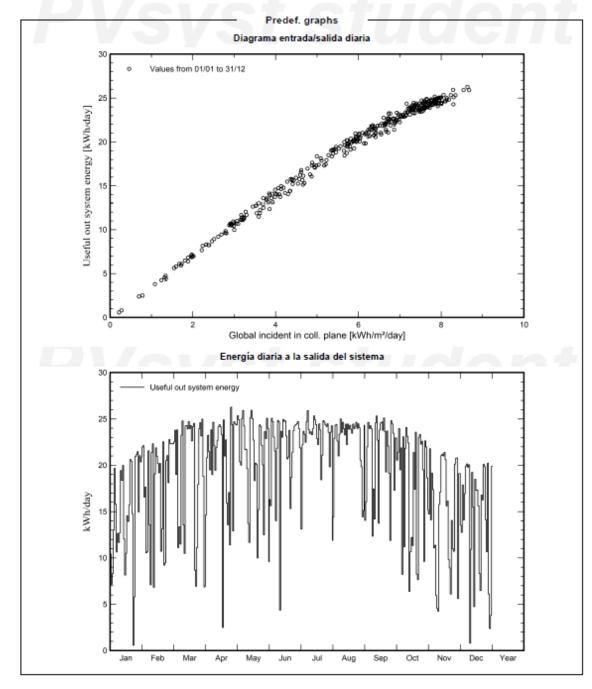
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Project: TFG v1 Variant: TFG

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

02/07/24

PVsyst Student License for Pablo Villagran (Spain)

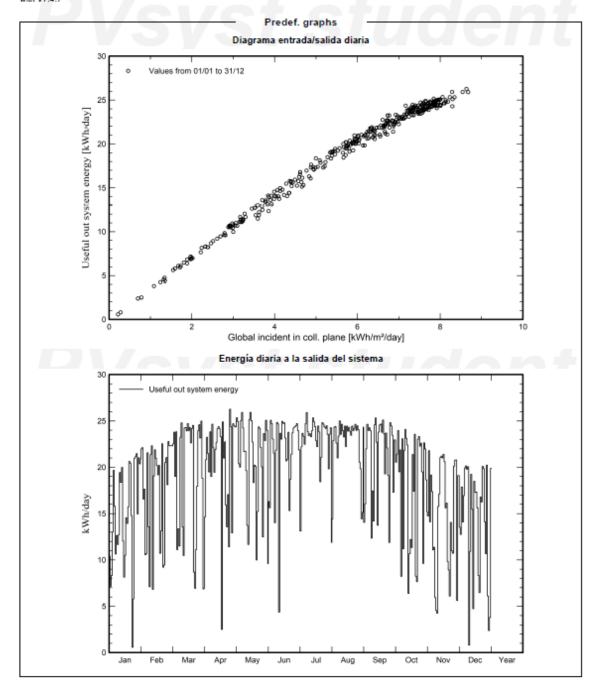

Page 8/12

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Project: TFG v1 Variant: TFG

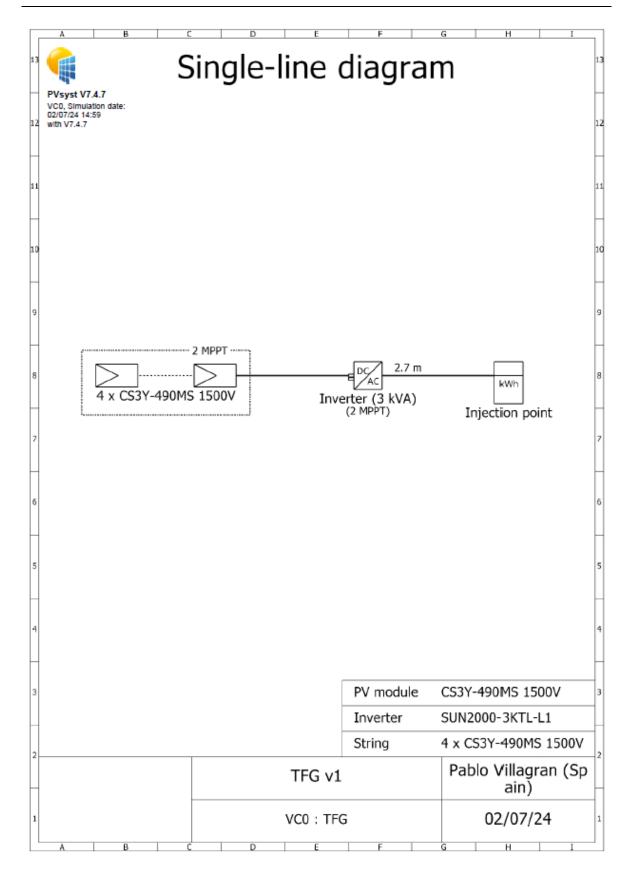
02/07/24

PVsyst Student License for Pablo Villagran (Spain)


Page 9/12

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Project: TFG v1 Variant: TFG


02/07/24

PVsyst Student License for Pablo Villagran (Spain)

Page 9/12

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

PVsyst V7.4.7 VC0, Simulation date: 02/07/24 14:59 with V7.4.7

Cost of the system

Item	Quantity	Cost	Total
	units	EUR	EUR
PV modules			
CS3Y-490MS 1500V	8	140.00	1.120.00
Supports for modules	8	100.00	800.00
Inverters			
SUN2000-3KTL-L1	1	614.00	614.00
Other components			
Wiring	30	3.50	105.00
Measurement system, pyranometer	6	154.00	924.00
Protecciones baja tensión	4	170.00	680.00
		Total	4.243.00
		Depreciable asset	2.534.00

Operating costs

Item	Total
	EUR/year
Total (OPEX)	0.00

System summary

Total installation cost Operating costs Useful energy from solar Energy sold to the grid Cost of produced energy (LCOE) 4.243.00 EUR 0.00 EUR/year 6932 kWh/year -9.1 kWh/year 0.0000 EUR/kWh

PVsyst student

02/07/24

PVsyst Student License for Pablo Villagran (Spain)

Page 12/12

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

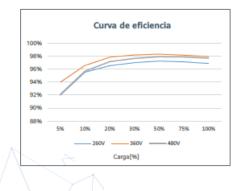
ANEXO IV. FICHAS TÉCNICAS

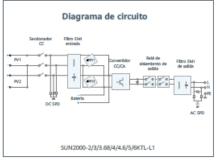
Ficha técnica del inversor.

Smart Energy Center

Seguridad activa

Protección contra arcos eléctricos active con tecnología de IA


Mayor rendimiento


Hasta un 30 % más de energía con optimizadores

2x POTENCIA de Batería

5kW de Salida en CA más 5kW de Carga en Baterías

SOLAR.HUAWEI.COM/ES/

Version No.:03-(20200622)

UNIVERSIDAD PONTIFICIA COMILLAS

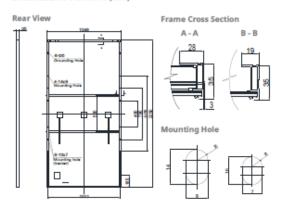
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

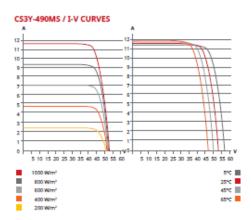
SUN2000-2/3/3.68/4/4.6/5/6KTL-L1 **Especificaciones técnicas**

Especificaciones técnicas	SUN2000 -2KTL-L1	SUN2000 -3KTL-L1	SUN2000 -3.68KTL-L1	SUN2000 -4KTL-L1	SUN2000 -4.6KTL-L1	SUN2000 -5KTL-L1	-6KTL-L11
				Eficiencia			
ficiencia Máxima	98.2 %	98.3 %	98.4 %	98.4 %	98.4 %	98.4 %	98.4 %
ficiencia europea	96.7 %	97.3 %	97.3 %	97.5 %	97.7 %	97.8 %	97.8 %
				ntrada (FV)			
Entrada de CC máxima recomendada ²	3,000 Wp	4,500 Wp	5,520 Wp	6,000 Wp	6,900 Wp	7,500 Wp	9,000 Wp
Máx. tensión de entrada				600 V *			
Tensión de arranque Tango de tensión de operación de MPPT				90 V - 560 V ³			
Tensión nominal de entrada				360 V			
Máx. Intensidad por MPPT				12.5 A			
Máx. Intensidad de cortocircuito por MPPT				18 A			
Cantidad de MPPTs				2			
Máx. número de entradas por MPPT				1			
			_				
			Entra	da (Batería	CC)		
Batería compatible			LG Ch	em RESU 7H_R / 10	DH_R		
Rango de tensión de operación				350 ~ 450 Vcc			
Max. corriente de operación				@7H_R / 15 A @10			
Potencia de carga máxima Potencia máxima de descarga @ 7H_R	2,200 W	3,300 W	3,500 W 3,500 W	@7H_R / 5,000 W (3,500 W	910H_R 3,500 W	3,500 W	3,500 W
Potencia maxima de descarga @ 7H_R Potencia máxima de descarga @ 10H_R	2,200 W	3,300 W 3,300 W	3,500 W 3,680 W	4,400 W	4,500 W	5,000 W	5,000 W
otorica maxima de descarga e romje	ALCOU TY	3,300 W	3,000 11	7/100 11	7,000 11	3,000 11	3,000 19
Satería compatible			HUAWEI Sma	rt ESS Battery 5kW	h - 30kWh 1		
Rango de tensión de operación				350 ~ 560 Vdc			
Max. corriente de operación				15 A			
Potencia de carga máxima				5,000 W 4			
Potencia máxima de descarga	2,200 W	3,300 W	3,680 W	4,400 W	4,600 W	5,000 W	5,000 W
				0.11.1			
				Salida			
Conexión a la red eléctrica				Monofásica			
Potencia de salida nominal	2,000 W	3,000 W	3,680 W	4,000 W	4,600 W	5,000 W ⁶	6,000 W
Máx. potencia aparente de CA	2,200 VA	3,300 VA	3,680 VA	4,400 VA	5,000 VA 6	5,500 VA 7	6,000 VA
ensión nominal de Salida			220 \	/ac / 230 Vac / 240	Vac		
Precuencia nominal de red de CA Máx. Intensidad de salida	10 A	15 A	16 A	50 Hz / 60 Hz	23 A 8	25 A *	27.3 A
Nax. Intensidad de sauda Factor de potencia ajustable	10 A	13 A		20 A 8 leading 0.8 la		23 A *	27.3 A
Máx. distorsión armónica total			0.	≤ 3 %	999		
Salida para SAI			Si (a tr	avés de Backup Box	-80 ¹)		
			Protecci	ón & Caracte	erísticas		
Protección anti-isla				Si			
Protección contra polaridad inversa de CC				Si			
Monitorización de aislamiento				Si			
Protección contra descargas atmosféricas CC			se de protección TI				
Protección contra descargas atmosféricas CA		Si, da	se de protección TI		igún EN / IEC 6164	I3-11	
Monitorización de la corriente residual				Si			
Protección contra sobreintensidad de CA Protección contra cortocircuito de CA				Si			
Protección contra cortocircuito de CA Protección contra sobretensión de CA				Si			
Protección contra sobrecalentamiento				Si			
Protección de falla de arco				SI			
Carga inversa de la batería desde la red				Si			
-							
			Da	itos generale	25		
Rango de temperatura de operación				-25 ~ +60 °C			
Humedad relativa de operación				0 %RH~100 %RH			
Altitud de operación		0 ~ 4,000	m (disminución de		rica a partir de los	2000 m)	
Ventillación				Convección natural			
Pantalla			ndicadores LED; WL				
Comunicación	Paleon		, WLAN a través de				Ondonali
Peso (incluido soporte de montaje)	Ethernet	a traves de smart i	Dongle-WLAN-FE (Opcional); 4G / 3G 12.0 kg	/ 26 a traves de S	mant bongle-46 (opcionat)
Peso (incluido soporte de montaje) Dimensiones (incluido soporte de montaje)			365.0	12.0 kg nm * 365mm * 156	mm		
Grado de protección			50011	IP65			
Consumo de energia durante la noche				< 2,5 W			
-							
			Compatibili	dad con opti	imizadores		
Optimizador compatible con MBUS CC				SUN2000-450W-P			
	Cump	limiento de	estándares (más opcione	s disponible	s previa soli	citud)
Seguridad				62109-1, EN/IEC 62			
Estándares de conexión a red eléctrica	G98, G99, FN 505	49-1. CEL 0-21 VDE	-AR-N-4105, AS 47	77.2 C10/11 ARM	. UTE C15-712 PC	1699. TOR DA IS	C61727 JEC621
	300, 300, EN 300	1, CEI 0-21, VDI	- 1-11-11-11-11-11-11-11-11-11-11-11-11-	77-2, CTO/11, MON	, 51E C 13-71Z, RL	- 1000, FOR D4, 10	COTTER, IECUZI
1 Disponible en Q3 del 2020. 2 La potencia fotovoltaica de entrada máxima del inversor e 3 El limite máximo de tensión de entrada y de operación se	s de 10.000 Wp cuando la	s cadenas largas se dise	fien y conecten al comple	eto de optimizadores de p	potencia SUN2000-450V	V-P.	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ficha técnica módulos fotovoltaicos.


* For detailed information, please refer to the installation Manua


CANADIAN SOLAR INC.

545 Speedvale Avenue West, Guelph, Ontario N1K 1E6, Canada, www.canadiansolar.com, support@canadiansolar.com

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

ENGINEERING DRAWING (mm)

ELECTRICAL DATA | STC*

CS3Y	475MS	480MS	485MS	490MS	495MS	500MS
Nominal Max. Power (Pmax)	475 W	480 W	485 W	490 W	495 W	500 W
Opt. Operating Voltage (Vmp)	44.0 V	44.2 V	44.4 V	44.6 V	44.8 V	45.0 V
Opt. Operating Current (Imp)	10.81 A	10.87 A	10.94 A	11.00 A	11.06 A	11.12 A
Open Circuit Voltage (Voc)	52.7 V	52.9 V	53.1 V	53.3 V	53.5 V	53.7 V
Short Circuit Current (Isc)	11.52 A	11.57 A	11.62 A	11.67 A	11.72 A	11.77 A
Module Efficiency	20.1%	20.4%	20.6%	20.8%	21.0%	21.2%
Operating Temperature	-40°C ~	+85°C				
Max. System Voltage	1500V (IEC/UL)	or 1000	V (IEC/U	L)	
Module Fire Performance	TYPE 1	(UL 6173	30) or			
Module Fire Performance	CLASS ((IEC 61	730)			
Max. Series Fuse Rating	20 A					
Application Classification	Class A					
Power Tolerance	0~+10	w				
Linder Standard Test Conditions (STC)	of irradian	on of 10001	Wimi enac	troop AM 1	S and call	tempera

ture of 25°C.

MECHANICAL DATA

Specification	Data
Cell Type	Mono-crystalline
Cell Arrangement	156 [2 X (13 X 6)]
Disconsissor	2250 X 1048 X 35 mm
Dimensions	(88.6 X41.3 X1.38 in)
Weight	26.3 kg (58.0 lbs)
Front Cover	3.2 mm tempered glass
Frame	Anodized aluminium alloy,
rrame	2 crossbars enhanced
J-Box	IP68, 3 bypass diodes
Cable	4 mm ² (IEC), 12 AWG (UL)
Cable Length (Including Connector)	500 mm (19.7 in) (+) / 350 mm (13.8 in) (-) or customized length*
Connector	T4 series or H4 UTX or MC4-EVO2
Per Pallet	30 pieces
Per Container (40' HQ)	600 pieces

For detailed information, please contact your local Canadian Solar sales and technical representatives.

ELECTRICAL DATA | NMOT*

CS3Y	475MS	480MS	485MS	490MS	495MS	500MS
Nominal Max. Power (Pmax)	354 W	358 W	362 W	365 W	369 W	373 W
Opt. Operating Voltage (Vmp)	41.0 V	41.2 V	41.4 V	41.6 V	41.8 V	42.0 V
Opt. Operating Current (Imp)	8.64 A	8.69 A	8.75 A	8.79 A	8.83 A	8.89 A
Open Circuit Voltage (Voc)	49.6 V	49.8 V	50.0 V	50.2 V	50.3 V	50.5 V
Short Circuit Current (Isc)	9.29 A	9.33 A	9.38 A	9.42 A	9.46 A	9.50 A

Under Nominal Module Operating Temperature (NMOT), irradiance of 800 W/m² spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.

TEMPERATURE CHARACTERISTICS

Specification	Data
Temperature Coefficient (Pmax)	-0.35 % / °C
Temperature Coefficient (Voc)	-0.27 % / °C
Temperature Coefficient (Isc)	0.05 % / °C
Nominal Module Operating Temperature	42 ± 3°C

PARTNER SECTION

Please be kindly advised that PV modules should be handled and installed by qualified people who have professional skills and please carefully read the safety and installation instructions before using our PV modules.

CANADIAN SOLAR INC.
545 Speedvale Avenue West, Guelph, Ontario N1K 1E6, Canada, www.canadiansolar.com, support@canadiansolar.com

July 2020. All rights reserved, PV Module Product Datasheet V2.3_EN

^{*} The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. Canadian Solar inc. reserves the right to make necessary adjustment to the information described herein at any time without further notice.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ficha técnica cableado.

Fotovoltaicos Baja tensión PRYSMIAN PRYSOLAR® - H1Z2Z2-K Tensión asignada: 1,0/1,0 kVac, 1,5/1,5 kVdc (1,2/1,2 kVac máx.) (1,8/1,8 kVdc máx.) UNE-EN 50618 / IEC 62930 Norma diseño: Designación genérica: H1Z2Z2-K PRYSMEAN PRYSOLAR* H12222-K E_ NUEVO PROTOCOLO Ó WET-I 1500 WET-E 1500 CPR Test Prysmian Group para asegu-rar el comportamiento del cable DESCÁRGATE La DoP (declaración de prestaciones) https://es.prysmiangroup.com/dop inmerso en agua por periodos pro-longados. Simula una situación similar a la que el cable está expuesto en una planta FV. Condiciones del test: • 1800 V DC (Máx voltaje) • Agua a70℃ • > 1500 ciclos

- Temperatura de servicio: -40 °C, +90 °C (Cable termoestable), +120 °C (20 000h).
- Ensayo de tensión durante 5 min: 6500 Vac / 15000 Vdc.

Reacción al fuego

Prestaciones frente al fuego en la Unión Europea:

- Clase de reacción al fuego (CPR): E_a
- Requerimientos defuego: UNE-EN 50575: 2015 + A1: 2016.
- Clasificación respecto al fuego: UNE-EN 13501-6.
- Aplicación de los resultados: CLC/TS 50576.
- Métodos de ensayo: UNE-EN 60332-1-2.

Normativa de fuego completa (incluídas normas aplicables a países no pertenecientes a la Unión Europea):

- No propagación de la llama:
- UNE-EN 60332-1-2; IEC 60332-1-2; NFC 32070-C2.
- Libre de halógenos:
- IEC 62821-1Anexo B, UNE-EN 50525-1Anexo B.
- Baja opacidad de humos: UNE-EN 61034-2; IEC 61034-2.

Prysmian

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Fotovoltaicos Baja tensión

PRYSMIAN PRYSOLAR® - H1Z2Z2-K

TOWRheinland
CORRESSOR

O 1111270200

Tensión asignada: 1,0/1,0 kVac, 1,5/1,5 kVdc (1,2/1,2 kVac máx.) (1,8/1,8 kVdc máx.)

Norma diseño: UNE-EN 50618 / IEC 62930

Designación genérica: H1Z2Z2-K

Ensayos adicionales cable PRYSMIAN PRYSOLAR EN 50525-2-21 AD8 (test ac) ** Ensayomejorado de Prysmian Group específico PV: > 1500 cidos Protección frente al agua WET-I1500 sumergido en agua a 70 °C con la máxima tensión continua (1800 Vdc) IEC 62930 Anexo E; UNE-EN 50618 Anexo E Resistencia a los rayos UVA 720h (360 ciclos) Certificación TÜV Rheinland Servicias máviles SI Doble aislamiento (clase II) SI Temperatura mâxima del conductor 90 °C (120 °C 20 000h) 250 °C (cortocircuito) A decuado ara sistemas anti-PED Tensión máxima eficaz: 1200 V (> 906 V) Tensión máxima de pico: 1697 V (>1468 V) 50 N/mm² durante el tendido 15 N/mm² en operación (instalado) Máxima tensión de tracción IEC 62930 Tab.3 según IEC 60811-403; UNE-EN 50618 Tab.2 según UNE-EN 50396 tipo de prueba B Resistencia al ozono IEC 62930 y UNE- EN 50618 Anexo B 7 dias, 23 °C N-àcido oxálico, N-hidróxido sódico (según IEC 60811-404; UNE- EN 60811-404). Resistencia a ácidos y bases IEC 62930 Tab. 2 según IEC 60811-503;UNE-EN 50618 Tab. 2 según UNE-EN 60811-503 (mäxima contracción 2 %) Prueba de contracción TEC 62930 Tab.29 UNE-EN 50618 Tab.21000 ha 90 °Cy 85 % de humedad para IEC 60068-2-78, UNE-EN-60068-2-78 Resistencia Resistencia IEC 62821-2; UNE-EN 50395-9 (240 h/85 °C agua /1,8 kVdc) de aislamiento a largo plazo (dc) Directiva RoHS 2011/65/UE de la Unión Europea Respetuoso con el medio ambiente Ensayo de penetración dinámica IEC 62930 Anexo D; UNE-EN 50618 AnexoD Doblado y alargamiento a -40 °C según IEC 60811-504 y -505 y UNE-EN 60811-504 y -505 Doblado a baia temperatura Resistencia al impacto a - 40 °C según IEC 62930 Anexo C según IEC 60811-506 y UNE-EN 50618 Anexo C según UNE-EN 60811-506 Resistencia al impacto en frio Durabilidad del marcado IEC 62930; UNE-EN 50396

Construcción

1. Conductor

Metal: cobre recocido estañado. Flexibilidad: flexible, clase 5, según UNE EN 60228. Temperatura máxima en el conductor: 90°C (120°C, por 20 000 h). 250°C en cortocircuito.

2. Aislamiento

Material: compuesto reticulado libre de halógenos según tabla B.1 de anexo B de EN 50618.

3. Cubierta

Material: compuesto reticulado libre de halógenos según tabla B.1 de anexo B de EN 50618.

Colores: negro o rojo.

Aplicaciones

Especialmente diseñado para instalaciones solares fotovoltaicas interiores, exteriores, industriales, agrícolas, fijas o móviles (con seguidores...). Pueden ser instalados en bandejas, conductos y equipos.

Especialmente resistente a la acción del agua (AD8 + test especial para corriente continua WET-I 1500), en instalaciones subterráneas bajo tubo o conducto.

Indicado para el lado de corriente contínua en instalaciones de autoconsumo solar fotovoltaico.

Sistemas decorriente continua (ITC-BT 53, UNE-HD 60364-7-712).

Ver esquemas de aplicación en apartado: 2.25. y ejemplos de cálculo en apartados: 2.17., 2.18., 2.19. y 3.

La condición ADB habitual es una autodeclaración de fabricante sin norma de referencia. Declara la posibilidad de funcionamiento del cable permanentemente sumergido pero el ensayo habitual está pensado para comiente alterna y hasta 450/750V de tensión asignada del cable. Situación muy alejada de la realidad de las instalaciones fotovoltaicas. Los cables de Prysmian superan el ensayo especial WET-11500 a 1800 V en comiente continua.

Para la estimación de la vida del cable se utilizado el ensayo de endurancia térmica según la IEC 60216.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Fotovoltaicos Baja tensión

PRYSMIAN PRYSOLAR® - H1Z2Z2-K

TOVRheinland

CERTIFIED

0 1111272599

Tensión asignada: 1,0/1,0 kVac, 1,5/1,5 kVdc (1,2/1,2 kVac máx.) (1,8/1,8 kVdc máx.)

Norma diseño: UNE-EN 50618 / IEC 62930

Designación genérica: H1Z2Z2-K

Datos técnicos

Nûmerode conductores x sección (mm²)	Diametro måximodel conductor (mm) (1)	Diámetro exterior del cable (valor máximo) (mm)	Radio minimo de curvatura dinámico (mm)	Radio minimo de curvatura estático (mm)	Peso (kg/km) (1)	Resistencia del conductor a 20°C (W/km)	Intensidad admisible al aire (2) (A)	Intensidad admisible al aire. Tambiente 60°Cy Tconductor 120°C (3)	Intensidad admisible bajo tubo enterrado (4) (A)	Caída de tensión (WA km) (2)
1x 1,5	1,8	5,4	22	16	33	13,7	24	30	24	27,4
1 x 2,5	2,4	5,9	24	18	45	8,21	34	41	32	16,42
1x4	3,0	6,6	26	20	61	5,09	46	55	42	10,18
tx 6	3,9	7,4	30	22	80	3,39	59	70	53	6,78
1x 1D	5,1	8,8	35	26	124	1,95	82	98	70	3,90
1x 16	6,3	10,1	40	30	186	1,24	110	132	91	2,48
1x 25	7,8	12,5	63	50	286	0,795	140	176	116	1,59
1x 35	9,2	14,0	70	56	390	0,565	182	218	140	1,13
1 x 50	11,0	16,3	82	65	542	0,393	220	276	166	0,786
1x70	13,1	18,7	94	75	742	0,277	282	347	204	0,554
1x 95	15,1	20,8	125	83	953	0,210	343	416	241	0,42
1 x 120	17,0	22,8	137	91	1206	0,164	397	488	275	0,328
1 x 150	19,0	25,5	153	102	1500	0,132	458	566	311	0,264
1 x 185	21,0	28,5	171	114	1843	0,108	523	644	348	0,216
1x 240	24,0	32,1	193	128	2304	0,0817	617	775	402	0,1634

- (1) Valores aproximados.
- (2) Instalación monofásica o corriente continua en bandeja perforada al aire (40 °C). Con exposición directa al sol, multiplicar la corriente por 0,85.
- → XLPE2 con instalación tipo F → columna 13. (UNE-HD 60364-5-52 e IEC 60364-5-52).
- (3) Instalación de conductores separados con renovación eficaz del aire en toda su cubierta (cables suspendidos).

Temperatura ambiente 60 °C (a la sombra) y temperatura máxima en el conductor 120 °C. Valor que puede soportar el cable, 20 000 h a lo largo de su vida estimada (30 años) EN 50618 (tabla A.3). (4) Instalación bajo tubo enterrada con resistividad térmica del terreno estándar de 2,5 K·m/W y temperatura del terreno 25 °C. XLPE2 con instalación tipo D1 (Cu) (monofofásica o continua).

Prysmian

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

DECLARACIÓN DE PRESTACIONES

n° 1009483

1. Código de identificación única del producto tipo*:

PRYSUN Eca

2. Usos previstos:

Cable sujeto a requisitos de reacción al fuego para aplicaciones generales en obras de construcción

3. Fabricante:

Prysmian Cables Spain S.A. Carretera C-15, Km. 2 08800 - Vilanova i la Geltrú (Barcelona) España

4. Representante autorizado:

_

5. Sistemas de evaluación y verificación de la constancia de las prestaciones (EVCP):

AVCP: 3

6. Norma armonizada:

EN 50575:2014+A1:2016

Organismos notificados:

1722 CEIS

7. Prestaciones declaradas:

Reacción al fuego: Eca

Sustancias peligrosas: Sin prestaciones declaradas.

Las prestaciones del producto identificado anteriormente son conformes con el conjunto de prestaciones declaradas. La presente declaración de prestaciones se emite, de conformidad con el Reglamento (UE) no 305/2011, bajo la sola responsabilidad del fabricante arriba identificado.

Firmado por y en nombre del fabricante por Rafael Maza en lugar Vilanova i la Geltrú (Barcelona) fecha de emisión 16/04/2019

Dirección WEB Buscador DdP: https://es.prysmiangroup.com/cpr

^{*} A efectos de identificar todos los "códigos únicos de identificación de producto" cubiertos por esta DoP (y requerido por el reglamento CPR), por favor ver el documento relacionado anexo.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Baja tensión Afumex

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

DoP 1003875

UNE-EN 60533 3-34

Libre dehalägenos UNE DI 60754-1

NFC 20454 Di- 1 Def-Stan 02-713

Desistencia

• Temperatura de servicio: -25 °C, +90 °C. (Cable termoestable).

Ensayo de tensi
n alterna durante 5 min: 3500 V.

Reacción al fuego

Prestaciones frente al fuego en la Unión Europea:

- Clase de reacción al fuego (CPR): C_a-s1b,d1,a1.
- Requerimientos de fuego: UNE-EN 50575:2014 + A1:2016.
- Clasificación respecto al fuego: UNE-EN 13501-6.
- · Aplicación de los resultados: CLC/TS 50576.
- Métodos de ensayo:

UNE-EN 60332-1-2; UNE-EN 50399; UNE-EN 60754-2; UNE-EN 61034-2.

Normativa de fuego completa (incluídas normas aplicables a países no pertenecientes a la Unión Europea):

· No propagación de la llama:

UNE-EN 60332-1-2; IEC 60332-1-2

No propagación del incendio:

UNE-EN 50399; UNE-EN 60332-3-24; IEC 60332-3-24.

Libre de halógenos:

UNE-EN 60754-2; UNE-EN 60754-1;

IEC 60754-2; IEC 60754-1.

Reducida emisión de gases tóxicos:

UNE-EN 60754-2; NFC 20454; DEF STAN 02-713.

Baja emisión de humos:

UNE-EN 50399.

Baja opacidad de humos:

UNE-EN 61034-2; IEC 61034-2.

 Baja emisión de gases corrosivos: UNE-EN 60754-2; IEC 60754-2; NFC 20453.

Baja emisión de calor:

UNE-EN 50399.

· Reducido desprendimiento de gotas/partículas inflamadas: EN 50399.

Prysmian

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Afumex Baja tensión

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

Máxima pelabilidad

Gracias a la capa especial antiadherente se puede retirar la cubierta fácil y rápidamente. Un importante ahorro de tiempo de instalación.

Limpio y ecológico

La ausencia de talcoy aceites de silicona permite un ambiente de trabajo más límpio y con menos partículas contaminantes.

Aplicaciones

Cable de fácil pelado especialmente adecuado para instalaciones en locales de pública concurrencia: salas de espectáculos, centros comerciales, escuelas, hospitales, edificios de oficinas, pabellones deportivos, etc.

En centros informáticos, aeropuertos, naves industriales, parkings y túneles de carreteras, locales de difícil ventilación y/o evacuación, etc.

En toda instalación donde el riesgo de incendio no sea despreciable: instalaciones en montaje superficial, canalizaciones verticales en edificios o sobre bandejas, etc., o donde se requieran las mejores propiedades frente al fuego y/o la ecología de los productos en edificios o sobre bandejas, etc., o donde se requieran las mejores propiedades frente al fuego y/o la ecología de los productos de construcción.

Líneas generales de alimentación (ITC-BT 14). -Derivaciones individuales ITC-BT 15) -Instalaciones interiores o receptoras (ITC-BT 20). -Locales de pública concurrencia (ITC-BT 28). -Locales con riesgo de incendio o explosión (adecuadamente canalizado) (ITC-BT 29). -Industrias (Reglamento de Seguridad contra Incendios en los Establecimientos Industriales R.D. 2267/2004. - Edificios en general (Código técnico de la Edificación, R.D. 314/2006, art. 11).

NOTA: para tuneles ferroviarios consultar a Prysmian. La normativa europea exige clase B2,, -s1a, d1, a1.

Construcción

1. Conductor

Metal: cobre recocido.

Flexibilidad: flexible, clase 5, según UNE EN 60228.

Temperatura máxima en el conductor: 90 °C en servicio permanente, 250 °C en cortocircuito.

2. Aislamiento

Material: mezcla de polietileno reticulado (XLPE), tipo DIX3 según UNE HD 603-1.

Colores: marrón, negro, gris, azul, amarillo/verde según UNE 21089-1. Unipolares color natural.

3. Elemento separador

Capa especial antiadherente.

4. Relleno (si aplica)

Material: mezcla LSOH libre de halógenos.

5. Cubierta

Material: mezcla especial libre de halógenos tipo AFUMEX UNE 21123-4.

Color: verde.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Afumex Baja tensión

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

Datos técnicos

Número de conductores x sección	Espesor de aislamiento	Diametro exterior	Peso (kg/km) (1)	Resistencia del conductor	Intensidad admisible al	Intensidad admisible enterrado	Calda de tensión (V/A km) (2)		
(mm²)	(mm) (1)	(mm) (1)		a 20°C Ω/km	aire (2) (A)	(3) (A)	cos = = 1	cos += 0,8	
1x 1,5	0.7	7	67	13,3	21	21	26,5	21,36	
1x 2,5	0,7	7,5	79	7,98	30	27	15,92	12,88	
1x 4	0,7	8	97	4,95	40	35	9,96	8,1	
1x 6	0,7	B,5	120	3,3	52	44	6,74	5,51	
1x10	0,7	9,6	167	1,91	72	58	4	3,31	
1x16	0,7	10,6	226	1,21	9	75	2,51	2,12	
1x25	0,9	12,3	321	0,78	122	96	1,59	1,37	
1x35	0,9	15,8	421	0,55	153	107	1,15	1,01	
1x50	1	15,4	579	0,38	188	138	0,85	0,77	
1 x 70	1,1	17,3	780	0,27	243	170	0,59	0,56	
1x95	1,1	19,2	995	0,20	298	202	0,42	0,43	
1x 120	1,2	21,3	1240	0,16	350	290	0,34	0,36	
1x 150	1,4	25,4	1529	0,12	401	290	0,27	0,31	
1x 185	1,6	25,6	1826	0,10	460	291	0,22	0,26	
1x 240	1,7	28,6	2583	80,0	545	336	0,17	0,22	
1x300	1,8	31,3	2942	0,06	630	380	0,14	0,19	
1x400	2	36	3921	0,05		446	0,11	0,17	
2x1,5	0,7	10	154	13,3	23	24	30,98	24,92	
2x 2,5	0,7	10,9	169	7,98	32	32	18,66	15,07	
2x 4	0,7	11,8	213	4,95	44	42	11,68	9,46	
2x6	0,7	12,9	271	3,3	9	53	7,90	6,42	
2x 10	0,7	15,2	399	1,91	78	70	4,67	3,84	
2x 16	0,7	177	566	1,21	104	91	2,94	2,45	
2 x 25	0,9	Consultar	Consultar	0,78	135	116	1,86	1,59	
2x 35	0,9	Consultar	Consultar	0,55	168	140	1,34	1,16	
2 x 50	1	Consultar	Consultar	0,38	204	166	0,99	0,88	
361,5	0,7	10,4	150	13,3	25	24	30,98	24,92	
3625	0,7	11,4	193	7,98	32	32	18,66	15,07	
364	0,7	12,4	250	4,95	44	42	11,68	9,46	
366	0,7	15,6	324	3,3	9	53	7,90	6,42	
3G10	0,7	16	486	1,91	78	70	4,67	3,84	
3 6 1 6	0,7	18,7	696	1,21	104	91	2,94	2,45	
3x 25	0,9	Consultar	Consultar	0,78	115	96	1,62	1,38	
3x 35	0,9	Consultar	Consultar	0,55	143	107	1,17	1,01	
3 x 50	1	Consultar	Consultar	0,38	174	138	0,86	0,77	
3x70	1,1	Consultar	Consultar	0,27	225	170	0,6	0,56	
3 x 95	1,1	Consultar	Consultar	0,20	271	202	0,43	0,42	
3×120	1,2	Consultar	Consultar	0,16	314	290	0,34	0,35	
3×150	1,4	Consultar	Consultar	0,12	359	260	0,28	0,3	
3x1B5	1,6	Consultar	Consultar	0,10	409	291	0,22	0,26	
3x 240	1,7	Consultar	Consultar	0,08	489	336	037	0,21	
3x 300	1,8	Consultar	Consultar	0,06	549	380	0,14	0,18/	

- (1) Valores aproximados.
- (2) Instalación en bandeja al aire (40°C).
- → XLP3 con instalación tipo F → columna 11 (1x trifásica).
- → XLP2 con instalación tipo E → columna 12 (2x, 36 monofásica).
- → XLP3 con instalación tipo E → columna 10b (3x, 4G, 4x, 5G trifásica).
- (3) Instalación enterrada, directamente o bajo tubo con resistividad térmica del terreno estándar de 2,5 K.m /W.
- → XLPE3 con instalación tipo Método D1/D2 (Cu) → 1x, 3x, 46, 4x, 56 trifásica.
- → XLPE2 con instalación tipo D1/D2 (Cu) → 2x, 36 monofásica.

Según UNE-HD 60364-5-52 e IEC 60364-5-52.

Prysmian

Prysmian Group

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

AFUMEX CLASS 1000 V (AS) - RZ1-K (AS)

Tensión asignada: 0,6/1 kV Norma diseño: UNE 21123-4 Designación genérica: RZ1-K (AS)

Datos técnicos

(mm) (mm) (mm) (l) (mm) (l) (l) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	Número de conductores x sección (mm²)	Espesor de aislamiento	Diämetro exterior	Peso (kg/km)	Resistencia del conductor a 20 °C	Intensidad admisible al	Intensidad admisible enterrado	Calda de tensión (V/A km) (2) y (3)	
3 x 3 3 1	(mmr)	(mm) (i)	(mmy (r)	117	(Ω/km)	ale (2) (A)	(3) (A)	cos ∓ = 1	cos 1 = 0,8
\$\frac{50.75}{3x70.75}\$ 1,070,9 Coresultar Coresultar 0,380.0780 174 138 0,86 0,77 \$\frac{3x70.755}{3x70.755}\$ 1,070,9 Coresultar Coresultar 0,270.0554 225 170 0,6 0,56 \$\frac{3x}{3x}\$ \$\frac{50.55}{3x}\$ \$\frac{50.55}{3x}\$ 1,010 Coresultar Coresultar 0,080.0386 271 202 0,43 0,42 \$\frac{3x}{3x}\$ \$\frac{100.70}{3x}\$ 1,211 Coresultar Coresultar 0,080.02.77 359 260 0,38 0,3 \$\frac{3x}{3x}\$ \$\frac{150.70}{3x}\$ 1,911 Coresultar Coresultar 0,0060.0366 409 291 0,22 0,26 \$\frac{5x}{3x}\$ \$\frac{2x}{3x}\$ 200.0150 1,811.4 Coresultar Coresultar 0,0060.00161 489 336 0,17 0,21 \$\frac{3x}{3x}\$ \$\frac{3x}{3x}\$ 1,811.4 Coresultar Coresultar 0,0060.00161 489 336 0,17 0,21 \$\frac{3x}{3x}\$ \$\frac{3x}{3x}\$ 1,811.4 Coresultar Coresultar 0,0060.00161 489 336 0,17 0,21 \$\frac{3x}{3x}\$ \$\frac{3x}{3x}\$ 1,811.4 Coresultar Coresultar 0,0060.00161 489 336 0,17 0,21 \$\frac{3x}{3x}\$ \$\frac{3x}{3x}\$ 1,811.4 Coresultar 0,0060.00161 489 336 0,17 0,21 \$\frac{3x}{3x}\$ 1,811.4 Coresultar 0,0060.00161 489 336 0,17 0,18 \$\frac{4x}{3x}\$ 0,7 11,2 173 13,3 20 21 26,94 21,67 \$\frac{4x}{3x}\$ 0,7 10,3 227 7,99 23 27 16,23 13,1 \$\frac{4x}{3x}\$ 0,7 14,7 391 3,3 49 44 6,87 5,99 \$\frac{4x}{4x}\$ 0,7 14,7 391 3,3 49 44 6,87 5,99 \$\frac{4x}{4x}\$ 0,9 28,4 1792 0,55 143 117 1,07 1,01 \$\frac{4x}{3x}\$ 0,9 28,4 1792 0,55 143 117 1,07 1,01 \$\frac{4x}{3x}\$ 0,9 28,4 1792 0,55 143 117 1,07 1,01 \$\frac{4x}{3x}\$ 0,9 28,4 1792 0,55 143 117 1,07 1,01 \$\frac{4x}{3x}\$ 0,9 28,4 1792 0,55 143 117 1,07 1,01 \$\frac{4x}{3x}\$ 0,9 28,4 1792 0,55 143 117 1,07 1,01 \$\frac{4x}{3x}\$ 0,0 1,2 1,2 1,2 1,2 1,2 \$\frac{4x}\$ 0,1 1,2 1,2 1,2 1,2 1,2 1,2 \$\frac{5x}{3x}\$ 0,0 1,2 1,2 1,2 1,2	J 3x25/16	0,9/0,7	Consultar	Consultar	0,780/1,21	115	96	1,62	1,38
\$\frac{3}{3}\frac{1}\frac{1}{3}\f	3 x 35/16	0,9/0,7	Consultar	Consultar	0,554/1,21	143	117	1,17	1,01
3x 95/50 1,01/0 Coresultar Consultar 0,26 0 0,366 271 202 0,45 0,42 3x 120/70 1,21,1 Coresultar Consultar 0,05 0,272 314 230 0,34 0,35 3x 150/70 1,41,1 Coresultar Consultar 0,05 0,072 359 260 0,38 0,3 3x 150/70 1,41,1 Coresultar Consultar 0,05 0,05 0,06 409 291 0,22 0,26 3x 240/120 1,71,2 Coresultar 0,06 0,00 0,06 0,06 409 291 0,22 0,26 3x 240/120 1,71,2 Coresultar 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0,0	3x 50/25	1,0/0,9	Consultar	Consultar	0,386/0,780	174	158	0,86	0,77
\$\frac{\text{Stituto}}{\text{Stituto}}\$ 1,2\frac{\text{Stituto}}{\text{Consultar}}\$ Consultar \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3x70/35	1,7/0,9	Consultar	Consultar	0,272/0,554	225	170	0,6	0,56
3x150/70 1,4/11 Consultar Consultar 0,123/0,772 359 260 0,38 0,3 3x185/95 1,6/1,1 Consultar Consultar 0,066/0,206 409 281 0,22 0,36 3x 240/120 1,7/1,2 Consultar Consultar 0,066/0,206 409 281 0,22 0,36 3x 240/120 1,7/1,2 Consultar Consultar 0,060/0,0161 489 336 0,17 0,71 3x 300/150 1,8/1,4 Consultar Consultar 0,064/0,129 549 380 0,14 0,18 4 61,5 0,7 11,2 17,2 17,3 20 21 26,54 21,67 4 62,5 0,7 12,3 227 7,98 28 27 16,23 13,1 4 64 0,7 13,4 238 4,96 38 35 10,16 8,23 4 66 0,7 14,7 391 3,3 49 44 6,87 5,59 4 610 0,7 17,5 593 1,91 68 58 4,06 3,34 4 616 0,7 10,4 855 1,21 91 75 2,56 2,13 4 x 25 0,9 24,3 1767 0,78 116 96 1,62 1,38 4 x 35 0,9 28,4 1792 0,55 143 117 1,17 1,01 4 x 50 1,0 32,5 243 0,38 174 138 0,96 0,77 4 x 70 1,1 37,1 3359 0,7 225 170 0,6 0,56 4 x 95 1,1 41,2 42,7 0,20 271 202 0,43 0,42 4 x 120 1,2 46,7 5500 0,16 314 220 0,24 0,35 4 x 125 1,6 5,6 8172 0,10 409 291 0,22 0,36 4 x 125 0,7 12, 202 13,3 266 7,98 28 77 16,23 13,1 5 64 0,7 16 467 3,3 49 44 6,87 5,59 5 60 0,7 15 13,1 266 7,98 28 77 16,23 13,1 5 64 0,7 16 467 3,3 49 44 6,87 5,59 5 610 0,7 19 711 1,91 68 58 40,66 3,34 5 615 0,7 12 202 13,3 20 0,12 359 260 0,28 0,3 5 5615 0,7 15,3 351 4,95 38 355 10,16 8,23 5 625 0,9 26,6 1529 0,78 115 96 1,62 1,38 5 635 0,9 31,4 269 0,55 143 117 1,77 1,01	3 x 95/50	1,1/1,0	Consultar	Consultar	0,206/0,386	271	202	0,43	0,42
3x183195 1,61,1 Consultar Consultar Q,006/Q,206 409 231 0,22 0,35 3x 2407120 1,771,2 Consultar Consultar Q,006/Q,0161 489 336 0,17 0,21 3x 3001150 1,811,4 Consultar Consultar Q,064/Q,029 549 380 0,44 0,18 4 61,5 0,7 11,2 173 13,3 20 21 26,94 21,67 4 62,5 0,7 Q,3 27 7,98 28 27 16,23 13,1 4 64 0,7 13,4 238 4,95 38 35 10,16 8,23 4 66 0,7 14,7 3391 3,3 449 44 6,87 5,59 4 610 0,7 17,5 593 1,91 68 58 4,06 3,34 4 616 0,7 20,4 855 1,21 91 75 2,56 2,13 4 x x 5 0,9 24,3 1267 0,78 116 96 1,52 1,38 4 x 35 0,9 28,4 1752 0,55 143 117 1,17 1,01 4 x 50 1,0 32,5 2439 0,38 174 138 0,86 0,77 4 x 70 1,1 37,1 3359 0,7 225 170 0,6 0,56 4 x 95 1,1 41,2 46,7 5500 0,16 314 220 0,44 0,35 4 x 150 1,4 51,8 6750 0,16 314 220 0,44 0,35 4 x 150 1,4 51,8 6750 0,16 314 220 0,24 0,35 4 x 150 1,4 51,8 6750 0,16 314 220 0,24 0,35 5 6 1,5 0,7 12 2002 13,3 20 21 26,94 21,67 5 6 1,5 0,7 12 2002 13,3 20 21 26,94 21,67 5 6 1,5 0,7 12 2002 13,3 20 21 26,94 21,67 5 6 1,5 0,7 12 2002 13,3 20 21 26,94 21,67 5 6 1,5 0,7 12 2002 13,3 20 21 26,94 21,67 5 6 2,5 0,7 13,3 266 7,99 28 27 16,23 13,1 5 6 4 0,7 16 467 3,3 49 44 6,87 5,59 5 6 10 0,7 19 711 1,91 68 58 40,06 3,34 5 6 10 0,7 12 2002 13,3 20 21 26,94 21,67 5 6 2,5 0,7 13,3 266 7,99 28 27 16,23 13,1 5 6 6 0,7 16 467 3,3 49 44 6,87 5,59 5 6 10 0,7 19 711 1,91 68 58 40,06 3,34 5 6 6 0,7 16 467 3,3 49 44 6,87 5,59 5 6 7 0,9 26,6 13529 0,78 115 96 1,62 1,38 5 6 7 1,99 7 1 1,91 68 58 40,06 3,34 5 6 7 1,99 7 1 1,99 7 1 1,00 1,00 1,00 1,00 1,00 1,00 1,00	3×120/70	1,2/1,1	Consultar	Consultar	0,161/0,272	314	230	0,34	0,35
\$\frac{3}{2}\text{3}\text{2}\text{1}\text{2}\text{1}\text{2}\text{1}\text{2}\text{1}\text{2}\text{2}\text{1}\text{3}\text{2}\text{3}\text{2}\text{3}\text{1}\text{3}\text{3}\text{3}\text{1}\text{3}\text{3}\text{3}\text{3}\text{1}\text{3}\text{4}\text{6}\text{4}\text{0}\text{0}\text{7}\text{1}\text{3}\text{5}\text{3}\text{3}\text{3}\text{4}\text{6}\text{6}\text{0}\text{7}\text{7}\text{3}\text{5}\text{3}\text{3}\text{4}\text{5}\text{6}\text{0}\text{7}\text{7}\text{5}\text{5}\text{93}\text{3}\text{1}\text{1}\text{7}\text{5}\text{93}\text{3}\text{1}\text{1}\text{91}\text{1}\text{7}\text{5}\text{93}\text{4}\text{4}\text{6}\text{6}\text{0}\text{7}\text{7}\text{5}\text{93}\text{3}\text{1}\text{1}\text{91}\text{1}\text{7}\text{5}\text{93}\text{3}\text{4}\text{1}\text{5}\text{9}\text{9}\text{2}\text{1}\text{1}\text{1}\text{91}\text{1}\text{1}\text{1}\text{1}\text{91}\text{1}\text{1}\text{1}\text{1}\text{1}\text{91}\text{1}\text{1}\text{1}\text{1}\text{1}\text{91}\text{1}\text{1}\text{1}\text{91}\text{1}\text{1}\text{1}\text{1}\text{1}\text{1}\text{91}\text{1}\text	3 x 150/70	1,4/1,1	Consultar	Consultar	0,129/0,272	359	260	0,28	0,3
3x 300/150 1,8/1,4 Consultar Consultar 0,064/10/129 549 380 Q,14 0,18 4 6 1,5 0,7 11,2 173 13,3 20 21 26,94 21,67 4 6 2,5 0,7 10,3 227 7,98 28 27 16,23 13,1 4 6 4 0,7 13,4 298 4,95 38 35 10,16 8,23 4 6 6 0,7 14,7 391 3,3 49 44 6,87 5,59 4 6 10 0,7 10,4 855 1,21 91 75 2,56 2,15 4 6 16 0,7 20,4 855 1,21 91 75 2,56 2,15 4 x 25 0,9 24,3 1,57 0,78 115 96 1,62 1,38 4 x 35 0,9 28,4 1792 0,55 143 117 1,07 1,01 4 x 25 0,9 28,4 17	3x185/95	1,6/1,1	Consultar	Consultar	0,106/0,206	409	291	0,22	0,26
461,5 0.7 11,2 173 13,5 20 21 26,94 21,67 462,5 0.7 12,3 227 7,98 28 27 16,23 13,1 464 0.7 13,4 298 4,95 38 35 10,16 8,23 466 0.7 14,7 391 3,3 49 44 6,87 5,59 4G10 0.7 17,5 593 1,91 68 58 4,06 3,34 4616 0.7 20,4 855 1,21 91 75 2,56 2,13 4x25 0.9 24,3 1267 0,78 115 96 1,62 1,38 4x35 0.9 28,4 1752 0,55 143 117 1,17 1,01 4x50 1,0 32,5 2439 0,38 174 138 0,06 0,77 4x70 1,1 37,1 3359 0,27 223<	3 x 240/120	1,7/1,2	Consultar	Consultar	0,0807/0361	489	336	0,17	0,21
4625 0.7 10,3 227 7,98 28 27 16,23 13,1 464 0.7 13,4 298 4,95 38 35 10,16 8,23 466 0.7 14,7 391 3,3 49 44 6,87 5,99 4610 0.7 10,5 593 1,91 68 58 4,06 3,34 4616 0.7 20,4 855 1,21 91 75 2,56 2,13 4x25 0.9 24,3 1267 0,78 115 96 1,62 1,38 4x35 0.9 28,4 1792 0,55 143 117 1,17 1,07 1,01 4x50 1,0 32,5 2439 0,38 174 138 0,96 0,77 4x70 1,1 31,2 3359 0,27 223 170 0,6 0,56 4x70 1,1 41,2 4276 0,20 </td <td>3 x 300/150</td> <td>1,8/1,4</td> <td>Consultar</td> <td>Consultar</td> <td>0,0641/0,129</td> <td>549</td> <td>360</td> <td>0,14</td> <td>0,18</td>	3 x 300/150	1,8/1,4	Consultar	Consultar	0,0641/0,129	549	360	0,14	0,18
464 0,7 13,4 298 4,95 38 35 10,16 8,23 466 0,7 14,7 391 3,3 49 44 6,87 5,99 4610 0,7 10,5 593 1,91 68 58 4,06 3,34 4616 0,7 20,4 855 1,21 91 75 2,56 2,13 4x25 0,9 24,3 1267 0,78 115 96 1,62 1,38 4x35 0,9 28,4 1792 0,55 143 117 1,07 1,01 4x50 1,0 32,5 2439 0,38 174 138 0,96 0,77 4x70 1,1 37,1 3359 0,27 223 170 0,6 0,56 4x95 1,1 41,2 4276 0,20 271 202 0,45 0,42 4x120 1,2 46,7 5500 0,36 314 230 0,34 0,35 4x185 1,6 57,6 8172	461,5	0,7	11,2	175	15,3	20	21	26,94	21,67
466 0,7 14,7 391 3,3 49 44 6,87 5,99 4G10 0,7 17,5 593 1,91 68 58 4,06 3,34 4616 0,7 20,4 855 1,21 91 75 2,56 2,15 4x25 0,9 24,3 1267 0,78 115 96 1,62 1,38 4x35 0,9 28,4 1792 0,55 143 117 1,17 1,07 1,01 4x50 1,0 32,5 24,39 0,38 174 138 0,96 0,77 4x70 1,1 37,1 3359 0,27 225 170 0,6 0,56 4x75 1,1 41,2 4276 0,20 271 202 0,45 0,42 4x100 1,2 46,7 5500 0,16 314 230 0,34 0,35 4x185 1,6 57,6 8172 0,10 409 231 0,22 0,36 4x186 1,6 57,6<	4625	0,7	12,3	227	7,98	28	27	16,25	13,1
4G10 0,7 17,5 5935 1,91 68 58 A,06 3,34 4G16 0,7 20,4 855 1,21 91 75 2,56 2,13 4x 25 0,9 24,3 1267 0,78 115 96 1,62 1,38 4x 35 0,9 28,4 1792 0,55 143 117 1,17 1,01 4x 50 1,0 32,5 2439 0,38 174 138 0,96 0,77 4x 70 1,1 37,1 3359 0,27 223 170 0,6 0,56 4x 95 1,1 41,2 4276 0,20 271 202 0,43 0,42 4x 120 1,2 467 5500 0,16 314 230 0,34 0,35 4x 185 1,6 51,8 6750 0,12 359 260 0,28 0,3 4x 185 1,6 57,6 8172 0,10 409 291 0,22 0,36 4x 240 1,7 64,4	464	0,7	13,4	298	4,95	38	35	10,16	8,25
4616 0,7 20,4 855 1,21 91 75 2,56 2,13 4x 25 0,9 24,3 1267 0,78 115 96 1,62 1,38 4x 35 0,9 28,4 1792 0,55 143 117 1,17 1,01 4x 50 1,0 52,5 2439 0,38 174 138 0,96 0,77 4x 70 1,1 57,1 3359 0,27 223 170 0,6 0,96 4x 95 1,1 41,2 4276 0,20 271 202 0,43 0,42 4x 120 1,2 46,7 5500 0,16 314 230 0,34 0,35 4x 185 1,6 57,6 8172 0,10 409 291 0,22 0,26 4x 240 1,7 64,4 10642 0,08 489 336 0,17 0,21 561,5 0,7 12 202 13,5<	466	0,7	14,7	391	3,3	49	44	6,87	5,59
4x 25 Q.9 24,3 1267 Q.78 116 96 1,62 1,38 4x 35 Q.9 28,4 1792 Q.55 143 117 1,17 1,01 4x 50 1,0 32,5 2439 Q.38 174 138 0,96 Q.77 4x 70 1,1 351 3359 0,07 223 170 0,6 0,56 4x 96 1,1 41,2 4276 Q,20 271 202 0,43 0,42 4x 120 1,2 46,7 5500 0,36 314 230 0,34 0,33 4x 150 1,4 51,8 6750 0,12 359 260 0,23 0,3 4x 185 1,6 57,6 8172 0,10 409 291 0,22 0,26 4x 240 1,7 64,4 10642 0,08 483 336 0,07 0,21 561,5 0,7 12 202 13	4G10	0,7	17,5	593	1,91	68	58	4,06	3,34
4x35 Q,9 28,4 1792 Q,55 143 117 1,17 1,01 4x50 1,0 32,5 2x39 Q,38 174 138 Q,96 Q,77 4x70 1,1 37,1 3359 Q,27 225 170 Q,6 0,56 4x95 1,1 41,2 4276 Q,20 271 202 Q,43 Q,42 4x120 1,2 46,7 5500 0,16 314 230 Q,34 0,35 4x150 1,4 51,8 6750 0,12 359 260 Q,38 Q,3 4x185 1,6 57,6 8172 Q,10 409 291 0,22 0,26 4x240 1,7 64,4 10642 0,08 483 336 0,07 0,21 561,5 0,7 12 200 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98	4616	0,7	20,4	855	1,21	91	75	2,56	2,13
4x50 1,0 52,5 2x39 0,38 174 138 0,86 0,77 4x70 1,1 37,1 3359 0,27 225 170 0,6 0,96 4x95 1,1 41,2 4276 0,20 271 202 0,43 0,42 4x120 1,2 46,7 5500 0,16 314 230 0,34 0,35 4x150 1,4 51,8 6750 0,12 359 260 0,23 0,3 4x185 1,6 57,6 8172 0,10 409 231 0,22 0,26 4x240 1,7 64,4 10642 0,08 483 336 0,17 0,21 561,5 0,7 12 200 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,23 13,1 564 0,7 14,5 3351 4,95 38	4x 25	0,9	24,3	1267	0,78	115	96	1,62	1,38
4x70 1,1 37,1 3359 0,2' 223 170 0,6 0,96 4x95 1,1 41,2 4276 0,20 271 202 0,43 0,42 4x120 1,2 46,7 5500 0,16 314 230 0,34 0,35 4x150 1,4 51,8 6750 0,12 359 260 0,28 0,3 4x185 1,6 57,6 8172 0,10 409 291 0,22 0,26 4x240 1,7 64,4 10642 0,08 483 336 0,17 0,21 561,5 0,7 12 202 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,23 13,1 564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3	4 x 35	0,9	28,4	1792	0,55	143	117	1,17	1,01
4x 95 1,1 41,2 4276 0,20 271 202 0,45 0,42 4x 120 1,2 46,7 5500 0,16 314 230 0,34 0,35 4x 150 1,4 51,8 67 50 0,12 359 260 0,28 0,3 4x 185 1,6 57,6 8172 0,10 409 291 0,22 0,26 4x 240 1,7 64,4 10642 0,08 489 336 0,17 0,21 561,5 0,7 12 202 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,23 13,1 564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3 49 44 6,47 5,99 5610 0,7 19 711 1,91	4x50	1,0	32,5	24.39	0,38	174	138	0,86	0,77
4x120 1,2 46,7 5500 0,16 314 230 0,34 0,35 4x150 1,4 51,8 6750 0,12 359 260 0,28 0,3 4x185 1,6 57,6 8172 0,10 409 231 0,22 0,26 4x240 1,7 64,4 10642 0,08 483 336 0,07 0,21 561,5 0,7 12 202 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,23 13,1 564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3 49 44 6,87 5,99 5610 0,7 19 711 1,91 68 58 4,06 3,34 5616 0,7 22,2 1008 1,21 91	4x70	1,1	37,1	3359	0,27	223	170	0,6	0,56
4x150 1,4 51,8 6750 0,12 359 260 0,28 0,3 4x185 1,6 57,6 8172 0,10 409 291 0,22 0,26 4x240 1,7 64,4 10642 0,08 489 336 0,17 0,21 561,5 0,7 12 202 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,23 13,1 564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3 49 44 6,87 5,99 5610 0,7 19 711 1,91 68 58 4,06 3,34 5616 0,7 22,2 1008 1,21 91 75 2,56 2,13 5625 0,9 25,6 1529 0,78 115 96 1,62 1,38 5635 0,9 31,4 2169 0,55 143 117 1,17 1,01	4x 95	1,1	41,2	4276	0,20	271	202	0,43	0,42
4x185 1,6 57,6 8172 0,10 409 291 0,22 0,36 4x240 1,7 64,4 10642 0,08 483 336 0,07 0,21 561,5 0,7 12 202 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,25 13,1 564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3 49 44 6,87 5,59 5610 0,7 19 711 1,91 68 58 4,06 3,34 5616 0,7 22,2 1008 1,21 91 75 2,56 2,13 5625 0,9 26,6 1529 0,78 115 96 1,62 1,38 5635 0,9 31,4 2169 0,55 143 <td>4×120</td> <td>1,2</td> <td>46,7</td> <td>5500</td> <td>0,16</td> <td>314</td> <td>230</td> <td>0,34</td> <td>0,35</td>	4×120	1,2	46,7	5500	0,16	314	230	0,34	0,35
4x 240 1,7 64,4 10642 0,08 483 336 0,17 0,21 561,5 0,7 12 202 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,23 13,1 564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3 49 44 6,87 5,99 5610 0,7 19 711 1,91 68 58 4,06 3,34 5616 0,7 22,2 1008 1,21 91 75 2,56 2,15 5625 0,9 26,6 1529 0,78 116 96 1,62 1,38 5635 0,9 31,4 2169 0,55 143 117 1,17 1,01	4 x 150	1,4	51,B	6750	0,12	359	260	0,28	0,3
561,5 0,7 12 202 13,3 20 21 26,94 21,67 562,5 0,7 13,3 266 7,98 28 27 16,25 13,1 564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3 49 44 6,87 5,99 5610 0,7 19 711 1,91 68 58 4,06 3,34 5616 0,7 22,2 1008 1,21 91 75 2,56 2,13 5625 0,9 26,6 1529 0,78 115 96 1,62 1,38 5635 0,9 31,4 2169 0,55 143 117 1,17 1,01	4 x 185	1,6	57,6	8172	0,10	409	291	0,22	0,26
56 2, 5 0,7 13,3 266 7,98 28 27 16,23 13,1 56 4 0,7 14,5 351 4,95 38 35 10,16 8,23 56 6 0,7 16 467 3,3 49 44 6,87 5,99 56 10 0,7 19 711 1,91 68 58 4,06 3,34 56 16 0,7 22,2 1008 1,21 91 75 2,56 2,13 56 25 0,9 26,6 1529 0,78 115 96 1,62 1,38 56 35 0,9 31,4 2169 0,55 143 117 1,17 1,01	4x 240	1,7	64,4	10642	0,08	489	336	0,17	0,21
564 0,7 14,5 351 4,95 38 35 10,16 8,23 566 0,7 16 467 3,3 49 44 6,87 5,99 5610 0,7 19 711 1,91 68 58 4,06 3,34 5616 0,7 22,2 1008 1,21 91 75 2,56 2,13 5625 0,9 26,6 1529 0,78 115 96 1,62 1,38 5635 0,9 31,4 2169 0,55 143 117 1,17 1,01	5G1,5	0,7	12	202	15,3	20	21	26,94	21,67
566 0,7 16 467 3,3 49 44 6,87 5,99 5610 0,7 19 711 1,91 68 58 4,06 3,34 5616 0,7 22,2 1008 1,21 91 75 2,56 2,15 5625 0,9 25,6 1529 0,78 115 96 1,62 1,38 5635 0,9 31,4 2169 0,55 143 117 1,17 1,01	562,5	0,7	13,3	266	7,98	28	27	16,23	13,1
5610 0,7 19 711 1,91 68 58 A,06 3,34 5616 0,7 22,2 1008 1,21 91 75 2,56 2,15 5625 0,9 25,6 1529 0,78 115 96 1,62 1,38 5635 0,9 31,4 2169 0,55 143 117 1,17 1,01	5G4	0,7	14,5	351	4,95	38	35	10,15	8,25
5G16 0,7 22,2 1008 1,21 91 75 2,56 2,13 5G25 0,9 25,6 1529 0,78 115 96 1,62 1,38 5G35 0,9 31,4 2169 0,55 143 117 1,17 1,01	566	0,7	16	467	3,3	49	44	6,87	5,59
5625 Q.9 25,6 1529 Q.78 115 96 1,62 1,38 5635 Q.9 31,4 2169 Q.55 143 117 1,17 1,01	5610	0,7	19	711	1,91	68	58	4,06	3,34
5635 Q,9 31,4 2169 Q,55 143 117 1,17 1,01	5G16	0,7	22,2	1028	1,21	91	75	2,56	2,13
	5625	0,9	26,6	1529	0,78	115	96	1,62	1,38
5650 1.0 35.2 2969 0.38 174 138	5 6 35	0,9	31,4	2169	0,55	143	117	1,17	1,01
	5650	1,0	35,2	2969	0,38	174	138	-	-

(1) Valores aproximados.

- (2) Instalación en bandeja al aire (40 ℃).
- → XLP3 con instalación tipo F → columna 11 (1x trifásica).
- → XLP2 con instalación tipo E → columna 12 (2x, 36 monofásica).
- → XLP3 con instalación tipo E → columna 10b (3x, 4G, 4x, 5G trifásica).
- (3) Instalación enterrada, directamente o bajo tubo con resistividad térmica del terreno estándar de 2,5 K.m/W.
- → XLPE3 con instalación tipo Método D1/D2 (Cu) → 1x, 3x, 46, 4x, 56 trifásica.
- → XLPE2 con instalación tipo D1/D2 (Cu) → 2x, 36 monofásica.

Según UNE-HD 60364-5-52 e IEC 60364-5-52.

Prysmian

Prysmian Group

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ficha técnica polímetro

LINI-T.

UT216 SERIES

600A TRUE RMS DIGITAL CLAMP METERS

UT216 series digital clamp meters are designed for measuring high frequency currents (up to 400Hz) in railways and aerospace, server rooms, IT systems, etc. Its double injection design gives users a more comfortable grip and enhanced durability.

UT216's 6000 count display also provides precise readings for users.

	Range	UT216A	UT216B	UT216C	UT216D		
AC current (A)	600A	±(2.5%+5)	±(2.5%+5)	±(2.5%+5)	±(2.5%+5)		
AC current frequency response		50/60Hz	40~400Hz	40~400Hz	40~400Hz		
DC current (A)	600A			±(2.5%+5)	±(2.5%+5)		
AC voltage (V)	750V	±(1.2%+5)	±(1.2%+5)	±(1.2%+5)	±(1.2%+5)		
AC voltage frequency response		40~400Hz	40~400Hz	40~400Hz	45~400Hz		
DC voltage (V)	1000V	±(0.8%+3)	±(0.8%+3)	±(0.8%+3)	± (0.8%+3)		
Resistance (Ω)	60MΩ	±(1%+2)	±(1%+2)	±(1%+2)	±(1%+2)		
Capacitance (F)	60mF	±(4%+5)	±(4%+5)	±(4%+5)	± (4%+20)		
Frequency (Hz)	10Hz~1MHz		±(0.1%+4)	±(0.1%+4)	±(0.1%+4)		
Temperature (°C)	-40°C~1000°C			±(3%+5)	±(3%+5)		
Temperature (*F)	-40"F~1832"F			±(3%+5)	±(3%+5)		
Features							
Display count		6000	6000	6000	6000		
Auto range							
Jaw opening		30mm	30mm	30mm	3ømm		
True RMS							
Diode	Around 3.0V	√	4	√	√		
VFC		√	4	V	√		
NCV			4	√	√		
Data hold		√	4	√	√		
Relative mode		√	4	V	√		
MAX/MIN		√	4	√	√		
LCD backlight		√	4	1	1		
Inrush current		√	4	V			
OLED display				√	√		
Analog bar graph				61	21		
Flashlight							
Auto power off		V	4	√	√		
Continuity buzzer		√	4	√	√		
Low battery indication	≤3.6V	√	4	V	√		
Input protection		√	4	√	√		
Input Impedance for DCV	≥10MΩ	√	4	√	√		
Power	1.5V battery (R03	1 √3	4	√	√		
Display	38mm x 24mm						
Product color	Red and grey						
Product net weight	UT216A: 280g; UT216B/C/D: 231.7g						
Product size	220mm x 75mm x 40mm						
Standard accessories	Batteries, test leads, point contact temperature probe (UT216C/UT216D)						
Standard Individual packing	Gift box, carrying	ft box, carrying bag, English manual					
Standard quantity per carton 20pcs							
Standard carton measurement	Standard carton measurement 485mm x 335mm x 205mm						
Standard carton gross weight	UT216A: 9.4kg; U		T216C: 10kg	UT216D: 9.6	kg		

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Medidor / pinza digital medidora de potencia PCE-UT232

Pinza medidora de potencia y energía (en tiempo real), hasta 3 fases con memoria, puerto USB y software

Este medidor de potencia digital es un instrumento multifuncional. El medidor de potencia digital cubre prácticamente todas sus necesidades. El medidor de potencia digital de hasta tres fases PCE-UT232 sirve para la medición de potencia de una o tres fases así como contador de energía activa hasta 9999 kWh. Para minimizar las interferencias en máquinas por ingenieros y técnicos se necesita un aparato de prueba que esté en grado de efectuar mediciones de tensión, corriente y potencia. Este medidor de potencia digital es ideal para todos estos trabajos. Sus circuitos internos, adaptados al estado más avanzado en técnica, garantizan un análisis muy preciso de los diferentes factores de potencia, realizado de forma rápida y precisa, lo que permite una subsanación de posibles problemas. Los valores de medición obtenidos pueden ser enviados a voluntad al ordenador y ser procesados. El contenido del envío del medidor de potencia contiene todo lo que necesita para efectuar las mediciones y el análisis (incluido el software y el cable de datos). En este enlace encontrará una visión general donde verá el medidor de potencia digital perteneciente a nuestra web. Si tiene alguna pregunta sobre el medidor de potencia digital, consulte la siguiente ficha técnica o póngase en contacto con nosotros en el número de teléfono +34 967 543 548. Nuestros técnicos e ingenieros le asesorarán con mucho gusto sobre este medidor de potencia digital y sobre cualquier producto de nuestros sistemas de regulación y control, medidores o balanzas PCE Ibérica S.L.

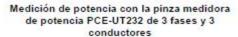
El medidor de potencia digital posee las siguientes características, y permite efectuar las siguientes mediciones típicas:

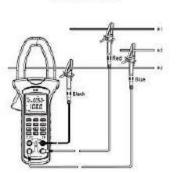
- Medición indirecta (1 a 3 fases) mediante la pinza integrada
- Mediciones de potencia:
 - Potencia activa (kW)
 - Potencia aparente (kVA)
 - Potencia reactiva (kVAR)
 - Factor de potencia (cos φ)
 - Ángulo de fase
 - Integrador de energía activa (kWh)
- Mediciones de multimetro:
 - Valor efectivo real / tensión
 - Valor efectivo real / corriente
 - Frecuencia
- Registrador de datos de 99 valores visualizables en pantalla
- Memoria para los valores mínimo, máximo y Data-Hold
- Modo de calibración interna

Medidor de potencia digital PCE-UT232

El medidor de potencia compacto de potencia y energía para mediciones de 0,0 ... 600 kW / 0,0 ... 1000 A. La gran pantalla con iluminación de fondo de la pinza medidora de potencia le muestra varios valores de medición de forma simultánea.

PCE Ibérica S.L. | Mayor 53 – Bajo | 02500 Tobarra (Albacete)
Tel: +34 967 543 548 | Fax: +34 967 543 542 | Email: info@pce-iberica.es
http://www.pce-iberica.es/




ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

- Indicación del estado de batería
- Selección de rango automática

Medición sencilla de corriente con la pinza medidora de potencia PCE-UT232

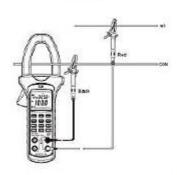
Especificaciones técnicas

Tensión (AC/TRMS)

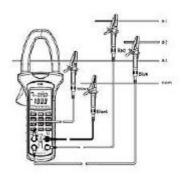
Corriente (AC/TRMS)

Medición de potencia activa

Medición de potencia aparente


Medición de potencia reactiva

Energía activa (contador Kh)


Factor de potencia (cos φ)

Ver / imprimir instrucciones del medidor de potencia digital PCE-UT23

Medición de potencia con la pinza medidora de potencia PCE-UT232 de 1 fase y 2 conductores

Medición de potencia con la pinza medidora de potencia PCE-UT232 de 3 fases y 4 conductores

15/100/300/600 V, ±1,2 % + 5 dígitos

40/100/400/1000 A, ±2,0 % + 5 dígitos

0,01 kW ... 600 kW; ± 3,0 % + 5 dígitos

0,01 kVA ... 600 kVA; ± 3,0 % + 5 dígitos

0,01 kVAr ... 600 kVAr; ± 4,0 % + 5 dígitos

1 ... 9999 kWh, ± 3,0 % + 2 dígitos

0,3 ... 1,00 inductivo y capacitivo; ± 0,02 + 2 dgts

PCE Ibérica S.L. | Mayor 53 – Bajo | 02500 Tobarra (Albacete)
Tel: +34 967 543 548 | Fax: +34 967 543 542 | Email: info@pce-iberica.es
http://www.pce-iberica.es/

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Angulo de fase

0 ... 360°; ± 1,0°

Frecuencia

20 ... 500 Hz

Registrador de datos

99 valores de medición

Pantalla

9999 con gráfico de barras e iluminación de fondo

Alimentación

4 x baterías de 1,5 V

Dimensiones (ancho x alto x profundo)

112 x 39 x 303 mm

Peso

601 g

Angulo de fase

Angulo de fase

TO MARKET AND THE PARTY OF THE PARTY OF

Contenido del envío

1 x medidor de potencia PCE-UT232

4 x conectores de prueba

4 x pinzas de cocodrilo 1 x cable interfaz USB

1 x software para PC

1 x maletín de transporte

1 x instrucciones de uso

Componente adicional

La calibración de laboratorio ISO incluido un certificado para que mantenga su control interno de calidad ISO. En el certificado aparece también el nombre de la persona que lo pide o los datos de su empresa. El certificado de calibración ISO se puede realizar en tensión (AC / DC) o en corriente (AC / DC).

Aquí encuentra otros productos parecidos bajo la clasificación "medidor de potencia":

- Medidor de potencia PCE-PA6000 (medidor de uso universal para analizar cableados)
- Medidor de potencia PCE-360 (medidor de tres fases y medidor de energía, memoria de datos, interfaz y software)
- Medidor de potencia PCE-830 (mediciones de 1a 3 fases de todas las magnitudes eléctricas, con memoria de datos, ...)

PCE Ibérica S.L. | Mayor 53 – Bajo | 02500 Tobarra (Albacete)
Tel: +34 967 543 548 | Fax: +34 967 543 542 | Email: info@pce-iberica.es
http://www.pce-iberica.es/

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ficha técnica protección diferencial

Hoja de características del producto

specificacione

Interruptor diferencial, Acti9 iID, 2P, 25A, 30mA A-SI

A9R61225

Principal

Gama	Acti 9		
Nombre del producto	Acti 9 IID40		
Tipo de producto o componente	Interruptor diferencial (RCCB)		
Nombre abreviado del equipo	ID		
Número de polos	29		
posición de neutro	Izquierda		
[In] Corriente nominal	25 A		
Tipo de red	AC		
sensibilidad de fuga a tierra	30 mA		
retardo de la protección contra fugas a tierra	instantáneo		
clase de protección contra fugas	Tipo A-Si		

Complementario

ubicación del dispositivo en el sistema	Salida		
Frecuencia de red	50/60 Hz		
[Ue] Tensión nominal de empleo	220240 V AC 50/60 Hz		
tecnologia de disparo corriente residual	Independiente de la tensión		
poder de conexión y de corte	idm 1500 A Im 1500 A		
corriente condicional de cortocircuito	10 kA		
[UI] Tensión nominal de aislamiento	500 V AC 50/60 Hz		
[Uimp] Resistencia a picos de tensión	6 KV		
corriente de sobretensión	3000 A		
indicador de posición del contacto	sı		
Tipo de control	Maneta		
Tipo de montaje	Ajustable en clip		
Soporte de montaje	Carril DIN		
pasos de 9 mm	4		
Altura	91 mm		
Ancho	36 mm		
Profundidad	73,5 mm		

2 jul 2024 Life la Cn Schneider 1

Peso del producto	0,21 kg
Color	Bianco
Durabilidad mecánica	20000 ciclos
Durabilidad eléctrica	AC-1, estado 1 15000 ciclos
Descripción de las opciones de bioqueo	Dispositivo de cierre con candado
Conexiones - terminales	Terminal simple arriba o abajo135 mm² rígido Terminal simple arriba o abajo125 mm² flexible Terminal simple arriba o abajo125 mm² flexible con terminal Terminal simple
longitud de cable pelado para conectar bornas	14 mm for arriba o abajo connection
par de apriete	3,5 N.m arriba o abajo
Entorno	
Normas	EN/IEC 61008-1 EN/IEC 61008-2-1
certificaciones de producto	coc
Grado de protección IP	IP20 conforming to IEC 60529 IP40 (envolvente modular) conforming to IEC 60529
Grado de contaminación	3
Compatibilidad electromagnética	Resistencia a impulsos 8/20 μs, 3000 A acorde a EN/IEC 61008-1
Temperatura ambiente de funcionamiento	-2560 °C
Temperatura ambiente de almacenamiento	-4085 °C
Unidades de emba	ılaje
Tipo de unidad de paquete 1	PCE
Número de unidades en el paquete 1	1
Paquete 1 Altura	4,100 cm
Paquete 1 Ancho	8,500 cm
Paquete 1 Longitud	10,000 cm
Paquete 1 Peso	230,000 g
Tipo de unidad de paquete 2	881
Número de unidades en el paquete 2	6
D	
Paquete 2 Altura	9,100 om
Paquete 2 Ancho	9,100 cm 10,200 cm
Paquete 2 Ancho	10,200 cm
Paquete 2 Ancho Paquete 2 Longitud	10,200 cm 25,600 cm
Paquete 2 Ancho Paquete 2 Longitud Paquete 2 Peso	10,200 cm 25,600 cm 1,453 kg
Paquete 2 Ancho Paquete 2 Longitud Paquete 2 Peso Tipo de unidad de paquete 3 Número de unidades en el	10,200 cm 25,600 cm 1,453 kg
Paquete 2 Ancho Paquete 2 Longitud Paquete 2 Peso Tipo de unidad de paquete 3 Número de unidades en el paquete 3	10,200 cm 25,600 cm 1,453 kg 803
Paquete 2 Ancho Paquete 2 Longitud Paquete 2 Peso Tipo de unidad de paquete 3 Número de unidades en el paquete 3 Paquete 3 Altura	10,200 cm 25,600 cm 1,453 kg 903 54 30,000 cm
Paquete 2 Ancho Paquete 2 Longitud Paquete 2 Peso Tipo de unidad de paquete 3 Número de unidades en el paquete 3 Paquete 3 Altura Paquete 3 Ancho	10,200 cm 26,600 cm 1,463 kg 903 54 30,000 cm
Paquete 2 Ancho Paquete 2 Longitud Paquete 2 Peso Tipo de unidad de paquete 3 Número de unidades en el paquete 3 Paquete 3 Altura Paquete 3 Ancho Paquete 3 Longitud	10,200 cm 25,600 cm 1,463 kg 803 54 30,000 cm 40,000 cm

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Información Logística		
País de Origen	ES	
Garantía contr	actual	
Periodo de garantía	18 months	

2 jul 2024 Life is On | Schypelder 3

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Sostenibilidad

La etiqueta **Green Premium**[™] es el compromiso de Schneider Electric para ofrecer productos con el mejor desempeño ambiental. Green Premium promete cumplir con las regulaciones más recientes, transparencia en cuanto al impacto ambiental, así como productos circulares y de bajo CO2.

La guía para evaluar la sostenibilidad de los productos es un white paper que aclara los estándares globales de etiqueta ecológica y cómo interpretar las declaraciones ambientales.

Obtenga más información sobre Green Premium >

Guía para evaluar la sostenibilidad del producto >

Transparencia RoHS/REACh

Rendimiento de la sostenibilidad

②	Sin Mercurio	
②	Información Sobre Exenciones De Rohs	SI
Ø	Producto Con Contenido Plástico Sin Halógenos	

Certificaciones y estándares

Reglamento Reach	Declaración de REACh
Directiva Rohs Ue	Compatible con las excepciones
Normativa De Rohs China	Declaración RoHS China Producto fuera del ámbito de RoHS China. Declaración informativa de sustancias
Comunicación Ambiental	Perfil ambiental del producto
Race	En el mercado de la Unión Europea, el producto debe desecharse de acuerdo con un sistema de recolección de residuos específico y nunca terminar en un contenedor de basura.
Perfil De Circularidad	No se necesitan operaciones de reciclaje específicas

Life is On Schneider 2 jul 2024

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ficha técnica magnetotérmico alterna

Hoja de características del producto

specificaciones

Acti9 iK60N - Interruptor magnetotérmico - 2P - 16A - Curva C - 6kA

A9K17216

Principal

Función	Para corriente> 0,1 A
Gama	Acti 9
Nombre del producto	Adi 9 IKQ
Tipo de producto o componente	Interruptor automático en miniatura
Nombre abreviado del equipo	IK60N
Número de polos	2P
número de polos protegidos	2
[In] Corriente nominal	16 A on 30 °C
Tipo de red	AC
tecnología de unidad de disparo	Térmico-magnético
código de curva	С
capacidad de corte	6000 A Ion en 230 V AC 50/60 Hz acorde a EN/IEC 60898-1
poder de seccionamiento	Si acorde a EN/IEC 60898-1
Normas	EN/IEC 60898-1
Certificaciones de producto	Annor

Complementario

Frecuencia de red	50/60 Hz
limite de enlace magnético	510 x in
[lcs] poder de corte en servicio	6000 A 100 % acorde a EN/IEC 60898-1 - 230 V AC 50/60 Hz
clase de limitación	3 acordo a EN/IEC 60898-1
(UI) Tensión nominal de aislamiento	440 V AC 50/60 Hz acorde a EN/IEC 60898-1
[Uimp] Resistencia a picos de tensión	4 kV acorde a EN/IEC 60898-1
Tipo de control	Maneta
Señalizaciones en local	Indicación de encendido/apagado
Tipo de montaje	Ajustable en clip
Soporte de montaje	Carril DIN
pasos de 9 mm	4
Altura	85 mm
Ancho	36 mm
Profundidad	78,5 mm

2 jul 2024 Life In Cin | Schneider 1

Peso del producto	200 g	
Color	Blanco	
Durabilidad mecánica	20000 ciclos	
Durabilidad eléctrica	10000 ciclos	
Descripción de las opciones de bloqueo	Dispositivo de cierre con candado	
Conexiones - terminales	Terminal tipo túnel - tipo de cable: arriba o abajo) 125 mm² rígido Terminal tipo túnel - tipo de cable: arriba o abajo) 116 mm² flexible	
longitud de cable pelado para conectar bornas	14 mm for arriba o abajo connection	
par de apriete	2 N.m arriba o abajo	
protección contra fugas a tierra	Sin	
Entorno		
Grado de protección IP	IP20 conforming to IEC 60529	
Grado de contaminación	2 acorde a EN/IEC 60898-1	
Categoria de sobretensión	ш	
Temperatura ambiente de operación	-2560 °C	
Temperatura ambiente de almacenamiento	-4085 °C	
Unidades de emba	alaje	
Tipo de unidad de paquete 1	PCE	
Número de unidades en el	1	
paquete 1 Paquete 1 Altura	3,600 om	
Paquete 1 Ancho	7,600 cm	
Paquete 1 Longitud	9,400 om	
Paquete 1 Peso	194,000 g	
Tipo de unidad de paquete 2	B81	
Número de unidades en el paquete 2	6	
Paquete 2 Altura	10,000 cm	
Paquete 2 Ancho	10,000 cm	
Paquete 2 Longitud	23,000 cm	
Paquete 2 Peso	1,221 kg	
Tipo de unidad de paquete 3	803	
Número de unidades en el paquete 3	66	
Paquete 3 Altura	30,000 cm	
Paquete 3 Ancho	30,000 cm	
Paquete 3 Longitud	40,000 cm	
Paquete 3 Peso	13,872 kg	
Información Logística		
País de Origen	E8	
	Lanca and the second se	

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Sostenibilidad

La etiqueta **Green PremiumTM** es el compromiso de Schneider Electric para ofrecer productos con el mejor desempeño ambiental. Green Premium promete cumplir con las regulaciones más recientes, transparencia en cuanto al impacto ambiental, así como productos circulares y de bajo CO₂.

La guía para evaluar la sostenibilidad de los productos es un white paper que aclara los estándares globales de etiqueta ecológica y cómo interpretar las declaraciones ambientales.

Obtenga más información sobre Green Premium >

Guía para evaluar la sostenibilidad del producto >

Transparencia RoHS/REACh

Rendimiento de la sostenibilidad

Ø	Conforme Con Reach Sin Svhc
Ø	Sin Metales Pesados Tóxicos
②	Sin Mercurio
②	Información Sobre Exenciones De SI

Certificaciones y estándares

Reglamento Reach	Declaración de REACh
Directiva Rohs Ue	Conforme Declaración RoHS UE
Normativa De Rohs China	Declaración RoHS China Declaración proactiva de RoHS China (fuera del alcance legal de RoHS China)
Comunicación Ambiental	Perfil ambiental del producto
Race	En el mercado de la Unión Europea, el producto debe desecharse de acuerdo con un alatema de recolección de residuos específico y nunca terminar en un contenedor de basura.
Perfil De Circularidad	No se necesitan operaciones de reciclaje específicas

2 jul 2024 Life is On Schypeider 3

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ficha técnica magnetotérmico continua

Hoja de características del producto

specificacion

miniature circuit breaker - C60H - 2 poles - 15 A - C curve

A9N61530

Principal

Gama	Acti9
Nombre del producto	Adi 9 C60NA-DC
Tipo de producto o componente	Interruptor automático en miniatura
Nombre abreviado del equipo	C80H-DC
Función	Para corriente> 0,1 A
Número de polos	2P
número de polos protegidos	2
[In] Corriente nominal	15 A en 25 °C
Tipo de red	Corriente continua
tecnología de unidad de disparo	Térmico-magnético
código de curva	С
capacidad de corte	10 kA lou en 440 V corriente continua acorde a HB1 10 kA lou en 440 V corriente continua acorde a En> 50 A 6 kA lou en 500 V corriente continua acorde a HB1 6 kA lou en 500 V corriente continua acorde a En> 50 A 20 kA lou en 220 V corriente continua acorde a En> 50 A 20 kA lou en 220 V corriente continua acorde a GB 14048.2 20 kA lou en 220 V corriente continua acorde a En> 50 A 20 kA lou en 250 V corriente continua acorde a GB 14048.2 20 kA lou en 250 V corriente continua acorde a GB 14048.2 20 kA lou en 250 V corriente continua acorde a En> 50 A
Categoría de empleo	Categoría A acorde a HB1 Categoría A acorde a En> 50 A
poder de seccionamiento	Sí acorde a En> 50 A Sí acorde a HB1

Complementario

Frecuencia de red	50/60 Hz
[Ue] Tensión nominal de empleo	500 V corriente continua
[ics] poder de corte en servicio	15 kA 75 % acorde a HB1 - 220 V corriente continua 15 kA 75 % acorde a En> 50 A - 220 V corriente continua 15 kA 75 % acorde a HB1 - 250 V corriente continua 15 kA 75 % acorde a En> 50 A - 250 V corriente continua 4,5 kA 75 % acorde a En> 50 V corriente continua 4,5 kA 75 % acorde a En> 50 A - 500 V corriente continua
	7.5 kA 75 % acorde a HB1 - 440 V comiente continua 7.5 kA 75 % acorde a En> 50 A - 440 V comiente continua
(UI) Tensión nominal de aislamiento	500 V corriente continua acorde a En> 50 A 500 V corriente continua acorde a HB1
(Uimp) Resistencia a picos de tensión	6 kV acorde a HB1 6 kV acorde a En> 50 A
indicador de posición del	Si

jul 2024 Life to On Schweider

Tipo de control	Maneta
Señalizaciones en local	Indicación de encendido/apagado
Tipo de montaje	Fijo
Soporte de montaje	Carril DIN simétrico de 35 mm
compatibilidad de bloque de distribución y embarrado tipo peine	Arriba o abajo, estado 1 Estándar
pasos de 9 mm	4
Peso del producto	0,256 kg
Color	Blanco
Durabilidad mecánica	20000 ciclos
Durabilidad eléctrica	3000 ciclos L/R = 2 ms
preparado para candado	Con candado
Descripción de las opciones de bioqueo	En posición O
par de apriete	Circuito de alimentación: 2,5 N.m arriba o abajo
protección contra fugas a tierra	Sin
Entorno	
Normas	HB1 En> 60 A
Grado de contaminación	3 acorde a HB1 3 acorde a En> 50 A
Categoría de sobretensión	N
tropicalización	2 acorde a IEC 60068-2
Altitud de operación	2000 m
Temperatura ambiente de funcionamiento	-2570 °C
Temperatura ambiente de almacenamiento	-4085 °C
Unidades de emba	ılaie
Tipo de unidad de paquete 1	PCE
Número de unidades en el paquete 1	1
Paquete 1 Altura	7,5 cm
Paquete 1 Ancho	3,6 cm
Paquete 1 Longitud	8,5 cm
Paquete 1 Peso	226 g
Tipo de unidad de paquete 2	B81
Número de unidades en el paquete 2	6
Paquete 2 Altura	9 cm
Paquete 2 Ancho	8 cm
Paquete 2 Longitud	22 cm
Paquete 2 Peso	1,415 kg
Tipo de unidad de paquete 3	903
Número de unidades en el paquete 3	72
2	Life is On Schmeider 2 jul 2024

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Paquete 3 Altura	30 cm	
Paquete 3 Ancho	30 cm	
Paquete 3 Longitud	40 cm	
Paquete 3 Peso	17,694 kg	
Información Logística		
País de Origen	ES	
Garantía contractual		
Periodo de garantía	18 months	

2 jul 2024 Life is Cm Schmeider 3

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Sostenibilidad

La etiqueta **Green PremiumTM** es el compromiso de Schneider Electric para ofrecer productos con el mejor desempeño ambiental. Green Premium promete cumplir con las regulaciones más recientes, transparencia en cuanto al impacto ambiental, así como productos circulares y de bajo CO_2 .

La guía para evaluar la sostenibilidad de los productos es un white paper que aclara los estándares globales de etiqueta ecológica y cómo interpretar las declaraciones ambientales.

Obtenga más información sobre Green Premium >

Guía para evaluar la sostenibilidad del producto >

Transparencia RoHS/REACh

Rendimiento de la sostenibilidad

②	Conforme Con Reach Sin Svhc
②	Sin Metales Pesados Tóxicos
②	Sin Mercurio
Ø	Información Sobre Exenciones De gr

Certificaciones y estándares

Declaración de REACh
Conforme Declaración RoHS UE
Declaración RoHS China Declaración proactiva de RoHS China (fuera del alcance legal de RoHS China)
Perfil ambiental del producto
No se necesitan operaciones de reciclaje específicas

4 Life la Cn Schneider 2 jul 2024

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Ficha técnica caja de décadas de resistencia.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

1. Introducción

Este dispositivo ofrece 7 décadas de rangos de resistencia desde 1 a más de 11 M Ω (en saltos de 1Ω). Los interruptores deslizantes permiten sumar y restar fácilmente los valores de resistencia. Los bornes ofrecen conexiones simples y seguras.

2. Especificación

Rangos de resistencia	1 a 11, 111, 111 Ω en saltos de 1 Ω
Resistencia interna	Aprox.0.3Ω
Potencia	Resistencias 0.3W
Conexión	Tres (3) bornes
Precisión	1%
Condiciones de operación	Temperatura: 0 a 500C (32 a 1220F)
Humedad	<80%HR
Dimensiones/Peso:	14.0x13.1x3.0cm/295g

4. Selección del rango

Los 28 interruptores del panel frontal se utilizan para seleccionar la resistencia que estará disponible en los terminales rojo y negro. Cuando un interruptor se coloca en la posición IN, el valor presentado sobre el interruptor se añade a las resistencia total de los bornes. Si todos los interruptores están desactivados, la resistencia de salida total es cero (resistencia interna de 0.3Ω aprox.)

Por ejemplo, si el valor de salida deseado es $35.3k\Omega$, configure los siguientes interruptores en la posición IN: 30k, 4k, $1k\Omega$ y 300Ω .

