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Balancing Fit and Parsimony to Improve Q-Matrix Validation 

Abstract 

The Q-matrix identifies the subset of attributes measured by each item in the cognitive 

diagnosis modelling framework. Usually constructed by domain experts, the Q-matrix 

might contain some misspecifications, disrupting classification accuracy. Empirical Q-

matrix validation methods such as the GDI and Wald have shown promising results in 

addressing this problem. However, a cut-off point is used in both methods, which might 

be suboptimal. To address this limitation, the Hull method is proposed and evaluated in 

the present study. This method aims to find the optimal balance between fit and 

parsimony, and it is flexible enough to be used either with a measure of item 

discrimination (PVAF) or a coefficient of determination (pseudo-R2). Results from a 

simulation study showed that the Hull method consistently obtained the best performance 

and shortest computation time, especially when used with the PVAF. The Wald method 

also performed very well overall, while the GDI method obtained poor results when the 

number of attributes was high. The absence of a cut-off point provides greater flexibility 

to the Hull method, and it places it as a comprehensive solution to the Q-matrix 

specification problem in applied settings. This proposal is illustrated using real data. 

Key words: CDM, Q-matrix, validation, G-DINA, Hull method, PVAF, R-squared. 
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Balancing Fit and Parsimony to Improve Q-Matrix Validation 

 Cognitive diagnosis models (CDMs) are multidimensional discrete latent variable 

models. Examinees are classified into latent classes or attribute profiles according, for 

the usual case of dichotomous attributes, to their mastery or non-mastery of each attribute. 

CDMs require a Q-matrix (Tatsuoka, 1983) that defines the relationships between the J 

items and the K attributes. Each item has an associated q-vector (𝒒𝑗) of length K, in which 

each q-entry (𝑞𝑗𝑘) equals 1 or 0, depending on whether attribute k is relevant to correctly 

answer item j or not, respectively. The Q-matrix can be constructed based on theoretical 

knowledge or based solely on the data. The former is often performed by domain experts 

who discuss the theoretical structure of the test (e.g., Sorrel et al., 2016), while the latter 

is conducted by using empirical Q-matrix estimation methods (e.g., Liu et al., 2012). 

Regardless of what procedure is used, the original Q-matrix is expected to contain some 

misspecifications (Rupp & Templin, 2008). Q-matrix misspecifications negatively affect 

the estimation of CDMs parameters, disrupting the subsequent attribute profile 

classification (Gao et al., 2017; Rupp & Templin, 2008). In order to correct the potential 

misspecifications, several empirical Q-matrix validation methods have been proposed. 

These methods are a middle-ground solution between the confirmatory and exploratory 

perspectives, given that they consider the information from both the data and the original 

Q-matrix. 

Among the Q-matrix validation methods, two are of particular interest: the general 

discrimination index method (GDI method; de la Torre & Chiu, 2016) and the Wald-

based stepwise method (Wald method; Ma & de la Torre, 2020a). Apart from their good 

performance, these methods show some desirable features, such as their applicability to 

several CDMs and easy accessibility due to its inclusion in the GDINA package (Ma & 

de la Torre, 2020b). Despite these advantages, both methods share a limitation: the use of 
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a cut-off point in the process of selecting the suggested q-vector (a detailed explanation 

of the procedures is provided below). The problem associated to fixed cut-off points is 

that they cannot take into account the variations that the performance of a method suffers 

as a function of different data conditions (Nájera et al., 2019). In relation to this, the 

robustness of the GDI and Wald methods should be further evaluated. Although both 

methods have been examined under a wide range of conditions, some important factors 

have not been explored in previous simulation studies. For instance, their performance 

has been tested under 5 attributes; however, the average number of attributes found in 

applied studies is 8 (Sessoms & Henson, 2018). Moreover, the Wald method has been 

only evaluated under a fixed test length and the sequential G-DINA model (Ma & de la 

Torre, 2016). 

Considering all of the above, the purpose of the present paper is twofold. First, 

propose an empirical Q-matrix validation method that, without requiring a cut-off point, 

can achieve an optimal fit-parsimony balance. Second, examine how the performance of 

the new proposal compares to that of the GDI and Wald methods under a wide range of 

realistic conditions by means of a simulation study. The remainder of the paper is laid out 

as follows: First, a general CDM model is introduced; Second, the rationale of the 

conventional methods (GDI and Wald methods) and the new proposal (Hull method) is 

detailed; Third, a simulation study is conducted to compare the performance of the 

methods; Fourth, a real-data example is presented for illustration purposes; Finally, the 

implications for applied studies and future research lines are discussed. 

Review of the G-DINA model 

The generalized deterministic input, noisy and gate model (G-DINA; de la Torre, 

2011) is a general CDM that subsumes most of the reduced CDMs, whose calibration is 

a required preliminary step for Q-matrix validation. Let 𝐿 = 2𝐾 be the number of latent 
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classes, and 𝜶𝑙 be the attribute pattern for latent class 𝑙. Then, let 𝒒𝑗 be the q-vector of 

item j, and 𝒒(𝑚) be the 𝑚 q-vector. There are 𝑀 = 𝐿 − 1 possible q-vectors, since the 

null q-vector (i.e., with no attributes required) is not plausible. Table 1 shows the 𝜶1:𝐿 

attribute profiles and 𝒒(1:𝑀) q-vectors for the case of 𝐾 = 3. Let 𝒌(𝑚) and 𝐾(𝑚) be the 

positions and the number of attributes specified in 𝒒(𝑚), respectively, and 𝐿(𝑚) = 2𝐾(𝑚)
 

be the number of latent groups given 𝒒(𝑚). Then, 𝜶𝑙
(𝑚)

 would be the attribute pattern for 

latent group 𝑙 given a q-vector with the attributes included in 𝒌(𝑚) specified. Note that 

we refer to a latent class when all 𝐾 attributes are considered, and to a latent group when 

considering only the 𝒌(𝑚) attributes specified in 𝒒(𝑚). Consider again the case of 𝐾 = 3, 

where 𝐿 = 8 and 𝑀 = 7. Then, for instance, a latent class would be 𝜶7 = {0,1,1}, which 

indicates that the seventh latent class possesses both the second and third attributes, but 

not the first one. Now consider that 𝒒𝑗 = 𝒒(5) = {1,0,1}, where 𝒌(5) = {1,3}, 𝐾(5) = 2, 

and 𝐿(5) = 4. A latent group would be 𝜶2
(5)

= {1,0}, which indicates that the second latent 

group given the fifth q-vector possesses the first attribute, but not the third. 

According to the item response function of the G-DINA model, the probability of 

a latent group correctly answering an item, given a certain q-vector, is modelled by the 

sum of the effects of the attributes involved and their interactions: 

𝑃𝑗(𝜶𝑙
(𝑚)

) = 𝛿𝑗0
(𝑚)

+ ∑ 𝛿𝑗𝑘
(𝑚)

𝛼𝑙𝑘
(𝑚)

𝐾(𝑚)

𝑘=1

+ ∑ ∑ 𝛿𝑗𝑘𝑘′
(𝑚)

𝛼𝑙𝑘
(𝑚)

𝛼
𝑙𝑘′
(𝑚)

 … + 𝛿
𝑗(12…𝐾(𝑚))

(𝑚)
∏ 𝛼𝑙𝑘

(𝑚)

𝐾(𝑚)

𝑘=1

,

𝐾(𝑚)−1

𝑘=1

𝐾(𝑚)

𝑘′>𝑘

(1) 

where 𝛿𝑗0
(𝑚)

 is the intercept of item j given 𝒒𝒋 = 𝒒(𝑚), 𝛿𝑗𝑘
(𝑚)

 is the main effect due to 𝛼𝑙𝑘
(𝑚)

, 

𝛿𝑗𝑘𝑘′
(𝑚)

 is the interaction effect due to 𝛼𝑙𝑘
(𝑚)

 and 𝛼
𝑙𝑘′
(𝑚)

, and 𝛿
𝑗(12…𝐾(𝑚))

(𝑚)
 is the interaction effect 

due to 𝛼𝑙1
(𝑚)

, … , 𝛼
𝑙𝐾(𝑚)

(𝑚)
. 

It is important to emphasise the relevance of the δ parameters. Let 𝒒𝑗 = {1, 1, 0} 

be the true q-vector for item j. 𝒒𝑗 indicates what attributes are being measured by item j, 
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but not to what extent; δ parameters provide that information. Here, if 𝛿𝑗2
(𝑚)

 and 𝛿𝑗12
(𝑚)

 were 

low, none of the effects related to the second attribute would be substantive. This being 

the case 𝒒𝑗 = {1, 0, 0} would be the most appropriate q-vector de facto. This topic will 

be brought back again in the Method section. 

Conventional Q-matrix validation methods 

The GDI method of Q-matrix validation. The GDI method (de la Torre & Chiu, 

2016) is based on the concept of item discrimination. Specifically, the GDI (𝜍𝑗𝑚
2 ) is 

defined as the variance of the probabilities of success of the different possible latent 

groups weighted by the size of those latent groups: 

𝜍𝑗𝑚
2 = ∑ 𝜋(𝜶𝑙

(𝑚)
|𝑿) [𝑃𝑗(𝜶𝑙

(𝑚)
) − 𝑃̅𝑗(𝜶𝑙

(𝑚)
)]

2
𝐿(𝑚)

𝑙=1

, (2) 

where 

𝜋(𝜶𝑙
(𝑚)

|𝑿) = ∑ 𝜋(𝜶𝑙
(𝑚)

|𝑿𝑖)

𝑁

𝑖=1

(3) 

and 

𝑃̅𝑗(𝜶𝑙
(𝑚)

) = ∑ 𝜋(𝜶𝑙
(𝑚)

|𝑿)

𝐿(𝑚)

𝑙=1

𝑃𝑗(𝜶𝑙
(𝑚)

), (4) 

where 𝜋(𝜶𝑙
(𝑚)

|𝑿𝑖) is the posterior probability of examinee 𝑖 having attribute pattern 

𝜶𝑙
(𝑚)

. Since the 𝜍𝑗𝑚
2  index lacks a known metric, a relative ratio is considered. The 

maximum variance is obtained by the fully specified q-vector (𝒒(𝑀) = {𝟏}; de la Torre & 

Chiu, 2016). All 𝑀 q-vectors are ranked-order based on the proportion of variance 

accounted for (PVAF): PVAF𝑗𝑚 = 𝜍𝑗𝑚
2 /𝜍𝑗𝑀

2 . The PVAF is then enclosed between 0 and 

1. 
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A common way to represent the PVAF is the mesaplot (Ma & de la Torre, 2020b). 

The PVAF is shown in the y-axis, and the candidate q-vectors are shown in the x-axis. 

The candidate q-vectors are the ones with the highest PVAF among those with a given 

𝐾(𝑚). The function is monotonically increasing to 1. A reduction in the growing rate is 

expected after all the relevant attributes have been correctly specified. Thus, the q-vector 

on the edge of the mesa is likely to be the most appropriate q-vector. An illustration of a 

mesaplot is shown in Figure 1. 

A critical question is how to define that a mesa is “sharp enough”. The GDI 

method tries to solve this problem by setting a cut-off point. Specifically, among the 

candidate q-vectors, the set of appropriate q-vectors is formed by those who fulfil 

PVAF𝑗𝑚 > 𝜑.1 In pursuit of parsimony, the suggested q-vector will be the simplest one 

among the appropriate q-vectors. In the original formulation of the GDI method, 𝜑 was 

fixed to .95. Nájera et al. (2019) noted that the optimal 𝜑 value depended on data 

characteristics and proposed a predictive formula based on the sample size (N), test length 

(J), and average item discrimination (IQ): 

𝜑 = inv. logit(−0.405 + 2.867 · 𝐼𝑄 + 4.840 · 10−4 · 𝑁 − 3.316 · 10−3 · 𝐽), (5) 

where inv.logit is the inverse of the logit function. Even though this resulted in very 

accurate results, the inclusion of all potentially relevant factors in a predictive formula is 

not practicable. Hence, the usefulness of such predictions might remain limited to the 

specific simulation conditions under they were generated. 

The Wald method of Q-matrix validation. The stepwise Q-matrix validation 

method or Wald method (Ma & de la Torre, 2020a) evaluates the statistical significance 

of the attribute effects in model fit using the Wald test (Wald, 1943). Specifically, the 

method examines whether an attribute can be excluded from an item without a significant 

                                                 
1 Note that the cut-off 𝜑 has been denoted as 𝜖 in previous studies (e.g., de la Torre & Chiu, 2016). 
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loss of fit. An attribute is said to be statistically necessary if it cannot be removed from 

an item without a significant loss. The Wald method always compares a q-vector with 

𝐾(𝑚) attributes specified with a nested q-vector with 𝐾(𝑚) − 1 attributes specified. A 

restriction matrix 𝑹(𝑘𝑚) is required to evaluate whether attribute k is statistically 

necessary in 𝒒(𝑚). Under the null hypothesis (i.e., attribute k is not statistically necessary), 

𝑹(𝑘𝑚) × 𝑷𝑗
(𝑚)

= 0. Here, 𝑷𝑗
(𝑚)

 denotes the vector of success probabilities for the 𝐿(𝑚) 

latent groups to item 𝑗 (see Eq. 1). The Wald statistic for testing whether attribute k is 

statistically necessary for item j given a provisional q-vector m is: 

𝑊𝑗𝑘
(𝑚)

= [𝑹(𝑘𝑚) × 𝑷𝑗
(𝑚)

]
′

[𝑹(𝑘𝑚) × 𝑽𝑗
(𝑚)

× 𝑹(𝑘𝑚)′
]

−1

[𝑹(𝑘𝑚) × 𝑷𝑗
(𝑚)

], (6) 

where 𝑽𝑗
(𝑚)

 is a 𝐿(𝑚) × 𝐿(𝑚) submatrix of the covariance matrix 𝑽(𝑷) = ℐ(𝑷)−1, being 

ℐ(𝑷) the information matrix. The Wald statistic is asymptotically 𝜒2 distributed with 

2𝐾(𝑚)−1 degrees of freedom. 

The Wald method implements the Wald test with a stepwise algorithm. For each 

item, the first attribute to be included in 𝒒𝑗 is the one with the highest PVAF among the 

q-vectors with 𝐾(𝑚) = 1. If PVAF𝑗𝑚 > 𝜑, the process terminates and 𝒒𝑗 becomes the 

suggested q-vector. If not, all the q-vectors with 𝐾(𝑚) = 2 that subsume the simpler 

provisional 𝒒𝑗 are evaluated using the Wald test. If none of the attributes under test are 

statistically necessary, the process terminates. Otherwise, the attribute with the highest 

PVAF among all the statistically necessary attributes is included in 𝒒𝑗. Then, the Wald 

test is conducted again to examine whether the previously included attributes are still 

statistically necessary. Non statistically necessary attributes are removed from 𝒒𝑗. The 

algorithm continues in a stepwise fashion until PVAF𝑗𝑚 > 𝜑 or no more attributes are 

found to be statistically necessary. 
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The Wald method uses both a statistical test (Wald) and a sort of effect size 

measure (PVAF) to choose the suggested q-vector. Ma & de la Torre (2020a) used 𝜑 =

.95 as a cut-off point for the PVAF. This value is arbitrary to some extent and might be 

suboptimal under different conditions. For instance, a 𝜑 down to .75 has been shown to 

perform better under demanding scenarios (e.g., low quality items; Nájera et al., 2019). 

It should be noted that the GDI and Wald methods use the cut-off point for different 

purposes. While the GDI entirely relies on it for the selection of the suggested q-vectors, 

in the Wald method the statistical test has a primary role for determining what attributes 

are retainable, while the 0.95 cut-off point is only a high-enough upper-bound for PVAF 

to prevent for the inclusion of potentially irrelevant, although statistically necessary, 

attributes. Given all this, it is expected that the disruptive effects associated to the use of 

a cut-off point might be more notable for the GDI method than for the Wald method. 

The Hull method for Q-matrix validation 

The Q-matrix validation method proposed in the present paper does not require 

the use of a cut-off point and aims to find the best fit-parsimony balance. This is achieved 

by accounting for the complexity of the q-vectors. It is built upon the Hull method 

developed by Lorenzo-Seva et al. (2011) in the context of factor retention methods in the 

exploratory factor analysis framework. This method compares different models, from 0 

to 𝐾 factors, in terms of fit and parsimony. All the solutions are depicted in a two-

dimensional graph, called hull plot, which represents the number of parameters in the x-

axis and a fit index in the y-axis. Different fit indices can be used for this purpose (e.g., 

CFI, RMSEA, SRMR). The hull plot forms a monotonically increasing curve. The Hull 

method takes its name after the convex hull concept. For the two-dimensional case, it 

implies that all the solutions placed below a segment connecting any two other solutions 

are removed; the convex hull is formed by the solutions contained in the most possible 
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upper curve. After the convex hull is achieved, the optimal solution is defined as the one 

placed on the most pronounced elbow (i.e., preceded by a big jump and followed by a 

small jump). To quantify the magnitude of the elbow of each solution, the st index 

(Ceulemans & Kiers, 2006) is computed as 

𝑠𝑡𝑘 =
(𝑓𝑘 − 𝑓𝑘−1)/(𝑛𝑝𝑘 − 𝑛𝑝𝑘−1)

(𝑓𝑘+1 − 𝑓𝑘)/(𝑛𝑝𝑘+1 − 𝑛𝑝𝑘)
, (7) 

where 𝑓𝑘 and 𝑛𝑝𝑘 denote the fit-index value and the number of parameters associated to 

the solution with 𝑘 factors, respectively. The larger the 𝑠𝑡𝑘, the bigger the gain in fit per 

degree of freedom between solution 𝑘 and the previous solution in comparison with the 

next solution and solution 𝑘. The solution that maximizes st is the one retained. Note that 

the first (i.e., the model with 0 factors) and 𝐾th solutions cannot be selected, since either 

the previous or posterior solution is not available. 

 The Hull method for Q-matrix validation follows the same rationale, but some 

considerations must be made to adapt the method for the CDM framework. First, while 

the original method evaluates the number of factors underlying a set of variables, the new 

proposal evaluates the number of attributes to be included in an item’s q-vector. Thus, the 

hull plot varies accordingly. As in the mesaplot, only the best q-vector for each 𝐾(𝑚), 

from 1 to 𝐾, is considered as a candidate q-vector and depicted in the plot. The 

explanation on how the candidate q-vectors are chosen is provided below. The x-axis 

represents the number of parameters associated to each q-vector. For general CDMs, the 

number of parameters is 𝑛𝑝𝐾(𝑚) = 2𝐾(𝑚)
. On the other hand, the y-axis, as in the original 

method, can represent different indices. Two indices are considered in the present study. 

The first one is the previously defined PVAF. This variant (HullP) then evaluates the 

balance between fit, understood as item discrimination, and parsimony. While the 

relevant attributes are expected to produce an increase in the PVAF, irrelevant attributes 
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are expected to produce a negligible effect. This will result in the most appropriate q-

vector being preceded by a steep slope and followed by a sharp mesa. 

The second index considered is the McFadden pseudo-R2 (McFadden, 1974), 

which is an absolute model-fit index that measures the proportion of variance accounted 

for the observed responses. It is a coefficient of determination used in logistic regression 

models as an analogous index to the squared multiple-correlation coefficient in linear 

statistical models. In the context of CDM, where probabilities of correctly answering an 

item are estimated for each examinee, McFadden pseudo-R2 can be used to obtain a 

measure of fit between these estimates and observed responses. It is computed as: 

𝑅𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛
2 = 1 −

log(𝐿𝑀)

log(𝐿0)
, (8) 

where 𝐿𝑀 denotes the likelihood of the model, and 𝐿0 denotes the likelihood of the null 

model. In the Q-matrix validation framework, the model is conditional to the item and q-

vector specification. Let 𝑥𝑖𝑗 be the response (i.e, 0 or 1) of examinee 𝑖 in item 𝑗, 𝑥̅𝑗 be the 

observed mean of item 𝑗 across the 𝑁 examinees, and 𝑃𝑗
(𝑚)(𝑿𝒊) be the estimated success 

probability of examinee 𝑖 in item 𝑗 given q-vector 𝑚: 

𝑃𝑗
(𝑚)(𝑿𝒊) = 𝜋(𝜶𝑙

(𝑚)
|𝑿𝑖) × 𝑃𝑗(𝜶𝑙

(𝑚)
). (9) 

Then: 

𝑅𝑗𝑚
2 = 1 −

log(𝐿𝑗𝑚)

log(𝐿𝑗0)
, (10) 

where 

𝐿𝑗0 = ∏ 𝑥̅𝑗
𝑥𝑖𝑗[1 − 𝑥̅𝑗]

1−𝑥𝑖𝑗

𝑁

𝑖=1

(11) 

and 
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𝐿𝑗𝑚 = ∏ 𝑃𝑗
(𝑚)(𝑿𝒊)

𝑥𝑖𝑗[1 − 𝑃𝑗
(𝑚)(𝑿𝒊)]

1−𝑥𝑖𝑗

𝑁

𝑖=1

. (12) 

 Just as in the case before, adding relevant attributes to an item’s q-vector is 

expected to produce an improvement in the prediction of the observed response, while 

adding irrelevant attributes is expected to result in a negligible increase. This variant 

(HullR) aims to identify the q-vector that obtains the best balance between model fit, 

understood as a coefficient of determination, and parsimony.  

The st of Eq. 7 is reformulated as 

𝑠𝑡𝑗𝐾(𝑚) =
(𝑓𝑗𝐾(𝑚) − 𝑓𝑗𝐾(𝑚)−1)/(𝑛𝑝𝐾(𝑚) − 𝑛𝑝𝐾(𝑚)−1)

(𝑓𝑗𝐾(𝑚)+1 − 𝑓𝑗𝐾(𝑚))/(𝑛𝑝𝐾(𝑚)+1 − 𝑛𝑝𝐾(𝑚))
, (13) 

where 𝑓𝑗𝐾(𝑚) and 𝑛𝑝𝐾(𝑚)  represent the index and number of parameters of the 𝐾(𝑚) 

candidate q-vector for item 𝑗, respectively. Index 𝑓 can be either the PVAF or pseudo-R2. 

The 𝐾(𝑚) candidate q-vector for item 𝑗 is the one with the highest PVAF or pseudo-R2 

among the q-vectors with 𝐾(𝑚) attributes specified. The algorithm of the Hull method for 

Q-matrix validation is set as (see Figures 2 and 3 for graphical illustrations): 

Step 1. Create a hull plot by representing the number of parameters (𝑛𝑝) in the x-

axis and the index (PVAF or pseudo-R2) in the y-axis. The candidate q-vectors are 

depicted in the hull plot. 

Step 2. Set the origin of the hull plot at 𝑛𝑝0 = 𝑓𝑗0 = 0, so that the q-vector with 

𝐾(𝑚) = 1 is suitable for election. 

Step 3. Remove all the q-vectors that are not part of the convex hull (i.e., remove 

the q-vectors whose index stays below the line segment connecting any two other 

q-vectors). 

Step 3a. If only the origin and the fully specified q-vector remain, then 

select the fully specified q-vector. 
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Step 3b. If two or more q-vectors remain, go to Step 4. 

Step 4. Compute the st index for each q-vector and retain the one that maximizes 

st. 

Simulation Study 

 A simulation study was conducted to examine the performance of the two variants 

of the proposed method (HullP and HullR) under realistic conditions and extend the 

insights on the performance of the conventional methods (GDI and Wald). Since both 

HullP and HullR variants share a lot of common characteristics, we will allude to the Hull 

method to refer to both of them. 

Method 

 Design. A mixed factorial design was employed. The four Q-matrix validation 

procedures formed the within-subject factor. Six between-subject factors were 

manipulated: Q-matrix misspecification rate (QM), number of attributes (K), item quality 

(IQ), sample size (N), ratio of number of items to attribute (JK), and attribute distribution 

(AD). Factor levels, represented in Table 2, were elected in pursuit of representativeness 

of applied settings. For instance, 𝐾 = 4 is the most common scenario in the applied 

literature, while 𝐾 = 8 is the average (Sessoms & Henson, 2018). The ratio of number of 

items to attribute indicates the test length as a function of K. Hence, four test structures 

were considered in the present study: 𝐽 = 16 (𝐾 = 4 × 𝐽𝐾 = 4), 𝐽 = 32 (𝐾 = 4 × 𝐽𝐾 =

8), 𝐽 = 32 (𝐾 = 8 × 𝐽𝐾 = 4), 𝐽 = 64 (𝐾 = 8 × 𝐽𝐾 = 8). The levels for QM, IQ, N, and 

AD are also considered representative of applied settings (Ma & de la Torre, 2020a; 

Nájera et al., 2019). A total of 144 between-subject conditions resulted after combining 

the factor levels. 

Regarding the implementation of the validation methods, a distinction must be 

made between stepwise and iterative procedures. The Wald method was implemented in 
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a stepwise manner (Ma & de la Torre, 2020a). This method considers the inclusion or 

exclusion of one attribute at a time. No re-estimation of the CDM is made after 

introducing the modifications in the Q-matrix. The GDI and Hull methods were 

implemented iteratively (Nájera et al., 2020). This means that the CDM is re-estimated 

after each modification. In order to provide a fair comparison to the Wald test, the entire 

Q-matrix was modified in each iteration introducing or removing the smallest possible 

number of attributes. This is referred to as test-attribute iterative implementation. For 

instance, consider that the original q-vector for item j in Figures 1, 2, and 3 is 𝒒𝑗 =

{11111}. The methods would select 𝒒𝑗 = {11001} as the suggested q-vector. However, 

the test-attribute iterative implementation would first suggest 𝒒𝑗 = {11011}, since it is 

closer to the original q-vector. If 𝒒𝑗 = {11001} is indeed the most appropriate q-vector, 

it will be likely modified in a subsequent iteration. This implementation provides greater 

stability to the validation methods, while giving more weight to the original Q-matrix 

specification. All validation methods were conducted after estimating a G-DINA model 

using the original Q-matrix. 

 Data generation. Examinees’ responses were simulated under the G-DINA 

model. Attribute patterns were generated following either a uniform distribution or a 

higher-order distribution (de la Torre & Douglas, 2004). For the latter, examinees’ 

continuous latent trait (i.e., 𝜽) were drawn from a standardized normal distribution, 

attribute discrimination parameters were drawn from a uniform distribution (i.e., 

𝑈𝑛𝑖𝑓(1, 2)), and attribute difficulty parameters were given equidistant values between –

1.5 and 1.5 (Ma & de la Torre, 2020a). 

 Item quality (IQ) is defined as 𝐼𝑄 = ∑ (𝑃𝑗(𝟏) − 𝑃𝑗(𝟎)) /𝐽𝐽
𝑗=1 , where 𝐽 is the 

number of items, and 𝑃𝑗(𝟏) and 𝑃𝑗(𝟎) are the probabilities of correctly answering item 𝑗 

for the latent group that possesses all or none of the attributes involved in item j, 
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respectively. The three levels of IQ were defined as: high IQ: 𝑃𝑗(𝟎)~𝑈(0, .2) and 

𝑃𝑗(𝟏)~𝑈(.8, 1); medium IQ: 𝑃𝑗(𝟎)~𝑈(.1, .3) and 𝑃𝑗(𝟏)~𝑈(.7, .9); and low IQ: 

𝑃𝑗(𝟎)~𝑈(.2, .4) and 𝑃𝑗(𝟏)~𝑈(.6, .8). This resulted in 𝐼𝑄 ≈ .8, .6, .4 for high, medium, 

and low IQ, respectively. The probabilities of success of all the other latent groups were 

randomly generated with two constraints. First, the item response function had to be 

monotonic on the number of attributes. Second, the sum of the δ parameters associated to 

an attribute was constrained to be higher than .15. This guarantees that all attributes have 

a non-negligible effect, as stated on the Review of the G-DINA model section. 

 True Q-matrices were randomly generated with the following constraints: a) each 

Q-matrix contained, at least, two identity matrices; b) the composition of the Q-matrix 

comprised 50% of one-attribute q-vectors, 25% of two-attribute q-vectors, and 25% of 

three-attribute q-vectors; c) apart from the two identity matrices, each attribute was 

measured at least by another item; d) the maximum correlation between attributes in the 

Q-matrix was .3, to avoid attribute overlapping. This was expected to allow for a certain 

degree of randomness in the original Q-matrices, thus increasing the generalizability of 

the results, while controlling for extreme scenarios. This Q-matrix generation procedure 

is also in agreement with the recommendations for identifiability by Xu and Shang 

(2018). We then proceeded to include misspecifications in these Q-matrices for the 

conditions of 𝑄𝑀 > 0. Misspecifications were introduced randomly with two constraints. 

First, all items had to be measured by at least one attribute. Second, one of the identity 

matrices was always retained. 

For each of the 144 conditions, 500 datasets were generated. A new set of true Q-

matrix and delta parameters were generated for each dataset. All simulations and analyses 

were conducted in R software (R Core Team, 2019), using the GDINA package and self-
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developed functions. All figures were created with the ggplot2 package (Wickham, 

2016). The codes are available under request. 

Dependent variables. The Q-matrix recovery rate (QRR) was the main dependent 

variable. For each replication, it was calculated by 

𝑄𝑅𝑅 =
∑ ∑ 𝐼(𝑞𝑗𝑘

(𝑠)
= 𝑞𝑗𝑘

(𝑡)
)𝐾

𝑘=1
𝐽
𝑗=1

𝐽 × 𝐾
 , (14) 

where 𝐼(·) is the indicator function, and 𝑞𝑗𝑘
(𝑠)

 and 𝑞𝑗𝑘
(𝑡)

 are the suggested and true q-entries, 

respectively, for item j and attribute k. This variable provides information on overall 

performance. Additional variables were calculated to gather more specific information. 

The true positive rate (TPR; i.e., specificity) and true negative rate (TNR; i.e., sensitivity) 

were computed as 

𝑇𝑃𝑅 =
∑ ∑ 𝐼(𝑞𝑗𝑘

(𝑠)
= 𝑞𝑗𝑘

(𝑡)
|𝑞𝑗𝑘

(𝑜)
= 𝑞𝑗𝑘

(𝑡)
)𝐾

𝑘=1
𝐽
𝑗=1

∑ ∑ 𝐼 (𝑞𝑗𝑘
(𝑜)

= 𝑞𝑗𝑘
(𝑡)

)𝐾
𝑘=1

𝐽
𝑗=1

 (15) 

and 

𝑇𝑁𝑅 =
∑ ∑ 𝐼(𝑞𝑗𝑘

(𝑠)
= 𝑞𝑗𝑘

(𝑡)
|𝑞𝑗𝑘

(𝑜)
≠ 𝑞𝑗𝑘

(𝑡)
)𝐾

𝑘=1
𝐽
𝑗=1

∑ ∑ 𝐼 (𝑞𝑗𝑘
(𝑜)

≠ 𝑞𝑗𝑘
(𝑡)

)𝐾
𝑘=1

𝐽
𝑗=1

 , (16) 

where 𝑞𝑗𝑘
(𝑜)

 is the original q-entry for item j and attribute k. The number of over-

specifications (OS; i.e., 0 to 1 misspecifications) and under-specifications (US; i.e., 1 to 

0 misspecifications) were also considered: 

𝑂𝑆 = ∑ ∑ 𝐼(𝑞𝑗𝑘
(𝑠)

> 𝑞𝑗𝑘
(𝑡)

)

𝐾

𝑘=1

𝐽

𝑗=1

(17) 

and 

𝑈𝑆 = ∑ ∑ 𝐼(𝑞𝑗𝑘
(𝑠)

< 𝑞𝑗𝑘
(𝑡)

)

𝐾

𝑘=1

𝐽

𝑗=1

. (18) 
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Two dependent variables were registered to evaluate the classification accuracy 

derived from each method: the proportion of correctly classified attributes (PCA) and the 

proportion of correctly classified vectors (PCV): 

𝑃𝐶𝐴 =
∑ ∑ 𝐼(𝛼̂𝑖𝑘 = 𝛼𝑖𝑘)𝐾

𝑘=1
𝑁
𝑖=1

𝑁 × 𝐾
 (19) 

and 

𝑃𝐶𝑉 =
∑ 𝐼(𝜶̂𝑖 = 𝜶𝑖)

𝑁
𝑖=1

𝑁
 , (20) 

where 𝛼̂𝑖𝑘 and 𝛼𝑖𝑘 are the estimated (with the suggested Q-matrix) and true k attribute for 

examinee i, respectively; and 𝜶̂𝑖 and 𝜶𝑖 are the estimated and true attribute profile for 

examinee i, respectively. Finally, the computation time in seconds and convergence rate 

for each method were recorded. Convergence issues for the iteratively implemented 

methods (i.e., GDI and Hull) occurred when they achieved the maximum number of 

iterations (i.e., 150). When this happened, the suggested Q-matrix in the last iteration was 

taken as the definitive one. Finally, both independent and repeated measures ANOVA 

were conducted to examine the factor interactions. Interactions with a partial eta-squared 

(𝜂𝑝
2) higher than .14 were considered as relevant (Cohen, 1988). 

Results 

 Medians instead of means are provided for QRR, TPR, TNR, PCA, and PCV due 

to the presence of asymmetry. Table 3 gives the overall results for the four validation 

methods. The Hull method provided the best results in almost all dependent variables, 

with a consistent, slightly better performance obtained when the PVAF was used rather 

than the pseudo-R2. Both variants obtained a very high overall Q-matrix recovery of .953 

and .945, respectively. The Wald method also obtained a very good performance, similar 

to the Hull method for most dependent variables. It showed a tendency to under-specify 

(𝑈𝑆 = 14.0) but committed very few over-specification errors (𝑂𝑆 = 3.9). Finally, the 
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GDI method obtained the worst performance in all dependent variables, with the only 

exception of under-specification errors (𝑈𝑆 = 4.1). 

Table 4 gives the results split by factor levels. A separate ANOVA for each 

method was conducted to better understand the effect of each factor on each method, 

using the QRR, TPR, and TNR as dependent variables. The QRR of the Wald and Hull 

methods was most influenced by the misspecification rate (𝜂𝑝
2 ≥ .591) and item quality 

(𝜂𝑝
2 ≥ .587). The more demanding levels of both factors (i.e., 𝑄𝑀 = .3 and 𝐼𝑄 = .4) led 

to the worst results for these methods. On the other hand, the GDI method was greatly 

influenced by the number of attributes (𝜂𝑝
2 = .946), in such a way that its poor overall 

performance was primarily due to 𝐾 = 8. Regarding the TPR and TNR, the TPR remained 

more stable than the TNR under the different factor levels for the Wald and Hull methods. 

Thus, the TPR was always high, even with low quality items (𝑇𝑃𝑅 ≥ .926), while the 

TNR obtained lower values (𝑇𝑁𝑅 ≥ .421). Finally, the sample size, ratio of number of 

items to attribute, and attribute distribution showed small to moderate effects on all 

methods. 

The best performance across the different factor levels and dependent variables 

was generally obtained by the Hull method. Both variants, HullP and HullR, showed an 

almost identical pattern on the results, with the former being better in most of the 

conditions. Thus, unless otherwise indicated, results for HullP will be the ones described. 

The Hull method obtained the best QRR, TPR, and TNR under almost all factor levels. It 

showed a 𝑇𝑃𝑅 > .950 and a 𝑇𝑁𝑅 closed to or above .800 under all conditions, except 

for low-quality items (𝑇𝑁𝑅 = .429) and low ratio of number of items to attribute (𝑇𝑁𝑅 =

.658). The best PCA and PCV results were always obtained by the Hull method, except 

for the conditions with 𝑄𝑀 = 0 and 𝐼𝑄 = .4. Under the conditions in which the Hull 

method did not performed the best, it obtained very close results to the best performing 
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method. The Wald method also obtained a good performance under most conditions. It 

showed a very low over-specification tendency, but the highest under-specification 

tendency, especially with 𝐾 = 8. On the contrary, the GDI method showed an extreme 

tendency to over-specify under 𝐾 = 8. However, with 𝐾 = 4, the GDI method performed 

as well as the other methods, with even a slightly better PCA and PCV compared to the 

Wald method. The computation time for all methods was very short with 𝐾 = 4 (𝐶𝑇 ≤ 3 

seconds), but dramatically increased with 𝐾 = 8. Under these conditions, the Hull 

method was the fastest, six minutes below the Wald method. Finally, convergence rates 

were very high and consistent for the Wald and Hull methods (𝐶𝑅 ≥ .972). The GDI 

method obtained a convergence rate close to 0 with 𝐾 = 8. 

In order to further examine whether either the Hull or Wald method should be 

preferred under different scenarios, a repeated measures ANOVA was conducted to 

examine the factor level interactions regarding the QRR. The HullP variant was used for 

this analysis. The most relevant interactions were 𝑀𝑒𝑡ℎ𝑜𝑑 × 𝐾 × 𝐼𝑄 (𝜂𝑝
2 = .214) and 

𝑀𝑒𝑡ℎ𝑜𝑑 × 𝑄𝑀 × 𝐼𝑄 (𝜂𝑝
2 = .205). Both interactions are summarized and depicted in 

Figure 4. The performance of both methods tended to be more similar as IQ increased 

and QM decreased. In line with previous results, the Hull method provided an overall 

better performance than the Wald method. The only notable exception was the conditions 

of 𝐼𝑄 = .4, 𝐾 = 8, and 𝑄𝑀 > 0, where the Wald method obtained better results. An 

additional analysis revealed that, under these conditions, the differences in median QRR 

between the Wald and HullP methods were pronounced with 𝐽𝐾 = 4 and 𝑁 = 500 (a 

difference of .117), but much lower with 𝐽𝐾 = 8 and 𝑁 = 1000 (a difference of .012). 

Thus, the better performance of the Wald method occurred mainly under the most 

demanding scenarios of 𝐼𝑄 = .4, 𝐾 = 8, 𝐽𝐾 = 4, 𝑁 = 500, and 𝑄𝑀 > 0. 

Real Data Analysis 
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The Hull method in conjunction with the PVAF has been shown to have better 

overall performance using simulated data. To further examine its practical viability, an 

illustration using a real data is provided. The dataset employed for the illustration was 

previously analysed by Chen and de la Torre (2014). It consists of the dichotomized 

responses of 2012 students from the United Kingdom who had answer at least half of the 

26 items from Booklets 8 and 9 of the PISA 2000 reading assessment (OECD, 2006). 

Only fully correct answers were considered as successes, whereas partially correct and 

incorrect answers were treated as failures. The Q-matrix employed in their study is 

represented in Table 5. It involves six attributes, namely: locating information (α1), 

forming a broad general understanding (α2), developing a logical interpretation (α3), 

evaluating a number-rich text with number sense (α4), evaluating the quality or 

appropriateness of a text (α5), and related to test speediness (α6). Additional details about 

sample characteristics and attribute definitions can be found in Chen and de la Torre 

(2014). 

As in the simulation study, the HullP procedure was applied in a test-attribute 

iterative manner. Only two iterations were required to achieve a stable solution. 

Modifications were suggested for five items – an attribute was suggested to be added for 

two items, whereas an attribute was suggested to be dropped for the other three items. For 

illustration purposes, consider Item 2, which refers to a graph that represents the depth of 

Lake Chad through several millennia. Specifically, the item asks: “In about which year 

does the graph in Figure 1 start?” In the original Q-matrix, this item was specified to 

measure attributes α1 (i.e., locating information) and α4 (i.e., evaluating a number-rich 

text with number sense). Figure 5 depicts the hull plot for this item. The plot shows a very 

sharp mesa after the first q-vector, 𝒒𝑗 = {000100}, with had a PVAF of .9826. The 

original q-vector,  𝒒𝑗 = {100100}, with a PVAF of .9841, was not even the best among 
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the q-vectors with two required attributes. The best two-attribute q-vector, 𝒒𝑗 =

{001100}, had a PVAF of .9930, which is very close to that of the first q-vector. As a 

result, the st indices of 𝒒𝑗 = {000100} and 𝒒𝑗 = {001100} were 94.5 and 4.8, 

respectively. Item 1, which is very similar to Item 2, asks, “What is the depth of Lake 

Chad today?” The original specification of Item 1, which remained unchanged after the 

implementation of the HullP procedure, did not require α1. Taken together, these two 

items suggest that α1, which focuses on finding textual keys, such as enumerations or 

examples, is not as relevant in measuring the recovery of graphical or numeric 

information, which is already covered by α4. 

Regarding model fit, the G-DINA model based on the suggested Q-matrix 

obtained a better relative fit (𝐴𝐼𝐶 = 50249.7 and 𝐵𝐼𝐶 = 51298.2) compared to that of 

the original Q-matrix (𝐴𝐼𝐶 = 50328.1 and 𝐵𝐼𝐶 = 51365.4). This provides additional 

empirical evidence to support the use of the suggested Q-matrix. Note, however, the 

results from the HullP procedure cannot guarantee that the suggested Q-matrix is correct 

or appropriate. To arrive at a theoretically and empirically defensible Q-matrix, domain 

experts need to review the suggested modifications to decide which changes to adopt. 

Discussion 

 CDMs rely on correctly specified Q-matrices to achieve accurate attribute profile 

classifications (Gao et al., 2017; Rupp & Templin, 2008). Among the empirical Q-matrix 

validation methods, the GDI method (de la Torre & Chiu, 2016) and the Wald method 

(Ma & de la Torre, 2020a) have shown promising results and desirable features. A 

common drawback of both methods is that they require a cut-off point, which can be 

either selected arbitrarily or by means of unexhaustive predictive formulas. This is the 

case of the predictive formula developed for the GDI method by Nájera et al. (2019). In 

this case, the formula was developed under the condition of 𝐾 = 5; hence, its 
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performance under a higher number of attributes remained uncertain. On the other hand, 

the cut-off point in the Wald method, which has been fixed to .95, was not expected to 

excessively disrupt the performance of the method. However, the performance of the 

Wald method remained also uncertain under some realistic conditions, such as varying 

test lengths or high number of attributes (Sessoms & Henson, 2018). 

The present study proposes the Hull method for Q-matrix validation, which does 

not require a cut-off point. This feature is expected to provide a greater robustness to the 

method under varying conditions. The Hull method was implemented with two different 

indexes: a measure of item discrimination (PVAF) and a coefficient of determination 

(McFadden’s pseudo-R2). A simulation study was conducted with the aim of examining 

the performance of the aforementioned methods under realistic conditions. 

 The Hull method obtained the best results in almost all the dependent variables 

and factor levels considered in the simulation study. The HullP variant obtained an overall 

𝑄𝑅𝑅 = .953, with a high overall specificity and sensitivity, which resulted in the highest 

classification accuracy. Furthermore, these results were achieved while having the lowest 

computation time (an average of 66 seconds) and a convergence rate of approximately 1. 

The HullR variant obtained very similar but slightly poorer results. It should be noted that 

an adjusted McFadden pseudo-R2 has been proposed in the literature (McFadden, 1979), 

which considers the complexity of the model. By using the adjusted pseudo-R2, no st 

index computation would be required, since the suggested q-vector would be the one with 

the highest value. This method was examined and dismissed in a pilot simulation study 

because the HullR procedure provided much better results. The Wald method also 

performed very well under most conditions, with an overall performance that was close 

to that of the Hull method. Finally, the GDI method performed very well under 𝐾 = 4, 

with its results being comparable to the Wald method. These results are in line with Nájera 
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et al. (2019). However, the predictive formula led to an over-estimation of the cut-off 

point under 𝐾 = 8, leading to the non-convergence of the GDI method. A more 

comprehensive predictive formula for the cut-off point could be developed, with the 

precaution of noticing that it might provide suboptimal results under unconsidered 

scenarios. 

 Regarding the factors under study, item quality and Q-matrix misspecification rate 

were the most relevant ones for the Hull and Wald methods. The great effect of both 

factors in the final Q-matrix recovery emphasizes the importance of the original item and 

Q-matrix development process. This is good news for the applied researcher, since the 

factors that are under her/his control are the most influential ones. Other than that, the 

Hull and Wald methods were robust to different scenarios of sample size and attribute 

distribution. 

 Another important finding is that the lower QRR achieved by the Hull and Wald 

methods under the most demanding conditions (e.g., 𝐼𝑄 = .4, 𝑄𝑀 = .3) was due to a 

decrease in the TNR, while the TPR remained high. Again, this is good news for the 

practitioner: one can have reasonable expectations that these methods will not incorrectly 

modify the q-entries that were correctly specified in the Q-matrix, even under challenging 

conditions. In return, it should be expected that, under these demanding conditions, the 

methods will not detect all the potentially misspecified q-entries. 

According to the comparison between Hull and Wald methods, the Wald method 

is only recommended when the conditions are particularly unfavourable (i.e., high 

number of attributes, low item quality, short test length, and low sample size). Other than 

that, the Hull method is recommended given its great overall performance across different 

dependent variables. As it has been shown, the Hull method has the advantage that it can 

be applied iteratively at a reasonable computational cost. Although the Wald method 
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could be also implemented iteratively, the computation time would grow exponentially 

as the number of attributes increases. Considering 𝐾 = 8, the Wald method was already 

more than six minutes slower than the Hull method on the average. If the Wald method 

were performed iteratively, the computation time would increase to about 8.5 minutes per 

iteration. This can be unfeasible for even higher-dimensional datasets. On another note, 

there is still an unsolved limitation in both empirical Q-matrix estimation and validation 

methods, and the Hull method is no exception: they require the number of attributes to be 

set in advance. This potential source of misspecification, widely studied in the exploratory 

factor analysis framework, has been only tentatively addressed in few CDM applied 

studies (Robitzsch & George, 2019; Xu & Shang, 2018). A systematic evaluation on how 

to empirically determine the number of attributes should be conducted to provide more 

practical usefulness to empirical Q-matrix estimation and validation methods. 

Furthermore, the GDI and Wald methods have been recently evaluated in the context of 

estimating the q-vector of new items given a partially specified Q-matrix, which is of 

special relevance for computerized adaptive testing (Wang et al., 2020). The performance 

of the Hull method could be also further evaluated in this context. Finally, in line with the 

pseudo-R2 index, the residual-based approach has been previously considered for Q-

matrix validation. The statistic proposed by Yu & Cheng (2019) for the reduced DINA 

model could be further developed for the G-DINA model and applied within the Hull 

method. 

In conclusion, the use of the st index to obtain a fit-parsimony balance in q-vector 

suggestions without the requirement for a cut-off point has been proven to provide good 

results under different conditions. The Hull method is a simple, yet powerful method that 

can serve as a comprehensive solution for the Q-matrix misspecification problem in many 

applied scenarios. Given its slightly, but consistently better performance, the PVAF is 
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recommended rather than the pseudo-R2 index. As was shown in the empirical illustration, 

the modifications suggested by the method led to a better model fit. However, the 

theoretical interpretation and adequacy of such suggestions should be considered by 

domain experts. In this line, we would like to emphasize that Q-matrix validation methods 

should not be blindly trusted. As indicated in the caveats and recommendations made by 

Nájera et al. (2020), Q-matrix validation methods should not be understood as a substitute 

for experts’ judgment, but a complement to it.  
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Table 1. Latent classes and q-vectors for 𝐾 = 3 

Latent class q-vector Pattern 

𝜶1  {0,0,0} 

𝜶2 𝒒(1) {1,0,0} 

𝜶3 𝒒(2) {0,1,0} 

𝜶4 𝒒(3) {0,0,1} 

𝜶5 𝒒(4) {1,1,0} 

𝜶6 𝒒(5) {1,0,1} 

𝜶7 𝒒(6) {0,1,1} 

𝜶8 𝒒(7) {1,1,1} 

 

Table 2. Summary of the factors in the simulation study 

Factors Factor levels 

Q-matrix misspecification rate (QM) 0, .15, .30 

Number of attributes (K) 4, 8 

Average item quality (IQ) .4, .6, .8 

Sample size (N) 500, 1000 

Ratio of number of items to attribute (JK) 4, 8 

Attribute distribution (AD) Uniform, Higher-order 

Q-matrix validation method GDI, Wald, HullP, HullR 

 

Table 3. Overall results 

 QRR TPR TNR OS US PCA PCV CT CR 

GDI .711 .800 .400 127.0 4.1 .813 .334 955 .389 

Wald .928 .955 .766 3.9 14.0 .888 .551 254 .990 

HullP .953 .965 .800 9.6 8.9 .895 .591 66 .994 

HullR .945 .963 .789 10.4 9.1 .894 .584 80 .996 

Note. Best result by dependent variable is highlighted in bold. QRR = Q-matrix recovery 

rate; TPR = true positive rate; TNR = true negative rate; OS/US = number of over- and 

under-specifications, respectively; PCA/PCV = proportion of correctly classified 

attributes and vectors, respectively; CT = computation time (in seconds); CR = 

convergence rate.



 

 

Table 4. Results across the different factor levels 1 

  QM K IQ N JK AD 

DV Method 0 .15 .30 4 8 .4 .6 .8 500 1000 4 8 Unif H-O 

QRR 

GDI .898 .766 .641 .922 .328 .688 .750 .703 .625 .750 .719 .661 .688 .719 

Wald .971 .922 .863 .922 .938 .871 .930 .969 .914 .945 .922 .938 .938 .922 

HullP .973 .938 .879 .945 .959 .859 .953 .969 .938 .961 .938 .955 .961 .938 

HullR .969 .930 .867 .938 .957 .852 .945 .969 .936 .959 .934 .953 .955 .938 

TPR 

GDI .898 .833 .672 .944 .335 .811 .822 .694 .644 .844 .822 .688 .756 .822 

Wald .971 .959 .933 .945 .963 .926 .961 .977 .938 .969 .961 .949 .963 .950 

HullP .973 .963 .955 .961 .969 .953 .967 .969 .954 .975 .968 .963 .971 .960 

HullR .969 .963 .944 .954 .968 .940 .963 .970 .950 .972 .963 .961 .969 .954 

TNR 

GDI – .400 .383 .757 .289 .289 .390 .558 .370 .421 .364 .461 .403 .389 

Wald – .800 .737 .684 .816 .526 .786 .909 .779 .763 .658 .844 .792 .737 

HullP – .816 .779 .789 .816 .429 .842 .948 .789 .811 .658 .909 .842 .763 

HullR – .800 .740 .789 .805 .421 .800 .948 .766 .792 .610 .895 .817 .737 

OS 

GDI 122.1 127.7 131.1 1.8 252.1 135.1 132.9 112.9 131.8 122.2 78.4 175.5 127.2 126.7 

Wald 0.3 3.7 7.8 2.1 5.8 7.0 3.0 1.8 3.3 4.5 4.4 3.4 3.6 4.2 

HullP 3.1 9.3 16.5 2.8 16.4 22.8 5.1 0.9 12.0 7.3 9.7 9.6 9.1 10.1 

HullR 3.7 10.0 17.6 3.3 17.6 24.3 5.9 1.0 13.0 7.9 10.1 10.7 9.9 11.0 

US 

GDI 2.7 4.0 5.6 7.8 0.4 5.4 4.1 2.8 4.2 4.0 3.0 5.2 3.3 4.9 

Wald 7.0 14.1 21.1 7.6 20.6 20.4 13.0 8.7 16.9 11.1 9.2 18.9 12.8 15.3 

HullP 6.0 8.7 12.0 5.3 12.6 10.4 8.6 7.7 9.9 7.9 6.1 11.7 7.6 10.2 

HullR 6.1 9.0 12.3 5.5 12.7 10.8 9.3 7.3 10.0 8.2 6.3 12.0 7.6 10.7 

 2 

 3 
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Table 4. Results across the different factor levels (Cont.) 4 

  QM K IQ N JK AD 

DV Method 0 .15 .30 4 8 .4 .6 .8 500 1000 4 8 Unif H-O 

PCA 

GDI .840 .820 .781 .890 .686 .670 .800 .944 .792 .834 .776 .841 .806 .820 

Wald .920 .900 .855 .888 .888 .756 .896 .976 .884 .891 .856 .942 .874 .896 

HullP .920 .903 .869 .895 .894 .755 .903 .980 .891 .898 .857 .946 .882 .901 

HullR .920 .901 .866 .893 .894 .752 .901 .980 .889 .896 .856 .946 .881 .899 

PCV 

GDI .391 .346 .281 .632 .054 .138 .330 .664 .286 .382 .268 .428 .318 .343 

Wald .638 .584 .432 .626 .384 .227 .576 .892 .536 .567 .388 .674 .520 .582 

HullP .636 .608 .490 .648 .411 .206 .608 .910 .576 .605 .396 .705 .568 .624 

HullR .633 .600 .478 .641 .402 .204 .602 .910 .569 .597 .391 .698 .561 .612 

CT 

GDI 889 918 1059 3 1908 1140 934 792 1052 859 280 1631 927 984 

Wald 34 125 613 2 512 238 242 282 202 306 53 460 273 235 

HullP 34 61 102 2 130 133 47 18 54 78 58 74 64 68 

HullR 44 79 117 2 159 165 54 22 63 98 67 94 78 83 

CR 

GDI .485 .391 .292 .762 .017 .335 .396 .438 .372 .407 .410 .369 .390 .389 

Wald 1.000 .998 .972 1.000 .980 .986 .986 .997 .980 .999 1.000 .980 .990 .989 

HullP .996 .994 .991 .998 .990 .998 .994 .989 .991 .997 .993 .994 .995 .992 

HullR .998 .997 .994 .996 .997 .999 .999 .991 .996 .997 .997 .996 .997 .996 

Note. Best result by dependent variable and factor level is highlighted in bold. DV = dependent variable; QRR = Q-matrix recovery rate; TPR = 5 

true positive rate; TNR = true negative rate; OS/US = number of over- and under-specifications, respectively; PCA/PCV = proportion of correctly 6 

classified attributes and vectors, respectively; CT = computation time (in seconds); CR = convergence rate; QM = Q-matrix misspecification rate; 7 

K = number of attributes; IQ = average item quality; N = sample size; JK = ratio of number of items to attribute; AD = attribute distribution; Unif 8 

= uniform distribution; H-O = higher-order distribution. 9 

 10 
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Table 5. Original Q-matrix (Chen & de la Torre, 2014) 11 

  Attributes 

Item Item ID α1 α2 α3 α4 α5 α6 

1 R040Q02 0 0 1 1 0 0 

2 R040Q03A† 1 0 0 1 0 0 

3 R040Q03B 0 0 0 1 1 0 

4 R040Q04 0 1 0 1 0 0 

5 R040Q06 0 0 1 1 0 0 

6 R077Q02 1 0 0 0 0 0 

7 R077Q03 0 1 0 0 1 0 

8 R077Q04 0 0 1 0 1 0 

9 R077Q05 0 1 0 0 1 0 

10 R077Q06 1 0 1 0 0 0 

11 R088Q01 0 1 0 1 0 0 

12 R088Q03† 1 0 0 1 0 0 

13 R088Q04T 0 0 1 1 0 0 

14 R088Q05T 0 1 0 1 0 0 

15 R088Q07 0 1 0 1 1 0 

16 R110Q01 0 1 0 0 1 0 

17 R110Q04 1 0 1 0 0 0 

18 R110Q05 1 0 1 0 0 0 

19 R110Q06 1 0 1 0 0 0 

20 R216Q01 0 1 0 0 0 1 

21 R216Q02 0 0 1 0 1 1 

22 R216Q03T† 1 0 1 0 0 1 

23 R216Q04 0 0 1 0 0 1 

24 R216Q06† 1 0 1 0 0 1 

25 R236Q01† 1 0 1 0 0 1 

26 R236Q02 0 0 1 0 0 1 

Note. † = item with modified q-vector; underlined q-entries = entries to be modified based 12 

on the HullP method. 13 

 14 

  15 
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 16 
Figure 1. Illustration of a mesaplot for item j. 𝒒𝑗 = {11010} is likely to be the most 17 

appropriate q-vector. 18 

 19 

 20 
Figure 2. Illustration of a hull plot for item 𝑗 with the PVAF on the y-axis. The convex 21 

hull is represented with the black line. The grey line shows the non-candidate q-vector. 22 

Q-vector specifications are shown in curly brackets. In this example, 𝑠𝑡𝑗1 = 2.48, 𝑠𝑡𝑗3 =23 

15.34, and 𝑠𝑡𝑗4 = 1.53 for 𝒒𝑗 = {01000}, {11010}, and {11011}, respectively. The 24 

suggested q-vector, 𝒒𝑗 = {11010}, is represented by a black point. 25 
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 26 
Figure 3. Illustration of a hull plot for item 𝑗 with the pseudo-R2 on the y-axis. The convex 27 

hull is represented with the black line. The grey line shows the non-candidate q-vector. 28 

Q-vector specifications are shown in curly brackets. In this example, 𝑠𝑡𝑗1 = 2.11, 𝑠𝑡𝑗3 =29 

14.76, and 𝑠𝑡𝑗4 = 1.75 for 𝒒𝑗 = {01000}, {11010}, and {11011}, respectively. The 30 

suggested q-vector, 𝒒𝑗 = {11010}, is represented by a black point. 31 

 32 

 33 

Figure 4. QRR medians for the interaction Method (Wald and HullP) × IQ × K × QM. 34 

QRR = Q-matrix recovery rate; IQ = average item quality; K = number of attributes; QM 35 

= Q-matrix misspecification rate. 36 
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 37 

Figure 5. Hull plot for item R040Q03A. Q-vector specifications are shown in curly 38 

brackets. For this item, 𝑠𝑡𝑗1 = 94.5, 𝑠𝑡𝑗2 = 4.8, 𝑠𝑡𝑗3 = 6.6, 𝑠𝑡𝑗4 = 2.4, and 𝑠𝑡𝑗5 = 7.3,  39 

for 𝒒𝑗 = {000100}, {001100}, {101100}, {101101}, and {101111}, respectively. The 40 

suggested q-vector, 𝒒𝑗 = {000100}, is represented by a black point. 41 
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